code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
import argparse
import torch
from transformers import BertForMaskedLM
if __name__ == "__main__":
a__ = argparse.ArgumentParser(
description=(
"""Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned"""
""" Distillation"""
)
)
parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""])
parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str)
parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str)
parser.add_argument("""--vocab_transform""", action="""store_true""")
a__ = parser.parse_args()
if args.model_type == "bert":
a__ = BertForMaskedLM.from_pretrained(args.model_name)
a__ = """bert"""
else:
raise ValueError("""args.model_type should be \"bert\".""")
a__ = model.state_dict()
a__ = {}
for w in ["word_embeddings", "position_embeddings"]:
a__ = state_dict[F'''{prefix}.embeddings.{w}.weight''']
for w in ["weight", "bias"]:
a__ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}''']
a__ = 0
for teacher_idx in [0, 2, 4, 7, 9, 11]:
for w in ["weight", "bias"]:
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}'''
]
a__ = state_dict[
F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}'''
]
std_idx += 1
a__ = state_dict["""cls.predictions.decoder.weight"""]
a__ = state_dict["""cls.predictions.bias"""]
if args.vocab_transform:
for w in ["weight", "bias"]:
a__ = state_dict[F'''cls.predictions.transform.dense.{w}''']
a__ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}''']
print(F'''N layers selected for distillation: {std_idx}''')
print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''')
print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''')
torch.save(compressed_sd, args.dump_checkpoint)
| 317 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 1 |
from __future__ import annotations
import unittest
from transformers import LEDConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFLEDForConditionalGeneration, TFLEDModel
@require_tf
class snake_case :
'''simple docstring'''
snake_case_ : Optional[Any] = LEDConfig
snake_case_ : List[Any] = {}
snake_case_ : List[str] = """gelu"""
def __init__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Any=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : int=37 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[str]=20 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : str=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Optional[Any]=4 , ) -> str:
"""simple docstring"""
_snake_case : List[Any] = parent
_snake_case : Dict = batch_size
_snake_case : Any = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : str = use_labels
_snake_case : List[Any] = vocab_size
_snake_case : Optional[int] = hidden_size
_snake_case : Any = num_hidden_layers
_snake_case : int = num_attention_heads
_snake_case : Optional[int] = intermediate_size
_snake_case : int = hidden_dropout_prob
_snake_case : int = attention_probs_dropout_prob
_snake_case : int = max_position_embeddings
_snake_case : List[str] = eos_token_id
_snake_case : str = pad_token_id
_snake_case : Any = bos_token_id
_snake_case : int = attention_window
# `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size
# [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention
# returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1]
# because its local attention only attends to `self.attention_window` and one before and one after
_snake_case : int = self.attention_window + 2
# because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for
# the `test_attention_outputs` and `test_hidden_states_output` tests
_snake_case : List[str] = (
self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window
)
def UpperCamelCase_ ( self : List[Any]) -> int:
"""simple docstring"""
_snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size)
_snake_case : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1)
_snake_case : str = tf.concat([input_ids, eos_tensor] , axis=1)
_snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_snake_case : Dict = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , )
_snake_case : Dict = prepare_led_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Tuple = tf.concat(
[tf.zeros_like(lowerCAmelCase)[:, :-1], tf.ones_like(lowerCAmelCase)[:, -1:]] , axis=-1 , )
_snake_case : Any = global_attention_mask
return config, inputs_dict
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
_snake_case : int = TFLEDModel(config=lowerCAmelCase).get_decoder()
_snake_case : Dict = inputs_dict["""input_ids"""]
_snake_case : Optional[Any] = input_ids[:1, :]
_snake_case : Any = inputs_dict["""attention_mask"""][:1, :]
_snake_case : Dict = 1
# first forward pass
_snake_case : str = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase)
_snake_case , _snake_case : Union[str, Any] = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size)
_snake_case : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta)
# append to next input_ids and
_snake_case : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1)
_snake_case : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1)
_snake_case : Optional[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase)[0]
_snake_case : str = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase)[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1])
# select random slice
_snake_case : Dict = int(ids_tensor((1,) , output_from_past.shape[-1]))
_snake_case : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx]
_snake_case : Dict = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-3)
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Optional[int]:
if attention_mask is None:
_snake_case : int = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_snake_case : Optional[int] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_snake_case : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"decoder_input_ids": decoder_input_ids,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
}
@require_tf
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else ()
snake_case_ : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else ()
snake_case_ : int = (
{
"""conversational""": TFLEDForConditionalGeneration,
"""feature-extraction""": TFLEDModel,
"""summarization""": TFLEDForConditionalGeneration,
"""text2text-generation""": TFLEDForConditionalGeneration,
"""translation""": TFLEDForConditionalGeneration,
}
if is_tf_available()
else {}
)
snake_case_ : List[str] = True
snake_case_ : Any = False
snake_case_ : List[str] = False
snake_case_ : Any = False
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[Any] = TFLEDModelTester(self)
_snake_case : List[str] = ConfigTester(self , config_class=lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any]) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Tuple) -> str:
"""simple docstring"""
_snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> List[Any]:
"""simple docstring"""
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : Dict = tf.zeros_like(inputs_dict["""attention_mask"""])
_snake_case : List[str] = 2
_snake_case : str = tf.where(
tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , )
_snake_case : Tuple = True
_snake_case : int = self.model_tester.seq_length
_snake_case : str = self.model_tester.encoder_seq_length
def check_decoder_attentions_output(lowerCAmelCase : str):
_snake_case : int = outputs.decoder_attentions
self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
def check_encoder_attentions_output(lowerCAmelCase : Union[str, Any]):
_snake_case : Optional[int] = [t.numpy() for t in outputs.encoder_attentions]
_snake_case : str = [t.numpy() for t in outputs.encoder_global_attentions]
self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers)
self.assertListEqual(
list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , )
self.assertListEqual(
list(global_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , )
for model_class in self.all_model_classes:
_snake_case : str = True
_snake_case : int = False
_snake_case : Dict = False
_snake_case : Union[str, Any] = model_class(lowerCAmelCase)
_snake_case : Any = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase))
_snake_case : Tuple = len(lowerCAmelCase)
self.assertEqual(config.output_hidden_states , lowerCAmelCase)
check_encoder_attentions_output(lowerCAmelCase)
if self.is_encoder_decoder:
_snake_case : Dict = model_class(lowerCAmelCase)
_snake_case : Tuple = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase))
self.assertEqual(config.output_hidden_states , lowerCAmelCase)
check_decoder_attentions_output(lowerCAmelCase)
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
_snake_case : Tuple = True
_snake_case : List[Any] = model_class(lowerCAmelCase)
_snake_case : List[Any] = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase))
self.assertEqual(config.output_hidden_states , lowerCAmelCase)
check_encoder_attentions_output(lowerCAmelCase)
# Check attention is always last and order is fine
_snake_case : Tuple = True
_snake_case : List[str] = True
_snake_case : List[str] = model_class(lowerCAmelCase)
_snake_case : Tuple = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase))
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase))
self.assertEqual(model.config.output_hidden_states , lowerCAmelCase)
check_encoder_attentions_output(lowerCAmelCase)
@unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""")
def UpperCamelCase_ ( self : Optional[int]) -> str:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]:
"""simple docstring"""
pass
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return tf.constant(SCREAMING_SNAKE_CASE__ , dtype=tf.intaa )
a__ = 1E-4
@slow
@require_tf
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int]) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""").led
# change to intended input here
_snake_case : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]])
_snake_case : Any = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]])
_snake_case : str = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[Any] = model(**lowerCAmelCase)[0]
_snake_case : Tuple = (1, 1024, 768)
self.assertEqual(output.shape , lowerCAmelCase)
# change to expected output here
_snake_case : List[str] = tf.convert_to_tensor(
[[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3)
def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]:
"""simple docstring"""
_snake_case : Any = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""")
# change to intended input here
_snake_case : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]])
_snake_case : List[Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]])
_snake_case : Union[str, Any] = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase)
_snake_case : Tuple = model(**lowerCAmelCase)[0]
_snake_case : Optional[int] = (1, 1024, model.config.vocab_size)
self.assertEqual(output.shape , lowerCAmelCase)
# change to expected output here
_snake_case : str = tf.convert_to_tensor(
[[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , )
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3 , rtol=1E-3)
| 317 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None:
"""simple docstring"""
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int:
_snake_case : List[Any] = n * (n + 1) * (2 * n + 1) / 6
_snake_case : Optional[int] = (n * (n + 1) / 2) ** 2
return int(square_of_sum - sum_of_squares )
if __name__ == "__main__":
print(F'''{solution() = }''')
| 317 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from __future__ import annotations
import copy
import tempfile
import unittest
from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available
from transformers.testing_utils import (
DUMMY_UNKNOWN_IDENTIFIER,
SMALL_MODEL_IDENTIFIER,
RequestCounter,
require_tensorflow_probability,
require_tf,
slow,
)
from ..bert.test_modeling_bert import BertModelTester
if is_tf_available():
from transformers import (
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelForTableQuestionAnswering,
TFAutoModelForTokenClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFFunnelBaseModel,
TFFunnelModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
TFTapasForQuestionAnswering,
)
from transformers.models.auto.modeling_tf_auto import (
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_MAPPING,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = """new-model"""
if is_tf_available():
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = NewModelConfig
@require_tf
class snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Dict) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[Any] = """bert-base-cased"""
_snake_case : int = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : int = TFAutoModel.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : Any) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """bert-base-cased"""
_snake_case : Dict = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase)
_snake_case , _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : int) -> Any:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : str) -> Union[str, Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase)
_snake_case , _snake_case : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : int) -> int:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_snake_case : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase)
_snake_case , _snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : Any) -> Optional[int]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : int) -> int:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
_snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
@slow
@require_tensorflow_probability
def UpperCamelCase_ ( self : Tuple) -> List[Any]:
"""simple docstring"""
for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]:
_snake_case : Dict = AutoConfig.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[int] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase)
_snake_case , _snake_case : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained(
lowerCAmelCase , output_loading_info=lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
self.assertEqual(model.num_parameters() , 1_4410)
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase) , 1_4410)
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : int = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
self.assertEqual(model.num_parameters() , 1_4410)
self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase) , 1_4410)
def UpperCamelCase_ ( self : int) -> List[str]:
"""simple docstring"""
_snake_case : str = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""")
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
_snake_case : str = copy.deepcopy(model.config)
_snake_case : List[Any] = ["""FunnelBaseModel"""]
_snake_case : Dict = TFAutoModel.from_config(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowerCAmelCase)
_snake_case : List[Any] = TFAutoModel.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]:
"""simple docstring"""
try:
AutoConfig.register("""new-model""" , lowerCAmelCase)
_snake_case : str = [
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSequenceClassification,
TFAutoModelForTokenClassification,
]
for auto_class in auto_classes:
with self.subTest(auto_class.__name__):
# Wrong config class will raise an error
with self.assertRaises(lowerCAmelCase):
auto_class.register(lowerCAmelCase , lowerCAmelCase)
auto_class.register(lowerCAmelCase , lowerCAmelCase)
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(lowerCAmelCase):
auto_class.register(lowerCAmelCase , lowerCAmelCase)
# Now that the config is registered, it can be used as any other config with the auto-API
_snake_case : Tuple = BertModelTester(self).get_config()
_snake_case : Dict = NewModelConfig(**tiny_config.to_dict())
_snake_case : Optional[int] = auto_class.from_config(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmp_dir:
model.save_pretrained(lowerCAmelCase)
_snake_case : List[Any] = auto_class.from_pretrained(lowerCAmelCase)
self.assertIsInstance(lowerCAmelCase , lowerCAmelCase)
finally:
if "new-model" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["new-model"]
for mapping in (
TF_MODEL_MAPPING,
TF_MODEL_FOR_PRETRAINING_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_MASKED_LM_MAPPING,
):
if NewModelConfig in mapping._extra_content:
del mapping._extra_content[NewModelConfig]
def UpperCamelCase_ ( self : Optional[int]) -> int:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier"""):
_snake_case : int = TFAutoModel.from_pretrained("""bert-base""")
def UpperCamelCase_ ( self : Dict) -> int:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""):
_snake_case : Optional[Any] = TFAutoModel.from_pretrained(lowerCAmelCase , revision="""aaaaaa""")
def UpperCamelCase_ ( self : int) -> Any:
"""simple docstring"""
with self.assertRaisesRegex(
lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ):
_snake_case : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""")
def UpperCamelCase_ ( self : List[Any]) -> Tuple:
"""simple docstring"""
with self.assertRaisesRegex(lowerCAmelCase , """Use `from_pt=True` to load this model"""):
_snake_case : List[str] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""")
def UpperCamelCase_ ( self : List[str]) -> Dict:
"""simple docstring"""
_snake_case : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""")
with RequestCounter() as counter:
_snake_case : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""")
self.assertEqual(counter.get_request_count , 0)
self.assertEqual(counter.head_request_count , 1)
self.assertEqual(counter.other_request_count , 0)
# With a sharded checkpoint
_snake_case : Union[str, Any] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""")
with RequestCounter() as counter:
_snake_case : int = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""")
self.assertEqual(counter.get_request_count , 0)
self.assertEqual(counter.head_request_count , 1)
self.assertEqual(counter.other_request_count , 0)
| 317 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Any = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case_ : int = (
{
"""feature-extraction""": TFMobileBertModel,
"""fill-mask""": TFMobileBertForMaskedLM,
"""question-answering""": TFMobileBertForQuestionAnswering,
"""text-classification""": TFMobileBertForSequenceClassification,
"""token-classification""": TFMobileBertForTokenClassification,
"""zero-shot""": TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ : Tuple = False
snake_case_ : Union[str, Any] = False
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Tuple=False) -> Any:
"""simple docstring"""
_snake_case : Tuple = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase)
if return_labels:
if model_class in get_values(lowerCAmelCase):
_snake_case : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa)
return inputs_dict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=13 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : str=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : str=32 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Any=2 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Tuple=None , ) -> Tuple:
"""simple docstring"""
_snake_case : Dict = parent
_snake_case : str = batch_size
_snake_case : int = seq_length
_snake_case : Union[str, Any] = is_training
_snake_case : Tuple = use_input_mask
_snake_case : Union[str, Any] = use_token_type_ids
_snake_case : Tuple = use_labels
_snake_case : List[Any] = vocab_size
_snake_case : Tuple = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : List[str] = num_attention_heads
_snake_case : Dict = intermediate_size
_snake_case : Union[str, Any] = hidden_act
_snake_case : int = hidden_dropout_prob
_snake_case : str = attention_probs_dropout_prob
_snake_case : Optional[Any] = max_position_embeddings
_snake_case : Optional[int] = type_vocab_size
_snake_case : Dict = type_sequence_label_size
_snake_case : Union[str, Any] = initializer_range
_snake_case : int = num_labels
_snake_case : Union[str, Any] = num_choices
_snake_case : Optional[int] = scope
_snake_case : List[str] = embedding_size
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_snake_case : Union[str, Any] = None
if self.use_input_mask:
_snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length])
_snake_case : int = None
if self.use_token_type_ids:
_snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
_snake_case : Any = None
_snake_case : Union[str, Any] = None
_snake_case : Any = None
if self.use_labels:
_snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size)
_snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels)
_snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices)
_snake_case : Dict = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = TFMobileBertModel(config=lowerCAmelCase)
_snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : int = model(lowerCAmelCase)
_snake_case : Optional[int] = [input_ids, input_mask]
_snake_case : Tuple = model(lowerCAmelCase)
_snake_case : List[str] = model(lowerCAmelCase)
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size))
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size))
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = TFMobileBertForMaskedLM(config=lowerCAmelCase)
_snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : Union[str, Any] = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
_snake_case : str = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase)
_snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : int = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2))
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFMobileBertForPreTraining(config=lowerCAmelCase)
_snake_case : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : Union[str, Any] = model(lowerCAmelCase)
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size))
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2))
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = self.num_labels
_snake_case : Dict = TFMobileBertForSequenceClassification(config=lowerCAmelCase)
_snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : Any = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels))
def UpperCamelCase_ ( self : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
_snake_case : List[str] = self.num_choices
_snake_case : List[Any] = TFMobileBertForMultipleChoice(config=lowerCAmelCase)
_snake_case : Dict = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
_snake_case : Optional[Any] = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
_snake_case : List[str] = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1))
_snake_case : str = {
"""input_ids""": multiple_choice_inputs_ids,
"""attention_mask""": multiple_choice_input_mask,
"""token_type_ids""": multiple_choice_token_type_ids,
}
_snake_case : Tuple = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
_snake_case : List[Any] = self.num_labels
_snake_case : str = TFMobileBertForTokenClassification(config=lowerCAmelCase)
_snake_case : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : Optional[Any] = model(lowerCAmelCase)
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels))
def UpperCamelCase_ ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFMobileBertForQuestionAnswering(config=lowerCAmelCase)
_snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids}
_snake_case : Union[str, Any] = model(lowerCAmelCase)
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length))
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length))
def UpperCamelCase_ ( self : Union[str, Any]) -> int:
"""simple docstring"""
_snake_case : Tuple = self.prepare_config_and_inputs()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : Union[str, Any] = config_and_inputs
_snake_case : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask}
return config, inputs_dict
def UpperCamelCase_ ( self : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Any = TFMobileBertModelTest.TFMobileBertModelTester(self)
_snake_case : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37)
def UpperCamelCase_ ( self : Tuple) -> Dict:
"""simple docstring"""
self.config_tester.run_common_tests()
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
_snake_case : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase)
def UpperCamelCase_ ( self : Tuple) -> str:
"""simple docstring"""
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase)
def UpperCamelCase_ ( self : Dict) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase)
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
_snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase)
def UpperCamelCase_ ( self : Tuple) -> List[str]:
"""simple docstring"""
_snake_case : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase)
@slow
def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
for model_name in ["google/mobilebert-uncased"]:
_snake_case : List[Any] = TFMobileBertModel.from_pretrained(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
@require_tf
class snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : Tuple) -> str:
"""simple docstring"""
_snake_case : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""")
_snake_case : int = tf.constant([[0, 1, 2, 3, 4, 5]])
_snake_case : Union[str, Any] = model(lowerCAmelCase)[0]
_snake_case : List[str] = [1, 6, 3_0522]
self.assertEqual(output.shape , lowerCAmelCase)
_snake_case : Optional[Any] = tf.constant(
[
[
[-4.5_919_547, -9.248_295, -9.645_256],
[-6.7_306_175, -6.440_284, -6.6_052_837],
[-7.2_743_506, -6.7_847_915, -6.024_673],
]
])
tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-4)
| 317 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 1 |
import unittest
import numpy as np
from transformers import BertConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_flax_available():
from transformers.models.bert.modeling_flax_bert import (
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForNextSentencePrediction,
FlaxBertForPreTraining,
FlaxBertForQuestionAnswering,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertModel,
)
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : Any=True , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]=99 , lowerCAmelCase : Dict=32 , lowerCAmelCase : str=5 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Dict=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Tuple=4 , ) -> List[str]:
"""simple docstring"""
_snake_case : int = parent
_snake_case : int = batch_size
_snake_case : str = seq_length
_snake_case : int = is_training
_snake_case : Union[str, Any] = use_attention_mask
_snake_case : int = use_token_type_ids
_snake_case : int = use_labels
_snake_case : Any = vocab_size
_snake_case : Any = hidden_size
_snake_case : List[Any] = num_hidden_layers
_snake_case : Tuple = num_attention_heads
_snake_case : Any = intermediate_size
_snake_case : Tuple = hidden_act
_snake_case : List[str] = hidden_dropout_prob
_snake_case : Optional[Any] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : Optional[Any] = type_vocab_size
_snake_case : Any = type_sequence_label_size
_snake_case : List[str] = initializer_range
_snake_case : List[str] = num_choices
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
_snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size)
_snake_case : Any = None
if self.use_attention_mask:
_snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length])
_snake_case : Tuple = None
if self.use_token_type_ids:
_snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size)
_snake_case : Optional[Any] = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , )
return config, input_ids, token_type_ids, attention_mask
def UpperCamelCase_ ( self : Optional[Any]) -> Any:
"""simple docstring"""
_snake_case : int = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Tuple = config_and_inputs
_snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask}
return config, inputs_dict
def UpperCamelCase_ ( self : str) -> Tuple:
"""simple docstring"""
_snake_case : Any = self.prepare_config_and_inputs()
_snake_case , _snake_case , _snake_case , _snake_case : Dict = config_and_inputs
_snake_case : int = True
_snake_case : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size])
_snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2)
return (
config,
input_ids,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
)
@require_flax
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = True
snake_case_ : Dict = (
(
FlaxBertModel,
FlaxBertForPreTraining,
FlaxBertForMaskedLM,
FlaxBertForMultipleChoice,
FlaxBertForQuestionAnswering,
FlaxBertForNextSentencePrediction,
FlaxBertForSequenceClassification,
FlaxBertForTokenClassification,
FlaxBertForQuestionAnswering,
)
if is_flax_available()
else ()
)
def UpperCamelCase_ ( self : Any) -> List[Any]:
"""simple docstring"""
_snake_case : int = FlaxBertModelTester(self)
@slow
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[int] = FlaxBertModel.from_pretrained("""bert-base-cased""")
_snake_case : Optional[int] = model(np.ones((1, 1)))
self.assertIsNotNone(lowerCAmelCase)
| 317 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = """mgp-str"""
def __init__( self : Union[str, Any] , lowerCAmelCase : Any=[32, 128] , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : Optional[int]=27 , lowerCAmelCase : Union[str, Any]=38 , lowerCAmelCase : List[Any]=5_0257 , lowerCAmelCase : Optional[Any]=3_0522 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Dict=4.0 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=False , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : str=0.0 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : str=0.02 , **lowerCAmelCase : int , ) -> List[str]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[Any] = image_size
_snake_case : List[Any] = patch_size
_snake_case : Dict = num_channels
_snake_case : Optional[int] = max_token_length
_snake_case : Dict = num_character_labels
_snake_case : Dict = num_bpe_labels
_snake_case : Union[str, Any] = num_wordpiece_labels
_snake_case : Tuple = hidden_size
_snake_case : List[Any] = num_hidden_layers
_snake_case : Any = num_attention_heads
_snake_case : Tuple = mlp_ratio
_snake_case : str = distilled
_snake_case : List[Any] = layer_norm_eps
_snake_case : str = drop_rate
_snake_case : Optional[Any] = qkv_bias
_snake_case : Dict = attn_drop_rate
_snake_case : str = drop_path_rate
_snake_case : str = output_aa_attentions
_snake_case : Tuple = initializer_range
| 317 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 1 |
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import TFCamembertModel
@require_tf
@require_sentencepiece
@require_tokenizers
class snake_case ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : Any = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""")
_snake_case : Optional[int] = tf.convert_to_tensor(
[[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !"
_snake_case : Union[str, Any] = model(lowerCAmelCase)["""last_hidden_state"""]
_snake_case : str = tf.TensorShape((1, 10, 768))
self.assertEqual(output.shape , lowerCAmelCase)
# compare the actual values for a slice.
_snake_case : Any = tf.convert_to_tensor(
[[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , )
# camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0')
# camembert.eval()
# expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach()
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
| 317 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 1 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 1 |
import argparse
import shutil
import time
from json import JSONDecodeError
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import (
SeqaSeqDataset,
calculate_bleu,
calculate_rouge,
chunks,
lmap,
load_json,
parse_numeric_n_bool_cl_kwargs,
save_json,
use_task_specific_params,
write_txt_file,
)
a__ = getLogger(__name__)
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : int = 1_024 , SCREAMING_SNAKE_CASE__ : Dict="val" , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]="summarization" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Dict = None , SCREAMING_SNAKE_CASE__ : Any="" , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict:
_snake_case : Optional[int] = str(SCREAMING_SNAKE_CASE__ )
assert local_rank is not None
torch.distributed.init_process_group(backend="""nccl""" , rank=SCREAMING_SNAKE_CASE__ )
_snake_case : int = Path(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = save_dir.joinpath(F'''rank_{local_rank}_output.json''' )
torch.cuda.set_device(SCREAMING_SNAKE_CASE__ )
_snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).cuda()
if fpaa:
_snake_case : Dict = model.half()
# determine if we need to increase num_beams
use_task_specific_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # update config with task specific params
_snake_case : Dict = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk?
if num_return_sequences > num_beams:
_snake_case : Any = num_return_sequences
_snake_case : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ )
logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type.
if max_source_length is None:
_snake_case : Tuple = tokenizer.model_max_length
if prefix is None:
_snake_case : Optional[Any] = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
_snake_case : Any = SeqaSeqDataset(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_target_length=1_024 , type_path=SCREAMING_SNAKE_CASE__ , n_obs=SCREAMING_SNAKE_CASE__ , prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
# I set shuffle=True for a more accurate progress bar.
# If all the longest samples are first, the prog bar estimate is too high at the beginning.
_snake_case : Union[str, Any] = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , add_extra_examples=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , collate_fn=ds.collate_fn )
_snake_case : Union[str, Any] = []
for batch in tqdm(SCREAMING_SNAKE_CASE__ ):
_snake_case : Tuple = model.generate(
input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=SCREAMING_SNAKE_CASE__ , num_beams=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
_snake_case : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = batch["""ids"""]
if num_return_sequences > 1:
_snake_case : List[Any] = chunks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # batch size chunks, each of size num_return_seq
for i, pred in enumerate(SCREAMING_SNAKE_CASE__ ):
results.append({"""pred""": pred, """id""": ids[i].item()} )
save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return results, sampler.num_replicas
def lowercase ( ) -> List[str]:
_snake_case : str = argparse.ArgumentParser(
epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" )
parser.add_argument("""--data_dir""" , type=SCREAMING_SNAKE_CASE__ , help="""like cnn_dm/test.source""" )
parser.add_argument(
"""--model_name""" , type=SCREAMING_SNAKE_CASE__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , )
parser.add_argument("""--save_dir""" , type=SCREAMING_SNAKE_CASE__ , help="""where to save""" , default="""tmp_gen""" )
parser.add_argument("""--max_source_length""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ )
parser.add_argument(
"""--type_path""" , type=SCREAMING_SNAKE_CASE__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" )
parser.add_argument("""--task""" , type=SCREAMING_SNAKE_CASE__ , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=SCREAMING_SNAKE_CASE__ , default=8 , required=SCREAMING_SNAKE_CASE__ , help="""batch size""" )
parser.add_argument(
"""--local_rank""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help="""should be passed by distributed.launch""" )
parser.add_argument(
"""--n_obs""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""How many observations. Defaults to all.""" )
parser.add_argument(
"""--num_return_sequences""" , type=SCREAMING_SNAKE_CASE__ , default=1 , required=SCREAMING_SNAKE_CASE__ , help="""How many sequences to return""" )
parser.add_argument(
"""--sync_timeout""" , type=SCREAMING_SNAKE_CASE__ , default=600 , required=SCREAMING_SNAKE_CASE__ , help="""How long should master process wait for other processes to finish.""" , )
parser.add_argument("""--src_lang""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ )
parser.add_argument("""--tgt_lang""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ )
parser.add_argument(
"""--prefix""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--debug""" , action="""store_true""" )
_snake_case : str = time.time()
_snake_case , _snake_case : str = parser.parse_known_args()
_snake_case : Any = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ )
if generate_kwargs and args.local_rank <= 0:
print(F'''parsed the following generate kwargs: {generate_kwargs}''' )
_snake_case : Tuple = Path(args.save_dir + """_tmp""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) # this handles locking.
_snake_case : List[str] = list(json_save_dir.glob("""rank_*.json""" ) )
if intermediate_files:
raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' )
# In theory, a node could finish and save before another node hits this. If this happens, we can address later.
_snake_case : List[Any] = {}
if args.src_lang is not None:
_snake_case : List[str] = args.src_lang
if args.tgt_lang is not None:
_snake_case : Optional[Any] = args.tgt_lang
Path(args.save_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : Tuple = eval_data_dir(
args.data_dir , SCREAMING_SNAKE_CASE__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
if args.local_rank <= 0:
_snake_case : str = Path(args.save_dir )
save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[Any] = gather_results_from_each_node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.sync_timeout )
_snake_case : Any = combine_partial_results(SCREAMING_SNAKE_CASE__ )
if args.num_return_sequences > 1:
_snake_case : List[str] = save_dir.joinpath("""pseudolabel_results.json""" )
print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' )
save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return
_snake_case : Any = Path(args.data_dir ).joinpath(args.type_path + """.target""" )
with open(SCREAMING_SNAKE_CASE__ ) as f:
_snake_case : Any = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE__ )]
# Calculate metrics, save metrics, and save _generations.txt
_snake_case : str = """translation""" in args.task
_snake_case : str = calculate_bleu if calc_bleu else calculate_rouge
_snake_case : Tuple = """bleu""" if calc_bleu else """rouge"""
_snake_case : Dict = score_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ )
_snake_case : Any = time.time() - start_time
_snake_case : Union[str, Any] = round(runtime / metrics["""n_obs"""] , 4 )
_snake_case : Any = num_replicas
# TODO(@stas00): add whatever metadata to metrics
_snake_case : List[Any] = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' )
save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ )
print(SCREAMING_SNAKE_CASE__ )
write_txt_file(SCREAMING_SNAKE_CASE__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) )
if args.debug:
write_txt_file(SCREAMING_SNAKE_CASE__ , save_dir.joinpath(F'''{args.type_path}.target''' ) )
else:
shutil.rmtree(SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> List:
_snake_case : str = []
for partial_result in partial_results:
records.extend(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x["id"] )
_snake_case : Optional[int] = [x["""pred"""] for x in records]
return preds
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Dict[str, List]]:
# WAIT FOR lots of .json files
_snake_case : List[Any] = time.time()
logger.info("""waiting for all nodes to finish""" )
_snake_case : str = None
while (time.time() - start_wait) < timeout:
_snake_case : Optional[Any] = list(save_dir.glob("""rank_*.json""" ) )
if len(SCREAMING_SNAKE_CASE__ ) < num_replicas:
continue
try:
# make sure all json files are fully saved
_snake_case : str = lmap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return json_data
except JSONDecodeError:
continue
else:
raise TimeoutError("""Rank 0 gave up on waiting for other processes""" )
# Unreachable
if __name__ == "__main__":
# Usage for MT:
run_generate()
| 317 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 1 |
import os
import time
import warnings
from dataclasses import dataclass, field
from enum import Enum
from typing import List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...tokenization_utils_base import PreTrainedTokenizerBase
from ...utils import logging
from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors
from ..processors.utils import InputFeatures
a__ = logging.get_logger(__name__)
@dataclass
class snake_case :
'''simple docstring'''
snake_case_ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} )
snake_case_ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
snake_case_ : int = field(
default=1_28 ,metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
snake_case_ : bool = field(
default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
def UpperCamelCase_ ( self : int) -> Any:
"""simple docstring"""
_snake_case : Union[str, Any] = self.task_name.lower()
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = """train"""
snake_case_ : List[Any] = """dev"""
snake_case_ : Union[str, Any] = """test"""
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : GlueDataTrainingArguments
snake_case_ : str
snake_case_ : List[InputFeatures]
def __init__( self : str , lowerCAmelCase : GlueDataTrainingArguments , lowerCAmelCase : PreTrainedTokenizerBase , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Union[str, Split] = Split.train , lowerCAmelCase : Optional[str] = None , ) -> int:
"""simple docstring"""
warnings.warn(
"""This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """
"""library. You can have a look at this example script for pointers: """
"""https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCAmelCase , )
_snake_case : List[Any] = args
_snake_case : int = glue_processors[args.task_name]()
_snake_case : List[Any] = glue_output_modes[args.task_name]
if isinstance(lowerCAmelCase , lowerCAmelCase):
try:
_snake_case : Union[str, Any] = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""")
# Load data features from cache or dataset file
_snake_case : Dict = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , )
_snake_case : Union[str, Any] = self.processor.get_labels()
if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in (
"RobertaTokenizer",
"RobertaTokenizerFast",
"XLMRobertaTokenizer",
"BartTokenizer",
"BartTokenizerFast",
):
# HACK(label indices are swapped in RoBERTa pretrained model)
_snake_case , _snake_case : List[Any] = label_list[2], label_list[1]
_snake_case : Union[str, Any] = label_list
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_snake_case : Optional[Any] = cached_features_file + """.lock"""
with FileLock(lowerCAmelCase):
if os.path.exists(lowerCAmelCase) and not args.overwrite_cache:
_snake_case : Optional[Any] = time.time()
_snake_case : List[str] = torch.load(lowerCAmelCase)
logger.info(
F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start)
else:
logger.info(F'''Creating features from dataset file at {args.data_dir}''')
if mode == Split.dev:
_snake_case : Optional[Any] = self.processor.get_dev_examples(args.data_dir)
elif mode == Split.test:
_snake_case : int = self.processor.get_test_examples(args.data_dir)
else:
_snake_case : List[str] = self.processor.get_train_examples(args.data_dir)
if limit_length is not None:
_snake_case : Optional[int] = examples[:limit_length]
_snake_case : Any = glue_convert_examples_to_features(
lowerCAmelCase , lowerCAmelCase , max_length=args.max_seq_length , label_list=lowerCAmelCase , output_mode=self.output_mode , )
_snake_case : Dict = time.time()
torch.save(self.features , lowerCAmelCase)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''')
def __len__( self : Tuple) -> str:
"""simple docstring"""
return len(self.features)
def __getitem__( self : Tuple , lowerCAmelCase : Tuple) -> InputFeatures:
"""simple docstring"""
return self.features[i]
def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return self.label_list
| 317 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int:
if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return 0
elif n == 2:
return 1
else:
_snake_case : Optional[Any] = [0, 1]
for i in range(2 , n + 1 ):
sequence.append(sequence[i - 1] + sequence[i - 2] )
return sequence[n]
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int:
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = 2
while digits < n:
index += 1
_snake_case : Optional[int] = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) )
return index
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000 ) -> int:
return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 317 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = """maskformer-swin"""
snake_case_ : Dict = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : Dict , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Any=[2, 2, 6, 2] , lowerCAmelCase : int=[3, 6, 12, 24] , lowerCAmelCase : List[str]=7 , lowerCAmelCase : str=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : str=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ) -> int:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = image_size
_snake_case : List[str] = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : Tuple = embed_dim
_snake_case : str = depths
_snake_case : Optional[Any] = len(lowerCAmelCase)
_snake_case : Optional[int] = num_heads
_snake_case : int = window_size
_snake_case : str = mlp_ratio
_snake_case : Union[str, Any] = qkv_bias
_snake_case : Optional[int] = hidden_dropout_prob
_snake_case : Optional[Any] = attention_probs_dropout_prob
_snake_case : List[Any] = drop_path_rate
_snake_case : Optional[Any] = hidden_act
_snake_case : Optional[int] = use_absolute_embeddings
_snake_case : Optional[int] = layer_norm_eps
_snake_case : Optional[int] = initializer_range
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : List[str] = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[int] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : Dict = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
| 317 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 | 1 |
a__ = {
"joule": 1.0,
"kilojoule": 10_00,
"megajoule": 1_00_00_00,
"gigajoule": 10_00_00_00_00,
"wattsecond": 1.0,
"watthour": 36_00,
"kilowatthour": 3_60_00_00,
"newtonmeter": 1.0,
"calorie_nutr": 41_86.8,
"kilocalorie_nutr": 4_18_68_00.00,
"electronvolt": 1.6_02_17_66_34E-19,
"britishthermalunit_it": 10_55.0_55_85,
"footpound": 1.355_818,
}
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ) -> float:
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
_snake_case : Any = (
F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n'''
F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}'''
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 | 1 |
from __future__ import annotations
class snake_case :
'''simple docstring'''
def __init__( self : str , lowerCAmelCase : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case , _snake_case : Any = text, pattern
_snake_case , _snake_case : Optional[Any] = len(lowerCAmelCase), len(lowerCAmelCase)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str) -> int:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1):
if char == self.pattern[i]:
return i
return -1
def UpperCamelCase_ ( self : int , lowerCAmelCase : int) -> int:
"""simple docstring"""
for i in range(self.patLen - 1 , -1 , -1):
if self.pattern[i] != self.text[current_pos + i]:
return current_pos + i
return -1
def UpperCamelCase_ ( self : Optional[int]) -> list[int]:
"""simple docstring"""
_snake_case : List[str] = []
for i in range(self.textLen - self.patLen + 1):
_snake_case : Optional[int] = self.mismatch_in_text(lowerCAmelCase)
if mismatch_index == -1:
positions.append(lowerCAmelCase)
else:
_snake_case : Dict = self.match_in_pattern(self.text[mismatch_index])
_snake_case : str = (
mismatch_index - match_index
) # shifting index lgtm [py/multiple-definition]
return positions
a__ = """ABAABA"""
a__ = """AB"""
a__ = BoyerMooreSearch(text, pattern)
a__ = bms.bad_character_heuristic()
if len(positions) == 0:
print("""No match found""")
else:
print("""Pattern found in following positions: """)
print(positions)
| 317 |
import torch
from torch import nn
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str:
"""simple docstring"""
super().__init__()
_snake_case : List[str] = n_token
_snake_case : Any = d_embed
_snake_case : List[str] = d_proj
_snake_case : Optional[int] = cutoffs + [n_token]
_snake_case : Dict = [0] + self.cutoffs
_snake_case : Optional[Any] = div_val
_snake_case : Tuple = self.cutoffs[0]
_snake_case : List[str] = len(self.cutoffs) - 1
_snake_case : str = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
_snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters))
_snake_case : Tuple = nn.ModuleList()
_snake_case : int = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
else:
self.out_projs.append(lowerCAmelCase)
self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase))
else:
for i in range(len(self.cutoffs)):
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx))
_snake_case : Tuple = keep_order
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
if proj is None:
_snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous())
_snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
_snake_case : List[str] = hidden[..., :-1, :].contiguous()
_snake_case : int = labels[..., 1:].contiguous()
_snake_case : int = hidden.view(-1 , hidden.size(-1))
_snake_case : str = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""")
else:
_snake_case : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
_snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
_snake_case : Optional[int] = labels != -100
_snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Union[str, Any] = (
-nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
_snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Any = self.out_layers[i].weight
_snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
_snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1)
if labels is None:
_snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
_snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx)
_snake_case : Dict = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx
_snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase)
_snake_case : Dict = hidden.index_select(0 , lowerCAmelCase)
else:
_snake_case : Optional[Any] = hidden
if i == 0:
if labels is not None:
_snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
_snake_case : int = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i]
_snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
_snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_snake_case : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""") and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
_snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Tuple = self.out_layers[i].weight
_snake_case : Any = self.out_layers[i].bias
if i == 0:
_snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0]
_snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token))
_snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : List[Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : Dict = head_logprob[:, -i] + tail_logprob_i
_snake_case : Any = logprob_i
return out
| 317 | 1 |
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int | None, int | None, float]:
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
_snake_case : Dict = (low + high) // 2
_snake_case , _snake_case , _snake_case : int = max_subarray(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case , _snake_case : Optional[Any] = max_subarray(SCREAMING_SNAKE_CASE__ , mid + 1 , SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case , _snake_case : Dict = max_cross_sum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int, int, float]:
_snake_case , _snake_case : Dict = float("""-inf""" ), -1
_snake_case , _snake_case : int = float("""-inf""" ), -1
_snake_case : int | float = 0
for i in range(SCREAMING_SNAKE_CASE__ , low - 1 , -1 ):
summ += arr[i]
if summ > left_sum:
_snake_case : Optional[Any] = summ
_snake_case : str = i
_snake_case : Any = 0
for i in range(mid + 1 , high + 1 ):
summ += arr[i]
if summ > right_sum:
_snake_case : Dict = summ
_snake_case : List[Any] = i
return max_left, max_right, (left_sum + right_sum)
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> float:
_snake_case : Optional[int] = [randint(1 , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )]
_snake_case : Optional[Any] = time.time()
max_subarray(SCREAMING_SNAKE_CASE__ , 0 , input_size - 1 )
_snake_case : Dict = time.time()
return end - start
def lowercase ( ) -> None:
_snake_case : str = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000]
_snake_case : Tuple = [time_max_subarray(SCREAMING_SNAKE_CASE__ ) for input_size in input_sizes]
print("""No of Inputs\t\tTime Taken""" )
for input_size, runtime in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
print(SCREAMING_SNAKE_CASE__ , """\t\t""" , SCREAMING_SNAKE_CASE__ )
plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
plt.xlabel("""Number of Inputs""" )
plt.ylabel("""Time taken in seconds""" )
plt.show()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 317 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
a__ = {
"""configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""],
"""tokenization_roc_bert""": ["""RoCBertTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
pass
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RoCBertForCausalLM""",
"""RoCBertForMaskedLM""",
"""RoCBertForMultipleChoice""",
"""RoCBertForPreTraining""",
"""RoCBertForQuestionAnswering""",
"""RoCBertForSequenceClassification""",
"""RoCBertForTokenClassification""",
"""RoCBertLayer""",
"""RoCBertModel""",
"""RoCBertPreTrainedModel""",
"""load_tf_weights_in_roc_bert""",
]
if TYPE_CHECKING:
from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig
from .tokenization_roc_bert import RoCBertTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
raise OptionalDependencyNotAvailable()
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roc_bert import (
ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST,
RoCBertForCausalLM,
RoCBertForMaskedLM,
RoCBertForMultipleChoice,
RoCBertForPreTraining,
RoCBertForQuestionAnswering,
RoCBertForSequenceClassification,
RoCBertForTokenClassification,
RoCBertLayer,
RoCBertModel,
RoCBertPreTrainedModel,
load_tf_weights_in_roc_bert,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 | 1 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 1 |
import argparse
import json
import os
import time
import zipfile
from get_ci_error_statistics import download_artifact, get_artifacts_links
from transformers import logging
a__ = logging.get_logger(__name__)
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str:
_snake_case : str = set()
_snake_case : List[str] = []
def parse_line(SCREAMING_SNAKE_CASE__ : Any ):
for line in fp:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_snake_case : Union[str, Any] = line.decode("""UTF-8""" )
if "warnings summary (final)" in line:
continue
# This means we are outside the body of a warning
elif not line.startswith(""" """ ):
# process a single warning and move it to `selected_warnings`.
if len(SCREAMING_SNAKE_CASE__ ) > 0:
_snake_case : str = """\n""".join(SCREAMING_SNAKE_CASE__ )
# Only keep the warnings specified in `targets`
if any(F''': {x}: ''' in warning for x in targets ):
selected_warnings.add(SCREAMING_SNAKE_CASE__ )
buffer.clear()
continue
else:
_snake_case : Optional[int] = line.strip()
buffer.append(SCREAMING_SNAKE_CASE__ )
if from_gh:
for filename in os.listdir(SCREAMING_SNAKE_CASE__ ):
_snake_case : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename != "warnings.txt":
continue
with open(SCREAMING_SNAKE_CASE__ ) as fp:
parse_line(SCREAMING_SNAKE_CASE__ )
else:
try:
with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z:
for filename in z.namelist():
if not os.path.isdir(SCREAMING_SNAKE_CASE__ ):
# read the file
if filename != "warnings.txt":
continue
with z.open(SCREAMING_SNAKE_CASE__ ) as fp:
parse_line(SCREAMING_SNAKE_CASE__ )
except Exception:
logger.warning(
F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' )
return selected_warnings
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]:
_snake_case : Optional[Any] = set()
_snake_case : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if (p.endswith(""".zip""" ) or from_gh)]
for p in paths:
selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
return selected_warnings
if __name__ == "__main__":
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
return values.split(""",""" )
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
# optional parameters
parser.add_argument(
"""--targets""",
default="""DeprecationWarning,UserWarning,FutureWarning""",
type=list_str,
help="""Comma-separated list of target warning(s) which we want to extract.""",
)
parser.add_argument(
"""--from_gh""",
action="""store_true""",
help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""",
)
a__ = parser.parse_args()
a__ = args.from_gh
if from_gh:
# The artifacts have to be downloaded using `actions/download-artifact@v3`
pass
else:
os.makedirs(args.output_dir, exist_ok=True)
# get download links
a__ = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
# download artifacts
for idx, (name, url) in enumerate(artifacts.items()):
print(name)
print(url)
print("""=""" * 80)
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
# extract warnings from artifacts
a__ = extract_warnings(args.output_dir, args.targets)
a__ = sorted(selected_warnings)
with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
| 317 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 | 1 |
import argparse
import os
from transformers.utils import direct_transformers_import
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_task_guides.py
a__ = """src/transformers"""
a__ = """docs/source/en/tasks"""
def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]:
with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
_snake_case : List[Any] = f.readlines()
# Find the start prompt.
_snake_case : List[str] = 0
while not lines[start_index].startswith(SCREAMING_SNAKE_CASE__ ):
start_index += 1
start_index += 1
_snake_case : int = start_index
while not lines[end_index].startswith(SCREAMING_SNAKE_CASE__ ):
end_index += 1
end_index -= 1
while len(lines[start_index] ) <= 1:
start_index += 1
while len(lines[end_index] ) <= 1:
end_index -= 1
end_index += 1
return "".join(lines[start_index:end_index] ), start_index, end_index, lines
# This is to make sure the transformers module imported is the one in the repo.
a__ = direct_transformers_import(TRANSFORMERS_PATH)
a__ = {
"""asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES,
"""audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES,
"""language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES,
"""image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES,
"""masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES,
"""multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES,
"""object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES,
"""question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES,
"""semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES,
"""sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES,
"""summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES,
"""translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES,
"""video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES,
"""document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES,
"""monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES,
}
# This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any
# `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`).
a__ = {
"""summarization.md""": ("""nllb""",),
"""translation.md""": ("""nllb""",),
}
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]:
_snake_case : Dict = TASK_GUIDE_TO_MODELS[task_guide]
_snake_case : Any = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE__ , set() )
_snake_case : Dict = {
code: name
for code, name in transformers_module.MODEL_NAMES_MAPPING.items()
if (code in model_maping_names or code in special_model_types)
}
return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n"
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> List[str]:
_snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = _find_text_in_file(
filename=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , )
_snake_case : List[str] = get_model_list_for_task(SCREAMING_SNAKE_CASE__ )
if current_list != new_list:
if overwrite:
with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f:
f.writelines(lines[:start_index] + [new_list] + lines[end_index:] )
else:
raise ValueError(
F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`'''
""" to fix this.""" )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""")
a__ = parser.parse_args()
for task_guide in TASK_GUIDE_TO_MODELS.keys():
check_model_list_for_task(task_guide, args.fix_and_overwrite)
| 317 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 | 1 |
import gc
import unittest
from parameterized import parameterized
from diffusers import FlaxUNetaDConditionModel
from diffusers.utils import is_flax_available
from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow
if is_flax_available():
import jax
import jax.numpy as jnp
@slow
@require_flax
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase) for s in shape])}.npy'''
def UpperCamelCase_ ( self : Optional[int]) -> List[Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : List[str]=(4, 4, 64, 64) , lowerCAmelCase : str=False) -> Optional[int]:
"""simple docstring"""
_snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa
_snake_case : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase)) , dtype=lowerCAmelCase)
return image
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str=False , lowerCAmelCase : Tuple="CompVis/stable-diffusion-v1-4") -> str:
"""simple docstring"""
_snake_case : Dict = jnp.bfloataa if fpaa else jnp.floataa
_snake_case : List[str] = """bf16""" if fpaa else None
_snake_case , _snake_case : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained(
lowerCAmelCase , subfolder="""unet""" , dtype=lowerCAmelCase , revision=lowerCAmelCase)
return model, params
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any=0 , lowerCAmelCase : Union[str, Any]=(4, 77, 768) , lowerCAmelCase : Optional[Any]=False) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa
_snake_case : str = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase)) , dtype=lowerCAmelCase)
return hidden_states
@parameterized.expand(
[
# fmt: off
[83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]],
[17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]],
[8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]],
[3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]],
# fmt: on
])
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
_snake_case , _snake_case : Union[str, Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCAmelCase)
_snake_case : Any = self.get_latents(lowerCAmelCase , fpaa=lowerCAmelCase)
_snake_case : Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase , fpaa=lowerCAmelCase)
_snake_case : Union[str, Any] = model.apply(
{"""params""": params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase , ).sample
assert sample.shape == latents.shape
_snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa)
_snake_case : Union[str, Any] = jnp.array(lowerCAmelCase , dtype=jnp.floataa)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware
assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2)
@parameterized.expand(
[
# fmt: off
[83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]],
[17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]],
[8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]],
[3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]],
# fmt: on
])
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
_snake_case , _snake_case : Optional[int] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCAmelCase)
_snake_case : Union[str, Any] = self.get_latents(lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase)
_snake_case : Dict = self.get_encoder_hidden_states(lowerCAmelCase , shape=(4, 77, 1024) , fpaa=lowerCAmelCase)
_snake_case : Optional[int] = model.apply(
{"""params""": params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase , ).sample
assert sample.shape == latents.shape
_snake_case : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa)
_snake_case : int = jnp.array(lowerCAmelCase , dtype=jnp.floataa)
# Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware
assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2)
| 317 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a__ = logging.get_logger(__name__)
# General docstring
a__ = """RegNetConfig"""
# Base docstring
a__ = """facebook/regnet-y-040"""
a__ = [1, 10_88, 7, 7]
# Image classification docstring
a__ = """facebook/regnet-y-040"""
a__ = """tabby, tabby cat"""
a__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : int = nn.Convad(
lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , )
_snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase)
_snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.convolution(lowerCAmelCase)
_snake_case : Any = self.normalization(lowerCAmelCase)
_snake_case : List[Any] = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
_snake_case : Dict = config.num_channels
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
_snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
_snake_case : Any = self.embedder(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase)
_snake_case : Tuple = nn.BatchNormad(lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor:
"""simple docstring"""
_snake_case : Optional[Any] = self.convolution(lowerCAmelCase)
_snake_case : Optional[int] = self.normalization(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1))
_snake_case : Optional[Any] = nn.Sequential(
nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , )
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case : Dict = self.pooler(lowerCAmelCase)
_snake_case : List[str] = self.attention(lowerCAmelCase)
_snake_case : str = hidden_state * attention
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[int] = in_channels != out_channels or stride != 1
_snake_case : Optional[Any] = max(1 , out_channels // config.groups_width)
_snake_case : Union[str, Any] = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Tuple = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = hidden_state
_snake_case : int = self.layer(lowerCAmelCase)
_snake_case : Dict = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : str = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : int = in_channels != out_channels or stride != 1
_snake_case : Dict = max(1 , out_channels // config.groups_width)
_snake_case : Tuple = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Dict = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = hidden_state
_snake_case : List[Any] = self.layer(lowerCAmelCase)
_snake_case : List[str] = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : int = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer
_snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , )
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = self.layers(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
_snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]):
self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
_snake_case : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_snake_case : Optional[int] = hidden_states + (hidden_state,)
_snake_case : Dict = stage_module(lowerCAmelCase)
if output_hidden_states:
_snake_case : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = RegNetConfig
snake_case_ : List[Any] = """regnet"""
snake_case_ : Any = """pixel_values"""
snake_case_ : Optional[Any] = True
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
if isinstance(lowerCAmelCase , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""")
elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]:
"""simple docstring"""
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Optional[Any] = value
a__ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
a__ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Any = config
_snake_case : Any = RegNetEmbeddings(lowerCAmelCase)
_snake_case : Dict = RegNetEncoder(lowerCAmelCase)
_snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : str = self.embedder(lowerCAmelCase)
_snake_case : Optional[Any] = self.encoder(
lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : Tuple = encoder_outputs[0]
_snake_case : Optional[Any] = self.pooler(lowerCAmelCase)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Union[str, Any] = config.num_labels
_snake_case : List[Any] = RegNetModel(lowerCAmelCase)
# classification head
_snake_case : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
_snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : str = outputs.pooler_output if return_dict else outputs[1]
_snake_case : Optional[Any] = self.classifier(lowerCAmelCase)
_snake_case : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : List[Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : Optional[int] = """single_label_classification"""
else:
_snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : List[str] = MSELoss()
if self.num_labels == 1:
_snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
elif self.config.problem_type == "single_label_classification":
_snake_case : Dict = CrossEntropyLoss()
_snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
_snake_case : Optional[int] = BCEWithLogitsLoss()
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
if not return_dict:
_snake_case : Optional[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
| 317 | 1 |
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import sys
import warnings
from os.path import abspath, dirname, join
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
a__ = abspath(join(dirname(dirname(__file__)), """src"""))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action="""ignore""", category=FutureWarning)
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> str:
from diffusers.utils.testing_utils import pytest_addoption_shared
pytest_addoption_shared(SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int:
from diffusers.utils.testing_utils import pytest_terminal_summary_main
_snake_case : int = terminalreporter.config.getoption("""--make-reports""" )
if make_reports:
pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
| 317 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list:
_snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# use last results for better performance - dynamic programming
_snake_case : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_snake_case : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_snake_case : Optional[int] = j
return prefix_result
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return max(prefix_function(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""",
"""funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""",
"""funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""",
"""funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""",
"""funnel-transformer/intermediate""": (
"""https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json"""
),
"""funnel-transformer/intermediate-base""": (
"""https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json"""
),
"""funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""",
"""funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""",
"""funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""",
"""funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """funnel"""
snake_case_ : Union[str, Any] = {
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
}
def __init__( self : Tuple , lowerCAmelCase : int=3_0522 , lowerCAmelCase : List[str]=[4, 4, 4] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : str=64 , lowerCAmelCase : int=3072 , lowerCAmelCase : Tuple="gelu_new" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=1E-9 , lowerCAmelCase : List[Any]="mean" , lowerCAmelCase : Dict="relative_shift" , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : Tuple , ) -> int:
"""simple docstring"""
_snake_case : Any = vocab_size
_snake_case : Optional[Any] = block_sizes
_snake_case : Optional[Any] = [1] * len(lowerCAmelCase) if block_repeats is None else block_repeats
assert len(lowerCAmelCase) == len(
self.block_repeats), "`block_sizes` and `block_repeats` should have the same length."
_snake_case : Any = num_decoder_layers
_snake_case : str = d_model
_snake_case : Optional[Any] = n_head
_snake_case : Optional[Any] = d_head
_snake_case : Union[str, Any] = d_inner
_snake_case : Dict = hidden_act
_snake_case : List[Any] = hidden_dropout
_snake_case : List[str] = attention_dropout
_snake_case : Union[str, Any] = activation_dropout
_snake_case : Optional[int] = initializer_range
_snake_case : Optional[Any] = initializer_std
_snake_case : List[str] = layer_norm_eps
assert pooling_type in [
"mean",
"max",
], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.'''
_snake_case : Tuple = pooling_type
assert attention_type in [
"relative_shift",
"factorized",
], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.'''
_snake_case : Dict = attention_type
_snake_case : Tuple = separate_cls
_snake_case : Dict = truncate_seq
_snake_case : List[str] = pool_q_only
super().__init__(**lowerCAmelCase)
@property
def UpperCamelCase_ ( self : Optional[Any]) -> str:
"""simple docstring"""
return sum(self.block_sizes)
@num_hidden_layers.setter
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
raise NotImplementedError(
"""This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""")
@property
def UpperCamelCase_ ( self : int) -> Union[str, Any]:
"""simple docstring"""
return len(self.block_sizes)
@num_blocks.setter
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""")
| 317 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> float:
_validate_point(SCREAMING_SNAKE_CASE__ )
_validate_point(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) )
def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> None:
if point:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
for item in point:
if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ):
_snake_case : Tuple = (
"""Expected a list of numbers as input, found """
F'''{type(SCREAMING_SNAKE_CASE__ ).__name__}'''
)
raise TypeError(SCREAMING_SNAKE_CASE__ )
else:
_snake_case : Tuple = F'''Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}'''
raise TypeError(SCREAMING_SNAKE_CASE__ )
else:
raise ValueError("""Missing an input""" )
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> float:
_validate_point(SCREAMING_SNAKE_CASE__ )
_validate_point(SCREAMING_SNAKE_CASE__ )
if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ):
raise ValueError("""Both points must be in the same n-dimensional space""" )
return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None:
"""simple docstring"""
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
a__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, """utils"""))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated.
a__ = """ def __init__(self, config):
super().__init__()
self.transform = BertPredictionHeadTransform(config)
# The output weights are the same as the input embeddings, but there is
# an output-only bias for each token.
self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.bias = nn.Parameter(torch.zeros(config.vocab_size))
# Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
self.decoder.bias = self.bias
def forward(self, hidden_states):
hidden_states = self.transform(hidden_states)
hidden_states = self.decoder(hidden_states)
return hidden_states
"""
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Tuple) -> Tuple:
"""simple docstring"""
_snake_case : int = tempfile.mkdtemp()
os.makedirs(os.path.join(self.transformer_dir , """models/bert/"""))
_snake_case : Optional[Any] = self.transformer_dir
shutil.copy(
os.path.join(lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""") , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""") , )
def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """src/transformers"""
shutil.rmtree(self.transformer_dir)
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=None) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code
if overwrite_result is not None:
_snake_case : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result
_snake_case : str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119)
_snake_case : int = black.format_str(lowerCAmelCase , mode=lowerCAmelCase)
_snake_case : List[str] = os.path.join(self.transformer_dir , """new_code.py""")
with open(lowerCAmelCase , """w""" , newline="""\n""") as f:
f.write(lowerCAmelCase)
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase)) == 0)
else:
check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase)
with open(lowerCAmelCase , """r""") as f:
self.assertTrue(f.read() , lowerCAmelCase)
def UpperCamelCase_ ( self : Any) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Tuple = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""")
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Tuple) -> Tuple:
"""simple docstring"""
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , )
# With no empty line at the end
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCAmelCase , )
# Copy consistency with rename
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCAmelCase) , )
# Copy consistency with a really long name
_snake_case : str = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason"""
self.check_copy_consistency(
F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , lowerCAmelCase , lowerCAmelCase) , )
# Copy consistency with overwrite
self.check_copy_consistency(
"""# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCAmelCase) , )
def UpperCamelCase_ ( self : int) -> Tuple:
"""simple docstring"""
_snake_case : Dict = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""]
_snake_case : Optional[Any] = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),"""
""" released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**"""
""" (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders"""
""" as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang"""
""" Luong, Quoc V. Le, Christopher D. Manning."""
)
_snake_case : Optional[int] = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
_snake_case : Any = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1."""
""" **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文"""
""" [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and"""
""" lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same"""
""" method has been applied to compress GPT2 into"""
""" [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into"""
""" [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),"""
""" Multilingual BERT into"""
""" [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German"""
""" version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自"""
""" Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather"""
""" than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,"""
""" Christopher D. Manning 发布。\n"""
)
_snake_case , _snake_case : int = check_copies.convert_to_localized_md(
lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""])
self.assertFalse(lowerCAmelCase)
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
_snake_case , _snake_case : List[Any] = check_copies.convert_to_localized_md(
lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""])
# Check whether the number of models is equal to README.md after conversion.
self.assertTrue(lowerCAmelCase)
_snake_case : Optional[Any] = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the"""
""" Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for"""
""" Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong"""
""" Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut."""
)
_snake_case : int = (
"""1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and"""
""" the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
_snake_case : int = (
"""1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the"""
""" Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of"""
""" Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian"""
""" Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n"""
)
_snake_case , _snake_case : List[str] = check_copies.convert_to_localized_md(
lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""])
# Check if the model link is synchronized.
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
| 317 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
_snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = sum(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )]
for i in range(1 , n + 1 ):
_snake_case : str = True
for i in range(1 , s + 1 ):
_snake_case : List[str] = False
for i in range(1 , n + 1 ):
for j in range(1 , s + 1 ):
_snake_case : str = dp[i][j - 1]
if arr[i - 1] <= j:
_snake_case : Optional[int] = dp[i][j] or dp[i - 1][j - arr[i - 1]]
for j in range(int(s / 2 ) , -1 , -1 ):
if dp[n][j] is True:
_snake_case : Optional[Any] = s - 2 * j
break
return diff
| 317 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 1 |
import unittest
import numpy as np
import timeout_decorator # noqa
from transformers import BlenderbotSmallConfig, is_flax_available
from transformers.testing_utils import require_flax, slow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor
if is_flax_available():
import os
# The slow tests are often failing with OOM error on GPU
# This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed
# but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html
a__ = """platform"""
import jax
import jax.numpy as jnp
from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import (
FlaxBlenderbotSmallForConditionalGeneration,
FlaxBlenderbotSmallModel,
shift_tokens_right,
)
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=None , ) -> int:
if attention_mask is None:
_snake_case : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 )
if decoder_attention_mask is None:
_snake_case : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 )
if head_mask is None:
_snake_case : Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": attention_mask,
}
class snake_case :
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=False , lowerCAmelCase : int=99 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : int=32 , lowerCAmelCase : int=2 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : int=0.02 , ) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = parent
_snake_case : Union[str, Any] = batch_size
_snake_case : List[str] = seq_length
_snake_case : Any = is_training
_snake_case : Union[str, Any] = use_labels
_snake_case : int = vocab_size
_snake_case : Dict = hidden_size
_snake_case : int = num_hidden_layers
_snake_case : List[Any] = num_attention_heads
_snake_case : List[Any] = intermediate_size
_snake_case : List[Any] = hidden_act
_snake_case : Optional[Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : int = max_position_embeddings
_snake_case : Optional[Any] = eos_token_id
_snake_case : Optional[int] = pad_token_id
_snake_case : Any = bos_token_id
_snake_case : int = initializer_range
def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size)
_snake_case : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1)
_snake_case : int = shift_tokens_right(lowerCAmelCase , 1 , 2)
_snake_case : int = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , )
_snake_case : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
return config, inputs_dict
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case , _snake_case : int = self.prepare_config_and_inputs()
return config, inputs_dict
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = 20
_snake_case : Union[str, Any] = model_class_name(lowerCAmelCase)
_snake_case : int = model.encode(inputs_dict["""input_ids"""])
_snake_case , _snake_case : Tuple = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase)
_snake_case : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""")
_snake_case : Tuple = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case : List[str] = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , )
_snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
_snake_case : str = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , )
_snake_case : int = model.decode(lowerCAmelCase , lowerCAmelCase)
_snake_case : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = 20
_snake_case : str = model_class_name(lowerCAmelCase)
_snake_case : Optional[Any] = model.encode(inputs_dict["""input_ids"""])
_snake_case , _snake_case : Union[str, Any] = (
inputs_dict["""decoder_input_ids"""],
inputs_dict["""decoder_attention_mask"""],
)
_snake_case : Union[str, Any] = jnp.concatenate(
[
decoder_attention_mask,
jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])),
] , axis=-1 , )
_snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase)
_snake_case : int = jnp.broadcast_to(
jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , )
_snake_case : int = model.decode(
decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , )
_snake_case : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""")
_snake_case : List[str] = model.decode(
decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , )
_snake_case : Optional[Any] = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase)
_snake_case : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5])))
self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''')
@require_flax
class snake_case ( unittest.TestCase ):
'''simple docstring'''
snake_case_ : str = 99
def UpperCamelCase_ ( self : int) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = np.array(
[
[71, 82, 18, 33, 46, 91, 2],
[68, 34, 26, 58, 30, 82, 2],
[5, 97, 17, 39, 94, 40, 2],
[76, 83, 94, 25, 70, 78, 2],
[87, 59, 41, 35, 48, 66, 2],
[55, 13, 16, 58, 5, 2, 1], # note padding
[64, 27, 31, 51, 12, 75, 2],
[52, 64, 86, 17, 83, 39, 2],
[48, 61, 9, 24, 71, 82, 2],
[26, 1, 60, 48, 22, 13, 2],
[21, 5, 62, 28, 14, 76, 2],
[45, 98, 37, 86, 59, 48, 2],
[70, 70, 50, 9, 28, 0, 2],
] , dtype=np.intaa , )
_snake_case : str = input_ids.shape[0]
_snake_case : Dict = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , )
return config, input_ids, batch_size
def UpperCamelCase_ ( self : Tuple) -> Any:
"""simple docstring"""
_snake_case , _snake_case , _snake_case : int = self._get_config_and_data()
_snake_case : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase)
_snake_case : Dict = lm_model(input_ids=lowerCAmelCase)
_snake_case : Tuple = (batch_size, input_ids.shape[1], config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase)
def UpperCamelCase_ ( self : List[str]) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[int] = BlenderbotSmallConfig(
vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , )
_snake_case : Tuple = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase)
_snake_case : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa)
_snake_case : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa)
_snake_case : Any = lm_model(input_ids=lowerCAmelCase , decoder_input_ids=lowerCAmelCase)
_snake_case : Union[str, Any] = (*summary.shape, config.vocab_size)
self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase)
def UpperCamelCase_ ( self : int) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa)
_snake_case : List[str] = shift_tokens_right(lowerCAmelCase , 1 , 2)
_snake_case : Tuple = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum()
_snake_case : List[str] = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum()
self.assertEqual(shifted.shape , input_ids.shape)
self.assertEqual(lowerCAmelCase , n_pad_before - 1)
self.assertTrue(np.equal(shifted[:, 0] , 2).all())
@require_flax
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = True
snake_case_ : Optional[Any] = (
(
FlaxBlenderbotSmallModel,
FlaxBlenderbotSmallForConditionalGeneration,
)
if is_flax_available()
else ()
)
snake_case_ : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else ()
def UpperCamelCase_ ( self : Optional[int]) -> Tuple:
"""simple docstring"""
_snake_case : Union[str, Any] = FlaxBlenderbotSmallModelTester(self)
def UpperCamelCase_ ( self : Optional[int]) -> Dict:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Dict) -> List[Any]:
"""simple docstring"""
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs()
for model_class in self.all_model_classes:
self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
_snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
_snake_case : Any = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[int] = model_class(lowerCAmelCase)
@jax.jit
def encode_jitted(lowerCAmelCase : int , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str):
return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase)
with self.subTest("""JIT Enabled"""):
_snake_case : Union[str, Any] = encode_jitted(**lowerCAmelCase).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
_snake_case : Optional[int] = encode_jitted(**lowerCAmelCase).to_tuple()
self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase))
for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase):
self.assertEqual(jitted_output.shape , output.shape)
def UpperCamelCase_ ( self : Tuple) -> List[str]:
"""simple docstring"""
_snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__):
_snake_case : List[Any] = model_class(lowerCAmelCase)
_snake_case : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""])
_snake_case : Tuple = {
"""decoder_input_ids""": inputs_dict["""decoder_input_ids"""],
"""decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""],
"""encoder_outputs""": encoder_outputs,
}
@jax.jit
def decode_jitted(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]):
return model.decode(
decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , )
with self.subTest("""JIT Enabled"""):
_snake_case : Tuple = decode_jitted(**lowerCAmelCase).to_tuple()
with self.subTest("""JIT Disabled"""):
with jax.disable_jit():
_snake_case : int = decode_jitted(**lowerCAmelCase).to_tuple()
self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase))
for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase):
self.assertEqual(jitted_output.shape , output.shape)
@slow
def UpperCamelCase_ ( self : Optional[int]) -> Dict:
"""simple docstring"""
for model_class_name in self.all_model_classes:
_snake_case : List[str] = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""")
# FlaxBlenderbotForSequenceClassification expects eos token in input_ids
_snake_case : List[Any] = np.ones((1, 1)) * model.config.eos_token_id
_snake_case : Optional[int] = model(lowerCAmelCase)
self.assertIsNotNone(lowerCAmelCase)
| 317 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int:
def count_of_possible_combinations(SCREAMING_SNAKE_CASE__ : int ) -> int:
if target < 0:
return 0
if target == 0:
return 1
return sum(count_of_possible_combinations(target - item ) for item in array )
return count_of_possible_combinations(SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int:
def count_of_possible_combinations_with_dp_array(
SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] ) -> int:
if target < 0:
return 0
if target == 0:
return 1
if dp_array[target] != -1:
return dp_array[target]
_snake_case : Tuple = sum(
count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE__ )
for item in array )
_snake_case : Any = answer
return answer
_snake_case : int = [-1] * (target + 1)
return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int:
_snake_case : Optional[int] = [0] * (target + 1)
_snake_case : str = 1
for i in range(1 , target + 1 ):
for j in range(SCREAMING_SNAKE_CASE__ ):
if i - array[j] >= 0:
dp_array[i] += dp_array[i - array[j]]
return dp_array[target]
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ = 3
a__ = 5
a__ = [1, 2, 5]
print(combination_sum_iv(n, array, target))
| 317 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
a__ = {
"""configuration_pix2struct""": [
"""PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""Pix2StructConfig""",
"""Pix2StructTextConfig""",
"""Pix2StructVisionConfig""",
],
"""processing_pix2struct""": ["""Pix2StructProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ["""Pix2StructImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Pix2StructPreTrainedModel""",
"""Pix2StructForConditionalGeneration""",
"""Pix2StructVisionModel""",
"""Pix2StructTextModel""",
]
if TYPE_CHECKING:
from .configuration_pixastruct import (
PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP,
PixaStructConfig,
PixaStructTextConfig,
PixaStructVisionConfig,
)
from .processing_pixastruct import PixaStructProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_pixastruct import PixaStructImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_pixastruct import (
PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST,
PixaStructForConditionalGeneration,
PixaStructPreTrainedModel,
PixaStructTextModel,
PixaStructVisionModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 1 |
from typing import Any
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = data
_snake_case : List[Any] = None
class snake_case :
'''simple docstring'''
def __init__( self : Dict) -> Tuple:
"""simple docstring"""
_snake_case : str = None
def UpperCamelCase_ ( self : Optional[int]) -> str:
"""simple docstring"""
_snake_case : Dict = self.head
while temp is not None:
print(temp.data , end=""" """)
_snake_case : Tuple = temp.next
print()
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : List[Any] = Node(lowerCAmelCase)
_snake_case : Optional[int] = self.head
_snake_case : Any = new_node
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str]) -> str:
"""simple docstring"""
if node_data_a == node_data_a:
return
else:
_snake_case : str = self.head
while node_a is not None and node_a.data != node_data_a:
_snake_case : Dict = node_a.next
_snake_case : str = self.head
while node_a is not None and node_a.data != node_data_a:
_snake_case : Optional[int] = node_a.next
if node_a is None or node_a is None:
return
_snake_case , _snake_case : Optional[Any] = node_a.data, node_a.data
if __name__ == "__main__":
a__ = LinkedList()
for i in range(5, 0, -1):
ll.push(i)
ll.print_list()
ll.swap_nodes(1, 4)
print("""After swapping""")
ll.print_list()
| 317 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 1 |
import json
import os
import tempfile
from unittest.mock import patch
import torch
from torch.utils.data import DataLoader, TensorDataset
from accelerate import DistributedType, infer_auto_device_map, init_empty_weights
from accelerate.accelerator import Accelerator
from accelerate.state import GradientState, PartialState
from accelerate.test_utils import require_bnb, require_multi_gpu, slow
from accelerate.test_utils.testing import AccelerateTestCase, require_cuda
from accelerate.utils import patch_environment
def lowercase ( ) -> Dict:
_snake_case : List[str] = torch.nn.Linear(2 , 4 )
_snake_case : Union[str, Any] = torch.optim.AdamW(model.parameters() , lr=1.0 )
_snake_case : Dict = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE__ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 )
_snake_case : int = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) )
_snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) )
return model, optimizer, scheduler, train_dl, valid_dl
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple:
return (model.weight.abs().sum() + model.bias.abs().sum()).item()
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
_snake_case : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_cuda
def UpperCamelCase_ ( self : str) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = Accelerator()
assert PartialState._shared_state["_cpu"] is False
assert PartialState._shared_state["device"].type == "cuda"
with self.assertRaises(lowerCAmelCase):
_snake_case : Optional[int] = Accelerator(cpu=lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> Tuple:
"""simple docstring"""
_snake_case : Union[str, Any] = Accelerator()
_snake_case : List[Any] = GradientState()
assert state.num_steps == 1
_snake_case : Optional[int] = 4
assert state.num_steps == 4
assert state.sync_gradients is True
_snake_case : Dict = False
assert state.sync_gradients is False
GradientState._reset_state()
def UpperCamelCase_ ( self : Dict) -> Optional[Any]:
"""simple docstring"""
_snake_case : int = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = create_components()
(
(
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) , (
_snake_case
) ,
) : Tuple = accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
self.assertTrue(prepared_model in accelerator._models)
self.assertTrue(prepared_optimizer in accelerator._optimizers)
self.assertTrue(prepared_scheduler in accelerator._schedulers)
self.assertTrue(prepared_train_dl in accelerator._dataloaders)
self.assertTrue(prepared_valid_dl in accelerator._dataloaders)
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = create_components()
accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
accelerator.free_memory()
self.assertTrue(len(accelerator._models) == 0)
self.assertTrue(len(accelerator._optimizers) == 0)
self.assertTrue(len(accelerator._schedulers) == 0)
self.assertTrue(len(accelerator._dataloaders) == 0)
def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
PartialState._reset_state()
# Mock torch.cuda.set_device to avoid an exception as the device doesn't exist
def noop(*lowerCAmelCase : Optional[int] , **lowerCAmelCase : int):
pass
with patch("""torch.cuda.set_device""" , lowerCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64"""):
_snake_case : Any = Accelerator()
self.assertEqual(str(accelerator.state.device) , """cuda:64""")
def UpperCamelCase_ ( self : List[str]) -> List[str]:
"""simple docstring"""
_snake_case : Optional[int] = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = create_components()
accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Tuple = get_signature(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase)
# make sure random weights don't match
load_random_weights(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3)
# make sure loaded weights match
accelerator.load_state(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3)
def UpperCamelCase_ ( self : Any) -> int:
"""simple docstring"""
_snake_case : List[str] = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = create_components()
accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : int = get_signature(lowerCAmelCase)
# saving hook
def save_config(lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]):
_snake_case : Optional[Any] = {"""class_name""": models[0].__class__.__name__}
with open(os.path.join(lowerCAmelCase , """data.json""") , """w""") as f:
json.dump(lowerCAmelCase , lowerCAmelCase)
# loading hook
def load_config(lowerCAmelCase : int , lowerCAmelCase : Optional[Any]):
with open(os.path.join(lowerCAmelCase , """data.json""") , """r""") as f:
_snake_case : Optional[int] = json.load(lowerCAmelCase)
_snake_case : Optional[Any] = config["""class_name"""]
_snake_case : Union[str, Any] = accelerator.register_save_state_pre_hook(lowerCAmelCase)
_snake_case : List[Any] = accelerator.register_load_state_pre_hook(lowerCAmelCase)
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase)
# make sure random weights don't match with hooks
load_random_weights(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3)
# random class name to verify correct one is loaded
_snake_case : Tuple = """random"""
# make sure loaded weights match with hooks
accelerator.load_state(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3)
# mode.class_name is loaded from config
self.assertTrue(model.class_name == model.__class__.__name__)
# remove hooks
save_hook.remove()
load_hook.remove()
with tempfile.TemporaryDirectory() as tmpdirname:
accelerator.save_state(lowerCAmelCase)
# make sure random weights don't match with hooks removed
load_random_weights(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3)
# random class name to verify correct one is loaded
_snake_case : int = """random"""
# make sure loaded weights match with hooks removed
accelerator.load_state(lowerCAmelCase)
self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3)
# mode.class_name is NOT loaded from config
self.assertTrue(model.class_name != model.__class__.__name__)
def UpperCamelCase_ ( self : Tuple) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = create_components()
_snake_case : List[Any] = None
# This should work
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = accelerator.prepare(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
self.assertTrue(dummy_obj is None)
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = Accelerator()
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = create_components()
_snake_case : List[Any] = [1, 2, 3]
# This should work
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = accelerator.prepare(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , )
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
self.assertEqual(
getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , )
@slow
@require_bnb
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
from transformers import AutoModelForCausalLM
_snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map={"""""": 0} , )
_snake_case : List[str] = Accelerator()
# This should work
_snake_case : Optional[Any] = accelerator.prepare(lowerCAmelCase)
@slow
@require_bnb
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
from transformers import AutoModelForCausalLM
_snake_case : Dict = Accelerator()
with init_empty_weights():
_snake_case : Tuple = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
_snake_case : Optional[int] = infer_auto_device_map(lowerCAmelCase)
_snake_case : Dict = """cpu"""
_snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , device_map=lowerCAmelCase , load_in_abit=lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase)
# This should not work and get value error
with self.assertRaises(lowerCAmelCase):
_snake_case : int = accelerator.prepare(lowerCAmelCase)
@slow
@require_bnb
@require_multi_gpu
def UpperCamelCase_ ( self : Optional[Any]) -> Dict:
"""simple docstring"""
from transformers import AutoModelForCausalLM
_snake_case : Optional[int] = {"""distributed_type""": DistributedType.MULTI_GPU}
with init_empty_weights():
_snake_case : Dict = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
model.tie_weights()
_snake_case : Dict = infer_auto_device_map(lowerCAmelCase)
_snake_case : List[str] = 1
_snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , )
_snake_case : Dict = Accelerator()
# This should not work and get value error
with self.assertRaises(lowerCAmelCase):
_snake_case : Optional[int] = accelerator.prepare(lowerCAmelCase)
PartialState._reset_state()
@slow
@require_bnb
@require_multi_gpu
def UpperCamelCase_ ( self : Tuple) -> str:
"""simple docstring"""
from transformers import AutoModelForCausalLM
with init_empty_weights():
_snake_case : List[Any] = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , )
_snake_case : Dict = infer_auto_device_map(lowerCAmelCase)
_snake_case : Tuple = 1
_snake_case : Tuple = AutoModelForCausalLM.from_pretrained(
"""EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , )
_snake_case : Optional[int] = Accelerator()
# This should work
_snake_case : Any = accelerator.prepare(lowerCAmelCase)
@require_cuda
def UpperCamelCase_ ( self : str) -> Tuple:
"""simple docstring"""
_snake_case : Optional[int] = torch.nn.Linear(10 , 10)
_snake_case : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.01)
_snake_case : int = Accelerator(cpu=lowerCAmelCase)
_snake_case : str = accelerator.prepare(lowerCAmelCase)
| 317 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
"""configuration_upernet""": ["""UperNetConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""UperNetForSemanticSegmentation""",
"""UperNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_upernet import UperNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float:
_snake_case : List[Any] = [redshift, radiation_density, matter_density, dark_energy]
if any(p < 0 for p in parameters ):
raise ValueError("""All input parameters must be positive""" )
if any(p > 1 for p in parameters[1:4] ):
raise ValueError("""Relative densities cannot be greater than one""" )
else:
_snake_case : str = 1 - (matter_density + radiation_density + dark_energy)
_snake_case : List[str] = (
radiation_density * (redshift + 1) ** 4
+ matter_density * (redshift + 1) ** 3
+ curvature * (redshift + 1) ** 2
+ dark_energy
)
_snake_case : Dict = hubble_constant * e_a ** (1 / 2)
return hubble
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
# demo LCDM approximation
a__ = 0.3
print(
hubble_parameter(
hubble_constant=68.3,
radiation_density=1E-4,
matter_density=matter_density,
dark_energy=1 - matter_density,
redshift=0,
)
)
| 317 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 1 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 | 1 |
import warnings
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """tokenizer"""]
snake_case_ : List[Any] = """CLIPImageProcessor"""
snake_case_ : List[Any] = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""")
def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowerCAmelCase , )
_snake_case : str = kwargs.pop("""feature_extractor""")
_snake_case : List[str] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(lowerCAmelCase , lowerCAmelCase)
def __call__( self : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
if text is None and images is None:
raise ValueError("""You have to specify either text or images. Both cannot be none.""")
if text is not None:
_snake_case : Optional[int] = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase)
if images is not None:
_snake_case : int = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase)
if text is not None and images is not None:
_snake_case : Optional[Any] = image_features.pixel_values
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase)
def UpperCamelCase_ ( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = self.tokenizer.model_input_names
_snake_case : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
| 317 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 | 1 |
from statistics import mean, stdev
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list:
_snake_case : Any = min(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = max(SCREAMING_SNAKE_CASE__ )
# normalize data
return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data]
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list:
_snake_case : Union[str, Any] = mean(SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = stdev(SCREAMING_SNAKE_CASE__ )
# standardize data
return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
| 317 |
import torch
from torch import nn
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str:
"""simple docstring"""
super().__init__()
_snake_case : List[str] = n_token
_snake_case : Any = d_embed
_snake_case : List[str] = d_proj
_snake_case : Optional[int] = cutoffs + [n_token]
_snake_case : Dict = [0] + self.cutoffs
_snake_case : Optional[Any] = div_val
_snake_case : Tuple = self.cutoffs[0]
_snake_case : List[str] = len(self.cutoffs) - 1
_snake_case : str = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
_snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters))
_snake_case : Tuple = nn.ModuleList()
_snake_case : int = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
else:
self.out_projs.append(lowerCAmelCase)
self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase))
else:
for i in range(len(self.cutoffs)):
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx))
_snake_case : Tuple = keep_order
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
if proj is None:
_snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous())
_snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
_snake_case : List[str] = hidden[..., :-1, :].contiguous()
_snake_case : int = labels[..., 1:].contiguous()
_snake_case : int = hidden.view(-1 , hidden.size(-1))
_snake_case : str = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""")
else:
_snake_case : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
_snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
_snake_case : Optional[int] = labels != -100
_snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Union[str, Any] = (
-nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
_snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Any = self.out_layers[i].weight
_snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
_snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1)
if labels is None:
_snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
_snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx)
_snake_case : Dict = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx
_snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase)
_snake_case : Dict = hidden.index_select(0 , lowerCAmelCase)
else:
_snake_case : Optional[Any] = hidden
if i == 0:
if labels is not None:
_snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
_snake_case : int = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i]
_snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
_snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_snake_case : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""") and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
_snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Tuple = self.out_layers[i].weight
_snake_case : Any = self.out_layers[i].bias
if i == 0:
_snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0]
_snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token))
_snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : List[Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : Dict = head_logprob[:, -i] + tail_logprob_i
_snake_case : Any = logprob_i
return out
| 317 | 1 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""",
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = """gpt_neo"""
snake_case_ : List[str] = ["""past_key_values"""]
snake_case_ : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""}
def __init__( self : Optional[int] , lowerCAmelCase : Any=5_0257 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : Optional[Any]=2048 , lowerCAmelCase : Dict=24 , lowerCAmelCase : List[str]=[[["global", "local"], 12]] , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=256 , lowerCAmelCase : Optional[Any]="gelu_new" , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=5_0256 , lowerCAmelCase : Optional[int]=5_0256 , **lowerCAmelCase : Tuple , ) -> Dict:
"""simple docstring"""
_snake_case : Any = vocab_size
_snake_case : int = max_position_embeddings
_snake_case : Dict = hidden_size
_snake_case : Tuple = num_layers
_snake_case : Optional[Any] = num_heads
_snake_case : Dict = intermediate_size
_snake_case : Any = window_size
_snake_case : int = activation_function
_snake_case : Dict = resid_dropout
_snake_case : int = embed_dropout
_snake_case : Optional[int] = attention_dropout
_snake_case : Any = classifier_dropout
_snake_case : List[str] = layer_norm_epsilon
_snake_case : List[Any] = initializer_range
_snake_case : Dict = use_cache
_snake_case : Dict = bos_token_id
_snake_case : int = eos_token_id
_snake_case : Optional[int] = attention_types
_snake_case : str = self.expand_attention_types_params(lowerCAmelCase)
if len(self.attention_layers) != self.num_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.attention_layers)` == `config.num_layers` """
F'''but is `len(config.attention_layers) = {len(self.attention_layers)}`, '''
F'''`config.num_layers = {self.num_layers}`. '''
"""`config.attention_layers` is prepared using `config.attention_types`. """
"""Please verify the value of `config.attention_types` argument.""")
super().__init__(bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : int) -> Any:
"""simple docstring"""
_snake_case : Dict = []
for item in attention_types:
for _ in range(item[1]):
attentions.extend(item[0])
return attentions
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
import torch
_snake_case : Union[str, Any] = input.size()
_snake_case : int = len(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = shape[dimension]
_snake_case : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1
_snake_case : Any = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None]
_snake_case : int = [slice(SCREAMING_SNAKE_CASE__ )] * rank
_snake_case : int = indices
_snake_case : List[Any] = input[s]
_snake_case : List[str] = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
import torch
_snake_case : Any = torch.arange(1 , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = remainders == 0
_snake_case : List[str] = candidates[divisor_indices]
_snake_case : Optional[int] = torch.max(SCREAMING_SNAKE_CASE__ )
return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
_snake_case : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}})
if self.use_past:
self.fill_with_past_key_values_(lowerCAmelCase , direction="""inputs""")
_snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""}
else:
_snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def UpperCamelCase_ ( self : Dict) -> int:
"""simple docstring"""
return self._config.num_heads
def UpperCamelCase_ ( self : Any , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]:
"""simple docstring"""
_snake_case : str = super(lowerCAmelCase , self).generate_dummy_inputs(
lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase)
# We need to order the input in the way they appears in the forward()
_snake_case : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]})
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""")
else:
import torch
_snake_case , _snake_case : str = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
_snake_case : Union[str, Any] = seqlen + 2
_snake_case : int = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
_snake_case : str = [
(torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase)) for _ in range(self.num_layers)
]
_snake_case : Any = common_inputs["""attention_mask"""]
if self.use_past:
_snake_case : Any = ordered_inputs["""attention_mask"""].dtype
_snake_case : List[str] = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase)] , dim=1)
return ordered_inputs
@property
def UpperCamelCase_ ( self : List[Any]) -> int:
"""simple docstring"""
return 13
| 317 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 | 1 |
from typing import TYPE_CHECKING
from ...file_utils import _LazyModule, is_torch_available
from ...utils import OptionalDependencyNotAvailable
a__ = {
"""configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""],
"""tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""GPTNeoXJapaneseForCausalLM""",
"""GPTNeoXJapaneseLayer""",
"""GPTNeoXJapaneseModel""",
"""GPTNeoXJapanesePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig
from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_gpt_neox_japanese import (
GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
GPTNeoXJapaneseForCausalLM,
GPTNeoXJapaneseLayer,
GPTNeoXJapaneseModel,
GPTNeoXJapanesePreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 | 1 |
import os
import unittest
from transformers import FunnelTokenizer, FunnelTokenizerFast
from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Optional[Any] = FunnelTokenizer
snake_case_ : Tuple = FunnelTokenizerFast
snake_case_ : str = True
snake_case_ : Union[str, Any] = True
def UpperCamelCase_ ( self : int) -> Union[str, Any]:
"""simple docstring"""
super().setUp()
_snake_case : int = [
"""<unk>""",
"""<cls>""",
"""<sep>""",
"""want""",
"""##want""",
"""##ed""",
"""wa""",
"""un""",
"""runn""",
"""##ing""",
""",""",
"""low""",
"""lowest""",
]
_snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer:
vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens]))
def UpperCamelCase_ ( self : Optional[int] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase)
def UpperCamelCase_ ( self : List[str] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
_snake_case : List[str] = """UNwant\u00E9d,running"""
_snake_case : Optional[int] = """unwanted, running"""
return input_text, output_text
def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : List[str] = self.tokenizer_class(self.vocab_file)
_snake_case : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""")
self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""])
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [7, 4, 5, 10, 8, 9])
def UpperCamelCase_ ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Any = self.get_tokenizers(do_lower_case=lowerCAmelCase)
for tokenizer in tokenizers:
_snake_case : Tuple = tokenizer("""UNwant\u00E9d,running""")
_snake_case : Tuple = len(inputs["""input_ids"""]) - 1
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len)
_snake_case : Optional[int] = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""")
self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len)
| 317 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 1 |
import json
import os
from datetime import date
from pathlib import Path
from tabulate import DataRow, TableFormat, tabulate
a__ = TableFormat(
lineabove=None,
linebelowheader=None,
linebetweenrows=None,
linebelow=None,
headerrow=DataRow("""""", """|""", """|"""),
datarow=DataRow("""""", """|""", """|"""),
padding=1,
with_header_hide=None,
)
a__ = []
a__ = []
a__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}}
a__ = [
{
"""type""": """header""",
"""text""": {
"""type""": """plain_text""",
"""text""": F'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''',
"""emoji""": True,
},
}
]
a__ = 0
for log in Path().glob("""*.log"""):
a__ = 0
with open(log, """r""") as f:
for line in f:
a__ = json.loads(line)
if line.get("""nodeid""", """""") != "":
a__ = line["""nodeid"""]
if line.get("""duration""", None) is not None:
a__ = F'''{line['duration']:.4f}'''
if line.get("""outcome""", """""") == "failed":
section_num_failed += 1
failed.append([test, duration, log.name.split("""_""")[0]])
total_num_failed += 1
group_info.append([str(log), section_num_failed, failed])
a__ = []
log.unlink()
a__ = """"""
a__ = []
if total_num_failed > 0:
for name, num_failed, failed_tests in group_info:
if num_failed > 0:
if num_failed == 1:
message += F"*{name[1:]}: {num_failed} failed test*\n"
else:
message += F"*{name[1:]}: {num_failed} failed tests*\n"
a__ = []
a__ = {}
for test in failed_tests:
a__ = test[0].split("""::""")
a__ = data[0].split("""/""")[-1]
if data[0] not in filesafailed:
a__ = [data[1:]]
else:
filesafailed[data[0]] += [data[1:]]
failed_table.append(data)
a__ = [test[0] for test in failed_table]
a__ = list(set(files))
# Count number of instances in failed_tests
a__ = []
for file in individual_files:
table.append([file, len(filesafailed[file])])
a__ = tabulate(
table,
headers=["""Test Location""", """Num Failed"""],
tablefmt=hf_table_format,
stralign="""right""",
)
message += F"\n```\n{failed_table}\n```"
all_filesafailed.append(filesafailed)
if len(message) > 30_00:
a__ = """Too many failed tests, please see the full report in the Action results."""
a__ = len(err) + 10
a__ = message[: 30_00 - offset] + F'''\n...\n```\n{err}'''
print(F'''### {message}''')
else:
a__ = """No failed tests! 🤗"""
print(F'''## {message}''')
payload.append(no_error_payload)
if os.environ.get("""TEST_TYPE""", """""") != "":
from slack_sdk import WebClient
a__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""])
if message != "No failed tests! 🤗":
a__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": message,
},
}
payload.append(md_report)
a__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": """*For more details:*""",
},
"""accessory""": {
"""type""": """button""",
"""text""": {
"""type""": """plain_text""",
"""text""": """Check Action results""",
"""emoji""": True,
},
"""url""": F'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''',
},
}
payload.append(action_button)
a__ = {
"""type""": """context""",
"""elements""": [
{
"""type""": """plain_text""",
"""text""": F'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''',
}
],
}
payload.append(date_report)
a__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload)
a__ = response.data["""ts"""]
for failed_file in all_filesafailed:
for test_location, test_failures in failed_file.items():
# Keep only the first instance of the test name
a__ = """"""
for i, row in enumerate(test_failures):
if row[0] != test_class:
a__ = row[0]
else:
a__ = """"""
a__ = {
"""type""": """section""",
"""text""": {
"""type""": """mrkdwn""",
"""text""": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''',
},
}
client.chat_postMessage(
channel="""#accelerate-ci-daily""",
thread_ts=ts,
blocks=[payload],
)
| 317 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 | 1 |
from math import sqrt
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> bool:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' must been an int and positive"
_snake_case : Tuple = True
# 0 and 1 are none primes.
if number <= 1:
_snake_case : Union[str, Any] = False
for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
_snake_case : Optional[Any] = False
break
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool"
return status
def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
_snake_case : Dict = list(range(2 , n + 1 ) )
_snake_case : Union[str, Any] = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
_snake_case : Any = 0
# filters actual prime numbers.
_snake_case : Optional[int] = [x for x in begin_list if x != 0]
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2"
_snake_case : Optional[Any] = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2 , n + 1 ):
if is_prime(SCREAMING_SNAKE_CASE__ ):
ans.append(SCREAMING_SNAKE_CASE__ )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0"
_snake_case : Dict = [] # this list will be returns of the function.
# potential prime number factors.
_snake_case : Tuple = 2
_snake_case : Optional[int] = number
if number == 0 or number == 1:
ans.append(SCREAMING_SNAKE_CASE__ )
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(SCREAMING_SNAKE_CASE__ ):
while quotient != 1:
if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0):
ans.append(SCREAMING_SNAKE_CASE__ )
quotient /= factor
else:
factor += 1
else:
ans.append(SCREAMING_SNAKE_CASE__ )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
_snake_case : str = 0
# prime factorization of 'number'
_snake_case : Dict = prime_factorization(SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = max(SCREAMING_SNAKE_CASE__ )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number >= 0
), "'number' bust been an int and >= 0"
_snake_case : Optional[Any] = 0
# prime factorization of 'number'
_snake_case : List[str] = prime_factorization(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = min(SCREAMING_SNAKE_CASE__ )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int"
assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool"
return number % 2 == 0
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> List[Any]:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int"
assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool"
return number % 2 != 0
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]:
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ )
), "'number' must been an int, even and > 2"
_snake_case : Optional[int] = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
_snake_case : Optional[Any] = get_prime_numbers(SCREAMING_SNAKE_CASE__ )
_snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ )
# run variable for while-loops.
_snake_case : Optional[Any] = 0
_snake_case : Union[str, Any] = None
# exit variable. for break up the loops
_snake_case : Any = True
while i < len_pn and loop:
_snake_case : int = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
_snake_case : Optional[Any] = False
ans.append(prime_numbers[i] )
ans.append(prime_numbers[j] )
j += 1
i += 1
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (len(SCREAMING_SNAKE_CASE__ ) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0] )
and is_prime(ans[1] )
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]:
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (numbera >= 0)
and (numbera >= 0)
), "'number1' and 'number2' must been positive integer."
_snake_case : Optional[Any] = 0
while numbera != 0:
_snake_case : List[str] = numbera % numbera
_snake_case : List[Any] = numbera
_snake_case : Union[str, Any] = rest
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
numbera >= 0
), "'number' must been from type int and positive"
return numbera
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]:
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (numbera >= 1)
and (numbera >= 1)
), "'number1' and 'number2' must been positive integer."
_snake_case : Tuple = 1 # actual answer that will be return.
# for kgV (x,1)
if numbera > 1 and numbera > 1:
# builds the prime factorization of 'number1' and 'number2'
_snake_case : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ )
_snake_case : int = prime_factorization(SCREAMING_SNAKE_CASE__ )
elif numbera == 1 or numbera == 1:
_snake_case : str = []
_snake_case : int = []
_snake_case : str = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : str = 0
_snake_case : Union[str, Any] = 0
_snake_case : str = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_a:
if n not in done:
if n in prime_fac_a:
_snake_case : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ )
_snake_case : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ )
for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ):
ans *= n
else:
_snake_case : Union[str, Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ )
for _ in range(SCREAMING_SNAKE_CASE__ ):
ans *= n
done.append(SCREAMING_SNAKE_CASE__ )
# iterates through primeFac2
for n in prime_fac_a:
if n not in done:
_snake_case : str = prime_fac_a.count(SCREAMING_SNAKE_CASE__ )
for _ in range(SCREAMING_SNAKE_CASE__ ):
ans *= n
done.append(SCREAMING_SNAKE_CASE__ )
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
ans >= 0
), "'ans' must been from type int and positive"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int"
_snake_case : int = 0
_snake_case : int = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE__ ):
ans += 1
# precondition
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime(
SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]:
assert (
is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
_snake_case : List[str] = p_number_a + 1 # jump to the next number
_snake_case : List[Any] = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE__ ):
number += 1
while number < p_number_a:
ans.append(SCREAMING_SNAKE_CASE__ )
number += 1
# fetch the next prime number.
while not is_prime(SCREAMING_SNAKE_CASE__ ):
number += 1
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and ans[0] != p_number_a
and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1"
_snake_case : List[str] = [] # will be returned.
for divisor in range(1 , n + 1 ):
if n % divisor == 0:
ans.append(SCREAMING_SNAKE_CASE__ )
# precondition
assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)"
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> int:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (
number > 1
), "'number' must been an int and >= 1"
_snake_case : str = get_divisors(SCREAMING_SNAKE_CASE__ )
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (divisors[0] == 1)
and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1] ) == number
def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
_snake_case : Dict = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) )
# precondition
assert (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0"
_snake_case : int = 1 # this will be return.
for factor in range(1 , n + 1 ):
ans *= factor
return ans
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Dict:
assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0"
_snake_case : Optional[int] = 0
_snake_case : Optional[int] = 1
_snake_case : int = 1 # this will be return
for _ in range(n - 1 ):
_snake_case : Union[str, Any] = ans
ans += fiba
_snake_case : Optional[int] = tmp
return ans
| 317 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 | 1 |
import math
from datetime import datetime, timedelta
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> datetime:
_snake_case : List[str] = year % 19
_snake_case : Any = year % 4
_snake_case : Optional[Any] = year % 7
_snake_case : int = math.floor(year / 100 )
_snake_case : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 )
_snake_case : List[Any] = leap_day_inhibits / 4
_snake_case : Optional[Any] = (
15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number
) % 30
_snake_case : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7
# days to be added to March 21
_snake_case : Dict = (19 * metonic_cycle + secular_moon_shift) % 30
# PHM -> Paschal Full Moon
_snake_case : Optional[Any] = (
2 * julian_leap_year
+ 4 * non_leap_year
+ 6 * days_to_add
+ century_starting_point
) % 7
if days_to_add == 29 and days_from_phm_to_sunday == 6:
return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 )
elif days_to_add == 28 and days_from_phm_to_sunday == 6:
return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 )
else:
return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta(
days=int(days_to_add + days_from_phm_to_sunday ) )
if __name__ == "__main__":
for year in (19_94, 20_00, 20_10, 20_21, 20_23):
a__ = """will be""" if year > datetime.now().year else """was"""
print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
| 317 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a__ = logging.get_logger(__name__)
# General docstring
a__ = """RegNetConfig"""
# Base docstring
a__ = """facebook/regnet-y-040"""
a__ = [1, 10_88, 7, 7]
# Image classification docstring
a__ = """facebook/regnet-y-040"""
a__ = """tabby, tabby cat"""
a__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : int = nn.Convad(
lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , )
_snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase)
_snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.convolution(lowerCAmelCase)
_snake_case : Any = self.normalization(lowerCAmelCase)
_snake_case : List[Any] = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
_snake_case : Dict = config.num_channels
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
_snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
_snake_case : Any = self.embedder(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase)
_snake_case : Tuple = nn.BatchNormad(lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor:
"""simple docstring"""
_snake_case : Optional[Any] = self.convolution(lowerCAmelCase)
_snake_case : Optional[int] = self.normalization(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1))
_snake_case : Optional[Any] = nn.Sequential(
nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , )
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case : Dict = self.pooler(lowerCAmelCase)
_snake_case : List[str] = self.attention(lowerCAmelCase)
_snake_case : str = hidden_state * attention
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[int] = in_channels != out_channels or stride != 1
_snake_case : Optional[Any] = max(1 , out_channels // config.groups_width)
_snake_case : Union[str, Any] = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Tuple = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = hidden_state
_snake_case : int = self.layer(lowerCAmelCase)
_snake_case : Dict = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : str = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : int = in_channels != out_channels or stride != 1
_snake_case : Dict = max(1 , out_channels // config.groups_width)
_snake_case : Tuple = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Dict = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = hidden_state
_snake_case : List[Any] = self.layer(lowerCAmelCase)
_snake_case : List[str] = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : int = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer
_snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , )
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = self.layers(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
_snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]):
self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
_snake_case : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_snake_case : Optional[int] = hidden_states + (hidden_state,)
_snake_case : Dict = stage_module(lowerCAmelCase)
if output_hidden_states:
_snake_case : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = RegNetConfig
snake_case_ : List[Any] = """regnet"""
snake_case_ : Any = """pixel_values"""
snake_case_ : Optional[Any] = True
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
if isinstance(lowerCAmelCase , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""")
elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]:
"""simple docstring"""
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Optional[Any] = value
a__ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
a__ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Any = config
_snake_case : Any = RegNetEmbeddings(lowerCAmelCase)
_snake_case : Dict = RegNetEncoder(lowerCAmelCase)
_snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : str = self.embedder(lowerCAmelCase)
_snake_case : Optional[Any] = self.encoder(
lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : Tuple = encoder_outputs[0]
_snake_case : Optional[Any] = self.pooler(lowerCAmelCase)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Union[str, Any] = config.num_labels
_snake_case : List[Any] = RegNetModel(lowerCAmelCase)
# classification head
_snake_case : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
_snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : str = outputs.pooler_output if return_dict else outputs[1]
_snake_case : Optional[Any] = self.classifier(lowerCAmelCase)
_snake_case : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : List[Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : Optional[int] = """single_label_classification"""
else:
_snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : List[str] = MSELoss()
if self.num_labels == 1:
_snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
elif self.config.problem_type == "single_label_classification":
_snake_case : Dict = CrossEntropyLoss()
_snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
_snake_case : Optional[int] = BCEWithLogitsLoss()
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
if not return_dict:
_snake_case : Optional[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list:
for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , 0 , -1 ):
_snake_case : List[Any] = False
for j in range(SCREAMING_SNAKE_CASE__ , 0 , -1 ):
if unsorted[j] < unsorted[j - 1]:
_snake_case , _snake_case : Union[str, Any] = unsorted[j - 1], unsorted[j]
_snake_case : List[Any] = True
for j in range(SCREAMING_SNAKE_CASE__ ):
if unsorted[j] > unsorted[j + 1]:
_snake_case , _snake_case : List[str] = unsorted[j + 1], unsorted[j]
_snake_case : Tuple = True
if not swapped:
break
return unsorted
if __name__ == "__main__":
import doctest
doctest.testmod()
a__ = input("""Enter numbers separated by a comma:\n""").strip()
a__ = [int(item) for item in user_input.split(""",""")]
print(F'''{cocktail_shaker_sort(unsorted) = }''')
| 317 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list:
_snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# use last results for better performance - dynamic programming
_snake_case : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_snake_case : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_snake_case : Optional[int] = j
return prefix_result
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return max(prefix_function(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 | 1 |
from __future__ import annotations
def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> float:
_snake_case : Dict = 0.0_0
_snake_case : Tuple = 0
for resistor in resistors:
if resistor <= 0:
_snake_case : Any = F'''Resistor at index {index} has a negative or zero value!'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
first_sum += 1 / float(SCREAMING_SNAKE_CASE__ )
index += 1
return 1 / first_sum
def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> float:
_snake_case : Tuple = 0.0_0
_snake_case : Union[str, Any] = 0
for resistor in resistors:
sum_r += resistor
if resistor < 0:
_snake_case : List[Any] = F'''Resistor at index {index} has a negative value!'''
raise ValueError(SCREAMING_SNAKE_CASE__ )
index += 1
return sum_r
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 1 |
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DDIMScheduler,
PNDMScheduler,
StableDiffusionLDMaDPipeline,
UNetaDConditionModel,
)
from diffusers.utils import nightly, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS
enable_full_determinism()
class snake_case ( unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = StableDiffusionLDMaDPipeline
snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS
snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS
snake_case_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS
def UpperCamelCase_ ( self : str) -> Optional[int]:
"""simple docstring"""
torch.manual_seed(0)
_snake_case : Dict = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , )
_snake_case : Optional[Any] = DDIMScheduler(
beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , )
torch.manual_seed(0)
_snake_case : Optional[int] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , )
torch.manual_seed(0)
_snake_case : Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , )
_snake_case : Optional[Any] = CLIPTextModel(lowerCAmelCase)
_snake_case : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""")
_snake_case : int = {
"""unet""": unet,
"""scheduler""": scheduler,
"""vae""": vae,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""safety_checker""": None,
"""feature_extractor""": None,
}
return components
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=0) -> Union[str, Any]:
"""simple docstring"""
if str(lowerCAmelCase).startswith("""mps"""):
_snake_case : Tuple = torch.manual_seed(lowerCAmelCase)
else:
_snake_case : Any = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase)
_snake_case : Dict = {
"""prompt""": """A painting of a squirrel eating a burger""",
"""generator""": generator,
"""num_inference_steps""": 2,
"""guidance_scale""": 6.0,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase_ ( self : Dict) -> int:
"""simple docstring"""
_snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator
_snake_case : List[Any] = self.get_dummy_components()
_snake_case : int = StableDiffusionLDMaDPipeline(**lowerCAmelCase)
_snake_case : List[Any] = ldmad_pipe.to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase)
_snake_case : str = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : str = output.rgb, output.depth
_snake_case : Any = rgb[0, -3:, -3:, -1]
_snake_case : Tuple = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
_snake_case : Optional[Any] = np.array(
[0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262])
_snake_case : Tuple = np.array([103.46_727, 85.812_004, 87.849_236])
assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1E-2
assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1E-2
def UpperCamelCase_ ( self : List[str]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.get_dummy_components()
_snake_case : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase)
_snake_case : Tuple = ldmad_pipe.to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase)
_snake_case : Tuple = 3 * [inputs["""prompt"""]]
# forward
_snake_case : Optional[Any] = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : Optional[int] = output.rgb, output.depth
_snake_case : Tuple = rgb_slice_a[0, -3:, -3:, -1]
_snake_case : List[str] = depth_slice_a[0, -3:, -1]
_snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase)
_snake_case : List[str] = 3 * [inputs.pop("""prompt""")]
_snake_case : Dict = ldmad_pipe.tokenizer(
lowerCAmelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , )
_snake_case : List[Any] = text_inputs["""input_ids"""].to(lowerCAmelCase)
_snake_case : Union[str, Any] = ldmad_pipe.text_encoder(lowerCAmelCase)[0]
_snake_case : str = prompt_embeds
# forward
_snake_case : List[str] = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : Tuple = output.rgb, output.depth
_snake_case : int = rgb_slice_a[0, -3:, -3:, -1]
_snake_case : int = depth_slice_a[0, -3:, -1]
assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten()).max() < 1E-4
assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten()).max() < 1E-4
def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
_snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator
_snake_case : str = self.get_dummy_components()
_snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase)
_snake_case : Optional[int] = StableDiffusionLDMaDPipeline(**lowerCAmelCase)
_snake_case : int = ldmad_pipe.to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : int = self.get_dummy_inputs(lowerCAmelCase)
_snake_case : List[str] = """french fries"""
_snake_case : Tuple = ldmad_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase)
_snake_case , _snake_case : List[Any] = output.rgb, output.depth
_snake_case : Dict = rgb[0, -3:, -3:, -1]
_snake_case : int = depth[0, -3:, -1]
assert rgb.shape == (1, 64, 64, 3)
assert depth.shape == (1, 64, 64)
_snake_case : Any = np.array(
[0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217])
_snake_case : Any = np.array([107.84_738, 84.62_802, 89.962_135])
assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1E-2
assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1E-2
@slow
@require_torch_gpu
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : str="cpu" , lowerCAmelCase : str=torch.floataa , lowerCAmelCase : Union[str, Any]=0) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase)
_snake_case : int = np.random.RandomState(lowerCAmelCase).standard_normal((1, 4, 64, 64))
_snake_case : Dict = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase)
_snake_case : int = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 3,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""")
_snake_case : Dict = ldmad_pipe.to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : List[str] = self.get_inputs(lowerCAmelCase)
_snake_case : Optional[int] = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : Optional[Any] = output.rgb, output.depth
_snake_case : Dict = rgb[0, -3:, -3:, -1].flatten()
_snake_case : Union[str, Any] = rgb[0, -3:, -1].flatten()
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512)
_snake_case : str = np.array(
[0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706])
_snake_case : Dict = np.array(
[0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706])
assert np.abs(rgb_slice - expected_slice_rgb).max() < 3E-3
assert np.abs(depth_slice - expected_slice_depth).max() < 3E-3
@nightly
@require_torch_gpu
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]="cpu" , lowerCAmelCase : int=torch.floataa , lowerCAmelCase : str=0) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase)
_snake_case : Any = np.random.RandomState(lowerCAmelCase).standard_normal((1, 4, 64, 64))
_snake_case : int = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase)
_snake_case : List[str] = {
"""prompt""": """a photograph of an astronaut riding a horse""",
"""latents""": latents,
"""generator""": generator,
"""num_inference_steps""": 50,
"""guidance_scale""": 7.5,
"""output_type""": """numpy""",
}
return inputs
def UpperCamelCase_ ( self : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Dict = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""").to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : int = self.get_inputs(lowerCAmelCase)
_snake_case : Optional[int] = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : Optional[Any] = output.rgb, output.depth
_snake_case : Dict = 0.495_586
_snake_case : Any = 0.33_795_515
_snake_case : List[str] = 112.48_518
_snake_case : List[Any] = 98.489_746
assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3
assert np.abs(expected_rgb_std - rgb.std()) < 1E-3
assert np.abs(expected_depth_mean - depth.mean()) < 1E-3
assert np.abs(expected_depth_std - depth.std()) < 1E-3
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
_snake_case : int = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""").to(lowerCAmelCase)
ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : List[Any] = self.get_inputs(lowerCAmelCase)
_snake_case : str = ldmad_pipe(**lowerCAmelCase)
_snake_case , _snake_case : Dict = output.rgb, output.depth
_snake_case : Union[str, Any] = 0.4_194_127
_snake_case : int = 0.35_375_586
_snake_case : Optional[int] = 0.5_638_502
_snake_case : Optional[Any] = 0.34_686_103
assert rgb.shape == (1, 512, 512, 3)
assert depth.shape == (1, 512, 512, 1)
assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3
assert np.abs(expected_rgb_std - rgb.std()) < 1E-3
assert np.abs(expected_depth_mean - depth.mean()) < 1E-3
assert np.abs(expected_depth_std - depth.std()) < 1E-3
| 317 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None:
"""simple docstring"""
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
a__ = {
"""configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""],
"""tokenization_roformer""": ["""RoFormerTokenizer"""],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ["""RoFormerTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""RoFormerForCausalLM""",
"""RoFormerForMaskedLM""",
"""RoFormerForMultipleChoice""",
"""RoFormerForQuestionAnswering""",
"""RoFormerForSequenceClassification""",
"""RoFormerForTokenClassification""",
"""RoFormerLayer""",
"""RoFormerModel""",
"""RoFormerPreTrainedModel""",
"""load_tf_weights_in_roformer""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFRoFormerForCausalLM""",
"""TFRoFormerForMaskedLM""",
"""TFRoFormerForMultipleChoice""",
"""TFRoFormerForQuestionAnswering""",
"""TFRoFormerForSequenceClassification""",
"""TFRoFormerForTokenClassification""",
"""TFRoFormerLayer""",
"""TFRoFormerModel""",
"""TFRoFormerPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""FlaxRoFormerForMaskedLM""",
"""FlaxRoFormerForMultipleChoice""",
"""FlaxRoFormerForQuestionAnswering""",
"""FlaxRoFormerForSequenceClassification""",
"""FlaxRoFormerForTokenClassification""",
"""FlaxRoFormerModel""",
"""FlaxRoFormerPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig
from .tokenization_roformer import RoFormerTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roformer_fast import RoFormerTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roformer import (
ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
RoFormerForCausalLM,
RoFormerForMaskedLM,
RoFormerForMultipleChoice,
RoFormerForQuestionAnswering,
RoFormerForSequenceClassification,
RoFormerForTokenClassification,
RoFormerLayer,
RoFormerModel,
RoFormerPreTrainedModel,
load_tf_weights_in_roformer,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roformer import (
TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRoFormerForCausalLM,
TFRoFormerForMaskedLM,
TFRoFormerForMultipleChoice,
TFRoFormerForQuestionAnswering,
TFRoFormerForSequenceClassification,
TFRoFormerForTokenClassification,
TFRoFormerLayer,
TFRoFormerModel,
TFRoFormerPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roformer import (
FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaxRoFormerForMaskedLM,
FlaxRoFormerForMultipleChoice,
FlaxRoFormerForQuestionAnswering,
FlaxRoFormerForSequenceClassification,
FlaxRoFormerForTokenClassification,
FlaxRoFormerModel,
FlaxRoFormerPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import math
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]:
_snake_case : List[str] = []
_snake_case : Optional[int] = 2
_snake_case : List[str] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) # Size of every segment
_snake_case : str = [True] * (end + 1)
_snake_case : int = []
while start <= end:
if temp[start] is True:
in_prime.append(SCREAMING_SNAKE_CASE__ )
for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE__ ):
_snake_case : List[Any] = False
start += 1
prime += in_prime
_snake_case : Union[str, Any] = end + 1
_snake_case : Dict = min(2 * end , SCREAMING_SNAKE_CASE__ )
while low <= n:
_snake_case : str = [True] * (high - low + 1)
for each in in_prime:
_snake_case : Optional[Any] = math.floor(low / each ) * each
if t < low:
t += each
for j in range(SCREAMING_SNAKE_CASE__ , high + 1 , SCREAMING_SNAKE_CASE__ ):
_snake_case : Any = False
for j in range(len(SCREAMING_SNAKE_CASE__ ) ):
if temp[j] is True:
prime.append(j + low )
_snake_case : Tuple = high + 1
_snake_case : int = min(high + end , SCREAMING_SNAKE_CASE__ )
return prime
print(sieve(10**6))
| 317 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import os
import shutil
from pathlib import Path
from typing import Optional, Union
import numpy as np
from huggingface_hub import hf_hub_download
from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging
if is_onnx_available():
import onnxruntime as ort
a__ = logging.get_logger(__name__)
a__ = {
"""tensor(bool)""": np.bool_,
"""tensor(int8)""": np.inta,
"""tensor(uint8)""": np.uinta,
"""tensor(int16)""": np.intaa,
"""tensor(uint16)""": np.uintaa,
"""tensor(int32)""": np.intaa,
"""tensor(uint32)""": np.uintaa,
"""tensor(int64)""": np.intaa,
"""tensor(uint64)""": np.uintaa,
"""tensor(float16)""": np.floataa,
"""tensor(float)""": np.floataa,
"""tensor(double)""": np.floataa,
}
class snake_case :
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : int=None , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""")
_snake_case : Union[str, Any] = model
_snake_case : List[Any] = kwargs.get("""model_save_dir""" , lowerCAmelCase)
_snake_case : int = kwargs.get("""latest_model_name""" , lowerCAmelCase)
def __call__( self : str , **lowerCAmelCase : Any) -> Optional[int]:
"""simple docstring"""
_snake_case : int = {k: np.array(lowerCAmelCase) for k, v in kwargs.items()}
return self.model.run(lowerCAmelCase , lowerCAmelCase)
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None) -> List[str]:
"""simple docstring"""
if provider is None:
logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""")
_snake_case : Tuple = """CPUExecutionProvider"""
return ort.InferenceSession(lowerCAmelCase , providers=[provider] , sess_options=lowerCAmelCase)
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME
_snake_case : Tuple = self.model_save_dir.joinpath(self.latest_model_name)
_snake_case : Dict = Path(lowerCAmelCase).joinpath(lowerCAmelCase)
try:
shutil.copyfile(lowerCAmelCase , lowerCAmelCase)
except shutil.SameFileError:
pass
# copy external weights (for models >2GB)
_snake_case : Dict = self.model_save_dir.joinpath(lowerCAmelCase)
if src_path.exists():
_snake_case : Optional[int] = Path(lowerCAmelCase).joinpath(lowerCAmelCase)
try:
shutil.copyfile(lowerCAmelCase , lowerCAmelCase)
except shutil.SameFileError:
pass
def UpperCamelCase_ ( self : int , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Optional[int] , ) -> str:
"""simple docstring"""
if os.path.isfile(lowerCAmelCase):
logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''')
return
os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase)
# saving model weights/files
self._save_pretrained(lowerCAmelCase , **lowerCAmelCase)
@classmethod
def UpperCamelCase_ ( cls : List[Any] , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Union[bool, str, None]] = None , lowerCAmelCase : Optional[Union[str, None]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional["ort.SessionOptions"] = None , **lowerCAmelCase : List[str] , ) -> List[str]:
"""simple docstring"""
_snake_case : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME
# load model from local directory
if os.path.isdir(lowerCAmelCase):
_snake_case : Optional[Any] = OnnxRuntimeModel.load_model(
os.path.join(lowerCAmelCase , lowerCAmelCase) , provider=lowerCAmelCase , sess_options=lowerCAmelCase)
_snake_case : Optional[Any] = Path(lowerCAmelCase)
# load model from hub
else:
# download model
_snake_case : List[str] = hf_hub_download(
repo_id=lowerCAmelCase , filename=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , )
_snake_case : str = Path(lowerCAmelCase).parent
_snake_case : List[Any] = Path(lowerCAmelCase).name
_snake_case : str = OnnxRuntimeModel.load_model(lowerCAmelCase , provider=lowerCAmelCase , sess_options=lowerCAmelCase)
return cls(model=lowerCAmelCase , **lowerCAmelCase)
@classmethod
def UpperCamelCase_ ( cls : Dict , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : str , ) -> List[Any]:
"""simple docstring"""
_snake_case : Any = None
if len(str(lowerCAmelCase).split("""@""")) == 2:
_snake_case , _snake_case : Optional[Any] = model_id.split("""@""")
return cls._from_pretrained(
model_id=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , use_auth_token=lowerCAmelCase , **lowerCAmelCase , )
| 317 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 1 |
from typing import Dict, List, Optional
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""nielsr/canine-s""": 20_48,
}
# Unicode defines 1,114,112 total “codepoints”
a__ = 1_11_41_12
# Below: Constants defining canonical codepoints for special, pseudo-characters.
# Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py
a__ = 0
a__ = 0Xe000
a__ = 0Xe001
a__ = 0Xe002
a__ = 0Xe003
a__ = 0Xe004
# Maps special codepoints to human-readable names.
a__ = {
# Special symbols are represented using codepoints values that are valid,
# but designated as "Private Use", meaning that they will never be assigned
# characters by the Unicode Consortium, and are thus safe for use here.
#
# NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly
# excluded and should fail with a hard error.
CLS: "[CLS]",
SEP: "[SEP]",
BOS: "[BOS]",
MASK: "[MASK]",
PAD: "[PAD]",
RESERVED: "[RESERVED]",
}
# Maps special codepoint human-readable names to their codepoint values.
a__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self : Union[str, Any] , lowerCAmelCase : Dict=chr(lowerCAmelCase) , lowerCAmelCase : int=chr(lowerCAmelCase) , lowerCAmelCase : Optional[Any]=chr(lowerCAmelCase) , lowerCAmelCase : List[Any]=chr(lowerCAmelCase) , lowerCAmelCase : Any=chr(lowerCAmelCase) , lowerCAmelCase : int=chr(lowerCAmelCase) , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : List[str]=2048 , **lowerCAmelCase : int , ) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else bos_token
_snake_case : Union[str, Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else eos_token
_snake_case : Optional[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else sep_token
_snake_case : Dict = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else cls_token
_snake_case : List[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
_snake_case : Any = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token
super().__init__(
bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , model_max_length=lowerCAmelCase , **lowerCAmelCase , )
# Creates a mapping for looking up the IDs of special symbols.
_snake_case : Dict[str, int] = {}
for codepoint, name in SPECIAL_CODEPOINTS.items():
_snake_case : Any = codepoint
# Creates a mapping for looking up the string forms of special symbol IDs.
_snake_case : Dict[int, str] = {
codepoint: name for name, codepoint in self._special_codepoints.items()
}
_snake_case : Tuple = UNICODE_VOCAB_SIZE
_snake_case : Union[str, Any] = len(self._special_codepoints)
@property
def UpperCamelCase_ ( self : str) -> int:
"""simple docstring"""
return self._unicode_vocab_size
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
return list(lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str) -> int:
"""simple docstring"""
try:
return ord(lowerCAmelCase)
except TypeError:
raise ValueError(F'''invalid token: \'{token}\'''')
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int) -> str:
"""simple docstring"""
try:
if index in SPECIAL_CODEPOINTS:
return SPECIAL_CODEPOINTS[index]
return chr(lowerCAmelCase)
except TypeError:
raise ValueError(F'''invalid id: {index}''')
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
return "".join(lowerCAmelCase)
def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
_snake_case : Dict = [self.sep_token_id]
_snake_case : List[Any] = [self.cls_token_id]
_snake_case : Union[str, Any] = cls + token_ids_a + sep
if token_ids_a is not None:
result += token_ids_a + sep
return result
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]:
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase)
_snake_case : List[str] = [1] + ([0] * len(lowerCAmelCase)) + [1]
if token_ids_a is not None:
result += ([0] * len(lowerCAmelCase)) + [1]
return result
def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
_snake_case : str = [self.sep_token_id]
_snake_case : List[Any] = [self.cls_token_id]
_snake_case : Any = len(cls + token_ids_a + sep) * [0]
if token_ids_a is not None:
result += len(token_ids_a + sep) * [1]
return result
def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> List[str]:
"""simple docstring"""
return ()
| 317 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 1 |
from __future__ import annotations
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> list[list[int]]:
_snake_case : list[list[int]] = []
create_all_state(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , [] , SCREAMING_SNAKE_CASE__ )
return result
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[int]] , ) -> None:
if level == 0:
total_list.append(current_list[:] )
return
for i in range(SCREAMING_SNAKE_CASE__ , total_number - level + 2 ):
current_list.append(SCREAMING_SNAKE_CASE__ )
create_all_state(i + 1 , SCREAMING_SNAKE_CASE__ , level - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
current_list.pop()
def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> None:
for i in total_list:
print(*SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = 4
a__ = 2
a__ = generate_all_combinations(n, k)
print_all_state(total_list)
| 317 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 1 |
import operator as op
a__ = """scaler.pt"""
a__ = """pytorch_model"""
a__ = """random_states"""
a__ = """optimizer"""
a__ = """scheduler"""
a__ = """pytorch_model.bin"""
a__ = """pytorch_model.bin.index.json"""
a__ = """model.safetensors"""
a__ = """model.safetensors.index.json"""
a__ = """1.10.2"""
a__ = """py38"""
a__ = """4.17.0"""
a__ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""]
a__ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""]
a__ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""]
a__ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""]
a__ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""]
a__ = """2.0.1"""
a__ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""]
a__ = ["""default""", """reduce-overhead""", """max-autotune"""]
a__ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
a__ = [
"""nnodes""",
"""nproc_per_node""",
"""rdzv_backend""",
"""rdzv_endpoint""",
"""rdzv_id""",
"""rdzv_conf""",
"""standalone""",
"""max_restarts""",
"""monitor_interval""",
"""start_method""",
"""role""",
"""module""",
"""m""",
"""no_python""",
"""run_path""",
"""log_dir""",
"""r""",
"""redirects""",
"""t""",
"""tee""",
"""node_rank""",
"""master_addr""",
"""master_port""",
]
a__ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""]
a__ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
| 317 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
"""configuration_nllb_moe""": [
"""NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""NllbMoeConfig""",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""NllbMoeForConditionalGeneration""",
"""NllbMoeModel""",
"""NllbMoePreTrainedModel""",
"""NllbMoeTop2Router""",
"""NllbMoeSparseMLP""",
]
if TYPE_CHECKING:
from .configuration_nllb_moe import (
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
NllbMoeConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_nllb_moe import (
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
NllbMoeForConditionalGeneration,
NllbMoeModel,
NllbMoePreTrainedModel,
NllbMoeSparseMLP,
NllbMoeTopaRouter,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 1 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""image_processor""", """tokenizer"""]
snake_case_ : int = """ViltImageProcessor"""
snake_case_ : Optional[Any] = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Union[str, Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = None
if "feature_extractor" in kwargs:
warnings.warn(
"""The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"""
""" instead.""" , lowerCAmelCase , )
_snake_case : Optional[int] = kwargs.pop("""feature_extractor""")
_snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("""You need to specify an `image_processor`.""")
if tokenizer is None:
raise ValueError("""You need to specify a `tokenizer`.""")
super().__init__(lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = self.image_processor
def __call__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : str , ) -> BatchEncoding:
"""simple docstring"""
_snake_case : Tuple = self.tokenizer(
text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , )
# add pixel_values + pixel_mask
_snake_case : List[Any] = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase)
encoding.update(lowerCAmelCase)
return encoding
def UpperCamelCase_ ( self : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase)
def UpperCamelCase_ ( self : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str) -> str:
"""simple docstring"""
return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCamelCase_ ( self : Dict) -> Any:
"""simple docstring"""
_snake_case : Optional[int] = self.tokenizer.model_input_names
_snake_case : Dict = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase , )
return self.image_processor_class
@property
def UpperCamelCase_ ( self : List[str]) -> Optional[int]:
"""simple docstring"""
warnings.warn(
"""`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase , )
return self.image_processor
| 317 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 1 |
import unittest
from transformers import PegasusTokenizer, PegasusTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
a__ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""")
@require_sentencepiece
@require_tokenizers
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Optional[int] = PegasusTokenizer
snake_case_ : Dict = PegasusTokenizerFast
snake_case_ : List[str] = True
snake_case_ : Tuple = True
def UpperCamelCase_ ( self : List[str]) -> Optional[int]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_snake_case : Tuple = PegasusTokenizer(lowerCAmelCase)
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def UpperCamelCase_ ( self : List[str]) -> int:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/pegasus-large""")
def UpperCamelCase_ ( self : Tuple , **lowerCAmelCase : List[Any]) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Optional[Any]) -> List[str]:
"""simple docstring"""
return ("This is a test", "This is a test")
def UpperCamelCase_ ( self : List[Any]) -> int:
"""simple docstring"""
_snake_case : Union[str, Any] = """</s>"""
_snake_case : Dict = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase)
self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase)
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys())
self.assertEqual(vocab_keys[0] , """<pad>""")
self.assertEqual(vocab_keys[1] , """</s>""")
self.assertEqual(vocab_keys[-1] , """v""")
self.assertEqual(len(lowerCAmelCase) , 1103)
def UpperCamelCase_ ( self : Any) -> int:
"""simple docstring"""
self.assertEqual(self.get_tokenizer().vocab_size , 1103)
def UpperCamelCase_ ( self : str) -> Optional[Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
_snake_case : int = self.tokenizer_class.from_pretrained(self.tmpdirname)
_snake_case : Optional[Any] = (
"""Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important"""
""" </s> <pad> <pad> <pad>"""
)
_snake_case : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0]
_snake_case : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0]
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Dict) -> int:
"""simple docstring"""
_snake_case : List[Any] = self._large_tokenizer
# <mask_1> masks whole sentence while <mask_2> masks single word
_snake_case : int = """<mask_1> To ensure a <mask_2> flow of bank resolutions."""
_snake_case : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1]
_snake_case : Optional[Any] = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase).input_ids[0]
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : List[str] = self._large_tokenizer
# The tracebacks for the following asserts are **better** without messages or self.assertEqual
assert tokenizer.vocab_size == 9_6103
assert tokenizer.pad_token_id == 0
assert tokenizer.eos_token_id == 1
assert tokenizer.offset == 103
assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105
assert tokenizer.unk_token == "<unk>"
assert tokenizer.model_max_length == 1024
_snake_case : Dict = """To ensure a smooth flow of bank resolutions."""
_snake_case : int = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1]
_snake_case : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase).input_ids[0]
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"]
@require_torch
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = ["""This is going to be way too long.""" * 150, """short example"""]
_snake_case : List[str] = ["""not super long but more than 5 tokens""", """tiny"""]
_snake_case : List[Any] = self._large_tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""")
_snake_case : List[Any] = self._large_tokenizer(
text_target=lowerCAmelCase , max_length=5 , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""")
assert batch.input_ids.shape == (2, 1024)
assert batch.attention_mask.shape == (2, 1024)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase) == 2 # input_ids, attention_mask.
@slow
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Dict = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=lowerCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , )
@require_sentencepiece
@require_tokenizers
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Optional[Any] = PegasusTokenizer
snake_case_ : Dict = PegasusTokenizerFast
snake_case_ : List[str] = True
snake_case_ : int = True
def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
super().setUp()
# We have a SentencePiece fixture for testing
_snake_case : Union[str, Any] = PegasusTokenizer(lowerCAmelCase , offset=0 , mask_token_sent=lowerCAmelCase , mask_token="""[MASK]""")
tokenizer.save_pretrained(self.tmpdirname)
@cached_property
def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""")
def UpperCamelCase_ ( self : Tuple , **lowerCAmelCase : int) -> PegasusTokenizer:
"""simple docstring"""
return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase)
def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
return ("This is a test", "This is a test")
def UpperCamelCase_ ( self : Optional[int]) -> List[str]:
"""simple docstring"""
_snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname)
_snake_case : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname)
_snake_case : List[Any] = (
"""Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>"""
""" <pad> <pad> <pad>"""
)
_snake_case : Dict = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0]
_snake_case : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0]
self.assertListEqual(lowerCAmelCase , lowerCAmelCase)
@require_torch
def UpperCamelCase_ ( self : List[Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = ["""This is going to be way too long.""" * 1000, """short example"""]
_snake_case : List[Any] = ["""not super long but more than 5 tokens""", """tiny"""]
_snake_case : Union[str, Any] = self._large_tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""")
_snake_case : int = self._large_tokenizer(
text_target=lowerCAmelCase , max_length=5 , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""")
assert batch.input_ids.shape == (2, 4096)
assert batch.attention_mask.shape == (2, 4096)
assert targets["input_ids"].shape == (2, 5)
assert len(lowerCAmelCase) == 2 # input_ids, attention_mask.
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
_snake_case : List[str] = (
"""This is an example string that is used to test the original TF implementation against the HF"""
""" implementation"""
)
_snake_case : List[Any] = self._large_tokenizer(lowerCAmelCase).input_ids
self.assertListEqual(
lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
| 317 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list:
_snake_case : Any = len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , SCREAMING_SNAKE_CASE__ ):
_snake_case : List[Any] = collection[i]
_snake_case : Optional[Any] = 0
_snake_case : Optional[int] = i - 1
while low <= high:
_snake_case : int = (low + high) // 2
if val < collection[mid]:
_snake_case : int = mid - 1
else:
_snake_case : Union[str, Any] = mid + 1
for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ):
_snake_case : Any = collection[j - 1]
_snake_case : Any = val
return collection
if __name__ == "__main__":
a__ = input("""Enter numbers separated by a comma:\n""").strip()
a__ = [int(item) for item in user_input.split(""",""")]
print(binary_insertion_sort(unsorted))
| 317 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 1 |
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from tokenizers import processors
from ...tokenization_utils import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_nllb import NllbTokenizer
else:
a__ = None
a__ = logging.get_logger(__name__)
a__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""}
a__ = {
"""vocab_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model"""
),
},
"""tokenizer_file""": {
"""facebook/nllb-200-distilled-600M""": (
"""https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json"""
),
},
}
a__ = {
"""facebook/nllb-large-en-ro""": 10_24,
"""facebook/nllb-200-distilled-600M""": 10_24,
}
# fmt: off
a__ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""]
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = VOCAB_FILES_NAMES
snake_case_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP
snake_case_ : str = ["""input_ids""", """attention_mask"""]
snake_case_ : Any = NllbTokenizer
snake_case_ : List[int] = []
snake_case_ : List[int] = []
def __init__( self : Dict , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Any="</s>" , lowerCAmelCase : str="</s>" , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Any="<pad>" , lowerCAmelCase : List[Any]="<mask>" , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=False , **lowerCAmelCase : Tuple , ) -> List[str]:
"""simple docstring"""
_snake_case : Optional[int] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token
_snake_case : Dict = legacy_behaviour
super().__init__(
vocab_file=lowerCAmelCase , tokenizer_file=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , legacy_behaviour=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : List[Any] = vocab_file
_snake_case : Union[str, Any] = False if not self.vocab_file else True
_snake_case : int = FAIRSEQ_LANGUAGE_CODES.copy()
if additional_special_tokens is not None:
# Only add those special tokens if they are not already there.
_additional_special_tokens.extend(
[t for t in additional_special_tokens if t not in _additional_special_tokens])
self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens})
_snake_case : Optional[int] = {
lang_code: self.convert_tokens_to_ids(lowerCAmelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES
}
_snake_case : Optional[int] = src_lang if src_lang is not None else """eng_Latn"""
_snake_case : List[Any] = self.convert_tokens_to_ids(self._src_lang)
_snake_case : Dict = tgt_lang
self.set_src_lang_special_tokens(self._src_lang)
@property
def UpperCamelCase_ ( self : List[str]) -> str:
"""simple docstring"""
return self._src_lang
@src_lang.setter
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str) -> None:
"""simple docstring"""
_snake_case : List[Any] = new_src_lang
self.set_src_lang_special_tokens(self._src_lang)
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
_snake_case : Dict = [self.sep_token_id]
_snake_case : List[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[Any]) -> List[str]:
"""simple docstring"""
if src_lang is None or tgt_lang is None:
raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""")
_snake_case : List[str] = src_lang
_snake_case : Optional[int] = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Dict = self.convert_tokens_to_ids(lowerCAmelCase)
_snake_case : Dict = tgt_lang_id
return inputs
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str = "eng_Latn" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "fra_Latn" , **lowerCAmelCase : List[Any] , ) -> BatchEncoding:
"""simple docstring"""
_snake_case : Optional[Any] = src_lang
_snake_case : Dict = tgt_lang
return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase)
def UpperCamelCase_ ( self : int) -> Optional[Any]:
"""simple docstring"""
return self.set_src_lang_special_tokens(self.src_lang)
def UpperCamelCase_ ( self : Dict) -> Any:
"""simple docstring"""
return self.set_tgt_lang_special_tokens(self.tgt_lang)
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int) -> None:
"""simple docstring"""
_snake_case : List[str] = self.convert_tokens_to_ids(lowerCAmelCase)
if self.legacy_behaviour:
_snake_case : Optional[int] = []
_snake_case : Tuple = [self.eos_token_id, self.cur_lang_code]
else:
_snake_case : List[str] = [self.cur_lang_code]
_snake_case : Any = [self.eos_token_id]
_snake_case : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens)
_snake_case : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens)
_snake_case : Any = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : str) -> None:
"""simple docstring"""
_snake_case : Any = self.convert_tokens_to_ids(lowerCAmelCase)
if self.legacy_behaviour:
_snake_case : Tuple = []
_snake_case : int = [self.eos_token_id, self.cur_lang_code]
else:
_snake_case : List[str] = [self.cur_lang_code]
_snake_case : Optional[Any] = [self.eos_token_id]
_snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens)
_snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens)
_snake_case : Optional[Any] = processors.TemplateProcessing(
single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , )
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
if not self.can_save_slow_tokenizer:
raise ValueError(
"""Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """
"""tokenizer.""")
if not os.path.isdir(lowerCAmelCase):
logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''')
return
_snake_case : Union[str, Any] = os.path.join(
lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase):
copyfile(self.vocab_file , lowerCAmelCase)
return (out_vocab_file,)
| 317 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel
from diffusers.utils import floats_tensor, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
enable_full_determinism()
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : str = KandinskyVaaPipeline
snake_case_ : str = [
"""image_embeds""",
"""negative_image_embeds""",
]
snake_case_ : List[Any] = ["""image_embeds""", """negative_image_embeds"""]
snake_case_ : Dict = [
"""generator""",
"""height""",
"""width""",
"""latents""",
"""guidance_scale""",
"""num_inference_steps""",
"""return_dict""",
"""guidance_scale""",
"""num_images_per_prompt""",
"""output_type""",
"""return_dict""",
]
snake_case_ : Any = False
@property
def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
return 32
@property
def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]:
"""simple docstring"""
return 32
@property
def UpperCamelCase_ ( self : Dict) -> Dict:
"""simple docstring"""
return self.time_input_dim
@property
def UpperCamelCase_ ( self : Optional[int]) -> int:
"""simple docstring"""
return self.time_input_dim * 4
@property
def UpperCamelCase_ ( self : Tuple) -> int:
"""simple docstring"""
return 100
@property
def UpperCamelCase_ ( self : str) -> Tuple:
"""simple docstring"""
torch.manual_seed(0)
_snake_case : Any = {
"""in_channels""": 4,
# Out channels is double in channels because predicts mean and variance
"""out_channels""": 8,
"""addition_embed_type""": """image""",
"""down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""),
"""up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""),
"""mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""",
"""block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2),
"""layers_per_block""": 1,
"""encoder_hid_dim""": self.text_embedder_hidden_size,
"""encoder_hid_dim_type""": """image_proj""",
"""cross_attention_dim""": self.cross_attention_dim,
"""attention_head_dim""": 4,
"""resnet_time_scale_shift""": """scale_shift""",
"""class_embed_type""": None,
}
_snake_case : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase)
return model
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
return {
"block_out_channels": [32, 64],
"down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"],
"in_channels": 3,
"latent_channels": 4,
"layers_per_block": 1,
"norm_num_groups": 8,
"norm_type": "spatial",
"num_vq_embeddings": 12,
"out_channels": 3,
"up_block_types": [
"AttnUpDecoderBlock2D",
"UpDecoderBlock2D",
],
"vq_embed_dim": 4,
}
@property
def UpperCamelCase_ ( self : Tuple) -> str:
"""simple docstring"""
torch.manual_seed(0)
_snake_case : int = VQModel(**self.dummy_movq_kwargs)
return model
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
_snake_case : Optional[int] = self.dummy_unet
_snake_case : Union[str, Any] = self.dummy_movq
_snake_case : List[Any] = DDIMScheduler(
num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCAmelCase , )
_snake_case : Dict = {
"""unet""": unet,
"""scheduler""": scheduler,
"""movq""": movq,
}
return components
def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=0) -> Optional[Any]:
"""simple docstring"""
_snake_case : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase)).to(lowerCAmelCase)
_snake_case : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to(
lowerCAmelCase)
if str(lowerCAmelCase).startswith("""mps"""):
_snake_case : Tuple = torch.manual_seed(lowerCAmelCase)
else:
_snake_case : int = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase)
_snake_case : Optional[int] = {
"""image_embeds""": image_embeds,
"""negative_image_embeds""": negative_image_embeds,
"""generator""": generator,
"""height""": 64,
"""width""": 64,
"""guidance_scale""": 4.0,
"""num_inference_steps""": 2,
"""output_type""": """np""",
}
return inputs
def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
_snake_case : Tuple = """cpu"""
_snake_case : List[str] = self.get_dummy_components()
_snake_case : Any = self.pipeline_class(**lowerCAmelCase)
_snake_case : List[str] = pipe.to(lowerCAmelCase)
pipe.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase))
_snake_case : Any = output.images
_snake_case : List[str] = pipe(
**self.get_dummy_inputs(lowerCAmelCase) , return_dict=lowerCAmelCase , )[0]
_snake_case : Tuple = image[0, -3:, -3:, -1]
_snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 64, 64, 3)
_snake_case : int = np.array(
[0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046])
assert (
np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}'''
assert (
np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2
), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}'''
@slow
@require_torch_gpu
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCamelCase_ ( self : Any) -> str:
"""simple docstring"""
_snake_case : Tuple = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""")
_snake_case : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa)
pipe_prior.to(lowerCAmelCase)
_snake_case : Any = KandinskyVaaPipeline.from_pretrained(
"""kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa)
_snake_case : Optional[int] = pipeline.to(lowerCAmelCase)
pipeline.set_progress_bar_config(disable=lowerCAmelCase)
_snake_case : Optional[Any] = """red cat, 4k photo"""
_snake_case : int = torch.Generator(device="""cuda""").manual_seed(0)
_snake_case , _snake_case : Dict = pipe_prior(
lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple()
_snake_case : str = torch.Generator(device="""cuda""").manual_seed(0)
_snake_case : Dict = pipeline(
image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , output_type="""np""" , )
_snake_case : Tuple = output.images[0]
assert image.shape == (512, 512, 3)
assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase)
| 317 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 | 1 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 |
import torch
from torch import nn
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str:
"""simple docstring"""
super().__init__()
_snake_case : List[str] = n_token
_snake_case : Any = d_embed
_snake_case : List[str] = d_proj
_snake_case : Optional[int] = cutoffs + [n_token]
_snake_case : Dict = [0] + self.cutoffs
_snake_case : Optional[Any] = div_val
_snake_case : Tuple = self.cutoffs[0]
_snake_case : List[str] = len(self.cutoffs) - 1
_snake_case : str = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
_snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters))
_snake_case : Tuple = nn.ModuleList()
_snake_case : int = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
else:
self.out_projs.append(lowerCAmelCase)
self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase))
else:
for i in range(len(self.cutoffs)):
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx))
_snake_case : Tuple = keep_order
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
if proj is None:
_snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous())
_snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
_snake_case : List[str] = hidden[..., :-1, :].contiguous()
_snake_case : int = labels[..., 1:].contiguous()
_snake_case : int = hidden.view(-1 , hidden.size(-1))
_snake_case : str = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""")
else:
_snake_case : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
_snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
_snake_case : Optional[int] = labels != -100
_snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Union[str, Any] = (
-nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
_snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Any = self.out_layers[i].weight
_snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
_snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1)
if labels is None:
_snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
_snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx)
_snake_case : Dict = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx
_snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase)
_snake_case : Dict = hidden.index_select(0 , lowerCAmelCase)
else:
_snake_case : Optional[Any] = hidden
if i == 0:
if labels is not None:
_snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
_snake_case : int = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i]
_snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
_snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_snake_case : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""") and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
_snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Tuple = self.out_layers[i].weight
_snake_case : Any = self.out_layers[i].bias
if i == 0:
_snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0]
_snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token))
_snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : List[Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : Dict = head_logprob[:, -i] + tail_logprob_i
_snake_case : Any = logprob_i
return out
| 317 | 1 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
a__ = {
"""configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""],
"""feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""],
"""processing_mctct""": ["""MCTCTProcessor"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""MCTCTForCTC""",
"""MCTCTModel""",
"""MCTCTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig
from .feature_extraction_mctct import MCTCTFeatureExtractor
from .processing_mctct import MCTCTProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
is_vision_available,
)
a__ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ["""ViTFeatureExtractor"""]
a__ = ["""ViTImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""VIT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""ViTForImageClassification""",
"""ViTForMaskedImageModeling""",
"""ViTModel""",
"""ViTPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TFViTForImageClassification""",
"""TFViTModel""",
"""TFViTPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxViTForImageClassification""",
"""FlaxViTModel""",
"""FlaxViTPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_vit import ViTFeatureExtractor
from .image_processing_vit import ViTImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vit import (
VIT_PRETRAINED_MODEL_ARCHIVE_LIST,
ViTForImageClassification,
ViTForMaskedImageModeling,
ViTModel,
ViTPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Dict:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_snake_case : str = len(set_a.intersection(SCREAMING_SNAKE_CASE__ ) )
if alternative_union:
_snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ )
else:
_snake_case : List[Any] = len(set_a.union(SCREAMING_SNAKE_CASE__ ) )
return intersection / union
if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ):
_snake_case : Any = [element for element in set_a if element in set_b]
if alternative_union:
_snake_case : List[Any] = len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ )
return len(SCREAMING_SNAKE_CASE__ ) / union
else:
_snake_case : List[Any] = set_a + [element for element in set_b if element not in set_a]
return len(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
return len(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ )
return None
if __name__ == "__main__":
a__ = {"""a""", """b""", """c""", """d""", """e"""}
a__ = {"""c""", """d""", """e""", """f""", """h""", """i"""}
print(jaccard_similarity(set_a, set_b))
| 317 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 | 1 |
import requests
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> None:
_snake_case : str = {"""Content-Type""": """application/json"""}
_snake_case : Tuple = requests.post(SCREAMING_SNAKE_CASE__ , json={"""text""": message_body} , headers=SCREAMING_SNAKE_CASE__ )
if response.status_code != 200:
_snake_case : Dict = (
"""Request to slack returned an error """
F'''{response.status_code}, the response is:\n{response.text}'''
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
# Set the slack url to the one provided by Slack when you create the webhook at
# https://my.slack.com/services/new/incoming-webhook/
send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
| 317 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 | 1 |
import pytest
a__ = """__dummy_dataset1__"""
a__ = """
import json
import os
import datasets
REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\"
URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"}
class __DummyDataset1__(datasets.GeneratorBasedBuilder):
def _info(self):
features = datasets.Features(
{
\"tokens\": datasets.Sequence(datasets.Value(\"string\")),
\"ner_tags\": datasets.Sequence(
datasets.features.ClassLabel(
names=[
\"O\",
\"B-PER\",
\"I-PER\",
\"B-ORG\",
\"I-ORG\",
\"B-LOC\",
\"I-LOC\",
]
)
),
\"langs\": datasets.Sequence(datasets.Value(\"string\")),
\"spans\": datasets.Sequence(datasets.Value(\"string\")),
}
)
return datasets.DatasetInfo(features=features)
def _split_generators(self, dl_manager):
dl_path = dl_manager.download(URLS)
return [
datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}),
datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}),
]
def _generate_examples(self, filepath):
with open(filepath, \"r\", encoding=\"utf-8\") as f:
for i, line in enumerate(f):
yield i, json.loads(line)
"""
@pytest.fixture
def lowercase ( ) -> Optional[int]:
return DATASET_LOADING_SCRIPT_NAME
@pytest.fixture
def lowercase ( ) -> Dict:
return DATASET_LOADING_SCRIPT_CODE
@pytest.fixture
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
_snake_case : List[Any] = dataset_loading_script_name
_snake_case : List[str] = tmp_path / """datasets""" / script_name
script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__ )
_snake_case : str = script_dir / F'''{script_name}.py'''
with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f:
f.write(SCREAMING_SNAKE_CASE__ )
return str(SCREAMING_SNAKE_CASE__ )
| 317 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a__ = logging.get_logger(__name__)
# General docstring
a__ = """RegNetConfig"""
# Base docstring
a__ = """facebook/regnet-y-040"""
a__ = [1, 10_88, 7, 7]
# Image classification docstring
a__ = """facebook/regnet-y-040"""
a__ = """tabby, tabby cat"""
a__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : int = nn.Convad(
lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , )
_snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase)
_snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.convolution(lowerCAmelCase)
_snake_case : Any = self.normalization(lowerCAmelCase)
_snake_case : List[Any] = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
_snake_case : Dict = config.num_channels
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
_snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
_snake_case : Any = self.embedder(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase)
_snake_case : Tuple = nn.BatchNormad(lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor:
"""simple docstring"""
_snake_case : Optional[Any] = self.convolution(lowerCAmelCase)
_snake_case : Optional[int] = self.normalization(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1))
_snake_case : Optional[Any] = nn.Sequential(
nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , )
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case : Dict = self.pooler(lowerCAmelCase)
_snake_case : List[str] = self.attention(lowerCAmelCase)
_snake_case : str = hidden_state * attention
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[int] = in_channels != out_channels or stride != 1
_snake_case : Optional[Any] = max(1 , out_channels // config.groups_width)
_snake_case : Union[str, Any] = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Tuple = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = hidden_state
_snake_case : int = self.layer(lowerCAmelCase)
_snake_case : Dict = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : str = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : int = in_channels != out_channels or stride != 1
_snake_case : Dict = max(1 , out_channels // config.groups_width)
_snake_case : Tuple = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Dict = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = hidden_state
_snake_case : List[Any] = self.layer(lowerCAmelCase)
_snake_case : List[str] = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : int = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer
_snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , )
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = self.layers(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
_snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]):
self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
_snake_case : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_snake_case : Optional[int] = hidden_states + (hidden_state,)
_snake_case : Dict = stage_module(lowerCAmelCase)
if output_hidden_states:
_snake_case : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = RegNetConfig
snake_case_ : List[Any] = """regnet"""
snake_case_ : Any = """pixel_values"""
snake_case_ : Optional[Any] = True
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
if isinstance(lowerCAmelCase , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""")
elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]:
"""simple docstring"""
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Optional[Any] = value
a__ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
a__ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Any = config
_snake_case : Any = RegNetEmbeddings(lowerCAmelCase)
_snake_case : Dict = RegNetEncoder(lowerCAmelCase)
_snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : str = self.embedder(lowerCAmelCase)
_snake_case : Optional[Any] = self.encoder(
lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : Tuple = encoder_outputs[0]
_snake_case : Optional[Any] = self.pooler(lowerCAmelCase)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Union[str, Any] = config.num_labels
_snake_case : List[Any] = RegNetModel(lowerCAmelCase)
# classification head
_snake_case : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
_snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : str = outputs.pooler_output if return_dict else outputs[1]
_snake_case : Optional[Any] = self.classifier(lowerCAmelCase)
_snake_case : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : List[Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : Optional[int] = """single_label_classification"""
else:
_snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : List[str] = MSELoss()
if self.num_labels == 1:
_snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
elif self.config.problem_type == "single_label_classification":
_snake_case : Dict = CrossEntropyLoss()
_snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
_snake_case : Optional[int] = BCEWithLogitsLoss()
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
if not return_dict:
_snake_case : Optional[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
| 317 | 1 |
from binascii import hexlify
from hashlib import shaaaa
from os import urandom
# RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for
# Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526
a__ = {
# 1536-bit
5: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 2048-bit
14: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AACAA68FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 3072-bit
15: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 4096-bit
16: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"""
+ """FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 6144-bit
17: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"""
+ """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"""
+ """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"""
+ """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"""
+ """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"""
+ """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"""
+ """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"""
+ """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"""
+ """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"""
+ """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"""
+ """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"""
+ """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"""
+ """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"""
+ """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"""
+ """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"""
+ """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"""
+ """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"""
+ """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"""
+ """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"""
+ """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"""
+ """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"""
+ """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"""
+ """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"""
+ """6DCC4024FFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
# 8192-bit
18: {
"""prime""": int(
"""FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"""
+ """29024E088A67CC74020BBEA63B139B22514A08798E3404DD"""
+ """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"""
+ """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"""
+ """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"""
+ """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"""
+ """83655D23DCA3AD961C62F356208552BB9ED529077096966D"""
+ """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"""
+ """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"""
+ """DE2BCBF6955817183995497CEA956AE515D2261898FA0510"""
+ """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"""
+ """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"""
+ """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"""
+ """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"""
+ """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"""
+ """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"""
+ """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"""
+ """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"""
+ """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"""
+ """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"""
+ """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"""
+ """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"""
+ """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"""
+ """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"""
+ """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"""
+ """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"""
+ """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"""
+ """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"""
+ """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"""
+ """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"""
+ """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"""
+ """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"""
+ """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"""
+ """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"""
+ """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"""
+ """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"""
+ """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"""
+ """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"""
+ """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"""
+ """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"""
+ """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"""
+ """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"""
+ """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""",
base=16,
),
"""generator""": 2,
},
}
class snake_case :
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : int = 14) -> None:
"""simple docstring"""
if group not in primes:
raise ValueError("""Unsupported Group""")
_snake_case : Optional[int] = primes[group]["""prime"""]
_snake_case : List[Any] = primes[group]["""generator"""]
_snake_case : str = int(hexlify(urandom(32)) , base=16)
def UpperCamelCase_ ( self : Union[str, Any]) -> str:
"""simple docstring"""
return hex(self.__private_key)[2:]
def UpperCamelCase_ ( self : Optional[int]) -> str:
"""simple docstring"""
_snake_case : Any = pow(self.generator , self.__private_key , self.prime)
return hex(lowerCAmelCase)[2:]
def UpperCamelCase_ ( self : int , lowerCAmelCase : int) -> bool:
"""simple docstring"""
return (
2 <= key <= self.prime - 2
and pow(lowerCAmelCase , (self.prime - 1) // 2 , self.prime) == 1
)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str) -> str:
"""simple docstring"""
_snake_case : List[str] = int(lowerCAmelCase , base=16)
if not self.is_valid_public_key(lowerCAmelCase):
raise ValueError("""Invalid public key""")
_snake_case : List[str] = pow(lowerCAmelCase , self.__private_key , self.prime)
return shaaaa(str(lowerCAmelCase).encode()).hexdigest()
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : int , lowerCAmelCase : int) -> bool:
"""simple docstring"""
return (
2 <= remote_public_key_str <= prime - 2
and pow(lowerCAmelCase , (prime - 1) // 2 , lowerCAmelCase) == 1
)
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 14) -> str:
"""simple docstring"""
_snake_case : Optional[Any] = int(lowerCAmelCase , base=16)
_snake_case : int = int(lowerCAmelCase , base=16)
_snake_case : Optional[int] = primes[group]["""prime"""]
if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase , lowerCAmelCase):
raise ValueError("""Invalid public key""")
_snake_case : Optional[int] = pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
return shaaaa(str(lowerCAmelCase).encode()).hexdigest()
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list:
_snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# use last results for better performance - dynamic programming
_snake_case : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_snake_case : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_snake_case : Optional[int] = j
return prefix_result
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return max(prefix_function(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 | 1 |
import math
import qiskit
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 ) -> qiskit.result.counts.Counts:
if (
isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
):
raise TypeError("""inputs must be integers.""" )
if (input_a < 0) or (input_a < 0) or (carry_in < 0):
raise ValueError("""inputs must be positive.""" )
if (
(math.floor(SCREAMING_SNAKE_CASE__ ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE__ ) != input_a)
or (math.floor(SCREAMING_SNAKE_CASE__ ) != carry_in)
):
raise ValueError("""inputs must be exact integers.""" )
if (input_a > 2) or (input_a > 2) or (carry_in > 2):
raise ValueError("""inputs must be less or equal to 2.""" )
# build registers
_snake_case : Dict = qiskit.QuantumRegister(4 , """qr""" )
_snake_case : Optional[int] = qiskit.ClassicalRegister(2 , """cr""" )
# list the entries
_snake_case : Union[str, Any] = [input_a, input_a, carry_in]
_snake_case : int = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
for i in range(0 , 3 ):
if entry[i] == 2:
quantum_circuit.h(SCREAMING_SNAKE_CASE__ ) # for hadamard entries
elif entry[i] == 1:
quantum_circuit.x(SCREAMING_SNAKE_CASE__ ) # for 1 entries
elif entry[i] == 0:
quantum_circuit.i(SCREAMING_SNAKE_CASE__ ) # for 0 entries
# build the circuit
quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate
quantum_circuit.cx(0 , 1 )
quantum_circuit.ccx(1 , 2 , 3 )
quantum_circuit.cx(1 , 2 )
quantum_circuit.cx(0 , 1 )
quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE__ ) # measure the last two qbits
_snake_case : List[str] = qiskit.Aer.get_backend("""aer_simulator""" )
_snake_case : Dict = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1_000 )
return job.result().get_counts(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
| 317 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 1 |
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from seqaseq_trainer import SeqaSeqTrainer
from seqaseq_training_args import SeqaSeqTrainingArguments
import transformers
from transformers import (
AutoConfig,
AutoModelForSeqaSeqLM,
AutoTokenizer,
HfArgumentParser,
MBartTokenizer,
MBartTokenizerFast,
set_seed,
)
from transformers.trainer_utils import EvaluationStrategy, is_main_process
from transformers.training_args import ParallelMode
from utils import (
SeqaSeqDataCollator,
SeqaSeqDataset,
assert_all_frozen,
build_compute_metrics_fn,
check_output_dir,
freeze_embeds,
freeze_params,
lmap,
save_json,
use_task_specific_params,
write_txt_file,
)
a__ = logging.getLogger(__name__)
@dataclass
class snake_case :
'''simple docstring'''
snake_case_ : str = field(
metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} )
snake_case_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
snake_case_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
snake_case_ : Optional[str] = field(
default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,)
snake_case_ : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether tp freeze the encoder."""} )
snake_case_ : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether to freeze the embeddings."""} )
@dataclass
class snake_case :
'''simple docstring'''
snake_case_ : str = field(
metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} )
snake_case_ : Optional[str] = field(
default="""summarization""" ,metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} ,)
snake_case_ : Optional[int] = field(
default=10_24 ,metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
snake_case_ : Optional[int] = field(
default=1_28 ,metadata={
"""help""": (
"""The maximum total sequence length for target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
snake_case_ : Optional[int] = field(
default=1_42 ,metadata={
"""help""": (
"""The maximum total sequence length for validation target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded. """
"""This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """
"""during ``evaluate`` and ``predict``."""
)
} ,)
snake_case_ : Optional[int] = field(
default=1_42 ,metadata={
"""help""": (
"""The maximum total sequence length for test target text after tokenization. Sequences longer """
"""than this will be truncated, sequences shorter will be padded."""
)
} ,)
snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# training examples. -1 means use all."""} )
snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# validation examples. -1 means use all."""} )
snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# test examples. -1 means use all."""} )
snake_case_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Source language id for translation."""} )
snake_case_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Target language id for translation."""} )
snake_case_ : Optional[int] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """# num_beams to use for evaluation."""} )
snake_case_ : bool = field(
default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} ,)
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any:
logger.info(F'''***** {split} metrics *****''' )
for key in sorted(metrics.keys() ):
logger.info(F''' {key} = {metrics[key]}''' )
save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}_results.json''' ) )
def lowercase ( ) -> List[str]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
_snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_snake_case , _snake_case , _snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_snake_case , _snake_case , _snake_case : Optional[Any] = parser.parse_args_into_dataclasses()
check_output_dir(SCREAMING_SNAKE_CASE__ )
# Setup logging
logging.basicConfig(
format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , )
logger.warning(
"""Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ )
# Set seed
set_seed(training_args.seed )
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_snake_case : str = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case : Optional[int] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""")
for p in extra_model_params:
if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
assert hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute'''
setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) )
_snake_case : Optional[int] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , )
_snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(
model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , )
# use task specific params
use_task_specific_params(SCREAMING_SNAKE_CASE__ , data_args.task )
# set num_beams for evaluation
if data_args.eval_beams is None:
_snake_case : Any = model.config.num_beams
# set decoder_start_token_id for MBart
if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ , (MBartTokenizer, MBartTokenizerFast) ):
assert (
data_args.tgt_lang is not None and data_args.src_lang is not None
), "mBart requires --tgt_lang and --src_lang"
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_snake_case : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang]
else:
_snake_case : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang )
if model_args.freeze_embeds:
freeze_embeds(SCREAMING_SNAKE_CASE__ )
if model_args.freeze_encoder:
freeze_params(model.get_encoder() )
assert_all_frozen(model.get_encoder() )
_snake_case : Dict = SeqaSeqDataset
# Get datasets
_snake_case : int = (
dataset_class(
SCREAMING_SNAKE_CASE__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_train
else None
)
_snake_case : Optional[int] = (
dataset_class(
SCREAMING_SNAKE_CASE__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO
else None
)
_snake_case : Optional[int] = (
dataset_class(
SCREAMING_SNAKE_CASE__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , )
if training_args.do_predict
else None
)
# Initialize our Trainer
_snake_case : List[Any] = (
build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None
)
_snake_case : List[Any] = SeqaSeqTrainer(
model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , data_args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , data_collator=SeqaSeqDataCollator(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , )
_snake_case : Optional[int] = {}
# Training
if training_args.do_train:
logger.info("""*** Train ***""" )
_snake_case : Optional[Any] = trainer.train(
model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None )
_snake_case : int = train_result.metrics
_snake_case : int = data_args.n_train
trainer.save_model() # this also saves the tokenizer
if trainer.is_world_process_zero():
handle_metrics("""train""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) )
# For convenience, we also re-save the tokenizer to the same directory,
# so that you can share your model easily on huggingface.co/models =)
tokenizer.save_pretrained(training_args.output_dir )
# Evaluation
if training_args.do_eval:
logger.info("""*** Evaluate ***""" )
_snake_case : List[str] = trainer.evaluate(metric_key_prefix="""val""" )
_snake_case : int = data_args.n_val
_snake_case : Union[str, Any] = round(metrics["""val_loss"""] , 4 )
if trainer.is_world_process_zero():
handle_metrics("""val""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
if training_args.do_predict:
logger.info("""*** Predict ***""" )
_snake_case : Optional[int] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ , metric_key_prefix="""test""" )
_snake_case : str = test_output.metrics
_snake_case : Union[str, Any] = data_args.n_test
if trainer.is_world_process_zero():
_snake_case : int = round(metrics["""test_loss"""] , 4 )
handle_metrics("""test""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir )
all_metrics.update(SCREAMING_SNAKE_CASE__ )
if training_args.predict_with_generate:
_snake_case : int = tokenizer.batch_decode(
test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = lmap(str.strip , SCREAMING_SNAKE_CASE__ )
write_txt_file(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) )
if trainer.is_world_process_zero():
save_json(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """all_results.json""" ) )
return all_metrics
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> Any:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 317 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None:
"""simple docstring"""
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
a__ = {
"""configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LongT5EncoderModel""",
"""LongT5ForConditionalGeneration""",
"""LongT5Model""",
"""LongT5PreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxLongT5ForConditionalGeneration""",
"""FlaxLongT5Model""",
"""FlaxLongT5PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_longta import (
LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST,
LongTaEncoderModel,
LongTaForConditionalGeneration,
LongTaModel,
LongTaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_longta import (
FlaxLongTaForConditionalGeneration,
FlaxLongTaModel,
FlaxLongTaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import unittest
from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
from .test_pipelines_common import ANY
if is_vision_available():
from PIL import Image
else:
class snake_case :
'''simple docstring'''
@staticmethod
def UpperCamelCase_ ( *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
pass
@is_pipeline_test
@require_vision
@require_torch
class snake_case ( unittest.TestCase ):
'''simple docstring'''
snake_case_ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : Dict = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""")
_snake_case : Optional[Any] = [
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
]
return object_detector, examples
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : Any = object_detector(examples[0] , threshold=0.0)
_snake_case : Optional[int] = len(lowerCAmelCase)
self.assertGreater(lowerCAmelCase , 0)
self.assertEqual(
lowerCAmelCase , [
{
"""score""": ANY(lowerCAmelCase),
"""label""": ANY(lowerCAmelCase),
"""box""": {"""xmin""": ANY(lowerCAmelCase), """ymin""": ANY(lowerCAmelCase), """xmax""": ANY(lowerCAmelCase), """ymax""": ANY(lowerCAmelCase)},
}
for i in range(lowerCAmelCase)
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""")
def UpperCamelCase_ ( self : Tuple) -> Tuple:
"""simple docstring"""
pass
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
_snake_case : List[Any] = pipeline(
"""zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""")
_snake_case : Optional[int] = object_detector(
"""./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
{"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
] , )
_snake_case : List[str] = object_detector(
[
{
"""image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
}
] , threshold=0.64 , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
[
{"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}},
{"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}},
{"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
{"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}},
{"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}},
]
] , )
@require_torch
@slow
def UpperCamelCase_ ( self : int) -> Dict:
"""simple docstring"""
_snake_case : Tuple = pipeline("""zero-shot-object-detection""")
_snake_case : Optional[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
{"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
] , )
_snake_case : Optional[Any] = object_detector(
[
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
{
"""image""": """http://images.cocodataset.org/val2017/000000039769.jpg""",
"""candidate_labels""": ["""cat""", """remote""", """couch"""],
},
] , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
[
{"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
[
{"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
{"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}},
{"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}},
],
] , )
@require_tf
@unittest.skip("""Zero Shot Object Detection not implemented in TF""")
def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
pass
@require_torch
@slow
def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]:
"""simple docstring"""
_snake_case : Optional[Any] = 0.2
_snake_case : Union[str, Any] = pipeline("""zero-shot-object-detection""")
_snake_case : Dict = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCAmelCase , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
{"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
{"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}},
] , )
@require_torch
@slow
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : str = 2
_snake_case : str = pipeline("""zero-shot-object-detection""")
_snake_case : List[Any] = object_detector(
"""http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCAmelCase , )
self.assertEqual(
nested_simplify(lowerCAmelCase , decimals=4) , [
{"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}},
{"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}},
] , )
| 317 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 1 |
import copy
import inspect
import unittest
from transformers import AutoBackbone
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import require_timm, require_torch, torch_device
from transformers.utils.import_utils import is_torch_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor
if is_torch_available():
import torch
from transformers import TimmBackbone, TimmBackboneConfig
from ...test_pipeline_mixin import PipelineTesterMixin
class snake_case :
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]="resnet50" , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Dict=32 , lowerCAmelCase : str=3 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=True , ) -> str:
"""simple docstring"""
_snake_case : Tuple = parent
_snake_case : Optional[int] = out_indices if out_indices is not None else [4]
_snake_case : Union[str, Any] = stage_names
_snake_case : str = out_features
_snake_case : Optional[Any] = backbone
_snake_case : Optional[int] = batch_size
_snake_case : str = image_size
_snake_case : Any = num_channels
_snake_case : Optional[Any] = use_pretrained_backbone
_snake_case : Tuple = is_training
def UpperCamelCase_ ( self : str) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size])
_snake_case : List[Any] = self.get_config()
return config, pixel_values
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
return TimmBackboneConfig(
image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
_snake_case : Optional[Any] = TimmBackbone(config=lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
with torch.no_grad():
_snake_case : Optional[Any] = model(lowerCAmelCase)
self.parent.assertEqual(
result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , )
def UpperCamelCase_ ( self : str) -> Dict:
"""simple docstring"""
_snake_case : List[str] = self.prepare_config_and_inputs()
_snake_case , _snake_case : Optional[Any] = config_and_inputs
_snake_case : Optional[int] = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
@require_timm
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Optional[Any] = (TimmBackbone,) if is_torch_available() else ()
snake_case_ : Optional[int] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {}
snake_case_ : str = False
snake_case_ : Dict = False
snake_case_ : List[Any] = False
snake_case_ : int = False
def UpperCamelCase_ ( self : List[str]) -> Any:
"""simple docstring"""
_snake_case : Optional[int] = TimmBackboneModelTester(self)
_snake_case : Dict = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any]) -> int:
"""simple docstring"""
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def UpperCamelCase_ ( self : Any) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = """resnet18"""
_snake_case : int = """microsoft/resnet-18"""
_snake_case : List[Any] = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase)
_snake_case : Tuple = AutoBackbone.from_pretrained(lowerCAmelCase)
self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features))
self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names))
self.assertEqual(timm_model.channels , transformers_model.channels)
# Out indices are set to the last layer by default. For timm models, we don't know
# the number of layers in advance, so we set it to (-1,), whereas for transformers
# models, we set it to [len(stage_names) - 1] (kept for backward compatibility).
self.assertEqual(timm_model.out_indices , (-1,))
self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1])
_snake_case : List[str] = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase , out_indices=[1, 2, 3])
_snake_case : List[Any] = AutoBackbone.from_pretrained(lowerCAmelCase , out_indices=[1, 2, 3])
self.assertEqual(timm_model.out_indices , transformers_model.out_indices)
self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features))
self.assertEqual(timm_model.channels , transformers_model.channels)
@unittest.skip("""TimmBackbone doesn't support feed forward chunking""")
def UpperCamelCase_ ( self : Optional[int]) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""")
def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone initialization is managed on the timm side""")
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""")
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone models doesn't have inputs_embeds""")
def UpperCamelCase_ ( self : List[str]) -> Dict:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""")
def UpperCamelCase_ ( self : List[Any]) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def UpperCamelCase_ ( self : List[str]) -> int:
"""simple docstring"""
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""")
def UpperCamelCase_ ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
pass
@unittest.skip("""model weights aren't tied in TimmBackbone.""")
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
pass
@unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""")
def UpperCamelCase_ ( self : int) -> int:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""")
def UpperCamelCase_ ( self : Any) -> List[Any]:
"""simple docstring"""
pass
@unittest.skip("""TimmBackbone doesn't support output_attentions.""")
def UpperCamelCase_ ( self : Optional[Any]) -> Tuple:
"""simple docstring"""
pass
@unittest.skip("""Safetensors is not supported by timm.""")
def UpperCamelCase_ ( self : Optional[Any]) -> Dict:
"""simple docstring"""
pass
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""")
def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : int) -> int:
"""simple docstring"""
_snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : Optional[int] = model_class(lowerCAmelCase)
_snake_case : List[Any] = inspect.signature(model.forward)
# signature.parameters is an OrderedDict => so arg_names order is deterministic
_snake_case : List[str] = [*signature.parameters.keys()]
_snake_case : Dict = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] , lowerCAmelCase)
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
_snake_case : str = True
_snake_case : Union[str, Any] = self.has_attentions
# no need to test all models as different heads yield the same functionality
_snake_case : Optional[int] = self.all_model_classes[0]
_snake_case : Optional[int] = model_class(lowerCAmelCase)
model.to(lowerCAmelCase)
_snake_case : int = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)
_snake_case : int = model(**lowerCAmelCase)
_snake_case : Optional[Any] = outputs[0][-1]
# Encoder-/Decoder-only models
_snake_case : List[str] = outputs.hidden_states[0]
hidden_states.retain_grad()
if self.has_attentions:
_snake_case : Tuple = outputs.attentions[0]
attentions.retain_grad()
output.flatten()[0].backward(retain_graph=lowerCAmelCase)
self.assertIsNotNone(hidden_states.grad)
if self.has_attentions:
self.assertIsNotNone(attentions.grad)
def UpperCamelCase_ ( self : str) -> List[Any]:
"""simple docstring"""
_snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_snake_case : str = model_class(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
_snake_case : Tuple = model(**lowerCAmelCase)
self.assertEqual(len(result.feature_maps) , len(config.out_indices))
self.assertEqual(len(model.channels) , len(config.out_indices))
# Check output of last stage is taken if out_features=None, out_indices=None
_snake_case : Dict = copy.deepcopy(lowerCAmelCase)
_snake_case : Optional[int] = None
_snake_case : Union[str, Any] = model_class(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
_snake_case : Any = model(**lowerCAmelCase)
self.assertEqual(len(result.feature_maps) , 1)
self.assertEqual(len(model.channels) , 1)
# Check backbone can be initialized with fresh weights
_snake_case : Optional[Any] = copy.deepcopy(lowerCAmelCase)
_snake_case : Any = False
_snake_case : List[Any] = model_class(lowerCAmelCase)
model.to(lowerCAmelCase)
model.eval()
_snake_case : str = model(**lowerCAmelCase)
| 317 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 1 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
a__ = 0
a__ = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
a__ = tuple[int, int]
class snake_case :
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Node | None , ) -> None:
"""simple docstring"""
_snake_case : Any = pos_x
_snake_case : Tuple = pos_y
_snake_case : Any = (pos_y, pos_x)
_snake_case : Any = goal_x
_snake_case : List[str] = goal_y
_snake_case : Tuple = g_cost
_snake_case : Any = parent
_snake_case : int = self.calculate_heuristic()
_snake_case : int = self.g_cost + self.h_cost
def UpperCamelCase_ ( self : Optional[Any]) -> float:
"""simple docstring"""
_snake_case : Dict = self.pos_x - self.goal_x
_snake_case : Optional[Any] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(lowerCAmelCase) + abs(lowerCAmelCase)
else:
return sqrt(dy**2 + dx**2)
def __lt__( self : List[str] , lowerCAmelCase : Node) -> bool:
"""simple docstring"""
return self.f_cost < other.f_cost
class snake_case :
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : TPosition , lowerCAmelCase : TPosition) -> Dict:
"""simple docstring"""
_snake_case : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase)
_snake_case : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowerCAmelCase)
_snake_case : List[Any] = [self.start]
_snake_case : list[Node] = []
_snake_case : str = False
def UpperCamelCase_ ( self : Dict) -> list[TPosition]:
"""simple docstring"""
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
_snake_case : Optional[Any] = self.open_nodes.pop(0)
if current_node.pos == self.target.pos:
return self.retrace_path(lowerCAmelCase)
self.closed_nodes.append(lowerCAmelCase)
_snake_case : Tuple = self.get_successors(lowerCAmelCase)
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(lowerCAmelCase)
else:
# retrieve the best current path
_snake_case : Dict = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase))
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(lowerCAmelCase)
else:
self.open_nodes.append(lowerCAmelCase)
return [self.start.pos]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Node) -> list[Node]:
"""simple docstring"""
_snake_case : Any = []
for action in delta:
_snake_case : Dict = parent.pos_x + action[1]
_snake_case : str = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(lowerCAmelCase) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
lowerCAmelCase , lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase , ))
return successors
def UpperCamelCase_ ( self : int , lowerCAmelCase : Node | None) -> list[TPosition]:
"""simple docstring"""
_snake_case : List[str] = node
_snake_case : List[Any] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x))
_snake_case : str = current_node.parent
path.reverse()
return path
class snake_case :
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : TPosition , lowerCAmelCase : TPosition) -> None:
"""simple docstring"""
_snake_case : Union[str, Any] = AStar(lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = AStar(lowerCAmelCase , lowerCAmelCase)
_snake_case : Optional[int] = False
def UpperCamelCase_ ( self : List[str]) -> list[TPosition]:
"""simple docstring"""
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
_snake_case : str = self.fwd_astar.open_nodes.pop(0)
_snake_case : Optional[Any] = self.bwd_astar.open_nodes.pop(0)
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
lowerCAmelCase , lowerCAmelCase)
self.fwd_astar.closed_nodes.append(lowerCAmelCase)
self.bwd_astar.closed_nodes.append(lowerCAmelCase)
_snake_case : int = current_bwd_node
_snake_case : Dict = current_fwd_node
_snake_case : Union[str, Any] = {
self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase),
self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(lowerCAmelCase)
else:
# retrieve the best current path
_snake_case : Optional[Any] = astar.open_nodes.pop(
astar.open_nodes.index(lowerCAmelCase))
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(lowerCAmelCase)
else:
astar.open_nodes.append(lowerCAmelCase)
return [self.fwd_astar.start.pos]
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Node , lowerCAmelCase : Node) -> list[TPosition]:
"""simple docstring"""
_snake_case : Tuple = self.fwd_astar.retrace_path(lowerCAmelCase)
_snake_case : Optional[int] = self.bwd_astar.retrace_path(lowerCAmelCase)
bwd_path.pop()
bwd_path.reverse()
_snake_case : Tuple = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
a__ = (0, 0)
a__ = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
a__ = time.time()
a__ = AStar(init, goal)
a__ = a_star.search()
a__ = time.time() - start_time
print(F'''AStar execution time = {end_time:f} seconds''')
a__ = time.time()
a__ = BidirectionalAStar(init, goal)
a__ = time.time() - bd_start_time
print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 317 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str:
if not (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )):
raise ValueError("""longest_common_substring() takes two strings for inputs""" )
_snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = len(SCREAMING_SNAKE_CASE__ )
_snake_case : List[str] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )]
_snake_case : List[str] = 0
_snake_case : str = 0
for i in range(1 , texta_length + 1 ):
for j in range(1 , texta_length + 1 ):
if texta[i - 1] == texta[j - 1]:
_snake_case : int = 1 + dp[i - 1][j - 1]
if dp[i][j] > ans_length:
_snake_case : int = i
_snake_case : Dict = dp[i][j]
return texta[ans_index - ans_length : ans_index]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 1 |
import json
from typing import List, Optional, Tuple
from tokenizers import pre_tokenizers, processors
from ...tokenization_utils_base import AddedToken, BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_mvp import MvpTokenizer
a__ = logging.get_logger(__name__)
a__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""}
# See all MVP models at https://huggingface.co/models?filter=mvp
a__ = {
"""vocab_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""",
},
"""added_tokens.json""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""",
},
"""merges_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""",
},
"""tokenizer_file""": {
"""RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""",
},
}
a__ = {
"""RUCAIBox/mvp""": 10_24,
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = VOCAB_FILES_NAMES
snake_case_ : Any = PRETRAINED_VOCAB_FILES_MAP
snake_case_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
snake_case_ : List[str] = ["""input_ids""", """attention_mask"""]
snake_case_ : int = MvpTokenizer
def __init__( self : Optional[int] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Dict="replace" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : Any="<mask>" , lowerCAmelCase : int=False , lowerCAmelCase : Dict=True , **lowerCAmelCase : List[Any] , ) -> Tuple:
"""simple docstring"""
super().__init__(
lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase) != add_prefix_space:
_snake_case : List[Any] = getattr(lowerCAmelCase , pre_tok_state.pop("""type"""))
_snake_case : Dict = add_prefix_space
_snake_case : int = pre_tok_class(**lowerCAmelCase)
_snake_case : Tuple = add_prefix_space
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
_snake_case : Tuple = """post_processor"""
_snake_case : Any = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
if tokenizer_component_instance:
_snake_case : List[Any] = json.loads(tokenizer_component_instance.__getstate__())
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
if "sep" in state:
_snake_case : Any = tuple(state["""sep"""])
if "cls" in state:
_snake_case : int = tuple(state["""cls"""])
_snake_case : Union[str, Any] = False
if state.get("""add_prefix_space""" , lowerCAmelCase) != add_prefix_space:
_snake_case : Optional[int] = add_prefix_space
_snake_case : List[Any] = True
if state.get("""trim_offsets""" , lowerCAmelCase) != trim_offsets:
_snake_case : int = trim_offsets
_snake_case : Union[str, Any] = True
if changes_to_apply:
_snake_case : Dict = getattr(lowerCAmelCase , state.pop("""type"""))
_snake_case : Union[str, Any] = component_class(**lowerCAmelCase)
setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase)
@property
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
if self._mask_token is None:
if self.verbose:
logger.error("""Using mask_token, but it is not set yet.""")
return None
return str(self._mask_token)
@mask_token.setter
def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Any = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value
_snake_case : Any = value
def UpperCamelCase_ ( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int]) -> BatchEncoding:
"""simple docstring"""
_snake_case : List[str] = kwargs.get("""is_split_into_words""" , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> BatchEncoding:
"""simple docstring"""
_snake_case : Optional[int] = kwargs.get("""is_split_into_words""" , lowerCAmelCase)
if is_split_into_words and not self.add_prefix_space:
raise ValueError(
F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True '''
"""to use it with pretokenized inputs.""")
return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase)
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]:
"""simple docstring"""
_snake_case : int = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase)
return tuple(lowerCAmelCase)
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : str=None) -> int:
"""simple docstring"""
_snake_case : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return output
return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id]
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]:
"""simple docstring"""
_snake_case : str = [self.sep_token_id]
_snake_case : Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
| 317 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 1 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = """transfo-xl"""
snake_case_ : str = ["""mems"""]
snake_case_ : Union[str, Any] = {
"""n_token""": """vocab_size""",
"""hidden_size""": """d_model""",
"""num_attention_heads""": """n_head""",
"""num_hidden_layers""": """n_layer""",
}
def __init__( self : Tuple , lowerCAmelCase : List[str]=26_7735 , lowerCAmelCase : Optional[Any]=[2_0000, 4_0000, 20_0000] , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : List[str]=1024 , lowerCAmelCase : str=16 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Any=4096 , lowerCAmelCase : int=4 , lowerCAmelCase : int=False , lowerCAmelCase : List[Any]=18 , lowerCAmelCase : Tuple=1600 , lowerCAmelCase : Optional[int]=1000 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : str=0 , lowerCAmelCase : Dict=-1 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict="normal" , lowerCAmelCase : Tuple=0.01 , lowerCAmelCase : Optional[int]=0.01 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-5 , lowerCAmelCase : Optional[int]=0 , **lowerCAmelCase : Tuple , ) -> Any:
"""simple docstring"""
_snake_case : Any = vocab_size
_snake_case : Any = []
self.cutoffs.extend(lowerCAmelCase)
if proj_share_all_but_first:
_snake_case : Tuple = [False] + [True] * len(self.cutoffs)
else:
_snake_case : str = [False] + [False] * len(self.cutoffs)
_snake_case : Any = d_model
_snake_case : Any = d_embed
_snake_case : str = d_head
_snake_case : Union[str, Any] = d_inner
_snake_case : List[str] = div_val
_snake_case : str = pre_lnorm
_snake_case : Tuple = n_layer
_snake_case : List[Any] = n_head
_snake_case : Union[str, Any] = mem_len
_snake_case : int = same_length
_snake_case : Union[str, Any] = attn_type
_snake_case : Tuple = clamp_len
_snake_case : str = sample_softmax
_snake_case : int = adaptive
_snake_case : Dict = dropout
_snake_case : List[Any] = dropatt
_snake_case : Any = untie_r
_snake_case : Any = init
_snake_case : Optional[int] = init_range
_snake_case : Dict = proj_init_std
_snake_case : List[Any] = init_std
_snake_case : Dict = layer_norm_epsilon
super().__init__(eos_token_id=lowerCAmelCase , **lowerCAmelCase)
@property
def UpperCamelCase_ ( self : List[Any]) -> List[Any]:
"""simple docstring"""
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
return -1
@max_position_embeddings.setter
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
| 317 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 1 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
a__ = logging.get_logger(__name__)
a__ = OrderedDict(
[
("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""),
("""beit""", """BeitFeatureExtractor"""),
("""chinese_clip""", """ChineseCLIPFeatureExtractor"""),
("""clap""", """ClapFeatureExtractor"""),
("""clip""", """CLIPFeatureExtractor"""),
("""clipseg""", """ViTFeatureExtractor"""),
("""conditional_detr""", """ConditionalDetrFeatureExtractor"""),
("""convnext""", """ConvNextFeatureExtractor"""),
("""cvt""", """ConvNextFeatureExtractor"""),
("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""),
("""data2vec-vision""", """BeitFeatureExtractor"""),
("""deformable_detr""", """DeformableDetrFeatureExtractor"""),
("""deit""", """DeiTFeatureExtractor"""),
("""detr""", """DetrFeatureExtractor"""),
("""dinat""", """ViTFeatureExtractor"""),
("""donut-swin""", """DonutFeatureExtractor"""),
("""dpt""", """DPTFeatureExtractor"""),
("""encodec""", """EncodecFeatureExtractor"""),
("""flava""", """FlavaFeatureExtractor"""),
("""glpn""", """GLPNFeatureExtractor"""),
("""groupvit""", """CLIPFeatureExtractor"""),
("""hubert""", """Wav2Vec2FeatureExtractor"""),
("""imagegpt""", """ImageGPTFeatureExtractor"""),
("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""),
("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""),
("""levit""", """LevitFeatureExtractor"""),
("""maskformer""", """MaskFormerFeatureExtractor"""),
("""mctct""", """MCTCTFeatureExtractor"""),
("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""),
("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""),
("""mobilevit""", """MobileViTFeatureExtractor"""),
("""nat""", """ViTFeatureExtractor"""),
("""owlvit""", """OwlViTFeatureExtractor"""),
("""perceiver""", """PerceiverFeatureExtractor"""),
("""poolformer""", """PoolFormerFeatureExtractor"""),
("""regnet""", """ConvNextFeatureExtractor"""),
("""resnet""", """ConvNextFeatureExtractor"""),
("""segformer""", """SegformerFeatureExtractor"""),
("""sew""", """Wav2Vec2FeatureExtractor"""),
("""sew-d""", """Wav2Vec2FeatureExtractor"""),
("""speech_to_text""", """Speech2TextFeatureExtractor"""),
("""speecht5""", """SpeechT5FeatureExtractor"""),
("""swiftformer""", """ViTFeatureExtractor"""),
("""swin""", """ViTFeatureExtractor"""),
("""swinv2""", """ViTFeatureExtractor"""),
("""table-transformer""", """DetrFeatureExtractor"""),
("""timesformer""", """VideoMAEFeatureExtractor"""),
("""tvlt""", """TvltFeatureExtractor"""),
("""unispeech""", """Wav2Vec2FeatureExtractor"""),
("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""),
("""van""", """ConvNextFeatureExtractor"""),
("""videomae""", """VideoMAEFeatureExtractor"""),
("""vilt""", """ViltFeatureExtractor"""),
("""vit""", """ViTFeatureExtractor"""),
("""vit_mae""", """ViTFeatureExtractor"""),
("""vit_msn""", """ViTFeatureExtractor"""),
("""wav2vec2""", """Wav2Vec2FeatureExtractor"""),
("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""),
("""wavlm""", """Wav2Vec2FeatureExtractor"""),
("""whisper""", """WhisperFeatureExtractor"""),
("""xclip""", """CLIPFeatureExtractor"""),
("""yolos""", """YolosFeatureExtractor"""),
]
)
a__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
_snake_case : Union[str, Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE__ )
_snake_case : str = importlib.import_module(F'''.{module_name}''' , """transformers.models""" )
try:
return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(SCREAMING_SNAKE_CASE__ , """__name__""" , SCREAMING_SNAKE_CASE__ ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
_snake_case : Optional[int] = importlib.import_module("""transformers""" )
if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
return None
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[Any]:
_snake_case : List[str] = get_file_from_repo(
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , )
if resolved_config_file is None:
logger.info(
"""Could not locate the feature extractor configuration file, will try to use the model config instead.""" )
return {}
with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as reader:
return json.load(SCREAMING_SNAKE_CASE__ )
class snake_case :
'''simple docstring'''
def __init__( self : Any) -> List[Any]:
"""simple docstring"""
raise EnvironmentError(
"""AutoFeatureExtractor is designed to be instantiated """
"""using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""")
@classmethod
@replace_list_option_in_docstrings(lowerCAmelCase)
def UpperCamelCase_ ( cls : Dict , lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[int] = kwargs.pop("""config""" , lowerCAmelCase)
_snake_case : Union[str, Any] = kwargs.pop("""trust_remote_code""" , lowerCAmelCase)
_snake_case : List[str] = True
_snake_case , _snake_case : Union[str, Any] = FeatureExtractionMixin.get_feature_extractor_dict(lowerCAmelCase , **lowerCAmelCase)
_snake_case : Union[str, Any] = config_dict.get("""feature_extractor_type""" , lowerCAmelCase)
_snake_case : str = None
if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {}):
_snake_case : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""]
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase)
# It could be in `config.feature_extractor_type``
_snake_case : Optional[Any] = getattr(lowerCAmelCase , """feature_extractor_type""" , lowerCAmelCase)
if hasattr(lowerCAmelCase , """auto_map""") and "AutoFeatureExtractor" in config.auto_map:
_snake_case : Tuple = config.auto_map["""AutoFeatureExtractor"""]
if feature_extractor_class is not None:
_snake_case : Any = feature_extractor_class_from_name(lowerCAmelCase)
_snake_case : Any = feature_extractor_auto_map is not None
_snake_case : Dict = feature_extractor_class is not None or type(lowerCAmelCase) in FEATURE_EXTRACTOR_MAPPING
_snake_case : Union[str, Any] = resolve_trust_remote_code(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
if has_remote_code and trust_remote_code:
_snake_case : str = get_class_from_dynamic_module(
lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase)
_snake_case : Optional[int] = kwargs.pop("""code_revision""" , lowerCAmelCase)
if os.path.isdir(lowerCAmelCase):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase)
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase)
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(lowerCAmelCase) in FEATURE_EXTRACTOR_MAPPING:
_snake_case : Tuple = FEATURE_EXTRACTOR_MAPPING[type(lowerCAmelCase)]
return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase)
raise ValueError(
F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '''
F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '''
F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}''')
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
FEATURE_EXTRACTOR_MAPPING.register(lowerCAmelCase , lowerCAmelCase)
| 317 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
a__ = {
"""configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""],
"""feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""],
"""processing_wav2vec2""": ["""Wav2Vec2Processor"""],
"""tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""Wav2Vec2ForAudioFrameClassification""",
"""Wav2Vec2ForCTC""",
"""Wav2Vec2ForMaskedLM""",
"""Wav2Vec2ForPreTraining""",
"""Wav2Vec2ForSequenceClassification""",
"""Wav2Vec2ForXVector""",
"""Wav2Vec2Model""",
"""Wav2Vec2PreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFWav2Vec2ForCTC""",
"""TFWav2Vec2Model""",
"""TFWav2Vec2PreTrainedModel""",
"""TFWav2Vec2ForSequenceClassification""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""FlaxWav2Vec2ForCTC""",
"""FlaxWav2Vec2ForPreTraining""",
"""FlaxWav2Vec2Model""",
"""FlaxWav2Vec2PreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig
from .feature_extraction_wavaveca import WavaVecaFeatureExtractor
from .processing_wavaveca import WavaVecaProcessor
from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavaveca import (
WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
WavaVecaForAudioFrameClassification,
WavaVecaForCTC,
WavaVecaForMaskedLM,
WavaVecaForPreTraining,
WavaVecaForSequenceClassification,
WavaVecaForXVector,
WavaVecaModel,
WavaVecaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST,
TFWavaVecaForCTC,
TFWavaVecaForSequenceClassification,
TFWavaVecaModel,
TFWavaVecaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_wavaveca import (
FlaxWavaVecaForCTC,
FlaxWavaVecaForPreTraining,
FlaxWavaVecaModel,
FlaxWavaVecaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 | 1 |
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = [
("""bert.bert""", """visual_bert"""),
("""bert.cls""", """cls"""),
("""bert.classifier""", """cls"""),
("""token_type_embeddings_visual""", """visual_token_type_embeddings"""),
("""position_embeddings_visual""", """visual_position_embeddings"""),
("""projection""", """visual_projection"""),
]
a__ = [
"""nlvr2_coco_pre_trained.th""",
"""nlvr2_fine_tuned.th""",
"""nlvr2_pre_trained.th""",
"""vcr_coco_pre_train.th""",
"""vcr_fine_tune.th""",
"""vcr_pre_train.th""",
"""vqa_coco_pre_trained.th""",
"""vqa_fine_tuned.th""",
"""vqa_pre_trained.th""",
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]:
_snake_case : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
return sd
def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=rename_keys_prefix ) -> List[Any]:
_snake_case : Tuple = OrderedDict()
_snake_case : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
_snake_case : str = key
for name_pair in rename_keys_prefix:
_snake_case : str = new_key.replace(name_pair[0] , name_pair[1] )
_snake_case : List[Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
_snake_case : List[Any] = new_d["""cls.predictions.bias"""]
return new_d
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict:
assert (
checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS
), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.'''
# Get Config
if "pre" in checkpoint_path:
_snake_case : Dict = """pretraining"""
if "vcr" in checkpoint_path:
_snake_case : List[str] = {"""visual_embedding_dim""": 512}
elif "vqa_advanced" in checkpoint_path:
_snake_case : Optional[int] = {"""visual_embedding_dim""": 2_048}
elif "vqa" in checkpoint_path:
_snake_case : Dict = {"""visual_embedding_dim""": 2_048}
elif "nlvr" in checkpoint_path:
_snake_case : Tuple = {"""visual_embedding_dim""": 1_024}
else:
raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' )
else:
if "vcr" in checkpoint_path:
_snake_case : Optional[int] = {"""visual_embedding_dim""": 512}
_snake_case : Union[str, Any] = """multichoice"""
elif "vqa_advanced" in checkpoint_path:
_snake_case : Tuple = {"""visual_embedding_dim""": 2_048}
_snake_case : List[Any] = """vqa_advanced"""
elif "vqa" in checkpoint_path:
_snake_case : str = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129}
_snake_case : Union[str, Any] = """vqa"""
elif "nlvr" in checkpoint_path:
_snake_case : Union[str, Any] = {
"""visual_embedding_dim""": 1_024,
"""num_labels""": 2,
}
_snake_case : Tuple = """nlvr"""
_snake_case : Any = VisualBertConfig(**SCREAMING_SNAKE_CASE__ )
# Load State Dict
_snake_case : str = load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : str = get_new_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if model_type == "pretraining":
_snake_case : Any = VisualBertForPreTraining(SCREAMING_SNAKE_CASE__ )
elif model_type == "vqa":
_snake_case : str = VisualBertForQuestionAnswering(SCREAMING_SNAKE_CASE__ )
elif model_type == "nlvr":
_snake_case : Union[str, Any] = VisualBertForVisualReasoning(SCREAMING_SNAKE_CASE__ )
elif model_type == "multichoice":
_snake_case : List[str] = VisualBertForMultipleChoice(SCREAMING_SNAKE_CASE__ )
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
# Save Checkpoints
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""")
parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""")
a__ = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 317 |
import multiprocessing
import os
from typing import BinaryIO, Optional, Union
import fsspec
from .. import Dataset, Features, NamedSplit, config
from ..formatting import query_table
from ..packaged_modules.json.json import Json
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int:
"""simple docstring"""
super().__init__(
lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , )
_snake_case : Tuple = field
_snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths}
_snake_case : int = Json(
cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , )
def UpperCamelCase_ ( self : Any) -> Tuple:
"""simple docstring"""
if self.streaming:
_snake_case : int = self.builder.as_streaming_dataset(split=self.split)
# Build regular (map-style) dataset
else:
_snake_case : Dict = None
_snake_case : Optional[int] = None
_snake_case : Optional[Any] = None
_snake_case : str = None
self.builder.download_and_prepare(
download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , )
_snake_case : List[str] = self.builder.as_dataset(
split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory)
return dataset
class snake_case :
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]:
"""simple docstring"""
if num_proc is not None and num_proc <= 0:
raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''')
_snake_case : Optional[Any] = dataset
_snake_case : str = path_or_buf
_snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE
_snake_case : Tuple = num_proc
_snake_case : Dict = """utf-8"""
_snake_case : str = to_json_kwargs
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
_snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase)
_snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""")
_snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False)
_snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True)
_snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase)
if compression not in [None, "infer", "gzip", "bz2", "xz"]:
raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''')
if isinstance(self.path_or_buf , (str, bytes, os.PathLike)):
with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer:
_snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
else:
if compression:
raise NotImplementedError(
F'''The compression parameter is not supported when writing to a buffer, but compression={compression}'''
""" was passed. Please provide a local path instead.""")
_snake_case : Tuple = self._write(
file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs)
return written
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
_snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args
_snake_case : int = query_table(
table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , )
_snake_case : Optional[Any] = batch.to_pandas().to_json(
path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase)
if not json_str.endswith("""\n"""):
json_str += "\n"
return json_str.encode(self.encoding)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int:
"""simple docstring"""
_snake_case : Optional[int] = 0
if self.num_proc is None or self.num_proc == 1:
for offset in logging.tqdm(
range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
_snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs))
written += file_obj.write(lowerCAmelCase)
else:
_snake_case , _snake_case : str = len(self.dataset), self.batch_size
with multiprocessing.Pool(self.num_proc) as pool:
for json_str in logging.tqdm(
pool.imap(
self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ):
written += file_obj.write(lowerCAmelCase)
return written
| 317 | 1 |
import requests
a__ = """""" # <-- Put your OpenWeatherMap appid here!
a__ = """https://api.openweathermap.org/data/2.5/"""
def lowercase ( SCREAMING_SNAKE_CASE__ : str = "Chicago" , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict:
return requests.get(URL_BASE + """weather""" , params=locals() ).json()
def lowercase ( SCREAMING_SNAKE_CASE__ : str = "Kolkata, India" , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict:
return requests.get(URL_BASE + """forecast""" , params=locals() ).json()
def lowercase ( SCREAMING_SNAKE_CASE__ : float = 5_5.6_8 , SCREAMING_SNAKE_CASE__ : float = 1_2.5_7 , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict:
return requests.get(URL_BASE + """onecall""" , params=locals() ).json()
if __name__ == "__main__":
from pprint import pprint
while True:
a__ = input("""Enter a location:""").strip()
if location:
pprint(current_weather(location))
else:
break
| 317 |
import torch
from torch import nn
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str:
"""simple docstring"""
super().__init__()
_snake_case : List[str] = n_token
_snake_case : Any = d_embed
_snake_case : List[str] = d_proj
_snake_case : Optional[int] = cutoffs + [n_token]
_snake_case : Dict = [0] + self.cutoffs
_snake_case : Optional[Any] = div_val
_snake_case : Tuple = self.cutoffs[0]
_snake_case : List[str] = len(self.cutoffs) - 1
_snake_case : str = self.shortlist_size + self.n_clusters
if self.n_clusters > 0:
_snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed))
_snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters))
_snake_case : Tuple = nn.ModuleList()
_snake_case : int = nn.ParameterList()
if div_val == 1:
for i in range(len(self.cutoffs)):
if d_proj != d_embed:
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
else:
self.out_projs.append(lowerCAmelCase)
self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase))
else:
for i in range(len(self.cutoffs)):
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = d_embed // (div_val**i)
self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase)))
self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx))
_snake_case : Tuple = keep_order
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
if proj is None:
_snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
else:
# if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1:
_snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous())
_snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase)
# else:
# logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t()))
# if bias is not None:
# logit = logit + bias
return logit
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple:
"""simple docstring"""
if labels is not None:
# Shift so that tokens < n predict n
_snake_case : List[str] = hidden[..., :-1, :].contiguous()
_snake_case : int = labels[..., 1:].contiguous()
_snake_case : int = hidden.view(-1 , hidden.size(-1))
_snake_case : str = labels.view(-1)
if hidden.size(0) != labels.size(0):
raise RuntimeError("""Input and labels should have the same size in the batch dimension.""")
else:
_snake_case : List[Any] = hidden.view(-1 , hidden.size(-1))
if self.n_clusters == 0:
_snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
if labels is not None:
_snake_case : Optional[int] = labels != -100
_snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Union[str, Any] = (
-nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1)
)
else:
_snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Any = self.out_layers[i].weight
_snake_case : Optional[int] = self.out_layers[i].bias
if i == 0:
_snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1)
if labels is None:
_snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token))
else:
_snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device)
_snake_case : Optional[int] = 0
_snake_case : Union[str, Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if labels is not None:
_snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx)
_snake_case : Dict = mask_i.nonzero().squeeze()
if indices_i.numel() == 0:
continue
_snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx
_snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase)
_snake_case : Dict = hidden.index_select(0 , lowerCAmelCase)
else:
_snake_case : Optional[Any] = hidden
if i == 0:
if labels is not None:
_snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1)
else:
_snake_case : int = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i]
_snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster
if labels is not None:
_snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather(
1 , target_i[:, None]).squeeze(1)
else:
_snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i
_snake_case : int = logprob_i
if labels is not None:
if (hasattr(self , """keep_order""") and self.keep_order) or keep_order:
out.index_copy_(0 , lowerCAmelCase , -logprob_i)
else:
out[offset : offset + logprob_i.size(0)].copy_(-logprob_i)
offset += logprob_i.size(0)
return out
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
if self.n_clusters == 0:
_snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0])
return nn.functional.log_softmax(lowerCAmelCase , dim=-1)
else:
# construct weights and biases
_snake_case , _snake_case : Optional[int] = [], []
for i in range(len(self.cutoffs)):
if self.div_val == 1:
_snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1]
_snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx]
_snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx]
else:
_snake_case : Tuple = self.out_layers[i].weight
_snake_case : Any = self.out_layers[i].bias
if i == 0:
_snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0)
_snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0)
weights.append(lowerCAmelCase)
biases.append(lowerCAmelCase)
_snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0]
_snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token))
_snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : List[Any] = [0] + self.cutoffs
for i in range(len(lowerCAmelCase) - 1):
_snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1]
if i == 0:
_snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]]
else:
_snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i]
_snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase)
_snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1)
_snake_case : Dict = head_logprob[:, -i] + tail_logprob_i
_snake_case : Any = logprob_i
return out
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000_000 ) -> int:
_snake_case : Any = limit + 1
_snake_case : Tuple = [0] * limit
for first_term in range(1 , SCREAMING_SNAKE_CASE__ ):
for n in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_snake_case : Any = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
_snake_case : Any = sum(1 for x in frequency[1:limit] if x == 10 )
return count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 317 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 | 1 |
a__ = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.609_344,
"knot": 1.852,
}
a__ = {
"km/h": 1.0,
"m/s": 0.277_777_778,
"mph": 0.621_371_192,
"knot": 0.539_956_803,
}
def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
_snake_case : List[Any] = (
F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'''
F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}'''
)
raise ValueError(SCREAMING_SNAKE_CASE__ )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileNetVaImageProcessor
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20}
_snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18}
_snake_case : Optional[Any] = parent
_snake_case : Tuple = batch_size
_snake_case : int = num_channels
_snake_case : List[Any] = image_size
_snake_case : Dict = min_resolution
_snake_case : List[Any] = max_resolution
_snake_case : List[Any] = do_resize
_snake_case : Any = size
_snake_case : str = do_center_crop
_snake_case : Union[str, Any] = crop_size
def UpperCamelCase_ ( self : int) -> str:
"""simple docstring"""
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ):
'''simple docstring'''
snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None
def UpperCamelCase_ ( self : Any) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = MobileNetVaImageProcessingTester(self)
@property
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
self.assertTrue(hasattr(lowerCAmelCase , """do_resize"""))
self.assertTrue(hasattr(lowerCAmelCase , """size"""))
self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop"""))
self.assertTrue(hasattr(lowerCAmelCase , """crop_size"""))
def UpperCamelCase_ ( self : List[str]) -> List[Any]:
"""simple docstring"""
_snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict)
self.assertEqual(image_processor.size , {"""shortest_edge""": 20})
self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18})
_snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84)
self.assertEqual(image_processor.size , {"""shortest_edge""": 42})
self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84})
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
pass
def UpperCamelCase_ ( self : Dict) -> str:
"""simple docstring"""
_snake_case : Dict = self.image_processing_class(**self.image_processor_dict)
# create random PIL images
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , Image.Image)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : int) -> List[Any]:
"""simple docstring"""
_snake_case : int = self.image_processing_class(**self.image_processor_dict)
# create random numpy tensors
_snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , np.ndarray)
# Test not batched input
_snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict)
# create random PyTorch tensors
_snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase)
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase , torch.Tensor)
# Test not batched input
_snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
_snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 317 | 1 |
import json
import os
import torch
from diffusers import UNetaDModel
os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True)
os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True)
os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True)
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int:
if hor == 128:
_snake_case : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
_snake_case : Optional[Any] = (32, 128, 256)
_snake_case : List[str] = ("""UpResnetBlock1D""", """UpResnetBlock1D""")
elif hor == 32:
_snake_case : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""")
_snake_case : Union[str, Any] = (32, 64, 128, 256)
_snake_case : Optional[int] = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""")
_snake_case : List[str] = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' )
_snake_case : Tuple = model.state_dict()
_snake_case : Union[str, Any] = {
"""down_block_types""": down_block_types,
"""block_out_channels""": block_out_channels,
"""up_block_types""": up_block_types,
"""layers_per_block""": 1,
"""use_timestep_embedding""": True,
"""out_block_type""": """OutConv1DBlock""",
"""norm_num_groups""": 8,
"""downsample_each_block""": False,
"""in_channels""": 14,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""sample_size""": 65_536,
"""mid_block_type""": """MidResTemporalBlock1D""",
"""act_fn""": """mish""",
}
_snake_case : int = UNetaDModel(**SCREAMING_SNAKE_CASE__ )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
_snake_case : str = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
_snake_case : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ )
torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' )
with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( ) -> Tuple:
_snake_case : Optional[int] = {
"""in_channels""": 14,
"""down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""),
"""up_block_types""": (),
"""out_block_type""": """ValueFunction""",
"""mid_block_type""": """ValueFunctionMidBlock1D""",
"""block_out_channels""": (32, 64, 128, 256),
"""layers_per_block""": 1,
"""downsample_each_block""": True,
"""sample_size""": 65_536,
"""out_channels""": 14,
"""extra_in_channels""": 0,
"""time_embedding_type""": """positional""",
"""use_timestep_embedding""": True,
"""flip_sin_to_cos""": False,
"""freq_shift""": 1,
"""norm_num_groups""": 8,
"""act_fn""": """mish""",
}
_snake_case : int = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" )
_snake_case : Dict = model
_snake_case : Optional[int] = UNetaDModel(**SCREAMING_SNAKE_CASE__ )
print(F'''length of state dict: {len(state_dict.keys() )}''' )
print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' )
_snake_case : Any = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) )
for k, v in mapping.items():
_snake_case : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ )
hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ )
torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" )
with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f:
json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
unet(32)
# unet(128)
value_function()
| 317 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""",
"""xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""",
"""xlm-roberta-large-finetuned-conll02-dutch""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll02-spanish""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-english""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json"""
),
"""xlm-roberta-large-finetuned-conll03-german""": (
"""https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json"""
),
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = """xlm-roberta"""
def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]:
"""simple docstring"""
super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase)
_snake_case : List[Any] = vocab_size
_snake_case : Optional[Any] = hidden_size
_snake_case : Optional[Any] = num_hidden_layers
_snake_case : Union[str, Any] = num_attention_heads
_snake_case : List[Any] = hidden_act
_snake_case : Tuple = intermediate_size
_snake_case : Any = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : List[Any] = max_position_embeddings
_snake_case : List[str] = type_vocab_size
_snake_case : Optional[int] = initializer_range
_snake_case : int = layer_norm_eps
_snake_case : Optional[Any] = position_embedding_type
_snake_case : Tuple = use_cache
_snake_case : Optional[Any] = classifier_dropout
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
_snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""}
else:
_snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""}
return OrderedDict(
[
("""input_ids""", dynamic_axis),
("""attention_mask""", dynamic_axis),
])
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""Input value must be an 'int' type""" )
_snake_case : List[Any] = 0
while number:
position += 1
number >>= 1
return position
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
import itertools
from dataclasses import dataclass
from typing import Any, Callable, Dict, List, Optional, Union
import pandas as pd
import pyarrow as pa
import datasets
import datasets.config
from datasets.features.features import require_storage_cast
from datasets.table import table_cast
from datasets.utils.py_utils import Literal
a__ = datasets.utils.logging.get_logger(__name__)
a__ = ["""names""", """prefix"""]
a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""]
a__ = ["""encoding_errors""", """on_bad_lines"""]
a__ = ["""date_format"""]
@dataclass
class snake_case ( datasets.BuilderConfig ):
'''simple docstring'''
snake_case_ : str = ","
snake_case_ : Optional[str] = None
snake_case_ : Optional[Union[int, List[int], str]] = "infer"
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[List[str]] = None
snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None
snake_case_ : Optional[Union[List[int], List[str]]] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None
snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None
snake_case_ : Optional[list] = None
snake_case_ : Optional[list] = None
snake_case_ : bool = False
snake_case_ : Optional[Union[int, List[int]]] = None
snake_case_ : Optional[int] = None
snake_case_ : Optional[Union[str, List[str]]] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : bool = True
snake_case_ : Optional[str] = None
snake_case_ : str = "."
snake_case_ : Optional[str] = None
snake_case_ : str = '"'
snake_case_ : int = 0
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : Optional[str] = None
snake_case_ : bool = True
snake_case_ : bool = True
snake_case_ : int = 0
snake_case_ : bool = True
snake_case_ : bool = False
snake_case_ : Optional[str] = None
snake_case_ : int = 1_00_00
snake_case_ : Optional[datasets.Features] = None
snake_case_ : Optional[str] = "strict"
snake_case_ : Literal["error", "warn", "skip"] = "error"
snake_case_ : Optional[str] = None
def UpperCamelCase_ ( self : List[Any]) -> Dict:
"""simple docstring"""
if self.delimiter is not None:
_snake_case : str = self.delimiter
if self.column_names is not None:
_snake_case : str = self.column_names
@property
def UpperCamelCase_ ( self : List[Any]) -> str:
"""simple docstring"""
_snake_case : Dict = {
"""sep""": self.sep,
"""header""": self.header,
"""names""": self.names,
"""index_col""": self.index_col,
"""usecols""": self.usecols,
"""prefix""": self.prefix,
"""mangle_dupe_cols""": self.mangle_dupe_cols,
"""engine""": self.engine,
"""converters""": self.converters,
"""true_values""": self.true_values,
"""false_values""": self.false_values,
"""skipinitialspace""": self.skipinitialspace,
"""skiprows""": self.skiprows,
"""nrows""": self.nrows,
"""na_values""": self.na_values,
"""keep_default_na""": self.keep_default_na,
"""na_filter""": self.na_filter,
"""verbose""": self.verbose,
"""skip_blank_lines""": self.skip_blank_lines,
"""thousands""": self.thousands,
"""decimal""": self.decimal,
"""lineterminator""": self.lineterminator,
"""quotechar""": self.quotechar,
"""quoting""": self.quoting,
"""escapechar""": self.escapechar,
"""comment""": self.comment,
"""encoding""": self.encoding,
"""dialect""": self.dialect,
"""error_bad_lines""": self.error_bad_lines,
"""warn_bad_lines""": self.warn_bad_lines,
"""skipfooter""": self.skipfooter,
"""doublequote""": self.doublequote,
"""memory_map""": self.memory_map,
"""float_precision""": self.float_precision,
"""chunksize""": self.chunksize,
"""encoding_errors""": self.encoding_errors,
"""on_bad_lines""": self.on_bad_lines,
"""date_format""": self.date_format,
}
# some kwargs must not be passed if they don't have a default value
# some others are deprecated and we can also not pass them if they are the default value
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase):
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 2.0 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 2):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
# Remove 1.3 new arguments
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
del pd_read_csv_kwargs[pd_read_csv_parameter]
return pd_read_csv_kwargs
class snake_case ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
snake_case_ : Union[str, Any] = CsvConfig
def UpperCamelCase_ ( self : str) -> List[str]:
"""simple docstring"""
return datasets.DatasetInfo(features=self.config.features)
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''')
_snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files)
if isinstance(lowerCAmelCase , (str, list, tuple)):
_snake_case : int = data_files
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : int = [files]
_snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})]
_snake_case : Union[str, Any] = []
for split_name, files in data_files.items():
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
_snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files]
splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files}))
return splits
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table:
"""simple docstring"""
if self.config.features is not None:
_snake_case : List[str] = self.config.features.arrow_schema
if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()):
# cheaper cast
_snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase)
else:
# more expensive cast; allows str <-> int/float or str to Audio for example
_snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase)
return pa_table
def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict:
"""simple docstring"""
_snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None
# dtype allows reading an int column as str
_snake_case : Optional[Any] = (
{
name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object
for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values())
}
if schema is not None
else None
)
for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)):
_snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs)
try:
for batch_idx, df in enumerate(lowerCAmelCase):
_snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase)
# Uncomment for debugging (will print the Arrow table size and elements)
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase)
except ValueError as e:
logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''')
raise
| 317 | 1 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def UpperCamelCase_ ( self : Any) -> List[Any]:
"""simple docstring"""
_snake_case : Tuple = SMALL_MODEL_IDENTIFIER
_snake_case : Dict = """pt"""
_snake_case : List[str] = """tf"""
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : Tuple = AutoModel.from_pretrained(self.test_model)
model_pt.save_pretrained(lowerCAmelCase)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
_snake_case : int = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase)
model_tf.save_pretrained(lowerCAmelCase)
def UpperCamelCase_ ( self : Any) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = """mock_framework"""
# Framework provided - return whatever the user provides
_snake_case : List[str] = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase)
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(lowerCAmelCase)
_snake_case : Tuple = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase)
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(lowerCAmelCase)
_snake_case : Optional[int] = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase)
self.assertEqual(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Tuple) -> Optional[int]:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(lowerCAmelCase)
_snake_case : str = FeaturesManager.determine_framework(lowerCAmelCase)
self.assertEqual(lowerCAmelCase , self.framework_pt)
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(lowerCAmelCase)
_snake_case : List[Any] = FeaturesManager.determine_framework(lowerCAmelCase)
self.assertEqual(lowerCAmelCase , self.framework_tf)
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(lowerCAmelCase):
_snake_case : str = FeaturesManager.determine_framework(lowerCAmelCase)
def UpperCamelCase_ ( self : Dict) -> Optional[Any]:
"""simple docstring"""
_snake_case : int = MagicMock(return_value=lowerCAmelCase)
with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase):
_snake_case : List[Any] = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(lowerCAmelCase , self.framework_pt)
# PyTorch not in environment -> use TensorFlow
_snake_case : Any = MagicMock(return_value=lowerCAmelCase)
with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase):
_snake_case : List[str] = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(lowerCAmelCase , self.framework_tf)
# Both in environment -> use PyTorch
_snake_case : Union[str, Any] = MagicMock(return_value=lowerCAmelCase)
_snake_case : Tuple = MagicMock(return_value=lowerCAmelCase)
with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase), patch(
"""transformers.onnx.features.is_torch_available""" , lowerCAmelCase):
_snake_case : Union[str, Any] = FeaturesManager.determine_framework(self.test_model)
self.assertEqual(lowerCAmelCase , self.framework_pt)
# Both not in environment -> raise error
_snake_case : str = MagicMock(return_value=lowerCAmelCase)
_snake_case : List[str] = MagicMock(return_value=lowerCAmelCase)
with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase), patch(
"""transformers.onnx.features.is_torch_available""" , lowerCAmelCase):
with self.assertRaises(lowerCAmelCase):
_snake_case : str = FeaturesManager.determine_framework(self.test_model)
| 317 |
from __future__ import annotations
from typing import TypedDict
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str
snake_case_ : int
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )]
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter s type must be str.""" )
if not s:
raise ValueError("""The parameter s must not be empty.""" )
_snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ )
rotations.sort() # sort the list of rotations in alphabetically order
# make a string composed of the last char of each rotation
_snake_case : BWTTransformDict = {
"bwt_string": "".join([word[-1] for word in rotations] ),
"idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ),
}
return response
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str:
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
raise TypeError("""The parameter bwt_string type must be str.""" )
if not bwt_string:
raise ValueError("""The parameter bwt_string must not be empty.""" )
try:
_snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ )
except ValueError:
raise TypeError(
"""The parameter idx_original_string type must be int or passive"""
""" of cast to int.""" )
if idx_original_string < 0:
raise ValueError("""The parameter idx_original_string must not be lower than 0.""" )
if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ):
raise ValueError(
"""The parameter idx_original_string must be lower than""" """ len(bwt_string).""" )
_snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ )
for _ in range(len(SCREAMING_SNAKE_CASE__ ) ):
for i in range(len(SCREAMING_SNAKE_CASE__ ) ):
_snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i]
ordered_rotations.sort()
return ordered_rotations[idx_original_string]
if __name__ == "__main__":
a__ = """Provide a string that I will generate its BWT transform: """
a__ = input(entry_msg).strip()
a__ = bwt_transform(s)
print(
F'''Burrows Wheeler transform for string \'{s}\' results '''
F'''in \'{result['bwt_string']}\''''
)
a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""])
print(
F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' '''
F'''we get original string \'{original_string}\''''
)
| 317 | 1 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a__ = logging.get_logger(__name__)
# General docstring
a__ = """RegNetConfig"""
# Base docstring
a__ = """facebook/regnet-y-040"""
a__ = [1, 10_88, 7, 7]
# Image classification docstring
a__ = """facebook/regnet-y-040"""
a__ = """tabby, tabby cat"""
a__ = [
"""facebook/regnet-y-040""",
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : int = nn.Convad(
lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , )
_snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase)
_snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity()
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
_snake_case : Tuple = self.convolution(lowerCAmelCase)
_snake_case : Any = self.normalization(lowerCAmelCase)
_snake_case : List[Any] = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act)
_snake_case : Dict = config.num_channels
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
_snake_case : str = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""")
_snake_case : Any = self.embedder(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase)
_snake_case : Tuple = nn.BatchNormad(lowerCAmelCase)
def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor:
"""simple docstring"""
_snake_case : Optional[Any] = self.convolution(lowerCAmelCase)
_snake_case : Optional[int] = self.normalization(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1))
_snake_case : Optional[Any] = nn.Sequential(
nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , )
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case : Dict = self.pooler(lowerCAmelCase)
_snake_case : List[str] = self.attention(lowerCAmelCase)
_snake_case : str = hidden_state * attention
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
_snake_case : Optional[int] = in_channels != out_channels or stride != 1
_snake_case : Optional[Any] = max(1 , out_channels // config.groups_width)
_snake_case : Union[str, Any] = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Tuple = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Dict = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = hidden_state
_snake_case : int = self.layer(lowerCAmelCase)
_snake_case : Dict = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : str = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]:
"""simple docstring"""
super().__init__()
_snake_case : int = in_channels != out_channels or stride != 1
_snake_case : Dict = max(1 , out_channels // config.groups_width)
_snake_case : Tuple = (
RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity()
)
_snake_case : Dict = nn.Sequential(
RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , )
_snake_case : Optional[Any] = ACTaFN[config.hidden_act]
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple:
"""simple docstring"""
_snake_case : Tuple = hidden_state
_snake_case : List[Any] = self.layer(lowerCAmelCase)
_snake_case : List[str] = self.shortcut(lowerCAmelCase)
hidden_state += residual
_snake_case : int = self.activation(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int:
"""simple docstring"""
super().__init__()
_snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer
_snake_case : Optional[int] = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , )
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
_snake_case : List[str] = self.layers(lowerCAmelCase)
return hidden_state
class snake_case ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]:
"""simple docstring"""
super().__init__()
_snake_case : Dict = nn.ModuleList([])
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ))
_snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:])
for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]):
self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase))
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention:
"""simple docstring"""
_snake_case : Dict = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
_snake_case : Optional[int] = hidden_states + (hidden_state,)
_snake_case : Dict = stage_module(lowerCAmelCase)
if output_hidden_states:
_snake_case : Tuple = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None)
return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = RegNetConfig
snake_case_ : List[Any] = """regnet"""
snake_case_ : Any = """pixel_values"""
snake_case_ : Optional[Any] = True
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
if isinstance(lowerCAmelCase , nn.Convad):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""")
elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)):
nn.init.constant_(module.weight , 1)
nn.init.constant_(module.bias , 0)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]:
"""simple docstring"""
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : Optional[Any] = value
a__ = R"""
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
behavior.
Parameters:
config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
a__ = R"""
Args:
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
[`ConvNextImageProcessor.__call__`] for details.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"""The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Any = config
_snake_case : Any = RegNetEmbeddings(lowerCAmelCase)
_snake_case : Dict = RegNetEncoder(lowerCAmelCase)
_snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1))
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
_snake_case : Optional[int] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
_snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : str = self.embedder(lowerCAmelCase)
_snake_case : Optional[Any] = self.encoder(
lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : Tuple = encoder_outputs[0]
_snake_case : Optional[Any] = self.pooler(lowerCAmelCase)
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" ,SCREAMING_SNAKE_CASE_ ,)
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : int , lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
super().__init__(lowerCAmelCase)
_snake_case : Union[str, Any] = config.num_labels
_snake_case : List[Any] = RegNetModel(lowerCAmelCase)
# classification head
_snake_case : Union[str, Any] = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(lowerCAmelCase)
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention:
"""simple docstring"""
_snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict
_snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase)
_snake_case : str = outputs.pooler_output if return_dict else outputs[1]
_snake_case : Optional[Any] = self.classifier(lowerCAmelCase)
_snake_case : Any = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
_snake_case : List[Any] = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
_snake_case : Optional[int] = """single_label_classification"""
else:
_snake_case : Tuple = """multi_label_classification"""
if self.config.problem_type == "regression":
_snake_case : List[str] = MSELoss()
if self.num_labels == 1:
_snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze())
else:
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
elif self.config.problem_type == "single_label_classification":
_snake_case : Dict = CrossEntropyLoss()
_snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1))
elif self.config.problem_type == "multi_label_classification":
_snake_case : Optional[int] = BCEWithLogitsLoss()
_snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase)
if not return_dict:
_snake_case : Optional[Any] = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
| 317 | 1 |
from __future__ import annotations
def lowercase ( SCREAMING_SNAKE_CASE__ : list[int] ) -> bool:
return len(set(SCREAMING_SNAKE_CASE__ ) ) == len(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list:
_snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ )
for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ):
# use last results for better performance - dynamic programming
_snake_case : Optional[Any] = prefix_result[i - 1]
while j > 0 and input_string[i] != input_string[j]:
_snake_case : List[Any] = prefix_result[j - 1]
if input_string[i] == input_string[j]:
j += 1
_snake_case : Optional[int] = j
return prefix_result
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int:
return max(prefix_function(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 | 1 |
from math import isqrt
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]:
_snake_case : List[Any] = [True] * max_number
for i in range(2 , isqrt(max_number - 1 ) + 1 ):
if is_prime[i]:
for j in range(i**2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = False
return [i for i in range(2 , SCREAMING_SNAKE_CASE__ ) if is_prime[i]]
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 10**8 ) -> int:
_snake_case : int = calculate_prime_numbers(max_number // 2 )
_snake_case : List[str] = 0
_snake_case : List[Any] = 0
_snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1
while left <= right:
while prime_numbers[left] * prime_numbers[right] >= max_number:
right -= 1
semiprimes_count += right - left + 1
left += 1
return semiprimes_count
if __name__ == "__main__":
print(F'''{solution() = }''')
| 317 |
import argparse
import os
from pathlib import Path
import fairseq
import torch
from packaging import version
from torch import nn
from transformers import (
BartConfig,
BartForConditionalGeneration,
BartForSequenceClassification,
BartModel,
BartTokenizer,
)
from transformers.utils import logging
a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""]
a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification}
if version.parse(fairseq.__version__) < version.parse("""0.9.0"""):
raise Exception("""requires fairseq >= 0.9.0""")
logging.set_verbosity_info()
a__ = logging.get_logger(__name__)
a__ = """ Hello world! cécé herlolip"""
a__ = [
("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""),
("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""),
("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""),
("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""),
]
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]:
_snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""_float_tensor""",
]
for k in ignore_keys:
state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
_snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : int = val
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]:
_snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" )
_snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval()
hub_interface.model.load_state_dict(sd["""model"""] )
return hub_interface
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]:
_snake_case , _snake_case : List[str] = emb.weight.shape
_snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = emb.weight.data
return lin_layer
@torch.no_grad()
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]:
if not os.path.exists(SCREAMING_SNAKE_CASE__ ):
_snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval()
else:
_snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ )
bart.model.upgrade_state_dict(bart.model.state_dict() )
if hf_checkpoint_name is None:
_snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" )
_snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ )
_snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 )
_snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 )
if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all():
raise ValueError(
F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' )
if checkpoint_path == "bart.large.mnli":
_snake_case : Dict = bart.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""]
for src, dest in mnli_rename_keys:
rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ )
_snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits
else: # no classification heads to worry about
_snake_case : Dict = bart.model.state_dict()
remove_ignore_keys_(SCREAMING_SNAKE_CASE__ )
_snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""]
_snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ )
if hf_checkpoint_name == "facebook/bart-large":
_snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval()
model.load_state_dict(SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0]
else:
_snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt
model.model.load_state_dict(SCREAMING_SNAKE_CASE__ )
if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ):
_snake_case : Any = make_linear_from_emb(model.model.shared )
_snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0]
# Check results
if fairseq_output.shape != new_model_outputs.shape:
raise ValueError(
F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' )
if (fairseq_output != new_model_outputs).any().item():
raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" )
Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ )
model.save_pretrained(SCREAMING_SNAKE_CASE__ )
if __name__ == "__main__":
a__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"""fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem."""
)
parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum"""
)
a__ = parser.parse_args()
convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
| 317 | 1 |
import json
from typing import Iterator, List, Union
from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers
from tokenizers.implementations.base_tokenizer import BaseTokenizer
from tokenizers.models import Unigram
from tokenizers.processors import TemplateProcessing
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , lowerCAmelCase : str = "▁" , lowerCAmelCase : bool = True , lowerCAmelCase : Union[str, AddedToken] = "<unk>" , lowerCAmelCase : Union[str, AddedToken] = "</s>" , lowerCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> int:
"""simple docstring"""
_snake_case : int = {
"""pad""": {"""id""": 0, """token""": pad_token},
"""eos""": {"""id""": 1, """token""": eos_token},
"""unk""": {"""id""": 2, """token""": unk_token},
}
_snake_case : Dict = [None] * len(self.special_tokens)
for token_dict in self.special_tokens.values():
_snake_case : List[Any] = token_dict["""token"""]
_snake_case : int = Tokenizer(Unigram())
_snake_case : Union[str, Any] = normalizers.Sequence(
[
normalizers.Nmt(),
normalizers.NFKC(),
normalizers.Replace(Regex(""" {2,}""") , """ """),
normalizers.Lowercase(),
])
_snake_case : Tuple = pre_tokenizers.Sequence(
[
pre_tokenizers.Metaspace(replacement=lowerCAmelCase , add_prefix_space=lowerCAmelCase),
pre_tokenizers.Digits(individual_digits=lowerCAmelCase),
pre_tokenizers.Punctuation(),
])
_snake_case : Optional[int] = decoders.Metaspace(replacement=lowerCAmelCase , add_prefix_space=lowerCAmelCase)
_snake_case : Any = TemplateProcessing(
single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , )
_snake_case : str = {
"""model""": """SentencePieceUnigram""",
"""replacement""": replacement,
"""add_prefix_space""": add_prefix_space,
}
super().__init__(lowerCAmelCase , lowerCAmelCase)
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 8000 , lowerCAmelCase : bool = True , ) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase , )
if isinstance(lowerCAmelCase , lowerCAmelCase):
_snake_case : List[str] = [files]
self._tokenizer.train(lowerCAmelCase , trainer=lowerCAmelCase)
self.add_unk_id()
def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase : int = 8000 , lowerCAmelCase : bool = True , ) -> Optional[Any]:
"""simple docstring"""
_snake_case : int = trainers.UnigramTrainer(
vocab_size=lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase , )
self._tokenizer.train_from_iterator(lowerCAmelCase , trainer=lowerCAmelCase)
self.add_unk_id()
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Tuple = json.loads(self._tokenizer.to_str())
_snake_case : Tuple = self.special_tokens["""unk"""]["""id"""]
_snake_case : Any = Tokenizer.from_str(json.dumps(lowerCAmelCase))
| 317 |
import warnings
from ...utils import logging
from .image_processing_segformer import SegformerImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None:
"""simple docstring"""
warnings.warn(
"""The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use SegformerImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a__ = TypeVar("""T""")
class snake_case ( Generic[T] ):
'''simple docstring'''
def __init__( self : Optional[Any] , lowerCAmelCase : T) -> Tuple:
"""simple docstring"""
_snake_case : Optional[Any] = data
_snake_case : Node[T] | None = None
def __str__( self : List[Any]) -> str:
"""simple docstring"""
return F'''{self.data}'''
class snake_case ( Generic[T] ):
'''simple docstring'''
def __init__( self : Union[str, Any]) -> None:
"""simple docstring"""
_snake_case : Node[T] | None = None
def __iter__( self : Optional[int]) -> Iterator[T]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.top
while node:
yield node.data
_snake_case : Any = node.next
def __str__( self : Any) -> str:
"""simple docstring"""
return "->".join([str(lowerCAmelCase) for item in self])
def __len__( self : List[str]) -> int:
"""simple docstring"""
return len(tuple(iter(self)))
def UpperCamelCase_ ( self : int) -> bool:
"""simple docstring"""
return self.top is None
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : T) -> None:
"""simple docstring"""
_snake_case : Dict = Node(lowerCAmelCase)
if not self.is_empty():
_snake_case : Union[str, Any] = self.top
_snake_case : int = node
def UpperCamelCase_ ( self : str) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""pop from empty stack""")
assert isinstance(self.top , lowerCAmelCase)
_snake_case : Any = self.top
_snake_case : str = self.top.next
return pop_node.data
def UpperCamelCase_ ( self : Optional[Any]) -> T:
"""simple docstring"""
if self.is_empty():
raise IndexError("""peek from empty stack""")
assert self.top is not None
return self.top.data
def UpperCamelCase_ ( self : Optional[Any]) -> None:
"""simple docstring"""
_snake_case : Dict = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 317 |
import warnings
from ...utils import logging
from .image_processing_videomae import VideoMAEImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers."""
""" Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_torch_available,
)
a__ = {
"""configuration_speecht5""": [
"""SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""",
"""SpeechT5Config""",
"""SpeechT5HifiGanConfig""",
],
"""feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""],
"""processing_speecht5""": ["""SpeechT5Processor"""],
}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = ["""SpeechT5Tokenizer"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
a__ = [
"""SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""SpeechT5ForSpeechToText""",
"""SpeechT5ForSpeechToSpeech""",
"""SpeechT5ForTextToSpeech""",
"""SpeechT5Model""",
"""SpeechT5PreTrainedModel""",
"""SpeechT5HifiGan""",
]
if TYPE_CHECKING:
from .configuration_speechta import (
SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP,
SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP,
SpeechTaConfig,
SpeechTaHifiGanConfig,
)
from .feature_extraction_speechta import SpeechTaFeatureExtractor
from .processing_speechta import SpeechTaProcessor
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_speechta import SpeechTaTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speechta import (
SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST,
SpeechTaForSpeechToSpeech,
SpeechTaForSpeechToText,
SpeechTaForTextToSpeech,
SpeechTaHifiGan,
SpeechTaModel,
SpeechTaPreTrainedModel,
)
else:
import sys
a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 317 |
import warnings
from ...utils import logging
from .image_processing_yolos import YolosImageProcessor
a__ = logging.get_logger(__name__)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None:
"""simple docstring"""
warnings.warn(
"""The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please"""
""" use YolosImageProcessor instead.""" , lowerCAmelCase , )
super().__init__(*lowerCAmelCase , **lowerCAmelCase)
| 317 | 1 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 |
from operator import delitem, getitem, setitem
import pytest
from data_structures.hashing.hash_map import HashMap
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int:
return getitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str:
return setitem, k, v
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
return delitem, k
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
try:
return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None
except Exception as e:
return None, e
a__ = (
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
)
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_a""", """val_b"""),
]
a__ = [
_set("""key_a""", """val_a"""),
_set("""key_b""", """val_b"""),
_del("""key_a"""),
_del("""key_b"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
]
a__ = [
_get("""key_a"""),
_del("""key_a"""),
_set("""key_a""", """val_a"""),
_del("""key_a"""),
_del("""key_a"""),
_get("""key_a"""),
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
]
a__ = [
*[_set(x, x) for x in range(5)], # guaranteed upsize
*[_del(x) for x in range(5)],
_set("""key_a""", """val_b"""),
]
@pytest.mark.parametrize(
"""operations""" , (
pytest.param(_add_items , id="""add items""" ),
pytest.param(_overwrite_items , id="""overwrite items""" ),
pytest.param(_delete_items , id="""delete items""" ),
pytest.param(_access_absent_items , id="""access absent items""" ),
pytest.param(_add_with_resize_up , id="""add with resize up""" ),
pytest.param(_add_with_resize_down , id="""add with resize down""" ),
) , )
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple:
_snake_case : List[Any] = HashMap(initial_block_size=4 )
_snake_case : int = {}
for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ):
_snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
_snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ )
assert my_res == py_res
assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ )
assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
assert set(my.items() ) == set(py.items() )
def lowercase ( ) -> Optional[int]:
def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool:
return not name.startswith("""_""" )
_snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )}
_snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )}
assert dict_public_names > hash_public_names
| 317 | 1 |
from ...processing_utils import ProcessorMixin
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""image_processor""", """feature_extractor"""]
snake_case_ : List[Any] = """TvltImageProcessor"""
snake_case_ : Dict = """TvltFeatureExtractor"""
def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase)
_snake_case : List[Any] = image_processor
_snake_case : List[Any] = feature_extractor
def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any:
"""simple docstring"""
if images is None and audio is None:
raise ValueError("""You need to specify either an `images` or `audio` input to process.""")
_snake_case : Union[str, Any] = None
if images is not None:
_snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if images_mixed is not None:
_snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase)
if audio is not None:
_snake_case : int = self.feature_extractor(
lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase)
_snake_case : Any = {}
if audio is not None:
output_dict.update(lowerCAmelCase)
if images is not None:
output_dict.update(lowerCAmelCase)
if images_mixed_dict is not None:
output_dict.update(lowerCAmelCase)
return output_dict
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = self.image_processor.model_input_names
_snake_case : List[str] = self.feature_extractor.model_input_names
return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
| 317 |
import subprocess
import sys
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
from transformers.testing_utils import TestCasePlus, require_torch
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
@require_torch
def UpperCamelCase_ ( self : str) -> str:
"""simple docstring"""
_snake_case : Optional[int] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : Dict = """
import socket
def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : Dict = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : Dict = self.get_env()
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Optional[Any]) -> List[str]:
"""simple docstring"""
_snake_case : List[Any] = """
from transformers import BertConfig, BertModel, BertTokenizer, pipeline
"""
_snake_case : List[str] = """
mname = \"hf-internal-testing/tiny-random-bert\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
BertTokenizer.from_pretrained(mname)
pipe = pipeline(task=\"fill-mask\", model=mname)
print(\"success\")
"""
_snake_case : int = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\")
socket.socket = offline_socket
"""
# Force fetching the files so that we can use the cache
_snake_case : int = """hf-internal-testing/tiny-random-bert"""
BertConfig.from_pretrained(lowerCAmelCase)
BertModel.from_pretrained(lowerCAmelCase)
BertTokenizer.from_pretrained(lowerCAmelCase)
pipeline(task="""fill-mask""" , model=lowerCAmelCase)
# baseline - just load from_pretrained with normal network
_snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])]
# should succeed
_snake_case : int = self.get_env()
_snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Dict) -> Union[str, Any]:
"""simple docstring"""
_snake_case : Union[str, Any] = """
from transformers import BertConfig, BertModel, BertTokenizer
"""
_snake_case : List[Any] = """
mname = \"hf-internal-testing/tiny-random-bert-sharded\"
BertConfig.from_pretrained(mname)
BertModel.from_pretrained(mname)
print(\"success\")
"""
_snake_case : Optional[int] = """
import socket
def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
# baseline - just load from_pretrained with normal network
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Any = self.get_env()
_snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# next emulate no network
_snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])]
# Doesn't fail anymore since the model is in the cache due to other tests, so commenting this.
# env["TRANSFORMERS_OFFLINE"] = "0"
# result = subprocess.run(cmd, env=env, check=False, capture_output=True)
# self.assertEqual(result.returncode, 1, result.stderr)
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : int = """1"""
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
@require_torch
def UpperCamelCase_ ( self : Any) -> Any:
"""simple docstring"""
_snake_case : Dict = """
from transformers import pipeline
"""
_snake_case : Any = """
mname = \"hf-internal-testing/tiny-random-bert\"
pipe = pipeline(model=mname)
"""
_snake_case : List[str] = """
import socket
def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\")
socket.socket = offline_socket
"""
_snake_case : Tuple = self.get_env()
_snake_case : Union[str, Any] = """1"""
_snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])]
_snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 1 , result.stderr)
self.assertIn(
"""You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , )
@require_torch
def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]:
"""simple docstring"""
_snake_case : Optional[Any] = """
from transformers import AutoModel
"""
_snake_case : Union[str, Any] = """
mname = \"hf-internal-testing/test_dynamic_model\"
AutoModel.from_pretrained(mname, trust_remote_code=True)
print(\"success\")
"""
# baseline - just load from_pretrained with normal network
_snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])]
# should succeed
_snake_case : Union[str, Any] = self.get_env()
_snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
# should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files
_snake_case : Union[str, Any] = """1"""
_snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase)
self.assertEqual(result.returncode , 0 , result.stderr)
self.assertIn("""success""" , result.stdout.decode())
| 317 | 1 |
import io
import json
import unittest
from parameterized import parameterized
from transformers import FSMTForConditionalGeneration, FSMTTokenizer
from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device
from utils import calculate_bleu
a__ = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json"""
with io.open(filename, """r""", encoding="""utf-8""") as f:
a__ = json.load(f)
@require_torch
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Any) -> int:
"""simple docstring"""
return FSMTTokenizer.from_pretrained(lowerCAmelCase)
def UpperCamelCase_ ( self : str , lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
_snake_case : str = FSMTForConditionalGeneration.from_pretrained(lowerCAmelCase).to(lowerCAmelCase)
if torch_device == "cuda":
model.half()
return model
@parameterized.expand(
[
["""en-ru""", 26.0],
["""ru-en""", 22.0],
["""en-de""", 22.0],
["""de-en""", 29.0],
])
@slow
def UpperCamelCase_ ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
_snake_case : Any = F'''facebook/wmt19-{pair}'''
_snake_case : List[str] = self.get_tokenizer(lowerCAmelCase)
_snake_case : Tuple = self.get_model(lowerCAmelCase)
_snake_case : str = bleu_data[pair]["""src"""]
_snake_case : Optional[int] = bleu_data[pair]["""tgt"""]
_snake_case : Optional[Any] = tokenizer(lowerCAmelCase , return_tensors="""pt""" , truncation=lowerCAmelCase , padding="""longest""").to(lowerCAmelCase)
_snake_case : Optional[int] = model.generate(
input_ids=batch.input_ids , num_beams=8 , )
_snake_case : Any = tokenizer.batch_decode(
lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase)
_snake_case : List[str] = calculate_bleu(lowerCAmelCase , lowerCAmelCase)
print(lowerCAmelCase)
self.assertGreaterEqual(scores["""bleu"""] , lowerCAmelCase)
| 317 |
import os
import pytest
from datasets import (
get_dataset_config_info,
get_dataset_config_names,
get_dataset_infos,
get_dataset_split_names,
inspect_dataset,
inspect_metric,
)
a__ = pytest.mark.integration
@pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple:
inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Union[str, Any] = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" )
@pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" )
@pytest.mark.parametrize("""path""" , ["""accuracy"""] )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]:
inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = path + """.py"""
assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ )
assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, config_name, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]:
_snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
assert info.config_name == config_name
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
@pytest.mark.parametrize(
"""path, expected""" , [
("""squad""", """plain_text"""),
("""acronym_identification""", """default"""),
("""lhoestq/squad""", """plain_text"""),
("""lhoestq/test""", """default"""),
("""lhoestq/demo1""", """lhoestq--demo1"""),
("""dalle-mini/wit""", """dalle-mini--wit"""),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
_snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ )
assert expected in config_names
@pytest.mark.parametrize(
"""path, expected_configs, expected_splits_in_first_config""" , [
("""squad""", ["""plain_text"""], ["""train""", """validation"""]),
("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]),
("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]:
_snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert list(infos.keys() ) == expected_configs
_snake_case : Optional[int] = expected_configs[0]
assert expected_config in infos
_snake_case : int = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits_in_first_config
@pytest.mark.parametrize(
"""path, expected_config, expected_splits""" , [
("""squad""", """plain_text""", ["""train""", """validation"""]),
("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]),
("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple:
_snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ )
assert expected_config in infos
_snake_case : Optional[int] = infos[expected_config]
assert info.config_name == expected_config
assert list(info.splits.keys() ) == expected_splits
@pytest.mark.parametrize(
"""path, config_name, expected_exception""" , [
("""paws""", None, ValueError),
] , )
def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
with pytest.raises(SCREAMING_SNAKE_CASE__ ):
get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
| 317 | 1 |
import math
import random
from typing import Any
from .hill_climbing import SearchProblem
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : float = math.inf , SCREAMING_SNAKE_CASE__ : float = -math.inf , SCREAMING_SNAKE_CASE__ : float = math.inf , SCREAMING_SNAKE_CASE__ : float = -math.inf , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : float = 100 , SCREAMING_SNAKE_CASE__ : float = 0.0_1 , SCREAMING_SNAKE_CASE__ : float = 1 , ) -> Any:
_snake_case : int = False
_snake_case : Union[str, Any] = search_prob
_snake_case : str = start_temperate
_snake_case : str = []
_snake_case : List[str] = 0
_snake_case : Union[str, Any] = None
while not search_end:
_snake_case : Any = current_state.score()
if best_state is None or current_score > best_state.score():
_snake_case : Union[str, Any] = current_state
scores.append(SCREAMING_SNAKE_CASE__ )
iterations += 1
_snake_case : Union[str, Any] = None
_snake_case : Optional[int] = current_state.get_neighbors()
while (
next_state is None and neighbors
): # till we do not find a neighbor that we can move to
_snake_case : Tuple = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) # picking a random neighbor
_snake_case : int = neighbors.pop(SCREAMING_SNAKE_CASE__ )
_snake_case : Dict = picked_neighbor.score() - current_score
if (
picked_neighbor.x > max_x
or picked_neighbor.x < min_x
or picked_neighbor.y > max_y
or picked_neighbor.y < min_y
):
continue # neighbor outside our bounds
if not find_max:
_snake_case : Union[str, Any] = change * -1 # in case we are finding minimum
if change > 0: # improves the solution
_snake_case : Union[str, Any] = picked_neighbor
else:
_snake_case : List[str] = (math.e) ** (
change / current_temp
) # probability generation function
if random.random() < probability: # random number within probability
_snake_case : int = picked_neighbor
_snake_case : str = current_temp - (current_temp * rate_of_decrease)
if current_temp < threshold_temp or next_state is None:
# temperature below threshold, or could not find a suitable neighbor
_snake_case : Optional[int] = True
else:
_snake_case : str = next_state
if visualization:
from matplotlib import pyplot as plt
plt.plot(range(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
plt.xlabel("""Iterations""" )
plt.ylabel("""Function values""" )
plt.show()
return best_state
if __name__ == "__main__":
def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int:
return (x**2) + (y**2)
# starting the problem with initial coordinates (12, 47)
a__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a__ = simulated_annealing(
prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
# starting the problem with initial coordinates (12, 47)
a__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa)
a__ = simulated_annealing(
prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True
)
print(
"""The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """
F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}'''
)
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]:
return (3 * x**2) - (6 * y)
a__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a__ = simulated_annealing(prob, find_max=False, visualization=True)
print(
"""The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
a__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa)
a__ = simulated_annealing(prob, find_max=True, visualization=True)
print(
"""The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """
F'''{local_min.score()}'''
)
| 317 |
import pprint
import requests
a__ = """https://zenquotes.io/api"""
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/today""" ).json()
def lowercase ( ) -> list:
return requests.get(API_ENDPOINT_URL + """/random""" ).json()
if __name__ == "__main__":
a__ = random_quotes()
pprint.pprint(response)
| 317 | 1 |
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
_snake_case : Any = [0 for i in range(r + 1 )]
# nc0 = 1
_snake_case : Any = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
_snake_case : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 317 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 | 1 |
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
a__ = logging.get_logger(__name__)
a__ = {
"""microsoft/swin-tiny-patch4-window7-224""": (
"""https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json"""
),
# See all Swin models at https://huggingface.co/models?filter=swin
}
class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """swin"""
snake_case_ : Optional[Any] = {
"""num_attention_heads""": """num_heads""",
"""num_hidden_layers""": """num_layers""",
}
def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : int = image_size
_snake_case : Any = patch_size
_snake_case : Union[str, Any] = num_channels
_snake_case : int = embed_dim
_snake_case : Dict = depths
_snake_case : Dict = len(lowerCAmelCase)
_snake_case : Optional[Any] = num_heads
_snake_case : Tuple = window_size
_snake_case : int = mlp_ratio
_snake_case : Any = qkv_bias
_snake_case : Union[str, Any] = hidden_dropout_prob
_snake_case : List[str] = attention_probs_dropout_prob
_snake_case : Optional[Any] = drop_path_rate
_snake_case : List[Any] = hidden_act
_snake_case : str = use_absolute_embeddings
_snake_case : Tuple = layer_norm_eps
_snake_case : Any = initializer_range
_snake_case : Union[str, Any] = encoder_stride
# we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel
# this indicates the channel dimension after the last stage of the model
_snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1))
_snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)]
_snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices(
out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Dict) -> float:
"""simple docstring"""
return 1E-4
| 317 |
from ..utils import DummyObject, requires_backends
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]:
requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] )
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[str] = ["""torch"""]
def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[int] = ["""torch"""]
def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : List[Any] = ["""torch"""]
def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Any = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = ["""torch"""]
def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = ["""torch"""]
def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : int = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Dict = ["""torch"""]
def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Union[str, Any] = ["""torch"""]
def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]:
"""simple docstring"""
requires_backends(self , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
@classmethod
def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict:
"""simple docstring"""
requires_backends(cls , ["""torch"""])
| 317 | 1 |
class snake_case :
'''simple docstring'''
def __init__( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None) -> Dict:
"""simple docstring"""
_snake_case : Any = data
_snake_case : str = previous
_snake_case : Optional[Any] = next_node
def __str__( self : Dict) -> str:
"""simple docstring"""
return F'''{self.data}'''
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
return self.data
def UpperCamelCase_ ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return self.next
def UpperCamelCase_ ( self : Optional[int]) -> Tuple:
"""simple docstring"""
return self.previous
class snake_case :
'''simple docstring'''
def __init__( self : Optional[int] , lowerCAmelCase : List[Any]) -> Optional[Any]:
"""simple docstring"""
_snake_case : List[str] = head
def __iter__( self : Tuple) -> Dict:
"""simple docstring"""
return self
def UpperCamelCase_ ( self : Optional[Any]) -> int:
"""simple docstring"""
if not self.current:
raise StopIteration
else:
_snake_case : Union[str, Any] = self.current.get_data()
_snake_case : Dict = self.current.get_next()
return value
class snake_case :
'''simple docstring'''
def __init__( self : List[str]) -> Any:
"""simple docstring"""
_snake_case : Optional[Any] = None # First node in list
_snake_case : int = None # Last node in list
def __str__( self : Optional[int]) -> List[str]:
"""simple docstring"""
_snake_case : Union[str, Any] = self.head
_snake_case : Any = []
while current is not None:
nodes.append(current.get_data())
_snake_case : Dict = current.get_next()
return " ".join(str(lowerCAmelCase) for node in nodes)
def __contains__( self : List[Any] , lowerCAmelCase : int) -> Optional[Any]:
"""simple docstring"""
_snake_case : Tuple = self.head
while current:
if current.get_data() == value:
return True
_snake_case : str = current.get_next()
return False
def __iter__( self : List[str]) -> Union[str, Any]:
"""simple docstring"""
return LinkedListIterator(self.head)
def UpperCamelCase_ ( self : List[str]) -> Optional[Any]:
"""simple docstring"""
if self.head:
return self.head.get_data()
return None
def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]:
"""simple docstring"""
if self.tail:
return self.tail.get_data()
return None
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Node) -> None:
"""simple docstring"""
if self.head is None:
_snake_case : Optional[Any] = node
_snake_case : Dict = node
else:
self.insert_before_node(self.head , lowerCAmelCase)
def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Node) -> None:
"""simple docstring"""
if self.head is None:
self.set_head(lowerCAmelCase)
else:
self.insert_after_node(self.tail , lowerCAmelCase)
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : int) -> None:
"""simple docstring"""
_snake_case : Tuple = Node(lowerCAmelCase)
if self.head is None:
self.set_head(lowerCAmelCase)
else:
self.set_tail(lowerCAmelCase)
def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Node , lowerCAmelCase : Node) -> None:
"""simple docstring"""
_snake_case : List[str] = node
_snake_case : Optional[Any] = node.previous
if node.get_previous() is None:
_snake_case : Union[str, Any] = node_to_insert
else:
_snake_case : List[str] = node_to_insert
_snake_case : List[str] = node_to_insert
def UpperCamelCase_ ( self : Any , lowerCAmelCase : Node , lowerCAmelCase : Node) -> None:
"""simple docstring"""
_snake_case : List[Any] = node
_snake_case : str = node.next
if node.get_next() is None:
_snake_case : List[str] = node_to_insert
else:
_snake_case : List[str] = node_to_insert
_snake_case : Optional[int] = node_to_insert
def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int) -> None:
"""simple docstring"""
_snake_case : int = 1
_snake_case : Union[str, Any] = Node(lowerCAmelCase)
_snake_case : Tuple = self.head
while node:
if current_position == position:
self.insert_before_node(lowerCAmelCase , lowerCAmelCase)
return
current_position += 1
_snake_case : Dict = node.next
self.insert_after_node(self.tail , lowerCAmelCase)
def UpperCamelCase_ ( self : Dict , lowerCAmelCase : int) -> Node:
"""simple docstring"""
_snake_case : int = self.head
while node:
if node.get_data() == item:
return node
_snake_case : str = node.get_next()
raise Exception("""Node not found""")
def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> Any:
"""simple docstring"""
if (node := self.get_node(lowerCAmelCase)) is not None:
if node == self.head:
_snake_case : Optional[int] = self.head.get_next()
if node == self.tail:
_snake_case : Tuple = self.tail.get_previous()
self.remove_node_pointers(lowerCAmelCase)
@staticmethod
def UpperCamelCase_ ( lowerCAmelCase : Node) -> None:
"""simple docstring"""
if node.get_next():
_snake_case : List[str] = node.previous
if node.get_previous():
_snake_case : str = node.next
_snake_case : List[Any] = None
_snake_case : Tuple = None
def UpperCamelCase_ ( self : int) -> Optional[int]:
"""simple docstring"""
return self.head is None
def lowercase ( ) -> None:
pass
if __name__ == "__main__":
import doctest
doctest.testmod()
| 317 |
from collections import OrderedDict
from typing import List, Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
a__ = logging.get_logger(__name__)
a__ = {
"""google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""",
}
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Optional[Any] = """efficientnet"""
def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]:
"""simple docstring"""
super().__init__(**lowerCAmelCase)
_snake_case : Optional[int] = num_channels
_snake_case : str = image_size
_snake_case : Tuple = width_coefficient
_snake_case : List[str] = depth_coefficient
_snake_case : List[Any] = depth_divisor
_snake_case : str = kernel_sizes
_snake_case : Any = in_channels
_snake_case : Optional[Any] = out_channels
_snake_case : str = depthwise_padding
_snake_case : Tuple = strides
_snake_case : Dict = num_block_repeats
_snake_case : int = expand_ratios
_snake_case : Tuple = squeeze_expansion_ratio
_snake_case : Optional[int] = hidden_act
_snake_case : Optional[int] = hidden_dim
_snake_case : Tuple = pooling_type
_snake_case : Tuple = initializer_range
_snake_case : List[Any] = batch_norm_eps
_snake_case : Optional[Any] = batch_norm_momentum
_snake_case : str = dropout_rate
_snake_case : Union[str, Any] = drop_connect_rate
_snake_case : Optional[int] = sum(lowerCAmelCase) * 4
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : Tuple = version.parse("""1.11""" )
@property
def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
])
@property
def UpperCamelCase_ ( self : Union[str, Any]) -> float:
"""simple docstring"""
return 1E-5
| 317 | 1 |
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class snake_case ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]:
"""simple docstring"""
super().tearDown()
gc.collect()
def UpperCamelCase_ ( self : Tuple) -> Optional[int]:
"""simple docstring"""
_snake_case , _snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , )
_snake_case : int = """A painting of a squirrel eating a burger"""
_snake_case : List[str] = jax.device_count()
_snake_case : Any = num_samples * [prompt]
_snake_case : Optional[int] = sd_pipe.prepare_inputs(lowerCAmelCase)
_snake_case : List[Any] = replicate(lowerCAmelCase)
_snake_case : Any = shard(lowerCAmelCase)
_snake_case : Dict = jax.random.PRNGKey(0)
_snake_case : List[Any] = jax.random.split(lowerCAmelCase , jax.device_count())
_snake_case : Optional[int] = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
_snake_case : str = images[0, 253:256, 253:256, -1]
_snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten()))
_snake_case : Any = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512])
print(F'''output_slice: {output_slice}''')
assert jnp.abs(output_slice - expected_slice).max() < 1E-2
def UpperCamelCase_ ( self : List[str]) -> List[str]:
"""simple docstring"""
_snake_case : List[str] = """stabilityai/stable-diffusion-2"""
_snake_case , _snake_case : Optional[int] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""")
_snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained(
lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , )
_snake_case : List[Any] = scheduler_params
_snake_case : Any = """A painting of a squirrel eating a burger"""
_snake_case : List[Any] = jax.device_count()
_snake_case : Optional[Any] = num_samples * [prompt]
_snake_case : Any = sd_pipe.prepare_inputs(lowerCAmelCase)
_snake_case : Tuple = replicate(lowerCAmelCase)
_snake_case : List[Any] = shard(lowerCAmelCase)
_snake_case : Optional[int] = jax.random.PRNGKey(0)
_snake_case : List[Any] = jax.random.split(lowerCAmelCase , jax.device_count())
_snake_case : int = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase)[0]
assert images.shape == (jax.device_count(), 1, 768, 768, 3)
_snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:])
_snake_case : str = images[0, 253:256, 253:256, -1]
_snake_case : Any = jnp.asarray(jax.device_get(image_slice.flatten()))
_snake_case : Optional[Any] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297])
print(F'''output_slice: {output_slice}''')
assert jnp.abs(output_slice - expected_slice).max() < 1E-2
| 317 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=SCREAMING_SNAKE_CASE_ )
class snake_case ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} )
snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} )
snake_case_ : ClassVar[Features] = Features(
{
"""answers""": Sequence(
{
"""text""": Value("""string""" ),
"""answer_start""": Value("""int32""" ),
} )
} )
snake_case_ : str = "question"
snake_case_ : str = "context"
snake_case_ : str = "answers"
@property
def UpperCamelCase_ ( self : Any) -> Dict[str, str]:
"""simple docstring"""
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 317 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.