code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": a__ = argparse.ArgumentParser( description=( """Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned""" """ Distillation""" ) ) parser.add_argument("""--model_type""", default="""bert""", choices=["""bert"""]) parser.add_argument("""--model_name""", default="""bert-base-uncased""", type=str) parser.add_argument("""--dump_checkpoint""", default="""serialization_dir/tf_bert-base-uncased_0247911.pth""", type=str) parser.add_argument("""--vocab_transform""", action="""store_true""") a__ = parser.parse_args() if args.model_type == "bert": a__ = BertForMaskedLM.from_pretrained(args.model_name) a__ = """bert""" else: raise ValueError("""args.model_type should be \"bert\".""") a__ = model.state_dict() a__ = {} for w in ["word_embeddings", "position_embeddings"]: a__ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: a__ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] a__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] a__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 a__ = state_dict["""cls.predictions.decoder.weight"""] a__ = state_dict["""cls.predictions.bias"""] if args.vocab_transform: for w in ["weight", "bias"]: a__ = state_dict[F'''cls.predictions.transform.dense.{w}'''] a__ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class snake_case : '''simple docstring''' snake_case_ : Optional[Any] = LEDConfig snake_case_ : List[Any] = {} snake_case_ : List[str] = """gelu""" def __init__( self : List[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Any=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : List[Any]=99 , lowerCAmelCase : Tuple=32 , lowerCAmelCase : Any=2 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : int=37 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[Any]=0.1 , lowerCAmelCase : List[str]=20 , lowerCAmelCase : Tuple=2 , lowerCAmelCase : str=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : Optional[Any]=4 , ) -> str: """simple docstring""" _snake_case : List[Any] = parent _snake_case : Dict = batch_size _snake_case : Any = seq_length _snake_case : Union[str, Any] = is_training _snake_case : str = use_labels _snake_case : List[Any] = vocab_size _snake_case : Optional[int] = hidden_size _snake_case : Any = num_hidden_layers _snake_case : int = num_attention_heads _snake_case : Optional[int] = intermediate_size _snake_case : int = hidden_dropout_prob _snake_case : int = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : List[str] = eos_token_id _snake_case : str = pad_token_id _snake_case : Any = bos_token_id _snake_case : int = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after _snake_case : int = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests _snake_case : List[str] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" _snake_case : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _snake_case : List[str] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _snake_case : str = tf.concat([input_ids, eos_tensor] , axis=1) _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : Dict = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) _snake_case : Dict = prepare_led_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Tuple = tf.concat( [tf.zeros_like(lowerCAmelCase)[:, :-1], tf.ones_like(lowerCAmelCase)[:, -1:]] , axis=-1 , ) _snake_case : Any = global_attention_mask return config, inputs_dict def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" _snake_case : int = TFLEDModel(config=lowerCAmelCase).get_decoder() _snake_case : Dict = inputs_dict["""input_ids"""] _snake_case : Optional[Any] = input_ids[:1, :] _snake_case : Any = inputs_dict["""attention_mask"""][:1, :] _snake_case : Dict = 1 # first forward pass _snake_case : str = model(lowerCAmelCase , attention_mask=lowerCAmelCase , use_cache=lowerCAmelCase) _snake_case , _snake_case : Union[str, Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _snake_case : Dict = ids_tensor((self.batch_size, 3) , config.vocab_size) _snake_case : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _snake_case : Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1) _snake_case : Dict = tf.concat([attention_mask, next_attn_mask] , axis=-1) _snake_case : Optional[Any] = model(lowerCAmelCase , attention_mask=lowerCAmelCase)[0] _snake_case : str = model(lowerCAmelCase , attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _snake_case : Dict = int(ids_tensor((1,) , output_from_past.shape[-1])) _snake_case : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx] _snake_case : Dict = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(lowerCAmelCase , lowerCAmelCase , rtol=1E-3) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : List[str]=None , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : Tuple=None , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , ) -> Optional[int]: if attention_mask is None: _snake_case : int = tf.cast(tf.math.not_equal(SCREAMING_SNAKE_CASE__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _snake_case : Optional[int] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _snake_case : Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () snake_case_ : Tuple = (TFLEDForConditionalGeneration,) if is_tf_available() else () snake_case_ : int = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) snake_case_ : List[str] = True snake_case_ : Any = False snake_case_ : List[str] = False snake_case_ : Any = False def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[Any] = TFLEDModelTester(self) _snake_case : List[str] = ConfigTester(self , config_class=lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*lowerCAmelCase) def UpperCamelCase_ ( self : str) -> List[Any]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : Dict = tf.zeros_like(inputs_dict["""attention_mask"""]) _snake_case : List[str] = 2 _snake_case : str = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices , 1 , inputs_dict["""global_attention_mask"""] , ) _snake_case : Tuple = True _snake_case : int = self.model_tester.seq_length _snake_case : str = self.model_tester.encoder_seq_length def check_decoder_attentions_output(lowerCAmelCase : str): _snake_case : int = outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(lowerCAmelCase : Union[str, Any]): _snake_case : Optional[int] = [t.numpy() for t in outputs.encoder_attentions] _snake_case : str = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertEqual(len(lowerCAmelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: _snake_case : str = True _snake_case : int = False _snake_case : Dict = False _snake_case : Union[str, Any] = model_class(lowerCAmelCase) _snake_case : Any = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) _snake_case : Tuple = len(lowerCAmelCase) self.assertEqual(config.output_hidden_states , lowerCAmelCase) check_encoder_attentions_output(lowerCAmelCase) if self.is_encoder_decoder: _snake_case : Dict = model_class(lowerCAmelCase) _snake_case : Tuple = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) self.assertEqual(config.output_hidden_states , lowerCAmelCase) check_decoder_attentions_output(lowerCAmelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _snake_case : Tuple = True _snake_case : List[Any] = model_class(lowerCAmelCase) _snake_case : List[Any] = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) self.assertEqual(config.output_hidden_states , lowerCAmelCase) check_encoder_attentions_output(lowerCAmelCase) # Check attention is always last and order is fine _snake_case : Tuple = True _snake_case : List[str] = True _snake_case : List[str] = model_class(lowerCAmelCase) _snake_case : Tuple = model(self._prepare_for_class(lowerCAmelCase , lowerCAmelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(lowerCAmelCase)) self.assertEqual(model.config.output_hidden_states , lowerCAmelCase) check_encoder_attentions_output(lowerCAmelCase) @unittest.skip("""LED keeps using potentially symbolic tensors in conditionals and breaks tracing.""") def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" pass def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]: """simple docstring""" pass def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return tf.constant(SCREAMING_SNAKE_CASE__ , dtype=tf.intaa ) a__ = 1E-4 @slow @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int]) -> List[Any]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""").led # change to intended input here _snake_case : Optional[int] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _snake_case : Any = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _snake_case : str = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = model(**lowerCAmelCase)[0] _snake_case : Tuple = (1, 1024, 768) self.assertEqual(output.shape , lowerCAmelCase) # change to expected output here _snake_case : List[str] = tf.convert_to_tensor( [[2.3_050, 2.8_279, 0.6_531], [-1.8_457, -0.1_455, -3.5_661], [-1.0_186, 0.4_586, -2.2_043]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3) def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Any = TFLEDForConditionalGeneration.from_pretrained("""allenai/led-base-16384""") # change to intended input here _snake_case : List[str] = _long_tensor([512 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _snake_case : List[Any] = _long_tensor([128 * [0, 3_1414, 232, 328, 740, 1140, 1_2695, 69]]) _snake_case : Union[str, Any] = prepare_led_inputs_dict(model.config , lowerCAmelCase , lowerCAmelCase) _snake_case : Tuple = model(**lowerCAmelCase)[0] _snake_case : Optional[int] = (1, 1024, model.config.vocab_size) self.assertEqual(output.shape , lowerCAmelCase) # change to expected output here _snake_case : str = tf.convert_to_tensor( [[33.6_507, 6.4_572, 16.8_089], [5.8_739, -2.4_238, 11.2_902], [-3.2_139, -4.3_149, 4.2_783]] , ) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-3 , rtol=1E-3)
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 100 ) -> int: _snake_case : List[Any] = n * (n + 1) * (2 * n + 1) / 6 _snake_case : Optional[int] = (n * (n + 1) / 2) ** 2 return int(square_of_sum - sum_of_squares ) if __name__ == "__main__": print(F'''{solution() = }''')
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from __future__ import annotations import copy import tempfile import unittest from transformers import CONFIG_MAPPING, AutoConfig, BertConfig, GPTaConfig, TaConfig, TapasConfig, is_tf_available from transformers.testing_utils import ( DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, RequestCounter, require_tensorflow_probability, require_tf, slow, ) from ..bert.test_modeling_bert import BertModelTester if is_tf_available(): from transformers import ( TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelForTableQuestionAnswering, TFAutoModelForTokenClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFFunnelBaseModel, TFFunnelModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, TFTapasForQuestionAnswering, ) from transformers.models.auto.modeling_tf_auto import ( TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_MAPPING, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.tapas.modeling_tf_tapas import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = """new-model""" if is_tf_available(): class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = NewModelConfig @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Dict) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = """bert-base-cased""" _snake_case : int = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : int = TFAutoModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """bert-base-cased""" _snake_case : Dict = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[Any] = TFAutoModelForPreTraining.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase) _snake_case , _snake_case : List[Any] = TFAutoModelForCausalLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : Optional[int] = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase) _snake_case , _snake_case : Optional[int] = TFAutoModelForMaskedLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : int) -> int: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _snake_case : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : Any = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase) _snake_case , _snake_case : str = TFAutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase , output_loading_info=lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : Any) -> Optional[int]: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Union[str, Any] = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[Any] = TFAutoModelForSequenceClassification.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow def UpperCamelCase_ ( self : int) -> int: """simple docstring""" for model_name in ["bert-base-uncased"]: _snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = TFAutoModelForQuestionAnswering.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) @slow @require_tensorflow_probability def UpperCamelCase_ ( self : Tuple) -> List[Any]: """simple docstring""" for model_name in TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST[5:6]: _snake_case : Dict = AutoConfig.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = TFAutoModelForTableQuestionAnswering.from_pretrained(lowerCAmelCase) _snake_case , _snake_case : List[str] = TFAutoModelForTableQuestionAnswering.from_pretrained( lowerCAmelCase , output_loading_info=lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : Optional[int] = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase) , 1_4410) def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : int = TFAutoModelWithLMHead.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) self.assertEqual(model.num_parameters() , 1_4410) self.assertEqual(model.num_parameters(only_trainable=lowerCAmelCase) , 1_4410) def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : str = TFAutoModel.from_pretrained("""sgugger/funnel-random-tiny""") self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) _snake_case : str = copy.deepcopy(model.config) _snake_case : List[Any] = ["""FunnelBaseModel"""] _snake_case : Dict = TFAutoModel.from_config(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase) _snake_case : List[Any] = TFAutoModel.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : List[Any]) -> Optional[Any]: """simple docstring""" try: AutoConfig.register("""new-model""" , lowerCAmelCase) _snake_case : str = [ TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSequenceClassification, TFAutoModelForTokenClassification, ] for auto_class in auto_classes: with self.subTest(auto_class.__name__): # Wrong config class will raise an error with self.assertRaises(lowerCAmelCase): auto_class.register(lowerCAmelCase , lowerCAmelCase) auto_class.register(lowerCAmelCase , lowerCAmelCase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase): auto_class.register(lowerCAmelCase , lowerCAmelCase) # Now that the config is registered, it can be used as any other config with the auto-API _snake_case : Tuple = BertModelTester(self).get_config() _snake_case : Dict = NewModelConfig(**tiny_config.to_dict()) _snake_case : Optional[int] = auto_class.from_config(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) with tempfile.TemporaryDirectory() as tmp_dir: model.save_pretrained(lowerCAmelCase) _snake_case : List[Any] = auto_class.from_pretrained(lowerCAmelCase) self.assertIsInstance(lowerCAmelCase , lowerCAmelCase) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"] for mapping in ( TF_MODEL_MAPPING, TF_MODEL_FOR_PRETRAINING_MAPPING, TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING, TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, ): if NewModelConfig in mapping._extra_content: del mapping._extra_content[NewModelConfig] def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """bert-base is not a local folder and is not a valid model identifier"""): _snake_case : int = TFAutoModel.from_pretrained("""bert-base""") def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , r"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)"""): _snake_case : Optional[Any] = TFAutoModel.from_pretrained(lowerCAmelCase , revision="""aaaaaa""") def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" with self.assertRaisesRegex( lowerCAmelCase , """hf-internal-testing/config-no-model does not appear to have a file named pytorch_model.bin""" , ): _snake_case : Optional[int] = TFAutoModel.from_pretrained("""hf-internal-testing/config-no-model""") def UpperCamelCase_ ( self : List[Any]) -> Tuple: """simple docstring""" with self.assertRaisesRegex(lowerCAmelCase , """Use `from_pt=True` to load this model"""): _snake_case : List[str] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""") def UpperCamelCase_ ( self : List[str]) -> Dict: """simple docstring""" _snake_case : Tuple = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""") with RequestCounter() as counter: _snake_case : Optional[Any] = TFAutoModel.from_pretrained("""hf-internal-testing/tiny-random-bert""") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0) # With a sharded checkpoint _snake_case : Union[str, Any] = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""") with RequestCounter() as counter: _snake_case : int = TFAutoModel.from_pretrained("""ArthurZ/tiny-random-bert-sharded""") self.assertEqual(counter.get_request_count , 0) self.assertEqual(counter.head_request_count , 1) self.assertEqual(counter.other_request_count , 0)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from __future__ import annotations import unittest from transformers import MobileBertConfig, is_tf_available from transformers.models.auto import get_values from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_MODEL_FOR_PRETRAINING_MAPPING, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertModel, ) @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Any = ( ( TFMobileBertModel, TFMobileBertForMaskedLM, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertForMultipleChoice, ) if is_tf_available() else () ) snake_case_ : int = ( { """feature-extraction""": TFMobileBertModel, """fill-mask""": TFMobileBertForMaskedLM, """question-answering""": TFMobileBertForQuestionAnswering, """text-classification""": TFMobileBertForSequenceClassification, """token-classification""": TFMobileBertForTokenClassification, """zero-shot""": TFMobileBertForSequenceClassification, } if is_tf_available() else {} ) snake_case_ : Tuple = False snake_case_ : Union[str, Any] = False def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Tuple=False) -> Any: """simple docstring""" _snake_case : Tuple = super()._prepare_for_class(lowerCAmelCase , lowerCAmelCase , return_labels=lowerCAmelCase) if return_labels: if model_class in get_values(lowerCAmelCase): _snake_case : Union[str, Any] = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa) return inputs_dict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=13 , lowerCAmelCase : Optional[int]=7 , lowerCAmelCase : str=True , lowerCAmelCase : List[Any]=True , lowerCAmelCase : Dict=True , lowerCAmelCase : int=True , lowerCAmelCase : List[str]=99 , lowerCAmelCase : List[str]=32 , lowerCAmelCase : str=32 , lowerCAmelCase : List[Any]=2 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=37 , lowerCAmelCase : List[str]="gelu" , lowerCAmelCase : List[str]=0.1 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=512 , lowerCAmelCase : List[str]=16 , lowerCAmelCase : Any=2 , lowerCAmelCase : Optional[int]=0.02 , lowerCAmelCase : Tuple=3 , lowerCAmelCase : int=4 , lowerCAmelCase : Tuple=None , ) -> Tuple: """simple docstring""" _snake_case : Dict = parent _snake_case : str = batch_size _snake_case : int = seq_length _snake_case : Union[str, Any] = is_training _snake_case : Tuple = use_input_mask _snake_case : Union[str, Any] = use_token_type_ids _snake_case : Tuple = use_labels _snake_case : List[Any] = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : List[str] = num_attention_heads _snake_case : Dict = intermediate_size _snake_case : Union[str, Any] = hidden_act _snake_case : int = hidden_dropout_prob _snake_case : str = attention_probs_dropout_prob _snake_case : Optional[Any] = max_position_embeddings _snake_case : Optional[int] = type_vocab_size _snake_case : Dict = type_sequence_label_size _snake_case : Union[str, Any] = initializer_range _snake_case : int = num_labels _snake_case : Union[str, Any] = num_choices _snake_case : Optional[int] = scope _snake_case : List[str] = embedding_size def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : Union[str, Any] = None if self.use_input_mask: _snake_case : Tuple = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : int = None if self.use_token_type_ids: _snake_case : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _snake_case : Any = None _snake_case : Union[str, Any] = None _snake_case : Any = None if self.use_labels: _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size) _snake_case : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _snake_case : Union[str, Any] = ids_tensor([self.batch_size] , self.num_choices) _snake_case : Dict = MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : int) -> List[Any]: """simple docstring""" _snake_case : int = TFMobileBertModel(config=lowerCAmelCase) _snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : int = model(lowerCAmelCase) _snake_case : Optional[int] = [input_ids, input_mask] _snake_case : Tuple = model(lowerCAmelCase) _snake_case : List[str] = model(lowerCAmelCase) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Dict , lowerCAmelCase : str , lowerCAmelCase : Dict , lowerCAmelCase : int , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = TFMobileBertForMaskedLM(config=lowerCAmelCase) _snake_case : int = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : Union[str, Any] = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple) -> int: """simple docstring""" _snake_case : str = TFMobileBertForNextSentencePrediction(config=lowerCAmelCase) _snake_case : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : int = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2)) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : str , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Any , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" _snake_case : Any = TFMobileBertForPreTraining(config=lowerCAmelCase) _snake_case : Dict = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : Union[str, Any] = model(lowerCAmelCase) self.parent.assertEqual( result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2)) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = self.num_labels _snake_case : Dict = TFMobileBertForSequenceClassification(config=lowerCAmelCase) _snake_case : List[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : Any = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCamelCase_ ( self : Any , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any] , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> Any: """simple docstring""" _snake_case : List[str] = self.num_choices _snake_case : List[Any] = TFMobileBertForMultipleChoice(config=lowerCAmelCase) _snake_case : Dict = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) _snake_case : Optional[Any] = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) _snake_case : List[str] = tf.tile(tf.expand_dims(lowerCAmelCase , 1) , (1, self.num_choices, 1)) _snake_case : str = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } _snake_case : Tuple = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Tuple , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Optional[int]) -> str: """simple docstring""" _snake_case : List[Any] = self.num_labels _snake_case : str = TFMobileBertForTokenClassification(config=lowerCAmelCase) _snake_case : Optional[Any] = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : Optional[Any] = model(lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCamelCase_ ( self : str , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str] , lowerCAmelCase : Any) -> List[Any]: """simple docstring""" _snake_case : Any = TFMobileBertForQuestionAnswering(config=lowerCAmelCase) _snake_case : Any = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} _snake_case : Union[str, Any] = model(lowerCAmelCase) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCamelCase_ ( self : Union[str, Any]) -> int: """simple docstring""" _snake_case : Tuple = self.prepare_config_and_inputs() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Union[str, Any] = config_and_inputs _snake_case : Dict = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict def UpperCamelCase_ ( self : List[Any]) -> List[str]: """simple docstring""" _snake_case : Any = TFMobileBertModelTest.TFMobileBertModelTester(self) _snake_case : Optional[int] = ConfigTester(self , config_class=lowerCAmelCase , hidden_size=37) def UpperCamelCase_ ( self : Tuple) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" _snake_case : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*lowerCAmelCase) def UpperCamelCase_ ( self : str) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> Optional[Any]: """simple docstring""" _snake_case : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" _snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> List[str]: """simple docstring""" _snake_case : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*lowerCAmelCase) @slow def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" for model_name in ["google/mobilebert-uncased"]: _snake_case : List[Any] = TFMobileBertModel.from_pretrained(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase) @require_tf class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" _snake_case : Any = TFMobileBertForPreTraining.from_pretrained("""google/mobilebert-uncased""") _snake_case : int = tf.constant([[0, 1, 2, 3, 4, 5]]) _snake_case : Union[str, Any] = model(lowerCAmelCase)[0] _snake_case : List[str] = [1, 6, 3_0522] self.assertEqual(output.shape , lowerCAmelCase) _snake_case : Optional[Any] = tf.constant( [ [ [-4.5_919_547, -9.248_295, -9.645_256], [-6.7_306_175, -6.440_284, -6.6_052_837], [-7.2_743_506, -6.7_847_915, -6.024_673], ] ]) tf.debugging.assert_near(output[:, :3, :3] , lowerCAmelCase , atol=1E-4)
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
import unittest import numpy as np from transformers import BertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): from transformers.models.bert.modeling_flax_bert import ( FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, ) class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Tuple=13 , lowerCAmelCase : Dict=7 , lowerCAmelCase : Any=True , lowerCAmelCase : int=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Union[str, Any]=99 , lowerCAmelCase : Dict=32 , lowerCAmelCase : str=5 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Optional[int]=37 , lowerCAmelCase : Optional[Any]="gelu" , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Tuple=0.1 , lowerCAmelCase : Tuple=512 , lowerCAmelCase : Dict=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : Tuple=4 , ) -> List[str]: """simple docstring""" _snake_case : int = parent _snake_case : int = batch_size _snake_case : str = seq_length _snake_case : int = is_training _snake_case : Union[str, Any] = use_attention_mask _snake_case : int = use_token_type_ids _snake_case : int = use_labels _snake_case : Any = vocab_size _snake_case : Any = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : Tuple = num_attention_heads _snake_case : Any = intermediate_size _snake_case : Tuple = hidden_act _snake_case : List[str] = hidden_dropout_prob _snake_case : Optional[Any] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : Optional[Any] = type_vocab_size _snake_case : Any = type_sequence_label_size _snake_case : List[str] = initializer_range _snake_case : List[str] = num_choices def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _snake_case : Any = None if self.use_attention_mask: _snake_case : Dict = random_attention_mask([self.batch_size, self.seq_length]) _snake_case : Tuple = None if self.use_token_type_ids: _snake_case : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _snake_case : Optional[Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowerCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def UpperCamelCase_ ( self : Optional[Any]) -> Any: """simple docstring""" _snake_case : int = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Tuple = config_and_inputs _snake_case : Any = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Any = self.prepare_config_and_inputs() _snake_case , _snake_case , _snake_case , _snake_case : Dict = config_and_inputs _snake_case : int = True _snake_case : Any = floats_tensor([self.batch_size, self.seq_length, self.hidden_size]) _snake_case : Any = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) return ( config, input_ids, attention_mask, encoder_hidden_states, encoder_attention_mask, ) @require_flax class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = True snake_case_ : Dict = ( ( FlaxBertModel, FlaxBertForPreTraining, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForQuestionAnswering, FlaxBertForNextSentencePrediction, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertForQuestionAnswering, ) if is_flax_available() else () ) def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" _snake_case : int = FlaxBertModelTester(self) @slow def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[int] = FlaxBertModel.from_pretrained("""bert-base-cased""") _snake_case : Optional[int] = model(np.ones((1, 1))) self.assertIsNotNone(lowerCAmelCase)
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = """mgp-str""" def __init__( self : Union[str, Any] , lowerCAmelCase : Any=[32, 128] , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : Optional[int]=27 , lowerCAmelCase : Union[str, Any]=38 , lowerCAmelCase : List[Any]=5_0257 , lowerCAmelCase : Optional[Any]=3_0522 , lowerCAmelCase : Optional[Any]=768 , lowerCAmelCase : Tuple=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Dict=4.0 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=False , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : Optional[Any]=0.0 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : str=0.0 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : str=0.02 , **lowerCAmelCase : int , ) -> List[str]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[Any] = image_size _snake_case : List[Any] = patch_size _snake_case : Dict = num_channels _snake_case : Optional[int] = max_token_length _snake_case : Dict = num_character_labels _snake_case : Dict = num_bpe_labels _snake_case : Union[str, Any] = num_wordpiece_labels _snake_case : Tuple = hidden_size _snake_case : List[Any] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Tuple = mlp_ratio _snake_case : str = distilled _snake_case : List[Any] = layer_norm_eps _snake_case : str = drop_rate _snake_case : Optional[Any] = qkv_bias _snake_case : Dict = attn_drop_rate _snake_case : str = drop_path_rate _snake_case : str = output_aa_attentions _snake_case : Tuple = initializer_range
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFCamembertModel @require_tf @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : Any = TFCamembertModel.from_pretrained("""jplu/tf-camembert-base""") _snake_case : Optional[int] = tf.convert_to_tensor( [[5, 121, 11, 660, 16, 730, 2_5543, 110, 83, 6]] , dtype=tf.intaa , ) # J'aime le camembert !" _snake_case : Union[str, Any] = model(lowerCAmelCase)["""last_hidden_state"""] _snake_case : str = tf.TensorShape((1, 10, 768)) self.assertEqual(output.shape , lowerCAmelCase) # compare the actual values for a slice. _snake_case : Any = tf.convert_to_tensor( [[[-0.0_254, 0.0_235, 0.1_027], [0.0_606, -0.1_811, -0.0_418], [-0.1_561, -0.1_127, 0.2_687]]] , dtype=tf.floataa , ) # camembert = torch.hub.load('pytorch/fairseq', 'camembert.v0') # camembert.eval() # expected_slice = roberta.model.forward(input_ids)[0][:, :3, :3].detach() self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4))
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) a__ = getLogger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int = 8 , SCREAMING_SNAKE_CASE__ : int = 1_024 , SCREAMING_SNAKE_CASE__ : Dict="val" , SCREAMING_SNAKE_CASE__ : Any=None , SCREAMING_SNAKE_CASE__ : str=False , SCREAMING_SNAKE_CASE__ : Optional[Any]="summarization" , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=1 , SCREAMING_SNAKE_CASE__ : Dict = None , SCREAMING_SNAKE_CASE__ : Any="" , **SCREAMING_SNAKE_CASE__ : str , ) -> Dict: _snake_case : Optional[int] = str(SCREAMING_SNAKE_CASE__ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=SCREAMING_SNAKE_CASE__ ) _snake_case : int = Path(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = save_dir.joinpath(F'''rank_{local_rank}_output.json''' ) torch.cuda.set_device(SCREAMING_SNAKE_CASE__ ) _snake_case : str = AutoModelForSeqaSeqLM.from_pretrained(SCREAMING_SNAKE_CASE__ ).cuda() if fpaa: _snake_case : Dict = model.half() # determine if we need to increase num_beams use_task_specific_params(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # update config with task specific params _snake_case : Dict = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: _snake_case : Any = num_return_sequences _snake_case : List[str] = AutoTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ) logger.info(F'''Inferred tokenizer type: {tokenizer.__class__}''' ) # if this is wrong, check config.model_type. if max_source_length is None: _snake_case : Tuple = tokenizer.model_max_length if prefix is None: _snake_case : Optional[Any] = prefix or getattr(model.config , """prefix""" , """""" ) or """""" _snake_case : Any = SeqaSeqDataset( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , max_target_length=1_024 , type_path=SCREAMING_SNAKE_CASE__ , n_obs=SCREAMING_SNAKE_CASE__ , prefix=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. _snake_case : Union[str, Any] = ds.make_sortish_sampler(SCREAMING_SNAKE_CASE__ , distributed=SCREAMING_SNAKE_CASE__ , add_extra_examples=SCREAMING_SNAKE_CASE__ , shuffle=SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = DataLoader(SCREAMING_SNAKE_CASE__ , sampler=SCREAMING_SNAKE_CASE__ , batch_size=SCREAMING_SNAKE_CASE__ , collate_fn=ds.collate_fn ) _snake_case : Union[str, Any] = [] for batch in tqdm(SCREAMING_SNAKE_CASE__ ): _snake_case : Tuple = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=SCREAMING_SNAKE_CASE__ , num_beams=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) _snake_case : Tuple = tokenizer.batch_decode(SCREAMING_SNAKE_CASE__ , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = batch["""ids"""] if num_return_sequences > 1: _snake_case : List[Any] = chunks(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(SCREAMING_SNAKE_CASE__ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results, sampler.num_replicas def lowercase ( ) -> List[str]: _snake_case : str = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=SCREAMING_SNAKE_CASE__ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=SCREAMING_SNAKE_CASE__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=SCREAMING_SNAKE_CASE__ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ ) parser.add_argument( """--type_path""" , type=SCREAMING_SNAKE_CASE__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=SCREAMING_SNAKE_CASE__ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=SCREAMING_SNAKE_CASE__ , default=8 , required=SCREAMING_SNAKE_CASE__ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=SCREAMING_SNAKE_CASE__ , default=-1 , required=SCREAMING_SNAKE_CASE__ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=SCREAMING_SNAKE_CASE__ , default=1 , required=SCREAMING_SNAKE_CASE__ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=SCREAMING_SNAKE_CASE__ , default=600 , required=SCREAMING_SNAKE_CASE__ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument("""--tgt_lang""" , type=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ ) parser.add_argument( """--prefix""" , type=SCREAMING_SNAKE_CASE__ , required=SCREAMING_SNAKE_CASE__ , default=SCREAMING_SNAKE_CASE__ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) _snake_case : str = time.time() _snake_case , _snake_case : str = parser.parse_known_args() _snake_case : Any = parse_numeric_n_bool_cl_kwargs(SCREAMING_SNAKE_CASE__ ) if generate_kwargs and args.local_rank <= 0: print(F'''parsed the following generate kwargs: {generate_kwargs}''' ) _snake_case : Tuple = Path(args.save_dir + """_tmp""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) # this handles locking. _snake_case : List[str] = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(F'''Found files at {json_save_dir} please move or remove them.''' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. _snake_case : List[Any] = {} if args.src_lang is not None: _snake_case : List[str] = args.src_lang if args.tgt_lang is not None: _snake_case : Optional[Any] = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : Tuple = eval_data_dir( args.data_dir , SCREAMING_SNAKE_CASE__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) if args.local_rank <= 0: _snake_case : str = Path(args.save_dir ) save_dir.mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = gather_results_from_each_node(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , args.sync_timeout ) _snake_case : Any = combine_partial_results(SCREAMING_SNAKE_CASE__ ) if args.num_return_sequences > 1: _snake_case : List[str] = save_dir.joinpath("""pseudolabel_results.json""" ) print(F'''Saving aggregated results at {save_path}, intermediate in {json_save_dir}/''' ) save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return _snake_case : Any = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(SCREAMING_SNAKE_CASE__ ) as f: _snake_case : Any = [x.rstrip() for x in f.readlines()][: len(SCREAMING_SNAKE_CASE__ )] # Calculate metrics, save metrics, and save _generations.txt _snake_case : str = """translation""" in args.task _snake_case : str = calculate_bleu if calc_bleu else calculate_rouge _snake_case : Tuple = """bleu""" if calc_bleu else """rouge""" _snake_case : Dict = score_fn(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Any = time.time() - start_time _snake_case : Union[str, Any] = round(runtime / metrics["""n_obs"""] , 4 ) _snake_case : Any = num_replicas # TODO(@stas00): add whatever metadata to metrics _snake_case : List[Any] = save_dir.joinpath(F'''{args.type_path}_{metric_name}.json''' ) save_json(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ , save_dir.joinpath(F'''{args.type_path}_generations.txt''' ) ) if args.debug: write_txt_file(SCREAMING_SNAKE_CASE__ , save_dir.joinpath(F'''{args.type_path}.target''' ) ) else: shutil.rmtree(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> List: _snake_case : str = [] for partial_result in partial_results: records.extend(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = sorted(SCREAMING_SNAKE_CASE__ , key=lambda SCREAMING_SNAKE_CASE__ : x["id"] ) _snake_case : Optional[int] = [x["""pred"""] for x in records] return preds def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Dict[str, List]]: # WAIT FOR lots of .json files _snake_case : List[Any] = time.time() logger.info("""waiting for all nodes to finish""" ) _snake_case : str = None while (time.time() - start_wait) < timeout: _snake_case : Optional[Any] = list(save_dir.glob("""rank_*.json""" ) ) if len(SCREAMING_SNAKE_CASE__ ) < num_replicas: continue try: # make sure all json files are fully saved _snake_case : str = lmap(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures a__ = logging.get_logger(__name__) @dataclass class snake_case : '''simple docstring''' snake_case_ : str = field(metadata={"""help""": """The name of the task to train on: """ + """, """.join(glue_processors.keys() )} ) snake_case_ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) snake_case_ : int = field( default=1_28 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) snake_case_ : bool = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" _snake_case : Union[str, Any] = self.task_name.lower() class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = """train""" snake_case_ : List[Any] = """dev""" snake_case_ : Union[str, Any] = """test""" class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : GlueDataTrainingArguments snake_case_ : str snake_case_ : List[InputFeatures] def __init__( self : str , lowerCAmelCase : GlueDataTrainingArguments , lowerCAmelCase : PreTrainedTokenizerBase , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Union[str, Split] = Split.train , lowerCAmelCase : Optional[str] = None , ) -> int: """simple docstring""" warnings.warn( """This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" , lowerCAmelCase , ) _snake_case : List[Any] = args _snake_case : int = glue_processors[args.task_name]() _snake_case : List[Any] = glue_output_modes[args.task_name] if isinstance(lowerCAmelCase , lowerCAmelCase): try: _snake_case : Union[str, Any] = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""") # Load data features from cache or dataset file _snake_case : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F'''cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}''' , ) _snake_case : Union[str, Any] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _snake_case , _snake_case : List[Any] = label_list[2], label_list[1] _snake_case : Union[str, Any] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _snake_case : Optional[Any] = cached_features_file + """.lock""" with FileLock(lowerCAmelCase): if os.path.exists(lowerCAmelCase) and not args.overwrite_cache: _snake_case : Optional[Any] = time.time() _snake_case : List[str] = torch.load(lowerCAmelCase) logger.info( F'''Loading features from cached file {cached_features_file} [took %.3f s]''' , time.time() - start) else: logger.info(F'''Creating features from dataset file at {args.data_dir}''') if mode == Split.dev: _snake_case : Optional[Any] = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _snake_case : int = self.processor.get_test_examples(args.data_dir) else: _snake_case : List[str] = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _snake_case : Optional[int] = examples[:limit_length] _snake_case : Any = glue_convert_examples_to_features( lowerCAmelCase , lowerCAmelCase , max_length=args.max_seq_length , label_list=lowerCAmelCase , output_mode=self.output_mode , ) _snake_case : Dict = time.time() torch.save(self.features , lowerCAmelCase) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F'''Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]''') def __len__( self : Tuple) -> str: """simple docstring""" return len(self.features) def __getitem__( self : Tuple , lowerCAmelCase : Tuple) -> InputFeatures: """simple docstring""" return self.features[i] def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" return self.label_list
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: if n == 1 or not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return 0 elif n == 2: return 1 else: _snake_case : Optional[Any] = [0, 1] for i in range(2 , n + 1 ): sequence.append(sequence[i - 1] + sequence[i - 2] ) return sequence[n] def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = 2 while digits < n: index += 1 _snake_case : Optional[int] = len(str(fibonacci(SCREAMING_SNAKE_CASE__ ) ) ) return index def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000 ) -> int: return fibonacci_digits_index(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(solution(int(str(input()).strip())))
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = """maskformer-swin""" snake_case_ : Dict = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : Dict , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : Dict=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Any=[2, 2, 6, 2] , lowerCAmelCase : int=[3, 6, 12, 24] , lowerCAmelCase : List[str]=7 , lowerCAmelCase : str=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : str=False , lowerCAmelCase : str=0.02 , lowerCAmelCase : List[Any]=1E-5 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Union[str, Any] , ) -> int: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = image_size _snake_case : List[str] = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : Tuple = embed_dim _snake_case : str = depths _snake_case : Optional[Any] = len(lowerCAmelCase) _snake_case : Optional[int] = num_heads _snake_case : int = window_size _snake_case : str = mlp_ratio _snake_case : Union[str, Any] = qkv_bias _snake_case : Optional[int] = hidden_dropout_prob _snake_case : Optional[Any] = attention_probs_dropout_prob _snake_case : List[Any] = drop_path_rate _snake_case : Optional[Any] = hidden_act _snake_case : Optional[int] = use_absolute_embeddings _snake_case : Optional[int] = layer_norm_eps _snake_case : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : List[str] = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[int] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : Dict = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
a__ = { "joule": 1.0, "kilojoule": 10_00, "megajoule": 1_00_00_00, "gigajoule": 10_00_00_00_00, "wattsecond": 1.0, "watthour": 36_00, "kilowatthour": 3_60_00_00, "newtonmeter": 1.0, "calorie_nutr": 41_86.8, "kilocalorie_nutr": 4_18_68_00.00, "electronvolt": 1.6_02_17_66_34E-19, "britishthermalunit_it": 10_55.0_55_85, "footpound": 1.355_818, } def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : float ) -> float: if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: _snake_case : Any = ( F'''Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n''' F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
from __future__ import annotations class snake_case : '''simple docstring''' def __init__( self : str , lowerCAmelCase : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case , _snake_case : Any = text, pattern _snake_case , _snake_case : Optional[Any] = len(lowerCAmelCase), len(lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : str) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if char == self.pattern[i]: return i return -1 def UpperCamelCase_ ( self : int , lowerCAmelCase : int) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCamelCase_ ( self : Optional[int]) -> list[int]: """simple docstring""" _snake_case : List[str] = [] for i in range(self.textLen - self.patLen + 1): _snake_case : Optional[int] = self.mismatch_in_text(lowerCAmelCase) if mismatch_index == -1: positions.append(lowerCAmelCase) else: _snake_case : Dict = self.match_in_pattern(self.text[mismatch_index]) _snake_case : str = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions a__ = """ABAABA""" a__ = """AB""" a__ = BoyerMooreSearch(text, pattern) a__ = bms.bad_character_heuristic() if len(positions) == 0: print("""No match found""") else: print("""Pattern found in following positions: """) print(positions)
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
from __future__ import annotations import time from collections.abc import Sequence from random import randint from matplotlib import pyplot as plt def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int | None, int | None, float]: if not arr: return None, None, 0 if low == high: return low, high, arr[low] _snake_case : Dict = (low + high) // 2 _snake_case , _snake_case , _snake_case : int = max_subarray(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case , _snake_case : Optional[Any] = max_subarray(SCREAMING_SNAKE_CASE__ , mid + 1 , SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case , _snake_case : Dict = max_cross_sum(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if left_sum >= right_sum and left_sum >= cross_sum: return left_low, left_high, left_sum elif right_sum >= left_sum and right_sum >= cross_sum: return right_low, right_high, right_sum return cross_left, cross_right, cross_sum def lowercase ( SCREAMING_SNAKE_CASE__ : Sequence[float] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> tuple[int, int, float]: _snake_case , _snake_case : Dict = float("""-inf""" ), -1 _snake_case , _snake_case : int = float("""-inf""" ), -1 _snake_case : int | float = 0 for i in range(SCREAMING_SNAKE_CASE__ , low - 1 , -1 ): summ += arr[i] if summ > left_sum: _snake_case : Optional[Any] = summ _snake_case : str = i _snake_case : Any = 0 for i in range(mid + 1 , high + 1 ): summ += arr[i] if summ > right_sum: _snake_case : Dict = summ _snake_case : List[Any] = i return max_left, max_right, (left_sum + right_sum) def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> float: _snake_case : Optional[int] = [randint(1 , SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ )] _snake_case : Optional[Any] = time.time() max_subarray(SCREAMING_SNAKE_CASE__ , 0 , input_size - 1 ) _snake_case : Dict = time.time() return end - start def lowercase ( ) -> None: _snake_case : str = [10, 100, 1_000, 10_000, 50_000, 100_000, 200_000, 300_000, 400_000, 500_000] _snake_case : Tuple = [time_max_subarray(SCREAMING_SNAKE_CASE__ ) for input_size in input_sizes] print("""No of Inputs\t\tTime Taken""" ) for input_size, runtime in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): print(SCREAMING_SNAKE_CASE__ , """\t\t""" , SCREAMING_SNAKE_CASE__ ) plt.plot(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) plt.xlabel("""Number of Inputs""" ) plt.ylabel("""Time taken in seconds""" ) plt.show() if __name__ == "__main__": from doctest import testmod testmod()
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available a__ = { """configuration_roc_bert""": ["""ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoCBertConfig"""], """tokenization_roc_bert""": ["""RoCBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoCBertForCausalLM""", """RoCBertForMaskedLM""", """RoCBertForMultipleChoice""", """RoCBertForPreTraining""", """RoCBertForQuestionAnswering""", """RoCBertForSequenceClassification""", """RoCBertForTokenClassification""", """RoCBertLayer""", """RoCBertModel""", """RoCBertPreTrainedModel""", """load_tf_weights_in_roc_bert""", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging a__ = logging.get_logger(__name__) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: _snake_case : str = set() _snake_case : List[str] = [] def parse_line(SCREAMING_SNAKE_CASE__ : Any ): for line in fp: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : Union[str, Any] = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(SCREAMING_SNAKE_CASE__ ) > 0: _snake_case : str = """\n""".join(SCREAMING_SNAKE_CASE__ ) # Only keep the warnings specified in `targets` if any(F''': {x}: ''' in warning for x in targets ): selected_warnings.add(SCREAMING_SNAKE_CASE__ ) buffer.clear() continue else: _snake_case : Optional[int] = line.strip() buffer.append(SCREAMING_SNAKE_CASE__ ) if from_gh: for filename in os.listdir(SCREAMING_SNAKE_CASE__ ): _snake_case : int = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename != "warnings.txt": continue with open(SCREAMING_SNAKE_CASE__ ) as fp: parse_line(SCREAMING_SNAKE_CASE__ ) else: try: with zipfile.ZipFile(SCREAMING_SNAKE_CASE__ ) as z: for filename in z.namelist(): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): # read the file if filename != "warnings.txt": continue with z.open(SCREAMING_SNAKE_CASE__ ) as fp: parse_line(SCREAMING_SNAKE_CASE__ ) except Exception: logger.warning( F'''{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.''' ) return selected_warnings def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: _snake_case : Optional[Any] = set() _snake_case : Union[str, Any] = [os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for p in os.listdir(SCREAMING_SNAKE_CASE__ ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) return selected_warnings if __name__ == "__main__": def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: return values.split(""",""" ) a__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) a__ = parser.parse_args() a__ = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links a__ = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts a__ = extract_warnings(args.output_dir, args.targets) a__ = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a__ = """src/transformers""" a__ = """docs/source/en/tasks""" def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> Optional[int]: with open(SCREAMING_SNAKE_CASE__ , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f: _snake_case : List[Any] = f.readlines() # Find the start prompt. _snake_case : List[str] = 0 while not lines[start_index].startswith(SCREAMING_SNAKE_CASE__ ): start_index += 1 start_index += 1 _snake_case : int = start_index while not lines[end_index].startswith(SCREAMING_SNAKE_CASE__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a__ = direct_transformers_import(TRANSFORMERS_PATH) a__ = { """asr.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, """audio_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, """language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, """image_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, """masked_language_modeling.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, """multiple_choice.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, """object_detection.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, """question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, """semantic_segmentation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, """sequence_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, """summarization.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """token_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, """translation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, """video_classification.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, """document_question_answering.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, """monocular_depth_estimation.md""": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a__ = { """summarization.md""": ("""nllb""",), """translation.md""": ("""nllb""",), } def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[Any]: _snake_case : Dict = TASK_GUIDE_TO_MODELS[task_guide] _snake_case : Any = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(SCREAMING_SNAKE_CASE__ , set() ) _snake_case : Dict = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F'''[{name}](../model_doc/{code})''' for code, name in model_names.items()] ) + "\n" def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple=False ) -> List[str]: _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = _find_text_in_file( filename=os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , start_prompt="""<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->""" , end_prompt="""<!--End of the generated tip-->""" , ) _snake_case : List[str] = get_model_list_for_task(SCREAMING_SNAKE_CASE__ ) if current_list != new_list: if overwrite: with open(os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , """w""" , encoding="""utf-8""" , newline="""\n""" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F'''The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`''' """ to fix this.""" ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") a__ = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" return F'''gaussian_noise_s={seed}_shape={'_'.join([str(lowerCAmelCase) for s in shape])}.npy''' def UpperCamelCase_ ( self : Optional[int]) -> List[Any]: """simple docstring""" super().tearDown() gc.collect() def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : List[str]=(4, 4, 64, 64) , lowerCAmelCase : str=False) -> Optional[int]: """simple docstring""" _snake_case : Tuple = jnp.bfloataa if fpaa else jnp.floataa _snake_case : Optional[int] = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase)) , dtype=lowerCAmelCase) return image def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str=False , lowerCAmelCase : Tuple="CompVis/stable-diffusion-v1-4") -> str: """simple docstring""" _snake_case : Dict = jnp.bfloataa if fpaa else jnp.floataa _snake_case : List[str] = """bf16""" if fpaa else None _snake_case , _snake_case : Union[str, Any] = FlaxUNetaDConditionModel.from_pretrained( lowerCAmelCase , subfolder="""unet""" , dtype=lowerCAmelCase , revision=lowerCAmelCase) return model, params def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any=0 , lowerCAmelCase : Union[str, Any]=(4, 77, 768) , lowerCAmelCase : Optional[Any]=False) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = jnp.bfloataa if fpaa else jnp.floataa _snake_case : str = jnp.array(load_hf_numpy(self.get_file_format(lowerCAmelCase , lowerCAmelCase)) , dtype=lowerCAmelCase) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2_323, -0.1_304, 0.0_813, -0.3_093, -0.0_919, -0.1_571, -0.1_125, -0.5_806]], [17, 0.55, [-0.0_831, -0.2_443, 0.0_901, -0.0_919, 0.3_396, 0.0_103, -0.3_743, 0.0_701]], [8, 0.89, [-0.4_863, 0.0_859, 0.0_875, -0.1_658, 0.9_199, -0.0_114, 0.4_839, 0.4_639]], [3, 1000, [-0.5_649, 0.2_402, -0.5_518, 0.1_248, 1.1_328, -0.2_443, -0.0_325, -1.0_078]], # fmt: on ]) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" _snake_case , _snake_case : Union[str, Any] = self.get_unet_model(model_id="""CompVis/stable-diffusion-v1-4""" , fpaa=lowerCAmelCase) _snake_case : Any = self.get_latents(lowerCAmelCase , fpaa=lowerCAmelCase) _snake_case : Optional[int] = self.get_encoder_hidden_states(lowerCAmelCase , fpaa=lowerCAmelCase) _snake_case : Union[str, Any] = model.apply( {"""params""": params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape _snake_case : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) _snake_case : Union[str, Any] = jnp.array(lowerCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1_514, 0.0_807, 0.1_624, 0.1_016, -0.1_896, 0.0_263, 0.0_677, 0.2_310]], [17, 0.55, [0.1_164, -0.0_216, 0.0_170, 0.1_589, -0.3_120, 0.1_005, -0.0_581, -0.1_458]], [8, 0.89, [-0.1_758, -0.0_169, 0.1_004, -0.1_411, 0.1_312, 0.1_103, -0.1_996, 0.2_139]], [3, 1000, [0.1_214, 0.0_352, -0.0_731, -0.1_562, -0.0_994, -0.0_906, -0.2_340, -0.0_539]], # fmt: on ]) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : Optional[int] = self.get_unet_model(model_id="""stabilityai/stable-diffusion-2""" , fpaa=lowerCAmelCase) _snake_case : Union[str, Any] = self.get_latents(lowerCAmelCase , shape=(4, 4, 96, 96) , fpaa=lowerCAmelCase) _snake_case : Dict = self.get_encoder_hidden_states(lowerCAmelCase , shape=(4, 77, 1024) , fpaa=lowerCAmelCase) _snake_case : Optional[int] = model.apply( {"""params""": params} , lowerCAmelCase , jnp.array(lowerCAmelCase , dtype=jnp.intaa) , encoder_hidden_states=lowerCAmelCase , ).sample assert sample.shape == latents.shape _snake_case : Dict = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())) , dtype=jnp.floataa) _snake_case : int = jnp.array(lowerCAmelCase , dtype=jnp.floataa) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(lowerCAmelCase , lowerCAmelCase , atol=1E-2)
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. a__ = abspath(join(dirname(dirname(__file__)), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> str: from diffusers.utils.testing_utils import pytest_addoption_shared pytest_addoption_shared(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: from diffusers.utils.testing_utils import pytest_terminal_summary_main _snake_case : int = terminalreporter.config.getoption("""--make-reports""" ) if make_reports: pytest_terminal_summary_main(SCREAMING_SNAKE_CASE__ , id=SCREAMING_SNAKE_CASE__ )
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """funnel-transformer/small""": """https://huggingface.co/funnel-transformer/small/resolve/main/config.json""", """funnel-transformer/small-base""": """https://huggingface.co/funnel-transformer/small-base/resolve/main/config.json""", """funnel-transformer/medium""": """https://huggingface.co/funnel-transformer/medium/resolve/main/config.json""", """funnel-transformer/medium-base""": """https://huggingface.co/funnel-transformer/medium-base/resolve/main/config.json""", """funnel-transformer/intermediate""": ( """https://huggingface.co/funnel-transformer/intermediate/resolve/main/config.json""" ), """funnel-transformer/intermediate-base""": ( """https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/config.json""" ), """funnel-transformer/large""": """https://huggingface.co/funnel-transformer/large/resolve/main/config.json""", """funnel-transformer/large-base""": """https://huggingface.co/funnel-transformer/large-base/resolve/main/config.json""", """funnel-transformer/xlarge""": """https://huggingface.co/funnel-transformer/xlarge/resolve/main/config.json""", """funnel-transformer/xlarge-base""": """https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """funnel""" snake_case_ : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", } def __init__( self : Tuple , lowerCAmelCase : int=3_0522 , lowerCAmelCase : List[str]=[4, 4, 4] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : str=2 , lowerCAmelCase : Optional[int]=768 , lowerCAmelCase : List[str]=12 , lowerCAmelCase : str=64 , lowerCAmelCase : int=3072 , lowerCAmelCase : Tuple="gelu_new" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : List[str]=None , lowerCAmelCase : Union[str, Any]=1E-9 , lowerCAmelCase : List[Any]="mean" , lowerCAmelCase : Dict="relative_shift" , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Optional[int]=True , lowerCAmelCase : Optional[int]=True , **lowerCAmelCase : Tuple , ) -> int: """simple docstring""" _snake_case : Any = vocab_size _snake_case : Optional[Any] = block_sizes _snake_case : Optional[Any] = [1] * len(lowerCAmelCase) if block_repeats is None else block_repeats assert len(lowerCAmelCase) == len( self.block_repeats), "`block_sizes` and `block_repeats` should have the same length." _snake_case : Any = num_decoder_layers _snake_case : str = d_model _snake_case : Optional[Any] = n_head _snake_case : Optional[Any] = d_head _snake_case : Union[str, Any] = d_inner _snake_case : Dict = hidden_act _snake_case : List[Any] = hidden_dropout _snake_case : List[str] = attention_dropout _snake_case : Union[str, Any] = activation_dropout _snake_case : Optional[int] = initializer_range _snake_case : Optional[Any] = initializer_std _snake_case : List[str] = layer_norm_eps assert pooling_type in [ "mean", "max", ], F'''Got {pooling_type} for `pooling_type` but only \'mean\' and \'max\' are supported.''' _snake_case : Tuple = pooling_type assert attention_type in [ "relative_shift", "factorized", ], F'''Got {attention_type} for `attention_type` but only \'relative_shift\' and \'factorized\' are supported.''' _snake_case : Dict = attention_type _snake_case : Tuple = separate_cls _snake_case : Dict = truncate_seq _snake_case : List[str] = pool_q_only super().__init__(**lowerCAmelCase) @property def UpperCamelCase_ ( self : Optional[Any]) -> str: """simple docstring""" return sum(self.block_sizes) @num_hidden_layers.setter def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" raise NotImplementedError( """This model does not support the setting of `num_hidden_layers`. Please set `block_sizes`.""") @property def UpperCamelCase_ ( self : int) -> Union[str, Any]: """simple docstring""" return len(self.block_sizes) @num_blocks.setter def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" raise NotImplementedError("""This model does not support the setting of `num_blocks`. Please set `block_sizes`.""")
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> float: _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> None: if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): _snake_case : Tuple = ( """Expected a list of numbers as input, found """ F'''{type(SCREAMING_SNAKE_CASE__ ).__name__}''' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: _snake_case : Tuple = F'''Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}''' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError("""Missing an input""" ) def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : list ) -> float: _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError("""Both points must be in the same n-dimensional space""" ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import os import re import shutil import sys import tempfile import unittest import black a__ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. a__ = """ def __init__(self, config): super().__init__() self.transform = BertPredictionHeadTransform(config) # The output weights are the same as the input embeddings, but there is # an output-only bias for each token. self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.bias = nn.Parameter(torch.zeros(config.vocab_size)) # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` self.decoder.bias = self.bias def forward(self, hidden_states): hidden_states = self.transform(hidden_states) hidden_states = self.decoder(hidden_states) return hidden_states """ class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" _snake_case : int = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir , """models/bert/""")) _snake_case : Optional[Any] = self.transformer_dir shutil.copy( os.path.join(lowerCAmelCase , """src/transformers/models/bert/modeling_bert.py""") , os.path.join(self.transformer_dir , """models/bert/modeling_bert.py""") , ) def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = """src/transformers""" shutil.rmtree(self.transformer_dir) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Union[str, Any]=None) -> List[Any]: """simple docstring""" _snake_case : List[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _snake_case : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _snake_case : str = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119) _snake_case : int = black.format_str(lowerCAmelCase , mode=lowerCAmelCase) _snake_case : List[str] = os.path.join(self.transformer_dir , """new_code.py""") with open(lowerCAmelCase , """w""" , newline="""\n""") as f: f.write(lowerCAmelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCAmelCase)) == 0) else: check_copies.is_copy_consistent(f.name , overwrite=lowerCAmelCase) with open(lowerCAmelCase , """r""") as f: self.assertTrue(f.read() , lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> Union[str, Any]: """simple docstring""" _snake_case : Tuple = check_copies.find_code_in_transformers("""models.bert.modeling_bert.BertLMPredictionHead""") self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , REFERENCE_CODE + """\n""" , ) # With no empty line at the end self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead""" , """BertLMPredictionHead""" , lowerCAmelCase , ) # Copy consistency with rename self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , re.sub("""Bert""" , """TestModel""" , lowerCAmelCase) , ) # Copy consistency with a really long name _snake_case : str = """TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason""" self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''' , F'''{long_class_name}LMPredictionHead''' , re.sub("""Bert""" , lowerCAmelCase , lowerCAmelCase) , ) # Copy consistency with overwrite self.check_copy_consistency( """# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel""" , """TestModelLMPredictionHead""" , lowerCAmelCase , overwrite_result=re.sub("""Bert""" , """TestModel""" , lowerCAmelCase) , ) def UpperCamelCase_ ( self : int) -> Tuple: """simple docstring""" _snake_case : Dict = check_copies.LOCALIZED_READMES["""README_zh-hans.md"""] _snake_case : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),""" """ released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**""" """ (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders""" """ as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang""" """ Luong, Quoc V. Le, Christopher D. Manning.""" ) _snake_case : Optional[int] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _snake_case : Any = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.""" """ **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文""" """ [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and""" """ lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same""" """ method has been applied to compress GPT2 into""" """ [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into""" """ [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),""" """ Multilingual BERT into""" """ [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German""" """ version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自""" """ Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather""" """ than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,""" """ Christopher D. Manning 发布。\n""" ) _snake_case , _snake_case : int = check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""]) self.assertFalse(lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) _snake_case , _snake_case : List[Any] = check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""]) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCAmelCase) _snake_case : Optional[Any] = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the""" """ Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for""" """ Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong""" """ Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.""" ) _snake_case : int = ( """1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and""" """ the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _snake_case : int = ( """1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the""" """ Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of""" """ Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian""" """ Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n""" ) _snake_case , _snake_case : List[str] = check_copies.convert_to_localized_md( lowerCAmelCase , lowerCAmelCase , localized_readme["""format_model_list"""]) # Check if the model link is synchronized. self.assertEqual(lowerCAmelCase , lowerCAmelCase)
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: _snake_case : Optional[Any] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = sum(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1 , n + 1 ): _snake_case : str = True for i in range(1 , s + 1 ): _snake_case : List[str] = False for i in range(1 , n + 1 ): for j in range(1 , s + 1 ): _snake_case : str = dp[i][j - 1] if arr[i - 1] <= j: _snake_case : Optional[int] = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ) , -1 , -1 ): if dp[n][j] is True: _snake_case : Optional[Any] = s - 2 * j break return diff
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a__ = """platform""" import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : Union[str, Any]=None , SCREAMING_SNAKE_CASE__ : str=None , SCREAMING_SNAKE_CASE__ : Any=None , ) -> int: if attention_mask is None: _snake_case : Union[str, Any] = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _snake_case : Union[str, Any] = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _snake_case : Optional[int] = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _snake_case : Any = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class snake_case : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]=13 , lowerCAmelCase : List[str]=7 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=False , lowerCAmelCase : int=99 , lowerCAmelCase : Any=16 , lowerCAmelCase : List[str]=2 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Optional[int]=4 , lowerCAmelCase : List[Any]="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : str=0.1 , lowerCAmelCase : int=32 , lowerCAmelCase : int=2 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Optional[Any]=0 , lowerCAmelCase : int=0.02 , ) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = parent _snake_case : Union[str, Any] = batch_size _snake_case : List[str] = seq_length _snake_case : Any = is_training _snake_case : Union[str, Any] = use_labels _snake_case : int = vocab_size _snake_case : Dict = hidden_size _snake_case : int = num_hidden_layers _snake_case : List[Any] = num_attention_heads _snake_case : List[Any] = intermediate_size _snake_case : List[Any] = hidden_act _snake_case : Optional[Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : int = max_position_embeddings _snake_case : Optional[Any] = eos_token_id _snake_case : Optional[int] = pad_token_id _snake_case : Any = bos_token_id _snake_case : int = initializer_range def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) , 3 , self.vocab_size) _snake_case : Optional[int] = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa)) , -1) _snake_case : int = shift_tokens_right(lowerCAmelCase , 1 , 2) _snake_case : int = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=lowerCAmelCase , ) _snake_case : Dict = prepare_blenderbot_inputs_dict(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return config, inputs_dict def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case , _snake_case : int = self.prepare_config_and_inputs() return config, inputs_dict def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Any) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = 20 _snake_case : Union[str, Any] = model_class_name(lowerCAmelCase) _snake_case : int = model.encode(inputs_dict["""input_ids"""]) _snake_case , _snake_case : Tuple = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase) _snake_case : Union[str, Any] = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""") _snake_case : Tuple = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : List[str] = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : List[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _snake_case : str = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=lowerCAmelCase , ) _snake_case : int = model.decode(lowerCAmelCase , lowerCAmelCase) _snake_case : str = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : List[Any] , lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = 20 _snake_case : str = model_class_name(lowerCAmelCase) _snake_case : Optional[Any] = model.encode(inputs_dict["""input_ids"""]) _snake_case , _snake_case : Union[str, Any] = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) _snake_case : Union[str, Any] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1])), ] , axis=-1 , ) _snake_case : Optional[int] = model.init_cache(decoder_input_ids.shape[0] , lowerCAmelCase , lowerCAmelCase) _snake_case : int = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1)[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _snake_case : int = model.decode( decoder_input_ids[:, :-1] , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , past_key_values=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : Optional[Any] = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""") _snake_case : List[str] = model.decode( decoder_input_ids[:, -1:] , lowerCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=lowerCAmelCase , decoder_position_ids=lowerCAmelCase , ) _snake_case : Optional[Any] = model.decode(lowerCAmelCase , lowerCAmelCase , decoder_attention_mask=lowerCAmelCase) _snake_case : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]))) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''') @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' snake_case_ : str = 99 def UpperCamelCase_ ( self : int) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _snake_case : str = input_ids.shape[0] _snake_case : Dict = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def UpperCamelCase_ ( self : Tuple) -> Any: """simple docstring""" _snake_case , _snake_case , _snake_case : int = self._get_config_and_data() _snake_case : Optional[Any] = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase) _snake_case : Dict = lm_model(input_ids=lowerCAmelCase) _snake_case : Tuple = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase) def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" _snake_case : Optional[int] = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _snake_case : Tuple = FlaxBlenderbotSmallForConditionalGeneration(lowerCAmelCase) _snake_case : Optional[Any] = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa) _snake_case : Union[str, Any] = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa) _snake_case : Any = lm_model(input_ids=lowerCAmelCase , decoder_input_ids=lowerCAmelCase) _snake_case : Union[str, Any] = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , lowerCAmelCase) def UpperCamelCase_ ( self : int) -> Any: """simple docstring""" _snake_case : Optional[Any] = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa) _snake_case : List[str] = shift_tokens_right(lowerCAmelCase , 1 , 2) _snake_case : Tuple = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum() _snake_case : List[str] = np.equal(lowerCAmelCase , 1).astype(np.floataa).sum() self.assertEqual(shifted.shape , input_ids.shape) self.assertEqual(lowerCAmelCase , n_pad_before - 1) self.assertTrue(np.equal(shifted[:, 0] , 2).all()) @require_flax class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = True snake_case_ : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) snake_case_ : List[str] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = FlaxBlenderbotSmallModelTester(self) def UpperCamelCase_ ( self : Optional[int]) -> Dict: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> List[Any]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" _snake_case , _snake_case : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _snake_case : Any = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = model_class(lowerCAmelCase) @jax.jit def encode_jitted(lowerCAmelCase : int , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str): return model.encode(input_ids=lowerCAmelCase , attention_mask=lowerCAmelCase) with self.subTest("""JIT Enabled"""): _snake_case : Union[str, Any] = encode_jitted(**lowerCAmelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _snake_case : Optional[int] = encode_jitted(**lowerCAmelCase).to_tuple() self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase)) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) def UpperCamelCase_ ( self : Tuple) -> List[str]: """simple docstring""" _snake_case , _snake_case : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _snake_case : List[Any] = model_class(lowerCAmelCase) _snake_case : Any = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""]) _snake_case : Tuple = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]): return model.decode( decoder_input_ids=lowerCAmelCase , decoder_attention_mask=lowerCAmelCase , encoder_outputs=lowerCAmelCase , ) with self.subTest("""JIT Enabled"""): _snake_case : Tuple = decode_jitted(**lowerCAmelCase).to_tuple() with self.subTest("""JIT Disabled"""): with jax.disable_jit(): _snake_case : int = decode_jitted(**lowerCAmelCase).to_tuple() self.assertEqual(len(lowerCAmelCase) , len(lowerCAmelCase)) for jitted_output, output in zip(lowerCAmelCase , lowerCAmelCase): self.assertEqual(jitted_output.shape , output.shape) @slow def UpperCamelCase_ ( self : Optional[int]) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: _snake_case : List[str] = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""") # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _snake_case : List[Any] = np.ones((1, 1)) * model.config.eos_token_id _snake_case : Optional[int] = model(lowerCAmelCase) self.assertIsNotNone(lowerCAmelCase)
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: def count_of_possible_combinations(SCREAMING_SNAKE_CASE__ : int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: def count_of_possible_combinations_with_dp_array( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] _snake_case : Tuple = sum( count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE__ ) for item in array ) _snake_case : Any = answer return answer _snake_case : int = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int ) -> int: _snake_case : Optional[int] = [0] * (target + 1) _snake_case : str = 1 for i in range(1 , target + 1 ): for j in range(SCREAMING_SNAKE_CASE__ ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() a__ = 3 a__ = 5 a__ = [1, 2, 5] print(combination_sum_iv(n, array, target))
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a__ = { """configuration_pix2struct""": [ """PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Pix2StructConfig""", """Pix2StructTextConfig""", """Pix2StructVisionConfig""", ], """processing_pix2struct""": ["""Pix2StructProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""Pix2StructImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """Pix2StructPreTrainedModel""", """Pix2StructForConditionalGeneration""", """Pix2StructVisionModel""", """Pix2StructTextModel""", ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
from typing import Any class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = data _snake_case : List[Any] = None class snake_case : '''simple docstring''' def __init__( self : Dict) -> Tuple: """simple docstring""" _snake_case : str = None def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" _snake_case : Dict = self.head while temp is not None: print(temp.data , end=""" """) _snake_case : Tuple = temp.next print() def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = Node(lowerCAmelCase) _snake_case : Optional[int] = self.head _snake_case : Any = new_node def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : List[str]) -> str: """simple docstring""" if node_data_a == node_data_a: return else: _snake_case : str = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : Dict = node_a.next _snake_case : str = self.head while node_a is not None and node_a.data != node_data_a: _snake_case : Optional[int] = node_a.next if node_a is None or node_a is None: return _snake_case , _snake_case : Optional[Any] = node_a.data, node_a.data if __name__ == "__main__": a__ = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def lowercase ( ) -> Dict: _snake_case : List[str] = torch.nn.Linear(2 , 4 ) _snake_case : Union[str, Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) _snake_case : Dict = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE__ , max_lr=0.0_1 , steps_per_epoch=2 , epochs=1 ) _snake_case : int = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) _snake_case : Dict = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Tuple: return (model.weight.abs().sum() + model.bias.abs().sum()).item() def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: _snake_case : Tuple = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_cuda def UpperCamelCase_ ( self : str) -> Optional[Any]: """simple docstring""" _snake_case : str = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowerCAmelCase): _snake_case : Optional[int] = Accelerator(cpu=lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = Accelerator() _snake_case : List[Any] = GradientState() assert state.num_steps == 1 _snake_case : Optional[int] = 4 assert state.num_steps == 4 assert state.sync_gradients is True _snake_case : Dict = False assert state.sync_gradients is False GradientState._reset_state() def UpperCamelCase_ ( self : Dict) -> Optional[Any]: """simple docstring""" _snake_case : int = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = create_components() ( ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ( _snake_case ) , ) : Tuple = accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) self.assertTrue(prepared_model in accelerator._models) self.assertTrue(prepared_optimizer in accelerator._optimizers) self.assertTrue(prepared_scheduler in accelerator._schedulers) self.assertTrue(prepared_train_dl in accelerator._dataloaders) self.assertTrue(prepared_valid_dl in accelerator._dataloaders) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) accelerator.free_memory() self.assertTrue(len(accelerator._models) == 0) self.assertTrue(len(accelerator._optimizers) == 0) self.assertTrue(len(accelerator._schedulers) == 0) self.assertTrue(len(accelerator._dataloaders) == 0) def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowerCAmelCase : Optional[int] , **lowerCAmelCase : int): pass with patch("""torch.cuda.set_device""" , lowerCAmelCase), patch_environment(ACCELERATE_TORCH_DEVICE="""cuda:64"""): _snake_case : Any = Accelerator() self.assertEqual(str(accelerator.state.device) , """cuda:64""") def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : Optional[int] = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Union[str, Any] = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Tuple = get_signature(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase) # make sure random weights don't match load_random_weights(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3) # make sure loaded weights match accelerator.load_state(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3) def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" _snake_case : List[str] = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[str] = create_components() accelerator.prepare(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : int = get_signature(lowerCAmelCase) # saving hook def save_config(lowerCAmelCase : str , lowerCAmelCase : Optional[int] , lowerCAmelCase : List[str]): _snake_case : Optional[Any] = {"""class_name""": models[0].__class__.__name__} with open(os.path.join(lowerCAmelCase , """data.json""") , """w""") as f: json.dump(lowerCAmelCase , lowerCAmelCase) # loading hook def load_config(lowerCAmelCase : int , lowerCAmelCase : Optional[Any]): with open(os.path.join(lowerCAmelCase , """data.json""") , """r""") as f: _snake_case : Optional[int] = json.load(lowerCAmelCase) _snake_case : Optional[Any] = config["""class_name"""] _snake_case : Union[str, Any] = accelerator.register_save_state_pre_hook(lowerCAmelCase) _snake_case : List[Any] = accelerator.register_load_state_pre_hook(lowerCAmelCase) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase) # make sure random weights don't match with hooks load_random_weights(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded _snake_case : Tuple = """random""" # make sure loaded weights match with hooks accelerator.load_state(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowerCAmelCase) # make sure random weights don't match with hooks removed load_random_weights(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) > 1E-3) # random class name to verify correct one is loaded _snake_case : int = """random""" # make sure loaded weights match with hooks removed accelerator.load_state(lowerCAmelCase) self.assertTrue(abs(model_signature - get_signature(lowerCAmelCase)) < 1E-3) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__) def UpperCamelCase_ ( self : Tuple) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : List[Any] = create_components() _snake_case : List[Any] = None # This should work _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) self.assertTrue(dummy_obj is None) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : Union[str, Any] = Accelerator() _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : Tuple = create_components() _snake_case : List[Any] = [1, 2, 3] # This should work _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = accelerator.prepare( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Dummy object should have `_is_accelerate_prepared` set to `True`""" , ) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Model is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Optimizer is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Scheduler is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) self.assertEqual( getattr(lowerCAmelCase , """_is_accelerate_prepared""" , lowerCAmelCase) , lowerCAmelCase , """Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`""" , ) @slow @require_bnb def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" from transformers import AutoModelForCausalLM _snake_case : Union[str, Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map={"""""": 0} , ) _snake_case : List[str] = Accelerator() # This should work _snake_case : Optional[Any] = accelerator.prepare(lowerCAmelCase) @slow @require_bnb def UpperCamelCase_ ( self : str) -> str: """simple docstring""" from transformers import AutoModelForCausalLM _snake_case : Dict = Accelerator() with init_empty_weights(): _snake_case : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _snake_case : Optional[int] = infer_auto_device_map(lowerCAmelCase) _snake_case : Dict = """cpu""" _snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , device_map=lowerCAmelCase , load_in_abit=lowerCAmelCase , llm_inta_enable_fpaa_cpu_offload=lowerCAmelCase) # This should not work and get value error with self.assertRaises(lowerCAmelCase): _snake_case : int = accelerator.prepare(lowerCAmelCase) @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : Optional[Any]) -> Dict: """simple docstring""" from transformers import AutoModelForCausalLM _snake_case : Optional[int] = {"""distributed_type""": DistributedType.MULTI_GPU} with init_empty_weights(): _snake_case : Dict = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) model.tie_weights() _snake_case : Dict = infer_auto_device_map(lowerCAmelCase) _snake_case : List[str] = 1 _snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , ) _snake_case : Dict = Accelerator() # This should not work and get value error with self.assertRaises(lowerCAmelCase): _snake_case : Optional[int] = accelerator.prepare(lowerCAmelCase) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): _snake_case : List[Any] = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , ) _snake_case : Dict = infer_auto_device_map(lowerCAmelCase) _snake_case : Tuple = 1 _snake_case : Tuple = AutoModelForCausalLM.from_pretrained( """EleutherAI/gpt-neo-125m""" , load_in_abit=lowerCAmelCase , device_map=lowerCAmelCase , ) _snake_case : Optional[int] = Accelerator() # This should work _snake_case : Any = accelerator.prepare(lowerCAmelCase) @require_cuda def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" _snake_case : Optional[int] = torch.nn.Linear(10 , 10) _snake_case : Optional[Any] = torch.optim.SGD(model.parameters() , lr=0.01) _snake_case : int = Accelerator(cpu=lowerCAmelCase) _snake_case : str = accelerator.prepare(lowerCAmelCase)
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : float , ) -> float: _snake_case : List[Any] = [redshift, radiation_density, matter_density, dark_energy] if any(p < 0 for p in parameters ): raise ValueError("""All input parameters must be positive""" ) if any(p > 1 for p in parameters[1:4] ): raise ValueError("""Relative densities cannot be greater than one""" ) else: _snake_case : str = 1 - (matter_density + radiation_density + dark_energy) _snake_case : List[str] = ( radiation_density * (redshift + 1) ** 4 + matter_density * (redshift + 1) ** 3 + curvature * (redshift + 1) ** 2 + dark_energy ) _snake_case : Dict = hubble_constant * e_a ** (1 / 2) return hubble if __name__ == "__main__": import doctest # run doctest doctest.testmod() # demo LCDM approximation a__ = 0.3 print( hubble_parameter( hubble_constant=68.3, radiation_density=1E-4, matter_density=matter_density, dark_energy=1 - matter_density, redshift=0, ) )
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """tokenizer"""] snake_case_ : List[Any] = """CLIPImageProcessor""" snake_case_ : List[Any] = ("""XLMRobertaTokenizer""", """XLMRobertaTokenizerFast""") def __init__( self : Tuple , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Any=None , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : int = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase , ) _snake_case : str = kwargs.pop("""feature_extractor""") _snake_case : List[str] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(lowerCAmelCase , lowerCAmelCase) def __call__( self : Optional[int] , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[Any]=None , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""") if text is not None: _snake_case : Optional[int] = self.tokenizer(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if images is not None: _snake_case : int = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) if text is not None and images is not None: _snake_case : Optional[Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**lowerCAmelCase) , tensor_type=lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> int: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
from statistics import mean, stdev def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list: _snake_case : Any = min(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = max(SCREAMING_SNAKE_CASE__ ) # normalize data return [round((x - x_min) / (x_max - x_min) , SCREAMING_SNAKE_CASE__ ) for x in data] def lowercase ( SCREAMING_SNAKE_CASE__ : list , SCREAMING_SNAKE_CASE__ : int = 3 ) -> list: _snake_case : Union[str, Any] = mean(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = stdev(SCREAMING_SNAKE_CASE__ ) # standardize data return [round((x - mu) / (sigma) , SCREAMING_SNAKE_CASE__ ) for x in data]
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = """gpt_neo""" snake_case_ : List[str] = ["""past_key_values"""] snake_case_ : Dict = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[int] , lowerCAmelCase : Any=5_0257 , lowerCAmelCase : List[str]=2048 , lowerCAmelCase : Optional[Any]=2048 , lowerCAmelCase : Dict=24 , lowerCAmelCase : List[str]=[[["global", "local"], 12]] , lowerCAmelCase : Optional[Any]=16 , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=256 , lowerCAmelCase : Optional[Any]="gelu_new" , lowerCAmelCase : int=0.0 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : int=0.0 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : Optional[int]=1E-5 , lowerCAmelCase : Optional[Any]=0.02 , lowerCAmelCase : Any=True , lowerCAmelCase : Union[str, Any]=5_0256 , lowerCAmelCase : Optional[int]=5_0256 , **lowerCAmelCase : Tuple , ) -> Dict: """simple docstring""" _snake_case : Any = vocab_size _snake_case : int = max_position_embeddings _snake_case : Dict = hidden_size _snake_case : Tuple = num_layers _snake_case : Optional[Any] = num_heads _snake_case : Dict = intermediate_size _snake_case : Any = window_size _snake_case : int = activation_function _snake_case : Dict = resid_dropout _snake_case : int = embed_dropout _snake_case : Optional[int] = attention_dropout _snake_case : Any = classifier_dropout _snake_case : List[str] = layer_norm_epsilon _snake_case : List[Any] = initializer_range _snake_case : Dict = use_cache _snake_case : Dict = bos_token_id _snake_case : int = eos_token_id _snake_case : Optional[int] = attention_types _snake_case : str = self.expand_attention_types_params(lowerCAmelCase) if len(self.attention_layers) != self.num_layers: raise ValueError( """Configuration for convolutional module is incorrect. """ """It is required that `len(config.attention_layers)` == `config.num_layers` """ F'''but is `len(config.attention_layers) = {len(self.attention_layers)}`, ''' F'''`config.num_layers = {self.num_layers}`. ''' """`config.attention_layers` is prepared using `config.attention_types`. """ """Please verify the value of `config.attention_types` argument.""") super().__init__(bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : int) -> Any: """simple docstring""" _snake_case : Dict = [] for item in attention_types: for _ in range(item[1]): attentions.extend(item[0]) return attentions def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: import torch _snake_case : Union[str, Any] = input.size() _snake_case : int = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = shape[dimension] _snake_case : int = torch.arange(0 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = torch.div(sizedim - size , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) + 1 _snake_case : Any = torch.arange(SCREAMING_SNAKE_CASE__ ) + low_indices[:min_length][:, None] _snake_case : int = [slice(SCREAMING_SNAKE_CASE__ )] * rank _snake_case : int = indices _snake_case : List[Any] = input[s] _snake_case : List[str] = list(range(0 , rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: import torch _snake_case : Any = torch.arange(1 , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = torch.remainder(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = remainders == 0 _snake_case : List[str] = candidates[divisor_indices] _snake_case : Optional[int] = torch.max(SCREAMING_SNAKE_CASE__ ) return largest_divisor, torch.div(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , rounding_mode="""floor""" ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" _snake_case : Optional[int] = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}}) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase , direction="""inputs""") _snake_case : List[Any] = {0: """batch""", 1: """past_sequence + sequence"""} else: _snake_case : Union[str, Any] = {0: """batch""", 1: """sequence"""} return common_inputs @property def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" return self._config.num_heads def UpperCamelCase_ ( self : Any , lowerCAmelCase : PreTrainedTokenizer , lowerCAmelCase : int = -1 , lowerCAmelCase : int = -1 , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: """simple docstring""" _snake_case : str = super(lowerCAmelCase , self).generate_dummy_inputs( lowerCAmelCase , batch_size=lowerCAmelCase , seq_length=lowerCAmelCase , is_pair=lowerCAmelCase , framework=lowerCAmelCase) # We need to order the input in the way they appears in the forward() _snake_case : Any = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]}) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""") else: import torch _snake_case , _snake_case : str = common_inputs["""input_ids"""].shape # Not using the same length for past_key_values _snake_case : Union[str, Any] = seqlen + 2 _snake_case : int = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) _snake_case : str = [ (torch.zeros(lowerCAmelCase), torch.zeros(lowerCAmelCase)) for _ in range(self.num_layers) ] _snake_case : Any = common_inputs["""attention_mask"""] if self.use_past: _snake_case : Any = ordered_inputs["""attention_mask"""].dtype _snake_case : List[str] = torch.cat( [ordered_inputs["""attention_mask"""], torch.ones(lowerCAmelCase , lowerCAmelCase , dtype=lowerCAmelCase)] , dim=1) return ordered_inputs @property def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" return 13
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable a__ = { """configuration_gpt_neox_japanese""": ["""GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTNeoXJapaneseConfig"""], """tokenization_gpt_neox_japanese""": ["""GPTNeoXJapaneseTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTNeoXJapaneseForCausalLM""", """GPTNeoXJapaneseLayer""", """GPTNeoXJapaneseModel""", """GPTNeoXJapanesePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = FunnelTokenizer snake_case_ : Tuple = FunnelTokenizerFast snake_case_ : str = True snake_case_ : Union[str, Any] = True def UpperCamelCase_ ( self : int) -> Union[str, Any]: """simple docstring""" super().setUp() _snake_case : int = [ """<unk>""", """<cls>""", """<sep>""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] _snake_case : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def UpperCamelCase_ ( self : Optional[int] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" return FunnelTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" _snake_case : List[str] = """UNwant\u00E9d,running""" _snake_case : Optional[int] = """unwanted, running""" return input_text, output_text def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" _snake_case : List[str] = self.tokenizer_class(self.vocab_file) _snake_case : List[Any] = tokenizer.tokenize("""UNwant\u00E9d,running""") self.assertListEqual(lowerCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase) , [7, 4, 5, 10, 8, 9]) def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" _snake_case : Any = self.get_tokenizers(do_lower_case=lowerCAmelCase) for tokenizer in tokenizers: _snake_case : Tuple = tokenizer("""UNwant\u00E9d,running""") _snake_case : Tuple = len(inputs["""input_ids"""]) - 1 self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len) _snake_case : Optional[int] = tokenizer("""UNwant\u00E9d,running""" , """UNwant\u00E9d,running""") self.assertListEqual(inputs["""token_type_ids"""] , [2] + [0] * sentence_len + [1] * sentence_len)
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate a__ = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) a__ = [] a__ = [] a__ = {"""type""": """section""", """text""": {"""type""": """plain_text""", """text""": """No failed tests! 🤗""", """emoji""": True}} a__ = [ { """type""": """header""", """text""": { """type""": """plain_text""", """text""": F'''🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results''', """emoji""": True, }, } ] a__ = 0 for log in Path().glob("""*.log"""): a__ = 0 with open(log, """r""") as f: for line in f: a__ = json.loads(line) if line.get("""nodeid""", """""") != "": a__ = line["""nodeid"""] if line.get("""duration""", None) is not None: a__ = F'''{line['duration']:.4f}''' if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) a__ = [] log.unlink() a__ = """""" a__ = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" a__ = [] a__ = {} for test in failed_tests: a__ = test[0].split("""::""") a__ = data[0].split("""/""")[-1] if data[0] not in filesafailed: a__ = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) a__ = [test[0] for test in failed_table] a__ = list(set(files)) # Count number of instances in failed_tests a__ = [] for file in individual_files: table.append([file, len(filesafailed[file])]) a__ = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 30_00: a__ = """Too many failed tests, please see the full report in the Action results.""" a__ = len(err) + 10 a__ = message[: 30_00 - offset] + F'''\n...\n```\n{err}''' print(F'''### {message}''') else: a__ = """No failed tests! 🤗""" print(F'''## {message}''') payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient a__ = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": message, }, } payload.append(md_report) a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": """*For more details:*""", }, """accessory""": { """type""": """button""", """text""": { """type""": """plain_text""", """text""": """Check Action results""", """emoji""": True, }, """url""": F'''https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}''', }, } payload.append(action_button) a__ = { """type""": """context""", """elements""": [ { """type""": """plain_text""", """text""": F'''Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}''', } ], } payload.append(date_report) a__ = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) a__ = response.data["""ts"""] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name a__ = """""" for i, row in enumerate(test_failures): if row[0] != test_class: a__ = row[0] else: a__ = """""" a__ = { """type""": """section""", """text""": { """type""": """mrkdwn""", """text""": F'''Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```''', }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
from math import sqrt def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> bool: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' must been an int and positive" _snake_case : Tuple = True # 0 and 1 are none primes. if number <= 1: _snake_case : Union[str, Any] = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE__ ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: _snake_case : Optional[Any] = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'status' must been from type bool" return status def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Dict: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N _snake_case : Dict = list(range(2 , n + 1 ) ) _snake_case : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE__ ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): _snake_case : Any = 0 # filters actual prime numbers. _snake_case : Optional[int] = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n > 2), "'N' must been an int and > 2" _snake_case : Optional[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE__ ): ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and number >= 0, "'number' must been an int and >= 0" _snake_case : Dict = [] # this list will be returns of the function. # potential prime number factors. _snake_case : Tuple = 2 _snake_case : Optional[int] = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE__ ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE__ ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE__ ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE__ ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type list" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> str: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _snake_case : str = 0 # prime factorization of 'number' _snake_case : Dict = prime_factorization(SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = max(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number >= 0 ), "'number' bust been an int and >= 0" _snake_case : Optional[Any] = 0 # prime factorization of 'number' _snake_case : List[str] = prime_factorization(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = min(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'ans' must been from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 == 0 def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> List[Any]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE__ ), "compare bust been from type bool" return number % 2 != 0 def lowercase ( SCREAMING_SNAKE_CASE__ : Dict ) -> List[str]: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE__ ) ), "'number' must been an int, even and > 2" _snake_case : Optional[int] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' _snake_case : Optional[Any] = get_prime_numbers(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ ) # run variable for while-loops. _snake_case : Optional[Any] = 0 _snake_case : Union[str, Any] = None # exit variable. for break up the loops _snake_case : Any = True while i < len_pn and loop: _snake_case : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: _snake_case : Optional[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (len(SCREAMING_SNAKE_CASE__ ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str ) -> Union[str, Any]: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." _snake_case : Optional[Any] = 0 while numbera != 0: _snake_case : List[str] = numbera % numbera _snake_case : List[Any] = numbera _snake_case : Union[str, Any] = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Union[str, Any]: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." _snake_case : Tuple = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' _snake_case : Optional[Any] = prime_factorization(SCREAMING_SNAKE_CASE__ ) _snake_case : int = prime_factorization(SCREAMING_SNAKE_CASE__ ) elif numbera == 1 or numbera == 1: _snake_case : str = [] _snake_case : int = [] _snake_case : str = max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : str = 0 _snake_case : Union[str, Any] = 0 _snake_case : str = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: _snake_case : Optional[int] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(max(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): ans *= n else: _snake_case : Union[str, Any] = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: _snake_case : str = prime_fac_a.count(SCREAMING_SNAKE_CASE__ ) for _ in range(SCREAMING_SNAKE_CASE__ ): ans *= n done.append(SCREAMING_SNAKE_CASE__ ) # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[str]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'number' must been a positive int" _snake_case : int = 0 _snake_case : int = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and is_prime( SCREAMING_SNAKE_CASE__ ), "'ans' must been a prime number and from type int" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[Any] ) -> List[Any]: assert ( is_prime(SCREAMING_SNAKE_CASE__ ) and is_prime(SCREAMING_SNAKE_CASE__ ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" _snake_case : List[str] = p_number_a + 1 # jump to the next number _snake_case : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE__ ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE__ ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Any: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 1), "'n' must been int and >= 1" _snake_case : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE__ ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE__ ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowercase ( SCREAMING_SNAKE_CASE__ : Any ) -> int: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and ( number > 1 ), "'number' must been an int and >= 1" _snake_case : str = get_divisors(SCREAMING_SNAKE_CASE__ ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE__ ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. _snake_case : Dict = gcd(abs(SCREAMING_SNAKE_CASE__ ) , abs(SCREAMING_SNAKE_CASE__ ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> List[str]: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been a int and >= 0" _snake_case : int = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Dict: assert isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and (n >= 0), "'n' must been an int and >= 0" _snake_case : Optional[int] = 0 _snake_case : Optional[int] = 1 _snake_case : int = 1 # this will be return for _ in range(n - 1 ): _snake_case : Union[str, Any] = ans ans += fiba _snake_case : Optional[int] = tmp return ans
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import math from datetime import datetime, timedelta def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> datetime: _snake_case : List[str] = year % 19 _snake_case : Any = year % 4 _snake_case : Optional[Any] = year % 7 _snake_case : int = math.floor(year / 100 ) _snake_case : Optional[int] = math.floor((13 + 8 * leap_day_inhibits) / 25 ) _snake_case : List[Any] = leap_day_inhibits / 4 _snake_case : Optional[Any] = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 _snake_case : int = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 _snake_case : Dict = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon _snake_case : Optional[Any] = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(SCREAMING_SNAKE_CASE__ , 4 , 18 ) else: return datetime(SCREAMING_SNAKE_CASE__ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): a__ = """will be""" if year > datetime.now().year else """was""" print(F'''Easter in {year} {tense} {gauss_easter(year)}''')
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list: for i in range(len(SCREAMING_SNAKE_CASE__ ) - 1 , 0 , -1 ): _snake_case : List[Any] = False for j in range(SCREAMING_SNAKE_CASE__ , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: _snake_case , _snake_case : Union[str, Any] = unsorted[j - 1], unsorted[j] _snake_case : List[Any] = True for j in range(SCREAMING_SNAKE_CASE__ ): if unsorted[j] > unsorted[j + 1]: _snake_case , _snake_case : List[str] = unsorted[j + 1], unsorted[j] _snake_case : Tuple = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() a__ = input("""Enter numbers separated by a comma:\n""").strip() a__ = [int(item) for item in user_input.split(""",""")] print(F'''{cocktail_shaker_sort(unsorted) = }''')
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> float: _snake_case : Dict = 0.0_0 _snake_case : Tuple = 0 for resistor in resistors: if resistor <= 0: _snake_case : Any = F'''Resistor at index {index} has a negative or zero value!''' raise ValueError(SCREAMING_SNAKE_CASE__ ) first_sum += 1 / float(SCREAMING_SNAKE_CASE__ ) index += 1 return 1 / first_sum def lowercase ( SCREAMING_SNAKE_CASE__ : list[float] ) -> float: _snake_case : Tuple = 0.0_0 _snake_case : Union[str, Any] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: _snake_case : List[Any] = F'''Resistor at index {index} has a negative value!''' raise ValueError(SCREAMING_SNAKE_CASE__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class snake_case ( unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = StableDiffusionLDMaDPipeline snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_PARAMS snake_case_ : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS snake_case_ : List[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS def UpperCamelCase_ ( self : str) -> Optional[int]: """simple docstring""" torch.manual_seed(0) _snake_case : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) _snake_case : Optional[Any] = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0) _snake_case : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0) _snake_case : Dict = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _snake_case : Optional[Any] = CLIPTextModel(lowerCAmelCase) _snake_case : Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _snake_case : int = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Any , lowerCAmelCase : Optional[Any]=0) -> Union[str, Any]: """simple docstring""" if str(lowerCAmelCase).startswith("""mps"""): _snake_case : Tuple = torch.manual_seed(lowerCAmelCase) else: _snake_case : Any = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Dict = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" _snake_case : str = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : List[Any] = self.get_dummy_components() _snake_case : int = StableDiffusionLDMaDPipeline(**lowerCAmelCase) _snake_case : List[Any] = ldmad_pipe.to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : str = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : str = output.rgb, output.depth _snake_case : Any = rgb[0, -3:, -3:, -1] _snake_case : Tuple = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case : Optional[Any] = np.array( [0.37_338_176, 0.70_247, 0.74_203_193, 0.51_643_604, 0.58_256_793, 0.60_932_136, 0.4_181_095, 0.48_355_877, 0.46_535_262]) _snake_case : Tuple = np.array([103.46_727, 85.812_004, 87.849_236]) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb).max() < 1E-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth).max() < 1E-2 def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.get_dummy_components() _snake_case : List[str] = StableDiffusionLDMaDPipeline(**lowerCAmelCase) _snake_case : Tuple = ldmad_pipe.to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = self.get_dummy_inputs(lowerCAmelCase) _snake_case : Tuple = 3 * [inputs["""prompt"""]] # forward _snake_case : Optional[Any] = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : Optional[int] = output.rgb, output.depth _snake_case : Tuple = rgb_slice_a[0, -3:, -3:, -1] _snake_case : List[str] = depth_slice_a[0, -3:, -1] _snake_case : Dict = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[str] = 3 * [inputs.pop("""prompt""")] _snake_case : Dict = ldmad_pipe.tokenizer( lowerCAmelCase , padding="""max_length""" , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase , return_tensors="""pt""" , ) _snake_case : List[Any] = text_inputs["""input_ids"""].to(lowerCAmelCase) _snake_case : Union[str, Any] = ldmad_pipe.text_encoder(lowerCAmelCase)[0] _snake_case : str = prompt_embeds # forward _snake_case : List[str] = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : Tuple = output.rgb, output.depth _snake_case : int = rgb_slice_a[0, -3:, -3:, -1] _snake_case : int = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten()).max() < 1E-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten()).max() < 1E-4 def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[int]: """simple docstring""" _snake_case : Any = """cpu""" # ensure determinism for the device-dependent torch.Generator _snake_case : str = self.get_dummy_components() _snake_case : Optional[Any] = PNDMScheduler(skip_prk_steps=lowerCAmelCase) _snake_case : Optional[int] = StableDiffusionLDMaDPipeline(**lowerCAmelCase) _snake_case : int = ldmad_pipe.to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : int = self.get_dummy_inputs(lowerCAmelCase) _snake_case : List[str] = """french fries""" _snake_case : Tuple = ldmad_pipe(**lowerCAmelCase , negative_prompt=lowerCAmelCase) _snake_case , _snake_case : List[Any] = output.rgb, output.depth _snake_case : Dict = rgb[0, -3:, -3:, -1] _snake_case : int = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _snake_case : Any = np.array( [0.37_044, 0.71_811_503, 0.7_223_251, 0.48_603_675, 0.5_638_391, 0.6_364_948, 0.42_833_704, 0.4_901_315, 0.47_926_217]) _snake_case : Any = np.array([107.84_738, 84.62_802, 89.962_135]) assert np.abs(rgb_slice.flatten() - expected_slice_rgb).max() < 1E-2 assert np.abs(depth_slice.flatten() - expected_slice_depth).max() < 1E-2 @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str , lowerCAmelCase : str="cpu" , lowerCAmelCase : str=torch.floataa , lowerCAmelCase : Union[str, Any]=0) -> List[Any]: """simple docstring""" _snake_case : List[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : int = np.random.RandomState(lowerCAmelCase).standard_normal((1, 4, 64, 64)) _snake_case : Dict = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase) _snake_case : int = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : List[str] = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""") _snake_case : Dict = ldmad_pipe.to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[str] = self.get_inputs(lowerCAmelCase) _snake_case : Optional[int] = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : Optional[Any] = output.rgb, output.depth _snake_case : Dict = rgb[0, -3:, -3:, -1].flatten() _snake_case : Union[str, Any] = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _snake_case : str = np.array( [0.53_805_465, 0.56_707_305, 0.5_486_515, 0.57_012_236, 0.5_814_511, 0.56_253_487, 0.54_843_014, 0.55_092_263, 0.6_459_706]) _snake_case : Dict = np.array( [0.9_263_781, 0.6_678_672, 0.5_486_515, 0.92_202_145, 0.67_831_135, 0.56_253_487, 0.9_241_694, 0.7_551_478, 0.6_459_706]) assert np.abs(rgb_slice - expected_slice_rgb).max() < 3E-3 assert np.abs(depth_slice - expected_slice_depth).max() < 3E-3 @nightly @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[int]) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : List[str]="cpu" , lowerCAmelCase : int=torch.floataa , lowerCAmelCase : str=0) -> List[Any]: """simple docstring""" _snake_case : List[Any] = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Any = np.random.RandomState(lowerCAmelCase).standard_normal((1, 4, 64, 64)) _snake_case : int = torch.from_numpy(lowerCAmelCase).to(device=lowerCAmelCase , dtype=lowerCAmelCase) _snake_case : List[str] = { """prompt""": """a photograph of an astronaut riding a horse""", """latents""": latents, """generator""": generator, """num_inference_steps""": 50, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCamelCase_ ( self : List[Any]) -> List[str]: """simple docstring""" _snake_case : Dict = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d""").to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : int = self.get_inputs(lowerCAmelCase) _snake_case : Optional[int] = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : Optional[Any] = output.rgb, output.depth _snake_case : Dict = 0.495_586 _snake_case : Any = 0.33_795_515 _snake_case : List[str] = 112.48_518 _snake_case : List[Any] = 98.489_746 assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3 assert np.abs(expected_rgb_std - rgb.std()) < 1E-3 assert np.abs(expected_depth_mean - depth.mean()) < 1E-3 assert np.abs(expected_depth_std - depth.std()) < 1E-3 def UpperCamelCase_ ( self : int) -> str: """simple docstring""" _snake_case : int = StableDiffusionLDMaDPipeline.from_pretrained("""Intel/ldm3d-4c""").to(lowerCAmelCase) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : List[Any] = self.get_inputs(lowerCAmelCase) _snake_case : str = ldmad_pipe(**lowerCAmelCase) _snake_case , _snake_case : Dict = output.rgb, output.depth _snake_case : Union[str, Any] = 0.4_194_127 _snake_case : int = 0.35_375_586 _snake_case : Optional[int] = 0.5_638_502 _snake_case : Optional[Any] = 0.34_686_103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean()) < 1E-3 assert np.abs(expected_rgb_std - rgb.std()) < 1E-3 assert np.abs(expected_depth_mean - depth.mean()) < 1E-3 assert np.abs(expected_depth_std - depth.std()) < 1E-3
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) a__ = { """configuration_roformer""": ["""ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RoFormerConfig""", """RoFormerOnnxConfig"""], """tokenization_roformer""": ["""RoFormerTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""RoFormerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """RoFormerForCausalLM""", """RoFormerForMaskedLM""", """RoFormerForMultipleChoice""", """RoFormerForQuestionAnswering""", """RoFormerForSequenceClassification""", """RoFormerForTokenClassification""", """RoFormerLayer""", """RoFormerModel""", """RoFormerPreTrainedModel""", """load_tf_weights_in_roformer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRoFormerForCausalLM""", """TFRoFormerForMaskedLM""", """TFRoFormerForMultipleChoice""", """TFRoFormerForQuestionAnswering""", """TFRoFormerForSequenceClassification""", """TFRoFormerForTokenClassification""", """TFRoFormerLayer""", """TFRoFormerModel""", """TFRoFormerPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """FlaxRoFormerForMaskedLM""", """FlaxRoFormerForMultipleChoice""", """FlaxRoFormerForQuestionAnswering""", """FlaxRoFormerForSequenceClassification""", """FlaxRoFormerForTokenClassification""", """FlaxRoFormerModel""", """FlaxRoFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import math def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]: _snake_case : List[str] = [] _snake_case : Optional[int] = 2 _snake_case : List[str] = int(math.sqrt(SCREAMING_SNAKE_CASE__ ) ) # Size of every segment _snake_case : str = [True] * (end + 1) _snake_case : int = [] while start <= end: if temp[start] is True: in_prime.append(SCREAMING_SNAKE_CASE__ ) for i in range(start * start , end + 1 , SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = False start += 1 prime += in_prime _snake_case : Union[str, Any] = end + 1 _snake_case : Dict = min(2 * end , SCREAMING_SNAKE_CASE__ ) while low <= n: _snake_case : str = [True] * (high - low + 1) for each in in_prime: _snake_case : Optional[Any] = math.floor(low / each ) * each if t < low: t += each for j in range(SCREAMING_SNAKE_CASE__ , high + 1 , SCREAMING_SNAKE_CASE__ ): _snake_case : Any = False for j in range(len(SCREAMING_SNAKE_CASE__ ) ): if temp[j] is True: prime.append(j + low ) _snake_case : Tuple = high + 1 _snake_case : int = min(high + end , SCREAMING_SNAKE_CASE__ ) return prime print(sieve(10**6))
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a__ = logging.get_logger(__name__) a__ = { """tensor(bool)""": np.bool_, """tensor(int8)""": np.inta, """tensor(uint8)""": np.uinta, """tensor(int16)""": np.intaa, """tensor(uint16)""": np.uintaa, """tensor(int32)""": np.intaa, """tensor(uint32)""": np.uintaa, """tensor(int64)""": np.intaa, """tensor(uint64)""": np.uintaa, """tensor(float16)""": np.floataa, """tensor(float)""": np.floataa, """tensor(double)""": np.floataa, } class snake_case : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : int=None , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""") _snake_case : Union[str, Any] = model _snake_case : List[Any] = kwargs.get("""model_save_dir""" , lowerCAmelCase) _snake_case : int = kwargs.get("""latest_model_name""" , lowerCAmelCase) def __call__( self : str , **lowerCAmelCase : Any) -> Optional[int]: """simple docstring""" _snake_case : int = {k: np.array(lowerCAmelCase) for k, v in kwargs.items()} return self.model.run(lowerCAmelCase , lowerCAmelCase) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Dict=None) -> List[str]: """simple docstring""" if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""") _snake_case : Tuple = """CPUExecutionProvider""" return ort.InferenceSession(lowerCAmelCase , providers=[provider] , sess_options=lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = file_name if file_name is not None else ONNX_WEIGHTS_NAME _snake_case : Tuple = self.model_save_dir.joinpath(self.latest_model_name) _snake_case : Dict = Path(lowerCAmelCase).joinpath(lowerCAmelCase) try: shutil.copyfile(lowerCAmelCase , lowerCAmelCase) except shutil.SameFileError: pass # copy external weights (for models >2GB) _snake_case : Dict = self.model_save_dir.joinpath(lowerCAmelCase) if src_path.exists(): _snake_case : Optional[int] = Path(lowerCAmelCase).joinpath(lowerCAmelCase) try: shutil.copyfile(lowerCAmelCase , lowerCAmelCase) except shutil.SameFileError: pass def UpperCamelCase_ ( self : int , lowerCAmelCase : Union[str, os.PathLike] , **lowerCAmelCase : Optional[int] , ) -> str: """simple docstring""" if os.path.isfile(lowerCAmelCase): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''') return os.makedirs(lowerCAmelCase , exist_ok=lowerCAmelCase) # saving model weights/files self._save_pretrained(lowerCAmelCase , **lowerCAmelCase) @classmethod def UpperCamelCase_ ( cls : List[Any] , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : Optional[Union[bool, str, None]] = None , lowerCAmelCase : Optional[Union[str, None]] = None , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional["ort.SessionOptions"] = None , **lowerCAmelCase : List[str] , ) -> List[str]: """simple docstring""" _snake_case : str = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(lowerCAmelCase): _snake_case : Optional[Any] = OnnxRuntimeModel.load_model( os.path.join(lowerCAmelCase , lowerCAmelCase) , provider=lowerCAmelCase , sess_options=lowerCAmelCase) _snake_case : Optional[Any] = Path(lowerCAmelCase) # load model from hub else: # download model _snake_case : List[str] = hf_hub_download( repo_id=lowerCAmelCase , filename=lowerCAmelCase , use_auth_token=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , ) _snake_case : str = Path(lowerCAmelCase).parent _snake_case : List[Any] = Path(lowerCAmelCase).name _snake_case : str = OnnxRuntimeModel.load_model(lowerCAmelCase , provider=lowerCAmelCase , sess_options=lowerCAmelCase) return cls(model=lowerCAmelCase , **lowerCAmelCase) @classmethod def UpperCamelCase_ ( cls : Dict , lowerCAmelCase : Union[str, Path] , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[str] = None , **lowerCAmelCase : str , ) -> List[Any]: """simple docstring""" _snake_case : Any = None if len(str(lowerCAmelCase).split("""@""")) == 2: _snake_case , _snake_case : Optional[Any] = model_id.split("""@""") return cls._from_pretrained( model_id=lowerCAmelCase , revision=lowerCAmelCase , cache_dir=lowerCAmelCase , force_download=lowerCAmelCase , use_auth_token=lowerCAmelCase , **lowerCAmelCase , )
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
from typing import Dict, List, Optional from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """nielsr/canine-s""": 20_48, } # Unicode defines 1,114,112 total “codepoints” a__ = 1_11_41_12 # Below: Constants defining canonical codepoints for special, pseudo-characters. # Copied from https://github.com/google-research/language/blob/master/language/canine/special_codepoints.py a__ = 0 a__ = 0Xe000 a__ = 0Xe001 a__ = 0Xe002 a__ = 0Xe003 a__ = 0Xe004 # Maps special codepoints to human-readable names. a__ = { # Special symbols are represented using codepoints values that are valid, # but designated as "Private Use", meaning that they will never be assigned # characters by the Unicode Consortium, and are thus safe for use here. # # NOTE: Do *NOT* add any sort of [UNK_CHAR] here. They are explicitly # excluded and should fail with a hard error. CLS: "[CLS]", SEP: "[SEP]", BOS: "[BOS]", MASK: "[MASK]", PAD: "[PAD]", RESERVED: "[RESERVED]", } # Maps special codepoint human-readable names to their codepoint values. a__ = {name: codepoint for codepoint, name in SPECIAL_CODEPOINTS.items()} class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Union[str, Any] , lowerCAmelCase : Dict=chr(lowerCAmelCase) , lowerCAmelCase : int=chr(lowerCAmelCase) , lowerCAmelCase : Optional[Any]=chr(lowerCAmelCase) , lowerCAmelCase : List[Any]=chr(lowerCAmelCase) , lowerCAmelCase : Any=chr(lowerCAmelCase) , lowerCAmelCase : int=chr(lowerCAmelCase) , lowerCAmelCase : Optional[Any]=False , lowerCAmelCase : List[str]=2048 , **lowerCAmelCase : int , ) -> int: """simple docstring""" _snake_case : Optional[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else bos_token _snake_case : Union[str, Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else eos_token _snake_case : Optional[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else sep_token _snake_case : Dict = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else cls_token _snake_case : List[Any] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else pad_token # Mask token behave like a normal word, i.e. include the space before it _snake_case : Any = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , model_max_length=lowerCAmelCase , **lowerCAmelCase , ) # Creates a mapping for looking up the IDs of special symbols. _snake_case : Dict[str, int] = {} for codepoint, name in SPECIAL_CODEPOINTS.items(): _snake_case : Any = codepoint # Creates a mapping for looking up the string forms of special symbol IDs. _snake_case : Dict[int, str] = { codepoint: name for name, codepoint in self._special_codepoints.items() } _snake_case : Tuple = UNICODE_VOCAB_SIZE _snake_case : Union[str, Any] = len(self._special_codepoints) @property def UpperCamelCase_ ( self : str) -> int: """simple docstring""" return self._unicode_vocab_size def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str) -> List[str]: """simple docstring""" return list(lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : str) -> int: """simple docstring""" try: return ord(lowerCAmelCase) except TypeError: raise ValueError(F'''invalid token: \'{token}\'''') def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int) -> str: """simple docstring""" try: if index in SPECIAL_CODEPOINTS: return SPECIAL_CODEPOINTS[index] return chr(lowerCAmelCase) except TypeError: raise ValueError(F'''invalid id: {index}''') def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" return "".join(lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : Dict = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] _snake_case : Union[str, Any] = cls + token_ids_a + sep if token_ids_a is not None: result += token_ids_a + sep return result def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase) _snake_case : List[str] = [1] + ([0] * len(lowerCAmelCase)) + [1] if token_ids_a is not None: result += ([0] * len(lowerCAmelCase)) + [1] return result def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : str = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] _snake_case : Any = len(cls + token_ids_a + sep) * [0] if token_ids_a is not None: result += len(token_ids_a + sep) * [1] return result def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> List[str]: """simple docstring""" return ()
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> list[list[int]]: _snake_case : list[list[int]] = [] create_all_state(1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , [] , SCREAMING_SNAKE_CASE__ ) return result def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[int]] , ) -> None: if level == 0: total_list.append(current_list[:] ) return for i in range(SCREAMING_SNAKE_CASE__ , total_number - level + 2 ): current_list.append(SCREAMING_SNAKE_CASE__ ) create_all_state(i + 1 , SCREAMING_SNAKE_CASE__ , level - 1 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) current_list.pop() def lowercase ( SCREAMING_SNAKE_CASE__ : list[list[int]] ) -> None: for i in total_list: print(*SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = 4 a__ = 2 a__ = generate_all_combinations(n, k) print_all_state(total_list)
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import operator as op a__ = """scaler.pt""" a__ = """pytorch_model""" a__ = """random_states""" a__ = """optimizer""" a__ = """scheduler""" a__ = """pytorch_model.bin""" a__ = """pytorch_model.bin.index.json""" a__ = """model.safetensors""" a__ = """model.safetensors.index.json""" a__ = """1.10.2""" a__ = """py38""" a__ = """4.17.0""" a__ = ["""ml.p3.16xlarge""", """ml.p3dn.24xlarge""", """ml.p4dn.24xlarge"""] a__ = ["""FULL_SHARD""", """SHARD_GRAD_OP""", """NO_SHARD""", """HYBRID_SHARD""", """HYBRID_SHARD_ZERO2"""] a__ = ["""TRANSFORMER_BASED_WRAP""", """SIZE_BASED_WRAP""", """NO_WRAP"""] a__ = ["""BACKWARD_PRE""", """BACKWARD_POST""", """NO_PREFETCH"""] a__ = ["""FULL_STATE_DICT""", """LOCAL_STATE_DICT""", """SHARDED_STATE_DICT"""] a__ = """2.0.1""" a__ = ["""pdsh""", """standard""", """openmpi""", """mvapich"""] a__ = ["""default""", """reduce-overhead""", """max-autotune"""] a__ = {""">""": op.gt, """>=""": op.ge, """==""": op.eq, """!=""": op.ne, """<=""": op.le, """<""": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 a__ = [ """nnodes""", """nproc_per_node""", """rdzv_backend""", """rdzv_endpoint""", """rdzv_id""", """rdzv_conf""", """standalone""", """max_restarts""", """monitor_interval""", """start_method""", """role""", """module""", """m""", """no_python""", """run_path""", """log_dir""", """r""", """redirects""", """t""", """tee""", """node_rank""", """master_addr""", """master_port""", ] a__ = ["""DEEPSPEED""", """MULTI_GPU""", """FSDP""", """MEGATRON_LM"""] a__ = ["""DEEPSPEED""", """MULTI_XPU""", """FSDP"""]
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_nllb_moe""": [ """NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NllbMoeConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST""", """NllbMoeForConditionalGeneration""", """NllbMoeModel""", """NllbMoePreTrainedModel""", """NllbMoeTop2Router""", """NllbMoeSparseMLP""", ] if TYPE_CHECKING: from .configuration_nllb_moe import ( NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP, NllbMoeConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nllb_moe import ( NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST, NllbMoeForConditionalGeneration, NllbMoeModel, NllbMoePreTrainedModel, NllbMoeSparseMLP, NllbMoeTopaRouter, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""image_processor""", """tokenizer"""] snake_case_ : int = """ViltImageProcessor""" snake_case_ : Optional[Any] = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Union[str, Any] , lowerCAmelCase : Tuple=None , lowerCAmelCase : Optional[int]=None , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , lowerCAmelCase , ) _snake_case : Optional[int] = kwargs.pop("""feature_extractor""") _snake_case : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""") if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""") super().__init__(lowerCAmelCase , lowerCAmelCase) _snake_case : Any = self.image_processor def __call__( self : List[str] , lowerCAmelCase : List[Any] , lowerCAmelCase : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , lowerCAmelCase : bool = True , lowerCAmelCase : Union[bool, str, PaddingStrategy] = False , lowerCAmelCase : Union[bool, str, TruncationStrategy] = None , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : int = 0 , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True , lowerCAmelCase : Optional[Union[str, TensorType]] = None , **lowerCAmelCase : str , ) -> BatchEncoding: """simple docstring""" _snake_case : Tuple = self.tokenizer( text=lowerCAmelCase , add_special_tokens=lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , max_length=lowerCAmelCase , stride=lowerCAmelCase , pad_to_multiple_of=lowerCAmelCase , return_token_type_ids=lowerCAmelCase , return_attention_mask=lowerCAmelCase , return_overflowing_tokens=lowerCAmelCase , return_special_tokens_mask=lowerCAmelCase , return_offsets_mapping=lowerCAmelCase , return_length=lowerCAmelCase , verbose=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase , ) # add pixel_values + pixel_mask _snake_case : List[Any] = self.image_processor(lowerCAmelCase , return_tensors=lowerCAmelCase) encoding.update(lowerCAmelCase) return encoding def UpperCamelCase_ ( self : int , *lowerCAmelCase : Tuple , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" return self.tokenizer.batch_decode(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : str) -> str: """simple docstring""" return self.tokenizer.decode(*lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" _snake_case : Optional[int] = self.tokenizer.model_input_names _snake_case : Dict = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , lowerCAmelCase , ) return self.image_processor_class @property def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , lowerCAmelCase , ) return self.image_processor
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin a__ = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[int] = PegasusTokenizer snake_case_ : Dict = PegasusTokenizerFast snake_case_ : List[str] = True snake_case_ : Tuple = True def UpperCamelCase_ ( self : List[str]) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case : Tuple = PegasusTokenizer(lowerCAmelCase) tokenizer.save_pretrained(self.tmpdirname) @cached_property def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/pegasus-large""") def UpperCamelCase_ ( self : Tuple , **lowerCAmelCase : List[Any]) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Optional[Any]) -> List[str]: """simple docstring""" return ("This is a test", "This is a test") def UpperCamelCase_ ( self : List[Any]) -> int: """simple docstring""" _snake_case : Union[str, Any] = """</s>""" _snake_case : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase) , lowerCAmelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase) , lowerCAmelCase) def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : Tuple = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<pad>""") self.assertEqual(vocab_keys[1] , """</s>""") self.assertEqual(vocab_keys[-1] , """v""") self.assertEqual(len(lowerCAmelCase) , 1103) def UpperCamelCase_ ( self : Any) -> int: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1103) def UpperCamelCase_ ( self : str) -> Optional[Any]: """simple docstring""" _snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _snake_case : int = self.tokenizer_class.from_pretrained(self.tmpdirname) _snake_case : Optional[Any] = ( """Let's see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important""" """ </s> <pad> <pad> <pad>""" ) _snake_case : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0] _snake_case : Optional[Any] = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> int: """simple docstring""" _snake_case : List[Any] = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word _snake_case : int = """<mask_1> To ensure a <mask_2> flow of bank resolutions.""" _snake_case : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 1_0710, 107, 1] _snake_case : Optional[Any] = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase).input_ids[0] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 9_6103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 _snake_case : Dict = """To ensure a smooth flow of bank resolutions.""" _snake_case : int = [413, 615, 114, 2291, 1971, 113, 1679, 1_0710, 107, 1] _snake_case : Union[str, Any] = tokenizer([raw_input_str] , return_tensors=lowerCAmelCase).input_ids[0] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3]) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = ["""This is going to be way too long.""" * 150, """short example"""] _snake_case : List[str] = ["""not super long but more than 5 tokens""", """tiny"""] _snake_case : List[Any] = self._large_tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""") _snake_case : List[Any] = self._large_tokenizer( text_target=lowerCAmelCase , max_length=5 , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""") assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase) == 2 # input_ids, attention_mask. @slow def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Dict = {"""input_ids""": [[3_8979, 143, 1_8485, 606, 130, 2_6669, 8_7686, 121, 5_4189, 1129, 111, 2_6669, 8_7686, 121, 9114, 1_4787, 121, 1_3249, 158, 592, 956, 121, 1_4621, 3_1576, 143, 6_2613, 108, 9688, 930, 4_3430, 1_1562, 6_2613, 304, 108, 1_1443, 897, 108, 9314, 1_7415, 6_3399, 108, 1_1443, 7614, 1_8316, 118, 4284, 7148, 1_2430, 143, 1400, 2_5703, 158, 111, 4284, 7148, 1_1772, 143, 2_1297, 1064, 158, 122, 204, 3506, 1754, 1133, 1_4787, 1581, 115, 3_3224, 4482, 111, 1355, 110, 2_9173, 317, 5_0833, 108, 2_0147, 9_4665, 111, 7_7198, 107, 1], [110, 6_2613, 117, 638, 112, 1133, 121, 2_0098, 1355, 7_9050, 1_3872, 135, 1596, 5_3541, 1352, 141, 1_3039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 1_8289, 1_7780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase , model_name="""google/bigbird-pegasus-large-arxiv""" , revision="""ba85d0851d708441f91440d509690f1ab6353415""" , ) @require_sentencepiece @require_tokenizers class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = PegasusTokenizer snake_case_ : Dict = PegasusTokenizerFast snake_case_ : List[str] = True snake_case_ : int = True def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _snake_case : Union[str, Any] = PegasusTokenizer(lowerCAmelCase , offset=0 , mask_token_sent=lowerCAmelCase , mask_token="""[MASK]""") tokenizer.save_pretrained(self.tmpdirname) @cached_property def UpperCamelCase_ ( self : Union[str, Any]) -> Union[str, Any]: """simple docstring""" return PegasusTokenizer.from_pretrained("""google/bigbird-pegasus-large-arxiv""") def UpperCamelCase_ ( self : Tuple , **lowerCAmelCase : int) -> PegasusTokenizer: """simple docstring""" return PegasusTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase) def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" return ("This is a test", "This is a test") def UpperCamelCase_ ( self : Optional[int]) -> List[str]: """simple docstring""" _snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname) _snake_case : Tuple = self.tokenizer_class.from_pretrained(self.tmpdirname) _snake_case : List[Any] = ( """Let's see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>""" """ <pad> <pad> <pad>""" ) _snake_case : Dict = rust_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0] _snake_case : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=lowerCAmelCase , add_special_tokens=lowerCAmelCase).input_ids[0] self.assertListEqual(lowerCAmelCase , lowerCAmelCase) @require_torch def UpperCamelCase_ ( self : List[Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = ["""This is going to be way too long.""" * 1000, """short example"""] _snake_case : List[Any] = ["""not super long but more than 5 tokens""", """tiny"""] _snake_case : Union[str, Any] = self._large_tokenizer(lowerCAmelCase , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""") _snake_case : int = self._large_tokenizer( text_target=lowerCAmelCase , max_length=5 , padding=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors="""pt""") assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(lowerCAmelCase) == 2 # input_ids, attention_mask. def UpperCamelCase_ ( self : int) -> str: """simple docstring""" _snake_case : List[str] = ( """This is an example string that is used to test the original TF implementation against the HF""" """ implementation""" ) _snake_case : List[Any] = self._large_tokenizer(lowerCAmelCase).input_ids self.assertListEqual( lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 2_5016, 3137, 464, 109, 2_6955, 3137, 1] , )
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : list ) -> list: _snake_case : Any = len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , SCREAMING_SNAKE_CASE__ ): _snake_case : List[Any] = collection[i] _snake_case : Optional[Any] = 0 _snake_case : Optional[int] = i - 1 while low <= high: _snake_case : int = (low + high) // 2 if val < collection[mid]: _snake_case : int = mid - 1 else: _snake_case : Union[str, Any] = mid + 1 for j in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , -1 ): _snake_case : Any = collection[j - 1] _snake_case : Any = val return collection if __name__ == "__main__": a__ = input("""Enter numbers separated by a comma:\n""").strip() a__ = [int(item) for item in user_input.split(""",""")] print(binary_insertion_sort(unsorted))
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_nllb import NllbTokenizer else: a__ = None a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """sentencepiece.bpe.model""", """tokenizer_file""": """tokenizer.json"""} a__ = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/sentencepiece.bpe.model""" ), }, """tokenizer_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/resolve/main/tokenizer.json""" ), }, } a__ = { """facebook/nllb-large-en-ro""": 10_24, """facebook/nllb-200-distilled-600M""": 10_24, } # fmt: off a__ = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = VOCAB_FILES_NAMES snake_case_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP snake_case_ : str = ["""input_ids""", """attention_mask"""] snake_case_ : Any = NllbTokenizer snake_case_ : List[int] = [] snake_case_ : List[int] = [] def __init__( self : Dict , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Any="</s>" , lowerCAmelCase : str="</s>" , lowerCAmelCase : Optional[int]="<s>" , lowerCAmelCase : Optional[int]="<unk>" , lowerCAmelCase : Any="<pad>" , lowerCAmelCase : List[Any]="<mask>" , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Union[str, Any]=None , lowerCAmelCase : Tuple=None , lowerCAmelCase : Tuple=False , **lowerCAmelCase : Tuple , ) -> List[str]: """simple docstring""" _snake_case : Optional[int] = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else mask_token _snake_case : Dict = legacy_behaviour super().__init__( vocab_file=lowerCAmelCase , tokenizer_file=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , additional_special_tokens=lowerCAmelCase , legacy_behaviour=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : List[Any] = vocab_file _snake_case : Union[str, Any] = False if not self.vocab_file else True _snake_case : int = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens]) self.add_special_tokens({"""additional_special_tokens""": _additional_special_tokens}) _snake_case : Optional[int] = { lang_code: self.convert_tokens_to_ids(lowerCAmelCase) for lang_code in FAIRSEQ_LANGUAGE_CODES } _snake_case : Optional[int] = src_lang if src_lang is not None else """eng_Latn""" _snake_case : List[Any] = self.convert_tokens_to_ids(self._src_lang) _snake_case : Dict = tgt_lang self.set_src_lang_special_tokens(self._src_lang) @property def UpperCamelCase_ ( self : List[str]) -> str: """simple docstring""" return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : str) -> None: """simple docstring""" _snake_case : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : Dict = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase_ ( self : Dict , lowerCAmelCase : List[str] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[Any]) -> List[str]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""") _snake_case : List[str] = src_lang _snake_case : Optional[int] = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase) _snake_case : Dict = self.convert_tokens_to_ids(lowerCAmelCase) _snake_case : Dict = tgt_lang_id return inputs def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str] , lowerCAmelCase : str = "eng_Latn" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "fra_Latn" , **lowerCAmelCase : List[Any] , ) -> BatchEncoding: """simple docstring""" _snake_case : Optional[Any] = src_lang _snake_case : Dict = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : int) -> Optional[Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang) def UpperCamelCase_ ( self : Dict) -> Any: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int) -> None: """simple docstring""" _snake_case : List[str] = self.convert_tokens_to_ids(lowerCAmelCase) if self.legacy_behaviour: _snake_case : Optional[int] = [] _snake_case : Tuple = [self.eos_token_id, self.cur_lang_code] else: _snake_case : List[str] = [self.cur_lang_code] _snake_case : Any = [self.eos_token_id] _snake_case : Optional[int] = self.convert_ids_to_tokens(self.prefix_tokens) _snake_case : Optional[int] = self.convert_ids_to_tokens(self.suffix_tokens) _snake_case : Any = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : str) -> None: """simple docstring""" _snake_case : Any = self.convert_tokens_to_ids(lowerCAmelCase) if self.legacy_behaviour: _snake_case : Tuple = [] _snake_case : int = [self.eos_token_id, self.cur_lang_code] else: _snake_case : List[str] = [self.cur_lang_code] _snake_case : Optional[Any] = [self.eos_token_id] _snake_case : str = self.convert_ids_to_tokens(self.prefix_tokens) _snake_case : Dict = self.convert_ids_to_tokens(self.suffix_tokens) _snake_case : Optional[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ["""$A"""] + suffix_tokens_str , pair=prefix_tokens_str + ["""$A""", """$B"""] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens)) , ) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""") if not os.path.isdir(lowerCAmelCase): logger.error(F'''Vocabulary path ({save_directory}) should be a directory.''') return _snake_case : Union[str, Any] = os.path.join( lowerCAmelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""]) if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase): copyfile(self.vocab_file , lowerCAmelCase) return (out_vocab_file,)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : str = KandinskyVaaPipeline snake_case_ : str = [ """image_embeds""", """negative_image_embeds""", ] snake_case_ : List[Any] = ["""image_embeds""", """negative_image_embeds"""] snake_case_ : Dict = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case_ : Any = False @property def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]: """simple docstring""" return 32 @property def UpperCamelCase_ ( self : Dict) -> Dict: """simple docstring""" return self.time_input_dim @property def UpperCamelCase_ ( self : Optional[int]) -> int: """simple docstring""" return self.time_input_dim * 4 @property def UpperCamelCase_ ( self : Tuple) -> int: """simple docstring""" return 100 @property def UpperCamelCase_ ( self : str) -> Tuple: """simple docstring""" torch.manual_seed(0) _snake_case : Any = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _snake_case : Union[str, Any] = UNetaDConditionModel(**lowerCAmelCase) return model @property def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCamelCase_ ( self : Tuple) -> str: """simple docstring""" torch.manual_seed(0) _snake_case : int = VQModel(**self.dummy_movq_kwargs) return model def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = self.dummy_unet _snake_case : Union[str, Any] = self.dummy_movq _snake_case : List[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00_085 , beta_end=0.012 , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , steps_offset=1 , prediction_type="""epsilon""" , thresholding=lowerCAmelCase , ) _snake_case : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCamelCase_ ( self : Any , lowerCAmelCase : str , lowerCAmelCase : Optional[Any]=0) -> Optional[Any]: """simple docstring""" _snake_case : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase)).to(lowerCAmelCase) _snake_case : Dict = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1)).to( lowerCAmelCase) if str(lowerCAmelCase).startswith("""mps"""): _snake_case : Tuple = torch.manual_seed(lowerCAmelCase) else: _snake_case : int = torch.Generator(device=lowerCAmelCase).manual_seed(lowerCAmelCase) _snake_case : Optional[int] = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case : Tuple = """cpu""" _snake_case : List[str] = self.get_dummy_components() _snake_case : Any = self.pipeline_class(**lowerCAmelCase) _snake_case : List[str] = pipe.to(lowerCAmelCase) pipe.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[int] = pipe(**self.get_dummy_inputs(lowerCAmelCase)) _snake_case : Any = output.images _snake_case : List[str] = pipe( **self.get_dummy_inputs(lowerCAmelCase) , return_dict=lowerCAmelCase , )[0] _snake_case : Tuple = image[0, -3:, -3:, -1] _snake_case : Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _snake_case : int = np.array( [0.6_237_976, 1.0, 0.36_441_332, 1.0, 0.70_639_634, 0.29_877_186, 0.85_652_125, 0.5_216_843, 0.54_454_046]) assert ( np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self : Any) -> str: """simple docstring""" _snake_case : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""") _snake_case : Union[str, Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa) pipe_prior.to(lowerCAmelCase) _snake_case : Any = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa) _snake_case : Optional[int] = pipeline.to(lowerCAmelCase) pipeline.set_progress_bar_config(disable=lowerCAmelCase) _snake_case : Optional[Any] = """red cat, 4k photo""" _snake_case : int = torch.Generator(device="""cuda""").manual_seed(0) _snake_case , _snake_case : Dict = pipe_prior( lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _snake_case : str = torch.Generator(device="""cuda""").manual_seed(0) _snake_case : Dict = pipeline( image_embeds=lowerCAmelCase , negative_image_embeds=lowerCAmelCase , generator=lowerCAmelCase , num_inference_steps=100 , output_type="""np""" , ) _snake_case : Tuple = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(lowerCAmelCase , lowerCAmelCase)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a__ = { """configuration_mctct""": ["""MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MCTCTConfig"""], """feature_extraction_mctct""": ["""MCTCTFeatureExtractor"""], """processing_mctct""": ["""MCTCTProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MCTCTForCTC""", """MCTCTModel""", """MCTCTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) a__ = {"""configuration_vit""": ["""VIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTConfig""", """ViTOnnxConfig"""]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""ViTFeatureExtractor"""] a__ = ["""ViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """VIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTForImageClassification""", """ViTForMaskedImageModeling""", """ViTModel""", """ViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TFViTForImageClassification""", """TFViTModel""", """TFViTPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxViTForImageClassification""", """FlaxViTModel""", """FlaxViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=False ) -> Dict: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : str = len(set_a.intersection(SCREAMING_SNAKE_CASE__ ) ) if alternative_union: _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) else: _snake_case : List[Any] = len(set_a.union(SCREAMING_SNAKE_CASE__ ) ) return intersection / union if isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE__ , (list, tuple) ): _snake_case : Any = [element for element in set_a if element in set_b] if alternative_union: _snake_case : List[Any] = len(SCREAMING_SNAKE_CASE__ ) + len(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) / union else: _snake_case : List[Any] = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) return len(SCREAMING_SNAKE_CASE__ ) / len(SCREAMING_SNAKE_CASE__ ) return None if __name__ == "__main__": a__ = {"""a""", """b""", """c""", """d""", """e"""} a__ = {"""c""", """d""", """e""", """f""", """h""", """i"""} print(jaccard_similarity(set_a, set_b))
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
import requests def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> None: _snake_case : str = {"""Content-Type""": """application/json"""} _snake_case : Tuple = requests.post(SCREAMING_SNAKE_CASE__ , json={"""text""": message_body} , headers=SCREAMING_SNAKE_CASE__ ) if response.status_code != 200: _snake_case : Dict = ( """Request to slack returned an error """ F'''{response.status_code}, the response is:\n{response.text}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message("""<YOUR MESSAGE BODY>""", """<SLACK CHANNEL URL>""")
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
import pytest a__ = """__dummy_dataset1__""" a__ = """ import json import os import datasets REPO_URL = \"https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/\" URLS = {\"train\": REPO_URL + \"wikiann-bn-train.jsonl\", \"validation\": REPO_URL + \"wikiann-bn-validation.jsonl\"} class __DummyDataset1__(datasets.GeneratorBasedBuilder): def _info(self): features = datasets.Features( { \"tokens\": datasets.Sequence(datasets.Value(\"string\")), \"ner_tags\": datasets.Sequence( datasets.features.ClassLabel( names=[ \"O\", \"B-PER\", \"I-PER\", \"B-ORG\", \"I-ORG\", \"B-LOC\", \"I-LOC\", ] ) ), \"langs\": datasets.Sequence(datasets.Value(\"string\")), \"spans\": datasets.Sequence(datasets.Value(\"string\")), } ) return datasets.DatasetInfo(features=features) def _split_generators(self, dl_manager): dl_path = dl_manager.download(URLS) return [ datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={\"filepath\": dl_path[\"train\"]}), datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={\"filepath\": dl_path[\"validation\"]}), ] def _generate_examples(self, filepath): with open(filepath, \"r\", encoding=\"utf-8\") as f: for i, line in enumerate(f): yield i, json.loads(line) """ @pytest.fixture def lowercase ( ) -> Optional[int]: return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def lowercase ( ) -> Dict: return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: _snake_case : List[Any] = dataset_loading_script_name _snake_case : List[str] = tmp_path / """datasets""" / script_name script_dir.mkdir(parents=SCREAMING_SNAKE_CASE__ ) _snake_case : str = script_dir / F'''{script_name}.py''' with open(SCREAMING_SNAKE_CASE__ , """w""" ) as f: f.write(SCREAMING_SNAKE_CASE__ ) return str(SCREAMING_SNAKE_CASE__ )
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 a__ = { # 1536-bit 5: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 2048-bit 14: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AACAA68FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 3072-bit 15: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 4096-bit 16: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199""" + """FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 6144-bit 17: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08""" + """8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B""" + """302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9""" + """A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6""" + """49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8""" + """FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C""" + """180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718""" + """3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D""" + """04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D""" + """B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226""" + """1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC""" + """E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26""" + """99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB""" + """04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2""" + """233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127""" + """D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406""" + """AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918""" + """DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151""" + """2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03""" + """F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F""" + """BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B""" + """B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632""" + """387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E""" + """6DCC4024FFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, # 8192-bit 18: { """prime""": int( """FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1""" + """29024E088A67CC74020BBEA63B139B22514A08798E3404DD""" + """EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245""" + """E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED""" + """EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D""" + """C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F""" + """83655D23DCA3AD961C62F356208552BB9ED529077096966D""" + """670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B""" + """E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9""" + """DE2BCBF6955817183995497CEA956AE515D2261898FA0510""" + """15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64""" + """ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7""" + """ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B""" + """F12FFA06D98A0864D87602733EC86A64521F2B18177B200C""" + """BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31""" + """43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7""" + """88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA""" + """2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6""" + """287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED""" + """1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9""" + """93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492""" + """36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD""" + """F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831""" + """179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B""" + """DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF""" + """5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6""" + """D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3""" + """23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA""" + """CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328""" + """06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C""" + """DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE""" + """12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4""" + """38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300""" + """741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568""" + """3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9""" + """22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B""" + """4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A""" + """062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36""" + """4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1""" + """B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92""" + """4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47""" + """9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71""" + """60C980DD98EDD3DFFFFFFFFFFFFFFFFF""", base=16, ), """generator""": 2, }, } class snake_case : '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : int = 14) -> None: """simple docstring""" if group not in primes: raise ValueError("""Unsupported Group""") _snake_case : Optional[int] = primes[group]["""prime"""] _snake_case : List[Any] = primes[group]["""generator"""] _snake_case : str = int(hexlify(urandom(32)) , base=16) def UpperCamelCase_ ( self : Union[str, Any]) -> str: """simple docstring""" return hex(self.__private_key)[2:] def UpperCamelCase_ ( self : Optional[int]) -> str: """simple docstring""" _snake_case : Any = pow(self.generator , self.__private_key , self.prime) return hex(lowerCAmelCase)[2:] def UpperCamelCase_ ( self : int , lowerCAmelCase : int) -> bool: """simple docstring""" return ( 2 <= key <= self.prime - 2 and pow(lowerCAmelCase , (self.prime - 1) // 2 , self.prime) == 1 ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : str) -> str: """simple docstring""" _snake_case : List[str] = int(lowerCAmelCase , base=16) if not self.is_valid_public_key(lowerCAmelCase): raise ValueError("""Invalid public key""") _snake_case : List[str] = pow(lowerCAmelCase , self.__private_key , self.prime) return shaaaa(str(lowerCAmelCase).encode()).hexdigest() @staticmethod def UpperCamelCase_ ( lowerCAmelCase : int , lowerCAmelCase : int) -> bool: """simple docstring""" return ( 2 <= remote_public_key_str <= prime - 2 and pow(lowerCAmelCase , (prime - 1) // 2 , lowerCAmelCase) == 1 ) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : str , lowerCAmelCase : str , lowerCAmelCase : int = 14) -> str: """simple docstring""" _snake_case : Optional[Any] = int(lowerCAmelCase , base=16) _snake_case : int = int(lowerCAmelCase , base=16) _snake_case : Optional[int] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(lowerCAmelCase , lowerCAmelCase): raise ValueError("""Invalid public key""") _snake_case : Optional[int] = pow(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) return shaaaa(str(lowerCAmelCase).encode()).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
import math import qiskit def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 1 ) -> qiskit.result.counts.Counts: if ( isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ): raise TypeError("""inputs must be integers.""" ) if (input_a < 0) or (input_a < 0) or (carry_in < 0): raise ValueError("""inputs must be positive.""" ) if ( (math.floor(SCREAMING_SNAKE_CASE__ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__ ) != input_a) or (math.floor(SCREAMING_SNAKE_CASE__ ) != carry_in) ): raise ValueError("""inputs must be exact integers.""" ) if (input_a > 2) or (input_a > 2) or (carry_in > 2): raise ValueError("""inputs must be less or equal to 2.""" ) # build registers _snake_case : Dict = qiskit.QuantumRegister(4 , """qr""" ) _snake_case : Optional[int] = qiskit.ClassicalRegister(2 , """cr""" ) # list the entries _snake_case : Union[str, Any] = [input_a, input_a, carry_in] _snake_case : int = qiskit.QuantumCircuit(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) for i in range(0 , 3 ): if entry[i] == 2: quantum_circuit.h(SCREAMING_SNAKE_CASE__ ) # for hadamard entries elif entry[i] == 1: quantum_circuit.x(SCREAMING_SNAKE_CASE__ ) # for 1 entries elif entry[i] == 0: quantum_circuit.i(SCREAMING_SNAKE_CASE__ ) # for 0 entries # build the circuit quantum_circuit.ccx(0 , 1 , 3 ) # ccx = toffoli gate quantum_circuit.cx(0 , 1 ) quantum_circuit.ccx(1 , 2 , 3 ) quantum_circuit.cx(1 , 2 ) quantum_circuit.cx(0 , 1 ) quantum_circuit.measure([2, 3] , SCREAMING_SNAKE_CASE__ ) # measure the last two qbits _snake_case : List[str] = qiskit.Aer.get_backend("""aer_simulator""" ) _snake_case : Dict = qiskit.execute(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , shots=1_000 ) return job.result().get_counts(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": print(F'''Total sum count for state is: {quantum_full_adder(1, 1, 1)}''')
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) a__ = logging.getLogger(__name__) @dataclass class snake_case : '''simple docstring''' snake_case_ : str = field( metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} ) snake_case_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) snake_case_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) snake_case_ : Optional[str] = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} ,) snake_case_ : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether tp freeze the encoder."""} ) snake_case_ : bool = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Whether to freeze the embeddings."""} ) @dataclass class snake_case : '''simple docstring''' snake_case_ : str = field( metadata={"""help""": """The input data dir. Should contain the .tsv files (or other data files) for the task."""} ) snake_case_ : Optional[str] = field( default="""summarization""" ,metadata={"""help""": """Task name, summarization (or summarization_{dataset} for pegasus) or translation"""} ,) snake_case_ : Optional[int] = field( default=10_24 ,metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) snake_case_ : Optional[int] = field( default=1_28 ,metadata={ """help""": ( """The maximum total sequence length for target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) snake_case_ : Optional[int] = field( default=1_42 ,metadata={ """help""": ( """The maximum total sequence length for validation target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded. """ """This argument is also used to override the ``max_length`` param of ``model.generate``, which is used """ """during ``evaluate`` and ``predict``.""" ) } ,) snake_case_ : Optional[int] = field( default=1_42 ,metadata={ """help""": ( """The maximum total sequence length for test target text after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) } ,) snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# training examples. -1 means use all."""} ) snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# validation examples. -1 means use all."""} ) snake_case_ : Optional[int] = field(default=-1 ,metadata={"""help""": """# test examples. -1 means use all."""} ) snake_case_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Source language id for translation."""} ) snake_case_ : Optional[str] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """Target language id for translation."""} ) snake_case_ : Optional[int] = field(default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """# num_beams to use for evaluation."""} ) snake_case_ : bool = field( default=SCREAMING_SNAKE_CASE_ ,metadata={"""help""": """If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined."""} ,) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: logger.info(F'''***** {split} metrics *****''' ) for key in sorted(metrics.keys() ): logger.info(F''' {key} = {metrics[key]}''' ) save_json(SCREAMING_SNAKE_CASE__ , os.path.join(SCREAMING_SNAKE_CASE__ , F'''{split}_results.json''' ) ) def lowercase ( ) -> List[str]: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. _snake_case : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _snake_case , _snake_case , _snake_case : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _snake_case , _snake_case , _snake_case : Optional[Any] = parser.parse_args_into_dataclasses() check_output_dir(SCREAMING_SNAKE_CASE__ ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _snake_case : str = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case : Optional[int] = ("""encoder_layerdrop""", """decoder_layerdrop""", """dropout""", """attention_dropout""") for p in extra_model_params: if getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): assert hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), F'''({config.__class__.__name__}) doesn\'t have a `{p}` attribute''' setattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) _snake_case : Optional[int] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) _snake_case : str = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf=""".ckpt""" in model_args.model_name_or_path , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(SCREAMING_SNAKE_CASE__ , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: _snake_case : Any = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(SCREAMING_SNAKE_CASE__ , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: _snake_case : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(SCREAMING_SNAKE_CASE__ ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) _snake_case : Dict = SeqaSeqDataset # Get datasets _snake_case : int = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""train""" , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_train else None ) _snake_case : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""val""" , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) _snake_case : Optional[int] = ( dataset_class( SCREAMING_SNAKE_CASE__ , type_path="""test""" , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or """""" , ) if training_args.do_predict else None ) # Initialize our Trainer _snake_case : List[Any] = ( build_compute_metrics_fn(data_args.task , SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate else None ) _snake_case : List[Any] = SeqaSeqTrainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , data_args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , data_collator=SeqaSeqDataCollator( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=SCREAMING_SNAKE_CASE__ , tokenizer=SCREAMING_SNAKE_CASE__ , ) _snake_case : Optional[int] = {} # Training if training_args.do_train: logger.info("""*** Train ***""" ) _snake_case : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) _snake_case : int = train_result.metrics _snake_case : int = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics("""train""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _snake_case : List[str] = trainer.evaluate(metric_key_prefix="""val""" ) _snake_case : int = data_args.n_val _snake_case : Union[str, Any] = round(metrics["""val_loss"""] , 4 ) if trainer.is_world_process_zero(): handle_metrics("""val""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.do_predict: logger.info("""*** Predict ***""" ) _snake_case : Optional[int] = trainer.predict(test_dataset=SCREAMING_SNAKE_CASE__ , metric_key_prefix="""test""" ) _snake_case : str = test_output.metrics _snake_case : Union[str, Any] = data_args.n_test if trainer.is_world_process_zero(): _snake_case : int = round(metrics["""test_loss"""] , 4 ) handle_metrics("""test""" , SCREAMING_SNAKE_CASE__ , training_args.output_dir ) all_metrics.update(SCREAMING_SNAKE_CASE__ ) if training_args.predict_with_generate: _snake_case : int = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=SCREAMING_SNAKE_CASE__ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = lmap(str.strip , SCREAMING_SNAKE_CASE__ ) write_txt_file(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """test_generations.txt""" ) ) if trainer.is_world_process_zero(): save_json(SCREAMING_SNAKE_CASE__ , os.path.join(training_args.output_dir , """all_results.json""" ) ) return all_metrics def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> Any: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available a__ = { """configuration_longt5""": ["""LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LongT5Config""", """LongT5OnnxConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """LongT5EncoderModel""", """LongT5ForConditionalGeneration""", """LongT5Model""", """LongT5PreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxLongT5ForConditionalGeneration""", """FlaxLongT5Model""", """FlaxLongT5PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class snake_case : '''simple docstring''' @staticmethod def UpperCamelCase_ ( *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' snake_case_ : Dict = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" _snake_case : Dict = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""") _snake_case : Optional[Any] = [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] return object_detector, examples def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" _snake_case : Any = object_detector(examples[0] , threshold=0.0) _snake_case : Optional[int] = len(lowerCAmelCase) self.assertGreater(lowerCAmelCase , 0) self.assertEqual( lowerCAmelCase , [ { """score""": ANY(lowerCAmelCase), """label""": ANY(lowerCAmelCase), """box""": {"""xmin""": ANY(lowerCAmelCase), """ymin""": ANY(lowerCAmelCase), """xmax""": ANY(lowerCAmelCase), """ymax""": ANY(lowerCAmelCase)}, } for i in range(lowerCAmelCase) ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""") def UpperCamelCase_ ( self : Tuple) -> Tuple: """simple docstring""" pass @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> Optional[Any]: """simple docstring""" _snake_case : List[Any] = pipeline( """zero-shot-object-detection""" , model="""hf-internal-testing/tiny-random-owlvit-object-detection""") _snake_case : Optional[int] = object_detector( """./tests/fixtures/tests_samples/COCO/000000039769.png""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] , ) _snake_case : List[str] = object_detector( [ { """image""": """./tests/fixtures/tests_samples/COCO/000000039769.png""", """candidate_labels""": ["""cat""", """remote""", """couch"""], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ [ {"""score""": 0.7_235, """label""": """cat""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_218, """label""": """remote""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.7_184, """label""": """couch""", """box""": {"""xmin""": 204, """ymin""": 167, """xmax""": 232, """ymax""": 190}}, {"""score""": 0.6_748, """label""": """remote""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_656, """label""": """cat""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_614, """label""": """couch""", """box""": {"""xmin""": 571, """ymin""": 83, """xmax""": 598, """ymax""": 103}}, {"""score""": 0.6_456, """label""": """remote""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, {"""score""": 0.642, """label""": """remote""", """box""": {"""xmin""": 67, """ymin""": 274, """xmax""": 93, """ymax""": 297}}, {"""score""": 0.6_419, """label""": """cat""", """box""": {"""xmin""": 494, """ymin""": 105, """xmax""": 521, """ymax""": 127}}, ] ] , ) @require_torch @slow def UpperCamelCase_ ( self : int) -> Dict: """simple docstring""" _snake_case : Tuple = pipeline("""zero-shot-object-detection""") _snake_case : Optional[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ] , ) _snake_case : Optional[Any] = object_detector( [ { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, { """image""": """http://images.cocodataset.org/val2017/000000039769.jpg""", """candidate_labels""": ["""cat""", """remote""", """couch"""], }, ] , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, {"""score""": 0.1_474, """label""": """remote""", """box""": {"""xmin""": 335, """ymin""": 74, """xmax""": 371, """ymax""": 187}}, {"""score""": 0.1_208, """label""": """couch""", """box""": {"""xmin""": 4, """ymin""": 0, """xmax""": 642, """ymax""": 476}}, ], ] , ) @require_tf @unittest.skip("""Zero Shot Object Detection not implemented in TF""") def UpperCamelCase_ ( self : List[str]) -> Union[str, Any]: """simple docstring""" pass @require_torch @slow def UpperCamelCase_ ( self : Optional[int]) -> Optional[int]: """simple docstring""" _snake_case : Optional[Any] = 0.2 _snake_case : Union[str, Any] = pipeline("""zero-shot-object-detection""") _snake_case : Dict = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , threshold=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, {"""score""": 0.2_537, """label""": """cat""", """box""": {"""xmin""": 1, """ymin""": 55, """xmax""": 315, """ymax""": 472}}, ] , ) @require_torch @slow def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : str = 2 _snake_case : str = pipeline("""zero-shot-object-detection""") _snake_case : List[Any] = object_detector( """http://images.cocodataset.org/val2017/000000039769.jpg""" , candidate_labels=["""cat""", """remote""", """couch"""] , top_k=lowerCAmelCase , ) self.assertEqual( nested_simplify(lowerCAmelCase , decimals=4) , [ {"""score""": 0.2_868, """label""": """cat""", """box""": {"""xmin""": 324, """ymin""": 20, """xmax""": 640, """ymax""": 373}}, {"""score""": 0.277, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 72, """xmax""": 177, """ymax""": 115}}, ] , )
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class snake_case : '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]="resnet50" , lowerCAmelCase : List[str]=3 , lowerCAmelCase : Dict=32 , lowerCAmelCase : str=3 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : List[str]=True , ) -> str: """simple docstring""" _snake_case : Tuple = parent _snake_case : Optional[int] = out_indices if out_indices is not None else [4] _snake_case : Union[str, Any] = stage_names _snake_case : str = out_features _snake_case : Optional[Any] = backbone _snake_case : Optional[int] = batch_size _snake_case : str = image_size _snake_case : Any = num_channels _snake_case : Optional[Any] = use_pretrained_backbone _snake_case : Tuple = is_training def UpperCamelCase_ ( self : str) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _snake_case : List[Any] = self.get_config() return config, pixel_values def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : int) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = TimmBackbone(config=lowerCAmelCase) model.to(lowerCAmelCase) model.eval() with torch.no_grad(): _snake_case : Optional[Any] = model(lowerCAmelCase) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def UpperCamelCase_ ( self : str) -> Dict: """simple docstring""" _snake_case : List[str] = self.prepare_config_and_inputs() _snake_case , _snake_case : Optional[Any] = config_and_inputs _snake_case : Optional[int] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch @require_timm class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Optional[Any] = (TimmBackbone,) if is_torch_available() else () snake_case_ : Optional[int] = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} snake_case_ : str = False snake_case_ : Dict = False snake_case_ : List[Any] = False snake_case_ : int = False def UpperCamelCase_ ( self : List[str]) -> Any: """simple docstring""" _snake_case : Optional[int] = TimmBackboneModelTester(self) _snake_case : Dict = ConfigTester(self , config_class=lowerCAmelCase , has_text_modality=lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any]) -> int: """simple docstring""" self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = """resnet18""" _snake_case : int = """microsoft/resnet-18""" _snake_case : List[Any] = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase) _snake_case : Tuple = AutoBackbone.from_pretrained(lowerCAmelCase) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) _snake_case : List[str] = AutoBackbone.from_pretrained(lowerCAmelCase , use_timm_backbone=lowerCAmelCase , out_indices=[1, 2, 3]) _snake_case : List[Any] = AutoBackbone.from_pretrained(lowerCAmelCase , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip("""TimmBackbone doesn't support feed forward chunking""") def UpperCamelCase_ ( self : Optional[int]) -> List[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have num_hidden_layers attribute""") def UpperCamelCase_ ( self : Tuple) -> Union[str, Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone initialization is managed on the timm side""") def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" pass @unittest.skip("""TimmBackbone models doesn't have inputs_embeds""") def UpperCamelCase_ ( self : List[str]) -> Dict: """simple docstring""" pass @unittest.skip("""TimmBackbone model cannot be created without specifying a backbone checkpoint""") def UpperCamelCase_ ( self : List[Any]) -> List[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase_ ( self : List[str]) -> int: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" pass @unittest.skip("""model weights aren't tied in TimmBackbone.""") def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase_ ( self : Union[str, Any]) -> Optional[Any]: """simple docstring""" pass @unittest.skip("""Only checkpoints on timm can be loaded into TimmBackbone""") def UpperCamelCase_ ( self : int) -> int: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't have hidden size info in its configuration.""") def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" pass @unittest.skip("""TimmBackbone doesn't support output_attentions.""") def UpperCamelCase_ ( self : Optional[Any]) -> Tuple: """simple docstring""" pass @unittest.skip("""Safetensors is not supported by timm.""") def UpperCamelCase_ ( self : Optional[Any]) -> Dict: """simple docstring""" pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""") def UpperCamelCase_ ( self : List[Any]) -> Union[str, Any]: """simple docstring""" pass def UpperCamelCase_ ( self : int) -> int: """simple docstring""" _snake_case , _snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : Optional[int] = model_class(lowerCAmelCase) _snake_case : List[Any] = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic _snake_case : List[str] = [*signature.parameters.keys()] _snake_case : Dict = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case , _snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() _snake_case : str = True _snake_case : Union[str, Any] = self.has_attentions # no need to test all models as different heads yield the same functionality _snake_case : Optional[int] = self.all_model_classes[0] _snake_case : Optional[int] = model_class(lowerCAmelCase) model.to(lowerCAmelCase) _snake_case : int = self._prepare_for_class(lowerCAmelCase , lowerCAmelCase) _snake_case : int = model(**lowerCAmelCase) _snake_case : Optional[Any] = outputs[0][-1] # Encoder-/Decoder-only models _snake_case : List[str] = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: _snake_case : Tuple = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowerCAmelCase) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def UpperCamelCase_ ( self : str) -> List[Any]: """simple docstring""" _snake_case , _snake_case : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _snake_case : str = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Tuple = model(**lowerCAmelCase) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None _snake_case : Dict = copy.deepcopy(lowerCAmelCase) _snake_case : Optional[int] = None _snake_case : Union[str, Any] = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : Any = model(**lowerCAmelCase) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights _snake_case : Optional[Any] = copy.deepcopy(lowerCAmelCase) _snake_case : Any = False _snake_case : List[Any] = model_class(lowerCAmelCase) model.to(lowerCAmelCase) model.eval() _snake_case : str = model(**lowerCAmelCase)
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean a__ = 0 a__ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] a__ = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right a__ = tuple[int, int] class snake_case : '''simple docstring''' def __init__( self : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : Node | None , ) -> None: """simple docstring""" _snake_case : Any = pos_x _snake_case : Tuple = pos_y _snake_case : Any = (pos_y, pos_x) _snake_case : Any = goal_x _snake_case : List[str] = goal_y _snake_case : Tuple = g_cost _snake_case : Any = parent _snake_case : int = self.calculate_heuristic() _snake_case : int = self.g_cost + self.h_cost def UpperCamelCase_ ( self : Optional[Any]) -> float: """simple docstring""" _snake_case : Dict = self.pos_x - self.goal_x _snake_case : Optional[Any] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(lowerCAmelCase) + abs(lowerCAmelCase) else: return sqrt(dy**2 + dx**2) def __lt__( self : List[str] , lowerCAmelCase : Node) -> bool: """simple docstring""" return self.f_cost < other.f_cost class snake_case : '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : TPosition , lowerCAmelCase : TPosition) -> Dict: """simple docstring""" _snake_case : Optional[int] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , lowerCAmelCase) _snake_case : Dict = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , lowerCAmelCase) _snake_case : List[Any] = [self.start] _snake_case : list[Node] = [] _snake_case : str = False def UpperCamelCase_ ( self : Dict) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() _snake_case : Optional[Any] = self.open_nodes.pop(0) if current_node.pos == self.target.pos: return self.retrace_path(lowerCAmelCase) self.closed_nodes.append(lowerCAmelCase) _snake_case : Tuple = self.get_successors(lowerCAmelCase) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(lowerCAmelCase) else: # retrieve the best current path _snake_case : Dict = self.open_nodes.pop(self.open_nodes.index(lowerCAmelCase)) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(lowerCAmelCase) else: self.open_nodes.append(lowerCAmelCase) return [self.start.pos] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Node) -> list[Node]: """simple docstring""" _snake_case : Any = [] for action in delta: _snake_case : Dict = parent.pos_x + action[1] _snake_case : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0]) - 1 and 0 <= pos_y <= len(lowerCAmelCase) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( lowerCAmelCase , lowerCAmelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , lowerCAmelCase , )) return successors def UpperCamelCase_ ( self : int , lowerCAmelCase : Node | None) -> list[TPosition]: """simple docstring""" _snake_case : List[str] = node _snake_case : List[Any] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x)) _snake_case : str = current_node.parent path.reverse() return path class snake_case : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : TPosition , lowerCAmelCase : TPosition) -> None: """simple docstring""" _snake_case : Union[str, Any] = AStar(lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = AStar(lowerCAmelCase , lowerCAmelCase) _snake_case : Optional[int] = False def UpperCamelCase_ ( self : List[str]) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() _snake_case : str = self.fwd_astar.open_nodes.pop(0) _snake_case : Optional[Any] = self.bwd_astar.open_nodes.pop(0) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( lowerCAmelCase , lowerCAmelCase) self.fwd_astar.closed_nodes.append(lowerCAmelCase) self.bwd_astar.closed_nodes.append(lowerCAmelCase) _snake_case : int = current_bwd_node _snake_case : Dict = current_fwd_node _snake_case : Union[str, Any] = { self.fwd_astar: self.fwd_astar.get_successors(lowerCAmelCase), self.bwd_astar: self.bwd_astar.get_successors(lowerCAmelCase), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(lowerCAmelCase) else: # retrieve the best current path _snake_case : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(lowerCAmelCase)) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(lowerCAmelCase) else: astar.open_nodes.append(lowerCAmelCase) return [self.fwd_astar.start.pos] def UpperCamelCase_ ( self : Dict , lowerCAmelCase : Node , lowerCAmelCase : Node) -> list[TPosition]: """simple docstring""" _snake_case : Tuple = self.fwd_astar.retrace_path(lowerCAmelCase) _snake_case : Optional[int] = self.bwd_astar.retrace_path(lowerCAmelCase) bwd_path.pop() bwd_path.reverse() _snake_case : Tuple = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] a__ = (0, 0) a__ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) a__ = time.time() a__ = AStar(init, goal) a__ = a_star.search() a__ = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') a__ = time.time() a__ = BidirectionalAStar(init, goal) a__ = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> str: if not (isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) and isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )): raise ValueError("""longest_common_substring() takes two strings for inputs""" ) _snake_case : List[str] = len(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = len(SCREAMING_SNAKE_CASE__ ) _snake_case : List[str] = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] _snake_case : List[str] = 0 _snake_case : str = 0 for i in range(1 , texta_length + 1 ): for j in range(1 , texta_length + 1 ): if texta[i - 1] == texta[j - 1]: _snake_case : int = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: _snake_case : int = i _snake_case : Dict = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mvp import MvpTokenizer a__ = logging.get_logger(__name__) a__ = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all MVP models at https://huggingface.co/models?filter=mvp a__ = { """vocab_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/vocab.json""", }, """added_tokens.json""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/added_tokens.json""", }, """merges_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/merges.txt""", }, """tokenizer_file""": { """RUCAIBox/mvp""": """https://huggingface.co/RUCAIBox/mvp/resolve/main/tokenizer.json""", }, } a__ = { """RUCAIBox/mvp""": 10_24, } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = VOCAB_FILES_NAMES snake_case_ : Any = PRETRAINED_VOCAB_FILES_MAP snake_case_ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case_ : List[str] = ["""input_ids""", """attention_mask"""] snake_case_ : int = MvpTokenizer def __init__( self : Optional[int] , lowerCAmelCase : List[Any]=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : Any=None , lowerCAmelCase : Dict="replace" , lowerCAmelCase : Dict="<s>" , lowerCAmelCase : Dict="</s>" , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : int="<s>" , lowerCAmelCase : Dict="<unk>" , lowerCAmelCase : Optional[int]="<pad>" , lowerCAmelCase : Any="<mask>" , lowerCAmelCase : int=False , lowerCAmelCase : Dict=True , **lowerCAmelCase : List[Any] , ) -> Tuple: """simple docstring""" super().__init__( lowerCAmelCase , lowerCAmelCase , tokenizer_file=lowerCAmelCase , errors=lowerCAmelCase , bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , add_prefix_space=lowerCAmelCase , trim_offsets=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get("""add_prefix_space""" , lowerCAmelCase) != add_prefix_space: _snake_case : List[Any] = getattr(lowerCAmelCase , pre_tok_state.pop("""type""")) _snake_case : Dict = add_prefix_space _snake_case : int = pre_tok_class(**lowerCAmelCase) _snake_case : Tuple = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` _snake_case : Tuple = """post_processor""" _snake_case : Any = getattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) if tokenizer_component_instance: _snake_case : List[Any] = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: _snake_case : Any = tuple(state["""sep"""]) if "cls" in state: _snake_case : int = tuple(state["""cls"""]) _snake_case : Union[str, Any] = False if state.get("""add_prefix_space""" , lowerCAmelCase) != add_prefix_space: _snake_case : Optional[int] = add_prefix_space _snake_case : List[Any] = True if state.get("""trim_offsets""" , lowerCAmelCase) != trim_offsets: _snake_case : int = trim_offsets _snake_case : Union[str, Any] = True if changes_to_apply: _snake_case : Dict = getattr(lowerCAmelCase , state.pop("""type""")) _snake_case : Union[str, Any] = component_class(**lowerCAmelCase) setattr(self.backend_tokenizer , lowerCAmelCase , lowerCAmelCase) @property def UpperCamelCase_ ( self : int) -> str: """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""") return None return str(self._mask_token) @mask_token.setter def UpperCamelCase_ ( self : Any , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Any = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase) if isinstance(lowerCAmelCase , lowerCAmelCase) else value _snake_case : Any = value def UpperCamelCase_ ( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[int]) -> BatchEncoding: """simple docstring""" _snake_case : List[str] = kwargs.get("""is_split_into_words""" , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._batch_encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> BatchEncoding: """simple docstring""" _snake_case : Optional[int] = kwargs.get("""is_split_into_words""" , lowerCAmelCase) if is_split_into_words and not self.add_prefix_space: raise ValueError( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' """to use it with pretokenized inputs.""") return super()._encode_plus(*lowerCAmelCase , **lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None) -> Tuple[str]: """simple docstring""" _snake_case : int = self._tokenizer.model.save(lowerCAmelCase , name=lowerCAmelCase) return tuple(lowerCAmelCase) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : int , lowerCAmelCase : str=None) -> int: """simple docstring""" _snake_case : int = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None) -> List[int]: """simple docstring""" _snake_case : str = [self.sep_token_id] _snake_case : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0]
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
from ...configuration_utils import PretrainedConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """transfo-xl-wt103""": """https://huggingface.co/transfo-xl-wt103/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = """transfo-xl""" snake_case_ : str = ["""mems"""] snake_case_ : Union[str, Any] = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , lowerCAmelCase : List[str]=26_7735 , lowerCAmelCase : Optional[Any]=[2_0000, 4_0000, 20_0000] , lowerCAmelCase : List[Any]=1024 , lowerCAmelCase : List[str]=1024 , lowerCAmelCase : str=16 , lowerCAmelCase : Tuple=64 , lowerCAmelCase : Any=4096 , lowerCAmelCase : int=4 , lowerCAmelCase : int=False , lowerCAmelCase : List[Any]=18 , lowerCAmelCase : Tuple=1600 , lowerCAmelCase : Optional[int]=1000 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : Tuple=True , lowerCAmelCase : str=0 , lowerCAmelCase : Dict=-1 , lowerCAmelCase : int=True , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Any=0.0 , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict="normal" , lowerCAmelCase : Tuple=0.01 , lowerCAmelCase : Optional[int]=0.01 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : str=1E-5 , lowerCAmelCase : Optional[int]=0 , **lowerCAmelCase : Tuple , ) -> Any: """simple docstring""" _snake_case : Any = vocab_size _snake_case : Any = [] self.cutoffs.extend(lowerCAmelCase) if proj_share_all_but_first: _snake_case : Tuple = [False] + [True] * len(self.cutoffs) else: _snake_case : str = [False] + [False] * len(self.cutoffs) _snake_case : Any = d_model _snake_case : Any = d_embed _snake_case : str = d_head _snake_case : Union[str, Any] = d_inner _snake_case : List[str] = div_val _snake_case : str = pre_lnorm _snake_case : Tuple = n_layer _snake_case : List[Any] = n_head _snake_case : Union[str, Any] = mem_len _snake_case : int = same_length _snake_case : Union[str, Any] = attn_type _snake_case : Tuple = clamp_len _snake_case : str = sample_softmax _snake_case : int = adaptive _snake_case : Dict = dropout _snake_case : List[Any] = dropatt _snake_case : Any = untie_r _snake_case : Any = init _snake_case : Optional[int] = init_range _snake_case : Dict = proj_init_std _snake_case : List[Any] = init_std _snake_case : Dict = layer_norm_epsilon super().__init__(eos_token_id=lowerCAmelCase , **lowerCAmelCase) @property def UpperCamelCase_ ( self : List[Any]) -> List[Any]: """simple docstring""" logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''') return -1 @max_position_embeddings.setter def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : int) -> Optional[int]: """simple docstring""" raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''')
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) a__ = logging.get_logger(__name__) a__ = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) a__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _snake_case : Union[str, Any] = model_type_to_module_name(SCREAMING_SNAKE_CASE__ ) _snake_case : str = importlib.import_module(F'''.{module_name}''' , """transformers.models""" ) try: return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(SCREAMING_SNAKE_CASE__ , """__name__""" , SCREAMING_SNAKE_CASE__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _snake_case : Optional[int] = importlib.import_module("""transformers""" ) if hasattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return getattr(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return None def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE__ : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : bool = False , **SCREAMING_SNAKE_CASE__ : Union[str, Any] , ) -> Optional[Any]: _snake_case : List[str] = get_file_from_repo( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , resume_download=SCREAMING_SNAKE_CASE__ , proxies=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , local_files_only=SCREAMING_SNAKE_CASE__ , ) if resolved_config_file is None: logger.info( """Could not locate the feature extractor configuration file, will try to use the model config instead.""" ) return {} with open(SCREAMING_SNAKE_CASE__ , encoding="""utf-8""" ) as reader: return json.load(SCREAMING_SNAKE_CASE__ ) class snake_case : '''simple docstring''' def __init__( self : Any) -> List[Any]: """simple docstring""" raise EnvironmentError( """AutoFeatureExtractor is designed to be instantiated """ """using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.""") @classmethod @replace_list_option_in_docstrings(lowerCAmelCase) def UpperCamelCase_ ( cls : Dict , lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" _snake_case : Optional[int] = kwargs.pop("""config""" , lowerCAmelCase) _snake_case : Union[str, Any] = kwargs.pop("""trust_remote_code""" , lowerCAmelCase) _snake_case : List[str] = True _snake_case , _snake_case : Union[str, Any] = FeatureExtractionMixin.get_feature_extractor_dict(lowerCAmelCase , **lowerCAmelCase) _snake_case : Union[str, Any] = config_dict.get("""feature_extractor_type""" , lowerCAmelCase) _snake_case : str = None if "AutoFeatureExtractor" in config_dict.get("""auto_map""" , {}): _snake_case : int = config_dict["""auto_map"""]["""AutoFeatureExtractor"""] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Tuple = AutoConfig.from_pretrained(lowerCAmelCase , **lowerCAmelCase) # It could be in `config.feature_extractor_type`` _snake_case : Optional[Any] = getattr(lowerCAmelCase , """feature_extractor_type""" , lowerCAmelCase) if hasattr(lowerCAmelCase , """auto_map""") and "AutoFeatureExtractor" in config.auto_map: _snake_case : Tuple = config.auto_map["""AutoFeatureExtractor"""] if feature_extractor_class is not None: _snake_case : Any = feature_extractor_class_from_name(lowerCAmelCase) _snake_case : Any = feature_extractor_auto_map is not None _snake_case : Dict = feature_extractor_class is not None or type(lowerCAmelCase) in FEATURE_EXTRACTOR_MAPPING _snake_case : Union[str, Any] = resolve_trust_remote_code( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) if has_remote_code and trust_remote_code: _snake_case : str = get_class_from_dynamic_module( lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase) _snake_case : Optional[int] = kwargs.pop("""code_revision""" , lowerCAmelCase) if os.path.isdir(lowerCAmelCase): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowerCAmelCase) in FEATURE_EXTRACTOR_MAPPING: _snake_case : Tuple = FEATURE_EXTRACTOR_MAPPING[type(lowerCAmelCase)] return feature_extractor_class.from_dict(lowerCAmelCase , **lowerCAmelCase) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}''') @staticmethod def UpperCamelCase_ ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" FEATURE_EXTRACTOR_MAPPING.register(lowerCAmelCase , lowerCAmelCase)
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a__ = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
1
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] a__ = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] ) -> Union[str, Any]: _snake_case : int = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) return sd def lowercase ( SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[str]=rename_keys_prefix ) -> List[Any]: _snake_case : Tuple = OrderedDict() _snake_case : Tuple = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue _snake_case : str = key for name_pair in rename_keys_prefix: _snake_case : str = new_key.replace(name_pair[0] , name_pair[1] ) _snake_case : List[Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately _snake_case : List[Any] = new_d["""cls.predictions.bias"""] return new_d @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any ) -> Dict: assert ( checkpoint_path.split("""/""" )[-1] in ACCEPTABLE_CHECKPOINTS ), F'''The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.''' # Get Config if "pre" in checkpoint_path: _snake_case : Dict = """pretraining""" if "vcr" in checkpoint_path: _snake_case : List[str] = {"""visual_embedding_dim""": 512} elif "vqa_advanced" in checkpoint_path: _snake_case : Optional[int] = {"""visual_embedding_dim""": 2_048} elif "vqa" in checkpoint_path: _snake_case : Dict = {"""visual_embedding_dim""": 2_048} elif "nlvr" in checkpoint_path: _snake_case : Tuple = {"""visual_embedding_dim""": 1_024} else: raise NotImplementedError(F'''No implementation found for `{checkpoint_path}`.''' ) else: if "vcr" in checkpoint_path: _snake_case : Optional[int] = {"""visual_embedding_dim""": 512} _snake_case : Union[str, Any] = """multichoice""" elif "vqa_advanced" in checkpoint_path: _snake_case : Tuple = {"""visual_embedding_dim""": 2_048} _snake_case : List[Any] = """vqa_advanced""" elif "vqa" in checkpoint_path: _snake_case : str = {"""visual_embedding_dim""": 2_048, """num_labels""": 3_129} _snake_case : Union[str, Any] = """vqa""" elif "nlvr" in checkpoint_path: _snake_case : Union[str, Any] = { """visual_embedding_dim""": 1_024, """num_labels""": 2, } _snake_case : Tuple = """nlvr""" _snake_case : Any = VisualBertConfig(**SCREAMING_SNAKE_CASE__ ) # Load State Dict _snake_case : str = load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : str = get_new_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if model_type == "pretraining": _snake_case : Any = VisualBertForPreTraining(SCREAMING_SNAKE_CASE__ ) elif model_type == "vqa": _snake_case : str = VisualBertForQuestionAnswering(SCREAMING_SNAKE_CASE__ ) elif model_type == "nlvr": _snake_case : Union[str, Any] = VisualBertForVisualReasoning(SCREAMING_SNAKE_CASE__ ) elif model_type == "multichoice": _snake_case : List[str] = VisualBertForMultipleChoice(SCREAMING_SNAKE_CASE__ ) model.load_state_dict(SCREAMING_SNAKE_CASE__ ) # Save Checkpoints Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") a__ = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
317
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : NestedDataStructureLike[PathLike] , lowerCAmelCase : Optional[NamedSplit] = None , lowerCAmelCase : Optional[Features] = None , lowerCAmelCase : str = None , lowerCAmelCase : bool = False , lowerCAmelCase : bool = False , lowerCAmelCase : Optional[str] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Optional[Any] , ) -> int: """simple docstring""" super().__init__( lowerCAmelCase , split=lowerCAmelCase , features=lowerCAmelCase , cache_dir=lowerCAmelCase , keep_in_memory=lowerCAmelCase , streaming=lowerCAmelCase , num_proc=lowerCAmelCase , **lowerCAmelCase , ) _snake_case : Tuple = field _snake_case : str = path_or_paths if isinstance(lowerCAmelCase , lowerCAmelCase) else {self.split: path_or_paths} _snake_case : int = Json( cache_dir=lowerCAmelCase , data_files=lowerCAmelCase , features=lowerCAmelCase , field=lowerCAmelCase , **lowerCAmelCase , ) def UpperCamelCase_ ( self : Any) -> Tuple: """simple docstring""" if self.streaming: _snake_case : int = self.builder.as_streaming_dataset(split=self.split) # Build regular (map-style) dataset else: _snake_case : Dict = None _snake_case : Optional[int] = None _snake_case : Optional[Any] = None _snake_case : str = None self.builder.download_and_prepare( download_config=lowerCAmelCase , download_mode=lowerCAmelCase , verification_mode=lowerCAmelCase , base_path=lowerCAmelCase , num_proc=self.num_proc , ) _snake_case : List[str] = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase , in_memory=self.keep_in_memory) return dataset class snake_case : '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : Dataset , lowerCAmelCase : Union[PathLike, BinaryIO] , lowerCAmelCase : Optional[int] = None , lowerCAmelCase : Optional[int] = None , **lowerCAmelCase : Any , ) -> Optional[int]: """simple docstring""" if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''') _snake_case : Optional[Any] = dataset _snake_case : str = path_or_buf _snake_case : Optional[Any] = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _snake_case : Tuple = num_proc _snake_case : Dict = """utf-8""" _snake_case : str = to_json_kwargs def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" _snake_case : Optional[Any] = self.to_json_kwargs.pop("""path_or_buf""" , lowerCAmelCase) _snake_case : Any = self.to_json_kwargs.pop("""orient""" , """records""") _snake_case : List[str] = self.to_json_kwargs.pop("""lines""" , True if orient == """records""" else False) _snake_case : List[Any] = self.to_json_kwargs.pop("""index""" , False if orient in ["""split""", """table"""] else True) _snake_case : Union[str, Any] = self.to_json_kwargs.pop("""compression""" , lowerCAmelCase) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''') if isinstance(self.path_or_buf , (str, bytes, os.PathLike)): with fsspec.open(self.path_or_buf , """wb""" , compression=lowerCAmelCase) as buffer: _snake_case : List[str] = self._write(file_obj=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' """ was passed. Please provide a local path instead.""") _snake_case : Tuple = self._write( file_obj=self.path_or_buf , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **self.to_json_kwargs) return written def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" _snake_case , _snake_case , _snake_case , _snake_case , _snake_case : int = args _snake_case : int = query_table( table=self.dataset.data , key=slice(lowerCAmelCase , offset + self.batch_size) , indices=self.dataset._indices , ) _snake_case : Optional[Any] = batch.to_pandas().to_json( path_or_buf=lowerCAmelCase , orient=lowerCAmelCase , lines=lowerCAmelCase , index=lowerCAmelCase , **lowerCAmelCase) if not json_str.endswith("""\n"""): json_str += "\n" return json_str.encode(self.encoding) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : BinaryIO , lowerCAmelCase : Tuple , lowerCAmelCase : Optional[int] , lowerCAmelCase : Dict , **lowerCAmelCase : List[Any] , ) -> int: """simple docstring""" _snake_case : Optional[int] = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset) , self.batch_size) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): _snake_case : Tuple = self._batch_json((offset, orient, lines, index, to_json_kwargs)) written += file_obj.write(lowerCAmelCase) else: _snake_case , _snake_case : str = len(self.dataset), self.batch_size with multiprocessing.Pool(self.num_proc) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , lowerCAmelCase , lowerCAmelCase)] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating json from Arrow format""" , ): written += file_obj.write(lowerCAmelCase) return written
317
1
import requests a__ = """""" # <-- Put your OpenWeatherMap appid here! a__ = """https://api.openweathermap.org/data/2.5/""" def lowercase ( SCREAMING_SNAKE_CASE__ : str = "Chicago" , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict: return requests.get(URL_BASE + """weather""" , params=locals() ).json() def lowercase ( SCREAMING_SNAKE_CASE__ : str = "Kolkata, India" , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict: return requests.get(URL_BASE + """forecast""" , params=locals() ).json() def lowercase ( SCREAMING_SNAKE_CASE__ : float = 5_5.6_8 , SCREAMING_SNAKE_CASE__ : float = 1_2.5_7 , SCREAMING_SNAKE_CASE__ : str = APPID ) -> dict: return requests.get(URL_BASE + """onecall""" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: a__ = input("""Enter a location:""").strip() if location: pprint(current_weather(location)) else: break
317
import torch from torch import nn class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : Tuple , lowerCAmelCase : int , lowerCAmelCase : Any , lowerCAmelCase : Tuple , lowerCAmelCase : int=1 , lowerCAmelCase : List[Any]=False) -> str: """simple docstring""" super().__init__() _snake_case : List[str] = n_token _snake_case : Any = d_embed _snake_case : List[str] = d_proj _snake_case : Optional[int] = cutoffs + [n_token] _snake_case : Dict = [0] + self.cutoffs _snake_case : Optional[Any] = div_val _snake_case : Tuple = self.cutoffs[0] _snake_case : List[str] = len(self.cutoffs) - 1 _snake_case : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _snake_case : int = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed)) _snake_case : Any = nn.Parameter(torch.zeros(self.n_clusters)) _snake_case : Tuple = nn.ModuleList() _snake_case : int = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs)): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) else: self.out_projs.append(lowerCAmelCase) self.out_layers.append(nn.Linear(lowerCAmelCase , lowerCAmelCase)) else: for i in range(len(self.cutoffs)): _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(lowerCAmelCase , lowerCAmelCase))) self.out_layers.append(nn.Linear(lowerCAmelCase , r_idx - l_idx)) _snake_case : Tuple = keep_order def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Any , lowerCAmelCase : Any , lowerCAmelCase : Dict , lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" if proj is None: _snake_case : List[Any] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _snake_case : List[str] = nn.functional.linear(lowerCAmelCase , proj.t().contiguous()) _snake_case : Optional[int] = nn.functional.linear(lowerCAmelCase , lowerCAmelCase , bias=lowerCAmelCase) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Dict , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : int=False) -> Tuple: """simple docstring""" if labels is not None: # Shift so that tokens < n predict n _snake_case : List[str] = hidden[..., :-1, :].contiguous() _snake_case : int = labels[..., 1:].contiguous() _snake_case : int = hidden.view(-1 , hidden.size(-1)) _snake_case : str = labels.view(-1) if hidden.size(0) != labels.size(0): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""") else: _snake_case : List[Any] = hidden.view(-1 , hidden.size(-1)) if self.n_clusters == 0: _snake_case : int = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) if labels is not None: _snake_case : Optional[int] = labels != -100 _snake_case : Union[str, Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Union[str, Any] = ( -nn.functional.log_softmax(lowerCAmelCase , dim=-1)[mask].gather(1 , labels[mask].unsqueeze(1)).squeeze(1) ) else: _snake_case : Optional[int] = nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Any = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Dict = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Tuple = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Any = self.out_layers[i].weight _snake_case : Optional[int] = self.out_layers[i].bias if i == 0: _snake_case : Dict = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : List[str] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : List[Any] = weights[0], biases[0], self.out_projs[0] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Dict = nn.functional.log_softmax(lowerCAmelCase , dim=1) if labels is None: _snake_case : List[Any] = hidden.new_empty((head_logit.size(0), self.n_token)) else: _snake_case : Optional[Any] = torch.zeros_like(lowerCAmelCase , dtype=hidden.dtype , device=hidden.device) _snake_case : Optional[int] = 0 _snake_case : Union[str, Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _snake_case : Optional[int] = (labels >= l_idx) & (labels < r_idx) _snake_case : Dict = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _snake_case : Dict = labels.index_select(0 , lowerCAmelCase) - l_idx _snake_case : List[Any] = head_logprob.index_select(0 , lowerCAmelCase) _snake_case : Dict = hidden.index_select(0 , lowerCAmelCase) else: _snake_case : Optional[Any] = hidden if i == 0: if labels is not None: _snake_case : str = head_logprob_i.gather(1 , target_i[:, None]).squeeze(1) else: _snake_case : int = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : Dict = weights[i], biases[i], self.out_projs[i] _snake_case : int = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : List[str] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : str = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _snake_case : Dict = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None]).squeeze(1) else: _snake_case : Tuple = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _snake_case : int = logprob_i if labels is not None: if (hasattr(self , """keep_order""") and self.keep_order) or keep_order: out.index_copy_(0 , lowerCAmelCase , -logprob_i) else: out[offset : offset + logprob_i.size(0)].copy_(-logprob_i) offset += logprob_i.size(0) return out def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" if self.n_clusters == 0: _snake_case : Optional[Any] = self._compute_logit(lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0]) return nn.functional.log_softmax(lowerCAmelCase , dim=-1) else: # construct weights and biases _snake_case , _snake_case : Optional[int] = [], [] for i in range(len(self.cutoffs)): if self.div_val == 1: _snake_case , _snake_case : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] _snake_case : Optional[Any] = self.out_layers[0].weight[l_idx:r_idx] _snake_case : Union[str, Any] = self.out_layers[0].bias[l_idx:r_idx] else: _snake_case : Tuple = self.out_layers[i].weight _snake_case : Any = self.out_layers[i].bias if i == 0: _snake_case : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0) _snake_case : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0) weights.append(lowerCAmelCase) biases.append(lowerCAmelCase) _snake_case , _snake_case , _snake_case : int = weights[0], biases[0], self.out_projs[0] _snake_case : Union[str, Any] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : Any = hidden.new_empty((head_logit.size(0), self.n_token)) _snake_case : Optional[Any] = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : List[Any] = [0] + self.cutoffs for i in range(len(lowerCAmelCase) - 1): _snake_case , _snake_case : Any = cutoff_values[i], cutoff_values[i + 1] if i == 0: _snake_case : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: _snake_case , _snake_case , _snake_case : str = weights[i], biases[i], self.out_projs[i] _snake_case : List[str] = self._compute_logit(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) _snake_case : str = nn.functional.log_softmax(lowerCAmelCase , dim=1) _snake_case : Dict = head_logprob[:, -i] + tail_logprob_i _snake_case : Any = logprob_i return out
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int = 1_000_000 ) -> int: _snake_case : Any = limit + 1 _snake_case : Tuple = [0] * limit for first_term in range(1 , SCREAMING_SNAKE_CASE__ ): for n in range(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : Any = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _snake_case : Any = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
317
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
1
a__ = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } a__ = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def lowercase ( SCREAMING_SNAKE_CASE__ : float , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: _snake_case : List[Any] = ( F'''Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n''' F'''Valid values are: {', '.join(SCREAMING_SNAKE_CASE__ )}''' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
317
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=3 , lowerCAmelCase : Optional[Any]=18 , lowerCAmelCase : Dict=30 , lowerCAmelCase : Optional[int]=400 , lowerCAmelCase : List[str]=True , lowerCAmelCase : int=None , lowerCAmelCase : Tuple=True , lowerCAmelCase : Dict=None , ) -> Union[str, Any]: """simple docstring""" _snake_case : Optional[Any] = size if size is not None else {"""shortest_edge""": 20} _snake_case : Any = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _snake_case : Optional[Any] = parent _snake_case : Tuple = batch_size _snake_case : int = num_channels _snake_case : List[Any] = image_size _snake_case : Dict = min_resolution _snake_case : List[Any] = max_resolution _snake_case : List[Any] = do_resize _snake_case : Any = size _snake_case : str = do_center_crop _snake_case : Union[str, Any] = crop_size def UpperCamelCase_ ( self : int) -> str: """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' snake_case_ : Tuple = MobileNetVaImageProcessor if is_vision_available() else None def UpperCamelCase_ ( self : Any) -> Optional[Any]: """simple docstring""" _snake_case : str = MobileNetVaImageProcessingTester(self) @property def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) self.assertTrue(hasattr(lowerCAmelCase , """do_resize""")) self.assertTrue(hasattr(lowerCAmelCase , """size""")) self.assertTrue(hasattr(lowerCAmelCase , """do_center_crop""")) self.assertTrue(hasattr(lowerCAmelCase , """crop_size""")) def UpperCamelCase_ ( self : List[str]) -> List[Any]: """simple docstring""" _snake_case : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict) self.assertEqual(image_processor.size , {"""shortest_edge""": 20}) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18}) _snake_case : Tuple = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84) self.assertEqual(image_processor.size , {"""shortest_edge""": 42}) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84}) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" pass def UpperCamelCase_ ( self : Dict) -> str: """simple docstring""" _snake_case : Dict = self.image_processing_class(**self.image_processor_dict) # create random PIL images _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : Dict = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : int) -> List[Any]: """simple docstring""" _snake_case : int = self.image_processing_class(**self.image_processor_dict) # create random numpy tensors _snake_case : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray) # Test not batched input _snake_case : int = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : str = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.image_processing_class(**self.image_processor_dict) # create random PyTorch tensors _snake_case : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor) # Test not batched input _snake_case : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _snake_case : int = image_processing(lowerCAmelCase , return_tensors="""pt""").pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
317
1
import json import os import torch from diffusers import UNetaDModel os.makedirs("""hub/hopper-medium-v2/unet/hor32""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/unet/hor128""", exist_ok=True) os.makedirs("""hub/hopper-medium-v2/value_function""", exist_ok=True) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: if hor == 128: _snake_case : Union[str, Any] = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _snake_case : Optional[Any] = (32, 128, 256) _snake_case : List[str] = ("""UpResnetBlock1D""", """UpResnetBlock1D""") elif hor == 32: _snake_case : Dict = ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""") _snake_case : Union[str, Any] = (32, 64, 128, 256) _snake_case : Optional[int] = ("""UpResnetBlock1D""", """UpResnetBlock1D""", """UpResnetBlock1D""") _snake_case : List[str] = torch.load(F'''/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch''' ) _snake_case : Tuple = model.state_dict() _snake_case : Union[str, Any] = { """down_block_types""": down_block_types, """block_out_channels""": block_out_channels, """up_block_types""": up_block_types, """layers_per_block""": 1, """use_timestep_embedding""": True, """out_block_type""": """OutConv1DBlock""", """norm_num_groups""": 8, """downsample_each_block""": False, """in_channels""": 14, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """flip_sin_to_cos""": False, """freq_shift""": 1, """sample_size""": 65_536, """mid_block_type""": """MidResTemporalBlock1D""", """act_fn""": """mish""", } _snake_case : int = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) _snake_case : str = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict() , F'''hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin''' ) with open(F'''hub/hopper-medium-v2/unet/hor{hor}/config.json''' , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( ) -> Tuple: _snake_case : Optional[int] = { """in_channels""": 14, """down_block_types""": ("""DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D""", """DownResnetBlock1D"""), """up_block_types""": (), """out_block_type""": """ValueFunction""", """mid_block_type""": """ValueFunctionMidBlock1D""", """block_out_channels""": (32, 64, 128, 256), """layers_per_block""": 1, """downsample_each_block""": True, """sample_size""": 65_536, """out_channels""": 14, """extra_in_channels""": 0, """time_embedding_type""": """positional""", """use_timestep_embedding""": True, """flip_sin_to_cos""": False, """freq_shift""": 1, """norm_num_groups""": 8, """act_fn""": """mish""", } _snake_case : int = torch.load("""/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch""" ) _snake_case : Dict = model _snake_case : Optional[int] = UNetaDModel(**SCREAMING_SNAKE_CASE__ ) print(F'''length of state dict: {len(state_dict.keys() )}''' ) print(F'''length of value function dict: {len(hf_value_function.state_dict().keys() )}''' ) _snake_case : Any = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Optional[Any] = state_dict.pop(SCREAMING_SNAKE_CASE__ ) hf_value_function.load_state_dict(SCREAMING_SNAKE_CASE__ ) torch.save(hf_value_function.state_dict() , """hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin""" ) with open("""hub/hopper-medium-v2/value_function/config.json""" , """w""" ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": unet(32) # unet(128) value_function()
317
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """xlm-roberta-base""": """https://huggingface.co/xlm-roberta-base/resolve/main/config.json""", """xlm-roberta-large""": """https://huggingface.co/xlm-roberta-large/resolve/main/config.json""", """xlm-roberta-large-finetuned-conll02-dutch""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll02-spanish""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-english""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json""" ), """xlm-roberta-large-finetuned-conll03-german""": ( """https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json""" ), } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = """xlm-roberta""" def __init__( self : Any , lowerCAmelCase : Tuple=3_0522 , lowerCAmelCase : Tuple=768 , lowerCAmelCase : Any=12 , lowerCAmelCase : str=12 , lowerCAmelCase : Any=3072 , lowerCAmelCase : int="gelu" , lowerCAmelCase : Union[str, Any]=0.1 , lowerCAmelCase : Dict=0.1 , lowerCAmelCase : List[str]=512 , lowerCAmelCase : Optional[int]=2 , lowerCAmelCase : Tuple=0.02 , lowerCAmelCase : int=1E-12 , lowerCAmelCase : Optional[Any]=1 , lowerCAmelCase : Optional[int]=0 , lowerCAmelCase : Any=2 , lowerCAmelCase : int="absolute" , lowerCAmelCase : Union[str, Any]=True , lowerCAmelCase : Dict=None , **lowerCAmelCase : Any , ) -> List[Any]: """simple docstring""" super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase) _snake_case : List[Any] = vocab_size _snake_case : Optional[Any] = hidden_size _snake_case : Optional[Any] = num_hidden_layers _snake_case : Union[str, Any] = num_attention_heads _snake_case : List[Any] = hidden_act _snake_case : Tuple = intermediate_size _snake_case : Any = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : List[Any] = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Optional[int] = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[Any] = position_embedding_type _snake_case : Tuple = use_cache _snake_case : Optional[Any] = classifier_dropout class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" if self.task == "multiple-choice": _snake_case : List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _snake_case : Optional[Any] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ])
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> int: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""Input value must be an 'int' type""" ) _snake_case : List[Any] = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
317
import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a__ = datasets.utils.logging.get_logger(__name__) a__ = ["""names""", """prefix"""] a__ = ["""warn_bad_lines""", """error_bad_lines""", """mangle_dupe_cols"""] a__ = ["""encoding_errors""", """on_bad_lines"""] a__ = ["""date_format"""] @dataclass class snake_case ( datasets.BuilderConfig ): '''simple docstring''' snake_case_ : str = "," snake_case_ : Optional[str] = None snake_case_ : Optional[Union[int, List[int], str]] = "infer" snake_case_ : Optional[List[str]] = None snake_case_ : Optional[List[str]] = None snake_case_ : Optional[Union[int, str, List[int], List[str]]] = None snake_case_ : Optional[Union[List[int], List[str]]] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : Optional[Literal["c", "python", "pyarrow"]] = None snake_case_ : Dict[Union[int, str], Callable[[Any], Any]] = None snake_case_ : Optional[list] = None snake_case_ : Optional[list] = None snake_case_ : bool = False snake_case_ : Optional[Union[int, List[int]]] = None snake_case_ : Optional[int] = None snake_case_ : Optional[Union[str, List[str]]] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : bool = False snake_case_ : bool = True snake_case_ : Optional[str] = None snake_case_ : str = "." snake_case_ : Optional[str] = None snake_case_ : str = '"' snake_case_ : int = 0 snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : Optional[str] = None snake_case_ : bool = True snake_case_ : bool = True snake_case_ : int = 0 snake_case_ : bool = True snake_case_ : bool = False snake_case_ : Optional[str] = None snake_case_ : int = 1_00_00 snake_case_ : Optional[datasets.Features] = None snake_case_ : Optional[str] = "strict" snake_case_ : Literal["error", "warn", "skip"] = "error" snake_case_ : Optional[str] = None def UpperCamelCase_ ( self : List[Any]) -> Dict: """simple docstring""" if self.delimiter is not None: _snake_case : str = self.delimiter if self.column_names is not None: _snake_case : str = self.column_names @property def UpperCamelCase_ ( self : List[Any]) -> str: """simple docstring""" _snake_case : Dict = { """sep""": self.sep, """header""": self.header, """names""": self.names, """index_col""": self.index_col, """usecols""": self.usecols, """prefix""": self.prefix, """mangle_dupe_cols""": self.mangle_dupe_cols, """engine""": self.engine, """converters""": self.converters, """true_values""": self.true_values, """false_values""": self.false_values, """skipinitialspace""": self.skipinitialspace, """skiprows""": self.skiprows, """nrows""": self.nrows, """na_values""": self.na_values, """keep_default_na""": self.keep_default_na, """na_filter""": self.na_filter, """verbose""": self.verbose, """skip_blank_lines""": self.skip_blank_lines, """thousands""": self.thousands, """decimal""": self.decimal, """lineterminator""": self.lineterminator, """quotechar""": self.quotechar, """quoting""": self.quoting, """escapechar""": self.escapechar, """comment""": self.comment, """encoding""": self.encoding, """dialect""": self.dialect, """error_bad_lines""": self.error_bad_lines, """warn_bad_lines""": self.warn_bad_lines, """skipfooter""": self.skipfooter, """doublequote""": self.doublequote, """memory_map""": self.memory_map, """float_precision""": self.float_precision, """chunksize""": self.chunksize, """encoding_errors""": self.encoding_errors, """on_bad_lines""": self.on_bad_lines, """date_format""": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class snake_case ( datasets.ArrowBasedBuilder ): '''simple docstring''' snake_case_ : Union[str, Any] = CsvConfig def UpperCamelCase_ ( self : str) -> List[str]: """simple docstring""" return datasets.DatasetInfo(features=self.config.features) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''') _snake_case : Union[str, Any] = dl_manager.download_and_extract(self.config.data_files) if isinstance(lowerCAmelCase , (str, list, tuple)): _snake_case : int = data_files if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : int = [files] _snake_case : int = [dl_manager.iter_files(lowerCAmelCase) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"""files""": files})] _snake_case : Union[str, Any] = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] _snake_case : Any = [dl_manager.iter_files(lowerCAmelCase) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase , gen_kwargs={"""files""": files})) return splits def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : pa.Table) -> pa.Table: """simple docstring""" if self.config.features is not None: _snake_case : List[str] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase) for feature in self.config.features.values()): # cheaper cast _snake_case : Optional[Any] = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase) else: # more expensive cast; allows str <-> int/float or str to Audio for example _snake_case : Dict = table_cast(lowerCAmelCase , lowerCAmelCase) return pa_table def UpperCamelCase_ ( self : str , lowerCAmelCase : str) -> Dict: """simple docstring""" _snake_case : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _snake_case : Optional[Any] = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values()) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase)): _snake_case : str = pd.read_csv(lowerCAmelCase , iterator=lowerCAmelCase , dtype=lowerCAmelCase , **self.config.pd_read_csv_kwargs) try: for batch_idx, df in enumerate(lowerCAmelCase): _snake_case : List[Any] = pa.Table.from_pandas(lowerCAmelCase) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(lowerCAmelCase)}: {e}''') raise
317
1
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def UpperCamelCase_ ( self : Any) -> List[Any]: """simple docstring""" _snake_case : Tuple = SMALL_MODEL_IDENTIFIER _snake_case : Dict = """pt""" _snake_case : List[str] = """tf""" def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : Tuple = AutoModel.from_pretrained(self.test_model) model_pt.save_pretrained(lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" _snake_case : int = TFAutoModel.from_pretrained(self.test_model , from_pt=lowerCAmelCase) model_tf.save_pretrained(lowerCAmelCase) def UpperCamelCase_ ( self : Any) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = """mock_framework""" # Framework provided - return whatever the user provides _snake_case : List[str] = FeaturesManager.determine_framework(self.test_model , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase) _snake_case : Tuple = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase) _snake_case : Optional[int] = FeaturesManager.determine_framework(lowerCAmelCase , lowerCAmelCase) self.assertEqual(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(lowerCAmelCase) _snake_case : str = FeaturesManager.determine_framework(lowerCAmelCase) self.assertEqual(lowerCAmelCase , self.framework_pt) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(lowerCAmelCase) _snake_case : List[Any] = FeaturesManager.determine_framework(lowerCAmelCase) self.assertEqual(lowerCAmelCase , self.framework_tf) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(lowerCAmelCase): _snake_case : str = FeaturesManager.determine_framework(lowerCAmelCase) def UpperCamelCase_ ( self : Dict) -> Optional[Any]: """simple docstring""" _snake_case : int = MagicMock(return_value=lowerCAmelCase) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase): _snake_case : List[Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(lowerCAmelCase , self.framework_pt) # PyTorch not in environment -> use TensorFlow _snake_case : Any = MagicMock(return_value=lowerCAmelCase) with patch("""transformers.onnx.features.is_torch_available""" , lowerCAmelCase): _snake_case : List[str] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(lowerCAmelCase , self.framework_tf) # Both in environment -> use PyTorch _snake_case : Union[str, Any] = MagicMock(return_value=lowerCAmelCase) _snake_case : Tuple = MagicMock(return_value=lowerCAmelCase) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase): _snake_case : Union[str, Any] = FeaturesManager.determine_framework(self.test_model) self.assertEqual(lowerCAmelCase , self.framework_pt) # Both not in environment -> raise error _snake_case : str = MagicMock(return_value=lowerCAmelCase) _snake_case : List[str] = MagicMock(return_value=lowerCAmelCase) with patch("""transformers.onnx.features.is_tf_available""" , lowerCAmelCase), patch( """transformers.onnx.features.is_torch_available""" , lowerCAmelCase): with self.assertRaises(lowerCAmelCase): _snake_case : str = FeaturesManager.determine_framework(self.test_model)
317
from __future__ import annotations from typing import TypedDict class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str snake_case_ : int def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list[str]: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) return [s[i:] + s[:i] for i in range(len(SCREAMING_SNAKE_CASE__ ) )] def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> BWTTransformDict: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter s type must be str.""" ) if not s: raise ValueError("""The parameter s must not be empty.""" ) _snake_case : Union[str, Any] = all_rotations(SCREAMING_SNAKE_CASE__ ) rotations.sort() # sort the list of rotations in alphabetically order # make a string composed of the last char of each rotation _snake_case : BWTTransformDict = { "bwt_string": "".join([word[-1] for word in rotations] ), "idx_original_string": rotations.index(SCREAMING_SNAKE_CASE__ ), } return response def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : int ) -> str: if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): raise TypeError("""The parameter bwt_string type must be str.""" ) if not bwt_string: raise ValueError("""The parameter bwt_string must not be empty.""" ) try: _snake_case : Tuple = int(SCREAMING_SNAKE_CASE__ ) except ValueError: raise TypeError( """The parameter idx_original_string type must be int or passive""" """ of cast to int.""" ) if idx_original_string < 0: raise ValueError("""The parameter idx_original_string must not be lower than 0.""" ) if idx_original_string >= len(SCREAMING_SNAKE_CASE__ ): raise ValueError( """The parameter idx_original_string must be lower than""" """ len(bwt_string).""" ) _snake_case : List[str] = [""""""] * len(SCREAMING_SNAKE_CASE__ ) for _ in range(len(SCREAMING_SNAKE_CASE__ ) ): for i in range(len(SCREAMING_SNAKE_CASE__ ) ): _snake_case : Union[str, Any] = bwt_string[i] + ordered_rotations[i] ordered_rotations.sort() return ordered_rotations[idx_original_string] if __name__ == "__main__": a__ = """Provide a string that I will generate its BWT transform: """ a__ = input(entry_msg).strip() a__ = bwt_transform(s) print( F'''Burrows Wheeler transform for string \'{s}\' results ''' F'''in \'{result['bwt_string']}\'''' ) a__ = reverse_bwt(result["""bwt_string"""], result["""idx_original_string"""]) print( F'''Reversing Burrows Wheeler transform for entry \'{result['bwt_string']}\' ''' F'''we get original string \'{original_string}\'''' )
317
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig a__ = logging.get_logger(__name__) # General docstring a__ = """RegNetConfig""" # Base docstring a__ = """facebook/regnet-y-040""" a__ = [1, 10_88, 7, 7] # Image classification docstring a__ = """facebook/regnet-y-040""" a__ = """tabby, tabby cat""" a__ = [ """facebook/regnet-y-040""", # See all regnet models at https://huggingface.co/models?filter=regnet ] class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 1 , lowerCAmelCase : int = 1 , lowerCAmelCase : Optional[str] = "relu" , ) -> List[str]: """simple docstring""" super().__init__() _snake_case : int = nn.Convad( lowerCAmelCase , lowerCAmelCase , kernel_size=lowerCAmelCase , stride=lowerCAmelCase , padding=kernel_size // 2 , groups=lowerCAmelCase , bias=lowerCAmelCase , ) _snake_case : List[Any] = nn.BatchNormad(lowerCAmelCase) _snake_case : Tuple = ACTaFN[activation] if activation is not None else nn.Identity() def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" _snake_case : Tuple = self.convolution(lowerCAmelCase) _snake_case : Any = self.normalization(lowerCAmelCase) _snake_case : List[Any] = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act) _snake_case : Dict = config.num_channels def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : int) -> List[str]: """simple docstring""" _snake_case : str = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( """Make sure that the channel dimension of the pixel values match with the one set in the configuration.""") _snake_case : Any = self.embedder(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Tuple , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , stride=lowerCAmelCase , bias=lowerCAmelCase) _snake_case : Tuple = nn.BatchNormad(lowerCAmelCase) def UpperCamelCase_ ( self : int , lowerCAmelCase : Tensor) -> Tensor: """simple docstring""" _snake_case : Optional[Any] = self.convolution(lowerCAmelCase) _snake_case : Optional[int] = self.normalization(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : int , lowerCAmelCase : int) -> Any: """simple docstring""" super().__init__() _snake_case : Optional[Any] = nn.AdaptiveAvgPoolad((1, 1)) _snake_case : Optional[Any] = nn.Sequential( nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.ReLU() , nn.Convad(lowerCAmelCase , lowerCAmelCase , kernel_size=1) , nn.Sigmoid() , ) def UpperCamelCase_ ( self : Any , lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" _snake_case : Dict = self.pooler(lowerCAmelCase) _snake_case : List[str] = self.attention(lowerCAmelCase) _snake_case : str = hidden_state * attention return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Union[str, Any]: """simple docstring""" super().__init__() _snake_case : Optional[int] = in_channels != out_channels or stride != 1 _snake_case : Optional[Any] = max(1 , out_channels // config.groups_width) _snake_case : Union[str, Any] = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Tuple = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Dict = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Optional[int]) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = hidden_state _snake_case : int = self.layer(lowerCAmelCase) _snake_case : Dict = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : str = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 1) -> Optional[Any]: """simple docstring""" super().__init__() _snake_case : int = in_channels != out_channels or stride != 1 _snake_case : Dict = max(1 , out_channels // config.groups_width) _snake_case : Tuple = ( RegNetShortCut(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase) if should_apply_shortcut else nn.Identity() ) _snake_case : Dict = nn.Sequential( RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=config.hidden_act) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , groups=lowerCAmelCase , activation=config.hidden_act) , RegNetSELayer(lowerCAmelCase , reduced_channels=int(round(in_channels / 4))) , RegNetConvLayer(lowerCAmelCase , lowerCAmelCase , kernel_size=1 , activation=lowerCAmelCase) , ) _snake_case : Optional[Any] = ACTaFN[config.hidden_act] def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : List[Any]) -> Tuple: """simple docstring""" _snake_case : Tuple = hidden_state _snake_case : List[Any] = self.layer(lowerCAmelCase) _snake_case : List[str] = self.shortcut(lowerCAmelCase) hidden_state += residual _snake_case : int = self.activation(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Dict , lowerCAmelCase : RegNetConfig , lowerCAmelCase : int , lowerCAmelCase : int , lowerCAmelCase : int = 2 , lowerCAmelCase : int = 2 , ) -> int: """simple docstring""" super().__init__() _snake_case : Optional[Any] = RegNetXLayer if config.layer_type == """x""" else RegNetYLayer _snake_case : Optional[int] = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , stride=lowerCAmelCase , ) , *[layer(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase) for _ in range(depth - 1)] , ) def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" _snake_case : List[str] = self.layers(lowerCAmelCase) return hidden_state class snake_case ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : RegNetConfig) -> List[str]: """simple docstring""" super().__init__() _snake_case : Dict = nn.ModuleList([]) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( lowerCAmelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , )) _snake_case : Union[str, Any] = zip(config.hidden_sizes , config.hidden_sizes[1:]) for (in_channels, out_channels), depth in zip(lowerCAmelCase , config.depths[1:]): self.stages.append(RegNetStage(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , depth=lowerCAmelCase)) def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Tensor , lowerCAmelCase : bool = False , lowerCAmelCase : bool = True) -> BaseModelOutputWithNoAttention: """simple docstring""" _snake_case : Dict = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: _snake_case : Optional[int] = hidden_states + (hidden_state,) _snake_case : Dict = stage_module(lowerCAmelCase) if output_hidden_states: _snake_case : Tuple = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None) return BaseModelOutputWithNoAttention(last_hidden_state=lowerCAmelCase , hidden_states=lowerCAmelCase) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = RegNetConfig snake_case_ : List[Any] = """regnet""" snake_case_ : Any = """pixel_values""" snake_case_ : Optional[Any] = True def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" if isinstance(lowerCAmelCase , nn.Convad): nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""") elif isinstance(lowerCAmelCase , (nn.BatchNormad, nn.GroupNorm)): nn.init.constant_(module.weight , 1) nn.init.constant_(module.bias , 0) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Tuple , lowerCAmelCase : List[str]=False) -> Optional[int]: """simple docstring""" if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : Optional[Any] = value a__ = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`RegNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ a__ = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. """ @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , lowerCAmelCase : List[str]) -> Dict: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Any = config _snake_case : Any = RegNetEmbeddings(lowerCAmelCase) _snake_case : Dict = RegNetEncoder(lowerCAmelCase) _snake_case : Tuple = nn.AdaptiveAvgPoolad((1, 1)) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def UpperCamelCase_ ( self : Tuple , lowerCAmelCase : Tensor , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None) -> BaseModelOutputWithPoolingAndNoAttention: """simple docstring""" _snake_case : Optional[int] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) _snake_case : int = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : str = self.embedder(lowerCAmelCase) _snake_case : Optional[Any] = self.encoder( lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : Tuple = encoder_outputs[0] _snake_case : Optional[Any] = self.pooler(lowerCAmelCase) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=lowerCAmelCase , pooler_output=lowerCAmelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ ,SCREAMING_SNAKE_CASE_ ,) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : int , lowerCAmelCase : int) -> Tuple: """simple docstring""" super().__init__(lowerCAmelCase) _snake_case : Union[str, Any] = config.num_labels _snake_case : List[Any] = RegNetModel(lowerCAmelCase) # classification head _snake_case : Union[str, Any] = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(lowerCAmelCase) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=lowerCAmelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def UpperCamelCase_ ( self : int , lowerCAmelCase : Optional[torch.FloatTensor] = None , lowerCAmelCase : Optional[torch.LongTensor] = None , lowerCAmelCase : Optional[bool] = None , lowerCAmelCase : Optional[bool] = None , ) -> ImageClassifierOutputWithNoAttention: """simple docstring""" _snake_case : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict _snake_case : Tuple = self.regnet(lowerCAmelCase , output_hidden_states=lowerCAmelCase , return_dict=lowerCAmelCase) _snake_case : str = outputs.pooler_output if return_dict else outputs[1] _snake_case : Optional[Any] = self.classifier(lowerCAmelCase) _snake_case : Any = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: _snake_case : List[Any] = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): _snake_case : Optional[int] = """single_label_classification""" else: _snake_case : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": _snake_case : List[str] = MSELoss() if self.num_labels == 1: _snake_case : Optional[Any] = loss_fct(logits.squeeze() , labels.squeeze()) else: _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) elif self.config.problem_type == "single_label_classification": _snake_case : Dict = CrossEntropyLoss() _snake_case : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) elif self.config.problem_type == "multi_label_classification": _snake_case : Optional[int] = BCEWithLogitsLoss() _snake_case : List[str] = loss_fct(lowerCAmelCase , lowerCAmelCase) if not return_dict: _snake_case : Optional[Any] = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=lowerCAmelCase , logits=lowerCAmelCase , hidden_states=outputs.hidden_states)
317
1
from __future__ import annotations def lowercase ( SCREAMING_SNAKE_CASE__ : list[int] ) -> bool: return len(set(SCREAMING_SNAKE_CASE__ ) ) == len(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": import doctest doctest.testmod()
317
def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> list: _snake_case : Optional[Any] = [0] * len(SCREAMING_SNAKE_CASE__ ) for i in range(1 , len(SCREAMING_SNAKE_CASE__ ) ): # use last results for better performance - dynamic programming _snake_case : Optional[Any] = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _snake_case : List[Any] = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _snake_case : Optional[int] = j return prefix_result def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> int: return max(prefix_function(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
317
1
from math import isqrt def lowercase ( SCREAMING_SNAKE_CASE__ : int ) -> list[int]: _snake_case : List[Any] = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = False return [i for i in range(2 , SCREAMING_SNAKE_CASE__ ) if is_prime[i]] def lowercase ( SCREAMING_SNAKE_CASE__ : int = 10**8 ) -> int: _snake_case : int = calculate_prime_numbers(max_number // 2 ) _snake_case : List[str] = 0 _snake_case : List[Any] = 0 _snake_case : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) - 1 while left <= right: while prime_numbers[left] * prime_numbers[right] >= max_number: right -= 1 semiprimes_count += right - left + 1 left += 1 return semiprimes_count if __name__ == "__main__": print(F'''{solution() = }''')
317
import argparse import os from pathlib import Path import fairseq import torch from packaging import version from torch import nn from transformers import ( BartConfig, BartForConditionalGeneration, BartForSequenceClassification, BartModel, BartTokenizer, ) from transformers.utils import logging a__ = ["""bart.large""", """bart.large.mnli""", """bart.large.cnn""", """bart_xsum/model.pt"""] a__ = {"""bart.large""": BartModel, """bart.large.mnli""": BartForSequenceClassification} if version.parse(fairseq.__version__) < version.parse("""0.9.0"""): raise Exception("""requires fairseq >= 0.9.0""") logging.set_verbosity_info() a__ = logging.get_logger(__name__) a__ = """ Hello world! cécé herlolip""" a__ = [ ("""model.classification_heads.mnli.dense.weight""", """classification_head.dense.weight"""), ("""model.classification_heads.mnli.dense.bias""", """classification_head.dense.bias"""), ("""model.classification_heads.mnli.out_proj.weight""", """classification_head.out_proj.weight"""), ("""model.classification_heads.mnli.out_proj.bias""", """classification_head.out_proj.bias"""), ] def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] ) -> Optional[Any]: _snake_case : Union[str, Any] = [ """encoder.version""", """decoder.version""", """model.encoder.version""", """model.decoder.version""", """_float_tensor""", ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: _snake_case : Optional[int] = dct.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : int = val def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Optional[int]: _snake_case : List[Any] = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) _snake_case : int = torch.hub.load("""pytorch/fairseq""" , """bart.large.cnn""" ).eval() hub_interface.model.load_state_dict(sd["""model"""] ) return hub_interface def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> Optional[Any]: _snake_case , _snake_case : List[str] = emb.weight.shape _snake_case : Any = nn.Linear(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , bias=SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = emb.weight.data return lin_layer @torch.no_grad() def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str=None ) -> List[str]: if not os.path.exists(SCREAMING_SNAKE_CASE__ ): _snake_case : List[str] = torch.hub.load("""pytorch/fairseq""" , SCREAMING_SNAKE_CASE__ ).eval() else: _snake_case : Union[str, Any] = load_xsum_checkpoint(SCREAMING_SNAKE_CASE__ ) bart.model.upgrade_state_dict(bart.model.state_dict() ) if hf_checkpoint_name is None: _snake_case : Optional[Any] = checkpoint_path.replace(""".""" , """-""" ) _snake_case : Optional[Any] = BartConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) _snake_case : List[Any] = bart.encode(SCREAMING_SNAKE_CASE__ ).unsqueeze(0 ) _snake_case : str = BartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE__ ).encode(SCREAMING_SNAKE_CASE__ , return_tensors="""pt""" ).unsqueeze(0 ) if not torch.eq(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).all(): raise ValueError( F'''converted tokenizer and pretrained tokenizer returned different output: {tokens} != {tokensa}''' ) if checkpoint_path == "bart.large.mnli": _snake_case : Dict = bart.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : str = state_dict["""model.decoder.embed_tokens.weight"""] for src, dest in mnli_rename_keys: rename_key(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = BartForSequenceClassification(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = bart.predict("""mnli""" , SCREAMING_SNAKE_CASE__ , return_logits=SCREAMING_SNAKE_CASE__ ) _snake_case : Optional[int] = model(SCREAMING_SNAKE_CASE__ )[0] # logits else: # no classification heads to worry about _snake_case : Dict = bart.model.state_dict() remove_ignore_keys_(SCREAMING_SNAKE_CASE__ ) _snake_case : Tuple = state_dict["""decoder.embed_tokens.weight"""] _snake_case : Optional[Any] = bart.extract_features(SCREAMING_SNAKE_CASE__ ) if hf_checkpoint_name == "facebook/bart-large": _snake_case : Optional[Any] = BartModel(SCREAMING_SNAKE_CASE__ ).eval() model.load_state_dict(SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = model(SCREAMING_SNAKE_CASE__ ).model[0] else: _snake_case : str = BartForConditionalGeneration(SCREAMING_SNAKE_CASE__ ).eval() # an existing summarization ckpt model.model.load_state_dict(SCREAMING_SNAKE_CASE__ ) if hasattr(SCREAMING_SNAKE_CASE__ , """lm_head""" ): _snake_case : Any = make_linear_from_emb(model.model.shared ) _snake_case : Optional[Any] = model.model(SCREAMING_SNAKE_CASE__ )[0] # Check results if fairseq_output.shape != new_model_outputs.shape: raise ValueError( F'''`fairseq_output` shape and `new_model_output` shape are different: {fairseq_output.shape=}, {new_model_outputs.shape}''' ) if (fairseq_output != new_model_outputs).any().item(): raise ValueError("""Some values in `fairseq_output` are different from `new_model_outputs`""" ) Path(SCREAMING_SNAKE_CASE__ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE__ ) model.save_pretrained(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": a__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """fairseq_path""", type=str, help="""bart.large, bart.large.cnn or a path to a model.pt on local filesystem.""" ) parser.add_argument("""pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--hf_config""", default=None, type=str, help="""Which huggingface architecture to use: bart-large-xsum""" ) a__ = parser.parse_args() convert_bart_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, hf_checkpoint_name=args.hf_config)
317
1
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Union[str, Any] , lowerCAmelCase : str = "▁" , lowerCAmelCase : bool = True , lowerCAmelCase : Union[str, AddedToken] = "<unk>" , lowerCAmelCase : Union[str, AddedToken] = "</s>" , lowerCAmelCase : Union[str, AddedToken] = "<pad>" , ) -> int: """simple docstring""" _snake_case : int = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } _snake_case : Dict = [None] * len(self.special_tokens) for token_dict in self.special_tokens.values(): _snake_case : List[Any] = token_dict["""token"""] _snake_case : int = Tokenizer(Unigram()) _snake_case : Union[str, Any] = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""") , """ """), normalizers.Lowercase(), ]) _snake_case : Tuple = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=lowerCAmelCase , add_prefix_space=lowerCAmelCase), pre_tokenizers.Digits(individual_digits=lowerCAmelCase), pre_tokenizers.Punctuation(), ]) _snake_case : Optional[int] = decoders.Metaspace(replacement=lowerCAmelCase , add_prefix_space=lowerCAmelCase) _snake_case : Any = TemplateProcessing( single=F'''$A {self.special_tokens['eos']['token']}''' , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) _snake_case : str = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(lowerCAmelCase , lowerCAmelCase) def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Union[str, List[str]] , lowerCAmelCase : int = 8000 , lowerCAmelCase : bool = True , ) -> Any: """simple docstring""" _snake_case : Optional[Any] = trainers.UnigramTrainer( vocab_size=lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase , ) if isinstance(lowerCAmelCase , lowerCAmelCase): _snake_case : List[str] = [files] self._tokenizer.train(lowerCAmelCase , trainer=lowerCAmelCase) self.add_unk_id() def UpperCamelCase_ ( self : List[Any] , lowerCAmelCase : Union[Iterator[str], Iterator[Iterator[str]]] , lowerCAmelCase : int = 8000 , lowerCAmelCase : bool = True , ) -> Optional[Any]: """simple docstring""" _snake_case : int = trainers.UnigramTrainer( vocab_size=lowerCAmelCase , special_tokens=self.special_tokens_list , show_progress=lowerCAmelCase , ) self._tokenizer.train_from_iterator(lowerCAmelCase , trainer=lowerCAmelCase) self.add_unk_id() def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Tuple = json.loads(self._tokenizer.to_str()) _snake_case : Tuple = self.special_tokens["""unk"""]["""id"""] _snake_case : Any = Tokenizer.from_str(json.dumps(lowerCAmelCase))
317
import warnings from ...utils import logging from .image_processing_segformer import SegformerImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : Any , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> None: """simple docstring""" warnings.warn( """The class SegformerFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use SegformerImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a__ = TypeVar("""T""") class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[Any] , lowerCAmelCase : T) -> Tuple: """simple docstring""" _snake_case : Optional[Any] = data _snake_case : Node[T] | None = None def __str__( self : List[Any]) -> str: """simple docstring""" return F'''{self.data}''' class snake_case ( Generic[T] ): '''simple docstring''' def __init__( self : Union[str, Any]) -> None: """simple docstring""" _snake_case : Node[T] | None = None def __iter__( self : Optional[int]) -> Iterator[T]: """simple docstring""" _snake_case : Union[str, Any] = self.top while node: yield node.data _snake_case : Any = node.next def __str__( self : Any) -> str: """simple docstring""" return "->".join([str(lowerCAmelCase) for item in self]) def __len__( self : List[str]) -> int: """simple docstring""" return len(tuple(iter(self))) def UpperCamelCase_ ( self : int) -> bool: """simple docstring""" return self.top is None def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : T) -> None: """simple docstring""" _snake_case : Dict = Node(lowerCAmelCase) if not self.is_empty(): _snake_case : Union[str, Any] = self.top _snake_case : int = node def UpperCamelCase_ ( self : str) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""pop from empty stack""") assert isinstance(self.top , lowerCAmelCase) _snake_case : Any = self.top _snake_case : str = self.top.next return pop_node.data def UpperCamelCase_ ( self : Optional[Any]) -> T: """simple docstring""" if self.is_empty(): raise IndexError("""peek from empty stack""") assert self.top is not None return self.top.data def UpperCamelCase_ ( self : Optional[Any]) -> None: """simple docstring""" _snake_case : Dict = None if __name__ == "__main__": from doctest import testmod testmod()
317
import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : str , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a__ = { """configuration_speecht5""": [ """SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP""", """SpeechT5Config""", """SpeechT5HifiGanConfig""", ], """feature_extraction_speecht5""": ["""SpeechT5FeatureExtractor"""], """processing_speecht5""": ["""SpeechT5Processor"""], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = ["""SpeechT5Tokenizer"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a__ = [ """SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST""", """SpeechT5ForSpeechToText""", """SpeechT5ForSpeechToSpeech""", """SpeechT5ForTextToSpeech""", """SpeechT5Model""", """SpeechT5PreTrainedModel""", """SpeechT5HifiGan""", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
317
import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor a__ = logging.get_logger(__name__) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self : List[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Dict) -> None: """simple docstring""" warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , lowerCAmelCase , ) super().__init__(*lowerCAmelCase , **lowerCAmelCase)
317
1
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] ) -> int: return getitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> str: return setitem, k, v def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: return delitem, k def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , *SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e a__ = ( _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), ) a__ = [ _set("""key_a""", """val_a"""), _set("""key_a""", """val_b"""), ] a__ = [ _set("""key_a""", """val_a"""), _set("""key_b""", """val_b"""), _del("""key_a"""), _del("""key_b"""), _set("""key_a""", """val_a"""), _del("""key_a"""), ] a__ = [ _get("""key_a"""), _del("""key_a"""), _set("""key_a""", """val_a"""), _del("""key_a"""), _del("""key_a"""), _get("""key_a"""), ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("""key_a""", """val_b"""), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def lowercase ( SCREAMING_SNAKE_CASE__ : str ) -> Tuple: _snake_case : List[Any] = HashMap(initial_block_size=4 ) _snake_case : int = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): _snake_case , _snake_case : Tuple = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) _snake_case , _snake_case : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def lowercase ( ) -> Optional[int]: def is_public(SCREAMING_SNAKE_CASE__ : str ) -> bool: return not name.startswith("""_""" ) _snake_case : Tuple = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} _snake_case : Optional[Any] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
317
1
from ...processing_utils import ProcessorMixin class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""image_processor""", """feature_extractor"""] snake_case_ : List[Any] = """TvltImageProcessor""" snake_case_ : Dict = """TvltFeatureExtractor""" def __init__( self : Any , lowerCAmelCase : Optional[int] , lowerCAmelCase : str) -> Optional[int]: """simple docstring""" super().__init__(image_processor=lowerCAmelCase , feature_extractor=lowerCAmelCase) _snake_case : List[Any] = image_processor _snake_case : List[Any] = feature_extractor def __call__( self : Union[str, Any] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None , lowerCAmelCase : Optional[Any]=None , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Dict=False , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Any , ) -> Any: """simple docstring""" if images is None and audio is None: raise ValueError("""You need to specify either an `images` or `audio` input to process.""") _snake_case : Union[str, Any] = None if images is not None: _snake_case : Any = self.image_processor(lowerCAmelCase , mask_pixel=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if images_mixed is not None: _snake_case : Union[str, Any] = self.image_processor(lowerCAmelCase , is_mixed=lowerCAmelCase , *lowerCAmelCase , **lowerCAmelCase) if audio is not None: _snake_case : int = self.feature_extractor( lowerCAmelCase , *lowerCAmelCase , sampling_rate=lowerCAmelCase , mask_audio=lowerCAmelCase , **lowerCAmelCase) _snake_case : Any = {} if audio is not None: output_dict.update(lowerCAmelCase) if images is not None: output_dict.update(lowerCAmelCase) if images_mixed_dict is not None: output_dict.update(lowerCAmelCase) return output_dict @property def UpperCamelCase_ ( self : Union[str, Any]) -> Any: """simple docstring""" _snake_case : Optional[Any] = self.image_processor.model_input_names _snake_case : List[str] = self.feature_extractor.model_input_names return list(dict.fromkeys(image_processor_input_names + feature_extractor_input_names))
317
import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' @require_torch def UpperCamelCase_ ( self : str) -> str: """simple docstring""" _snake_case : Optional[int] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : Dict = """ import socket def offline_socket(*args, **kwargs): raise RuntimeError(\"Offline mode is enabled, we shouldn't access internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : Dict = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : Dict = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Optional[Any]) -> List[str]: """simple docstring""" _snake_case : List[Any] = """ from transformers import BertConfig, BertModel, BertTokenizer, pipeline """ _snake_case : List[str] = """ mname = \"hf-internal-testing/tiny-random-bert\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task=\"fill-mask\", model=mname) print(\"success\") """ _snake_case : int = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Faking flaky internet\") socket.socket = offline_socket """ # Force fetching the files so that we can use the cache _snake_case : int = """hf-internal-testing/tiny-random-bert""" BertConfig.from_pretrained(lowerCAmelCase) BertModel.from_pretrained(lowerCAmelCase) BertTokenizer.from_pretrained(lowerCAmelCase) pipeline(task="""fill-mask""" , model=lowerCAmelCase) # baseline - just load from_pretrained with normal network _snake_case : str = [sys.executable, """-c""", """\n""".join([load, run, mock])] # should succeed _snake_case : int = self.get_env() _snake_case : List[str] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Dict) -> Union[str, Any]: """simple docstring""" _snake_case : Union[str, Any] = """ from transformers import BertConfig, BertModel, BertTokenizer """ _snake_case : List[Any] = """ mname = \"hf-internal-testing/tiny-random-bert-sharded\" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print(\"success\") """ _snake_case : Optional[int] = """ import socket def offline_socket(*args, **kwargs): raise ValueError(\"Offline mode is enabled\") socket.socket = offline_socket """ # baseline - just load from_pretrained with normal network _snake_case : int = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Any = self.get_env() _snake_case : Dict = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # next emulate no network _snake_case : List[Any] = [sys.executable, """-c""", """\n""".join([load, mock, run])] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : int = """1""" _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) @require_torch def UpperCamelCase_ ( self : Any) -> Any: """simple docstring""" _snake_case : Dict = """ from transformers import pipeline """ _snake_case : Any = """ mname = \"hf-internal-testing/tiny-random-bert\" pipe = pipeline(model=mname) """ _snake_case : List[str] = """ import socket def offline_socket(*args, **kwargs): raise socket.error(\"Offline mode is enabled\") socket.socket = offline_socket """ _snake_case : Tuple = self.get_env() _snake_case : Union[str, Any] = """1""" _snake_case : int = [sys.executable, """-c""", """\n""".join([load, mock, run])] _snake_case : Any = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 1 , result.stderr) self.assertIn( """You cannot infer task automatically within `pipeline` when using offline mode""" , result.stderr.decode().replace("""\n""" , """""") , ) @require_torch def UpperCamelCase_ ( self : Union[str, Any]) -> List[Any]: """simple docstring""" _snake_case : Optional[Any] = """ from transformers import AutoModel """ _snake_case : Union[str, Any] = """ mname = \"hf-internal-testing/test_dynamic_model\" AutoModel.from_pretrained(mname, trust_remote_code=True) print(\"success\") """ # baseline - just load from_pretrained with normal network _snake_case : Any = [sys.executable, """-c""", """\n""".join([load, run])] # should succeed _snake_case : Union[str, Any] = self.get_env() _snake_case : Tuple = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode()) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _snake_case : Union[str, Any] = """1""" _snake_case : List[Any] = subprocess.run(lowerCAmelCase , env=lowerCAmelCase , check=lowerCAmelCase , capture_output=lowerCAmelCase) self.assertEqual(result.returncode , 0 , result.stderr) self.assertIn("""success""" , result.stdout.decode())
317
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu a__ = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: a__ = json.load(f) @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : Any) -> int: """simple docstring""" return FSMTTokenizer.from_pretrained(lowerCAmelCase) def UpperCamelCase_ ( self : str , lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" _snake_case : str = FSMTForConditionalGeneration.from_pretrained(lowerCAmelCase).to(lowerCAmelCase) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ]) @slow def UpperCamelCase_ ( self : str , lowerCAmelCase : Optional[Any] , lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" _snake_case : Any = F'''facebook/wmt19-{pair}''' _snake_case : List[str] = self.get_tokenizer(lowerCAmelCase) _snake_case : Tuple = self.get_model(lowerCAmelCase) _snake_case : str = bleu_data[pair]["""src"""] _snake_case : Optional[int] = bleu_data[pair]["""tgt"""] _snake_case : Optional[Any] = tokenizer(lowerCAmelCase , return_tensors="""pt""" , truncation=lowerCAmelCase , padding="""longest""").to(lowerCAmelCase) _snake_case : Optional[int] = model.generate( input_ids=batch.input_ids , num_beams=8 , ) _snake_case : Any = tokenizer.batch_decode( lowerCAmelCase , skip_special_tokens=lowerCAmelCase , clean_up_tokenization_spaces=lowerCAmelCase) _snake_case : List[str] = calculate_bleu(lowerCAmelCase , lowerCAmelCase) print(lowerCAmelCase) self.assertGreaterEqual(scores["""bleu"""] , lowerCAmelCase)
317
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) a__ = pytest.mark.integration @pytest.mark.parametrize("""path""" , ["""paws""", """csv"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: inspect_dataset(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Union[str, Any] = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.filterwarnings("""ignore:inspect_metric is deprecated:FutureWarning""" ) @pytest.mark.filterwarnings("""ignore:metric_module_factory is deprecated:FutureWarning""" ) @pytest.mark.parametrize("""path""" , ["""accuracy"""] ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Optional[int]: inspect_metric(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = path + """.py""" assert script_name in os.listdir(SCREAMING_SNAKE_CASE__ ) assert "__pycache__" not in os.listdir(SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, config_name, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] ) -> List[Any]: _snake_case : Dict = get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_config_info(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ ) @pytest.mark.parametrize( """path, expected""" , [ ("""squad""", """plain_text"""), ("""acronym_identification""", """default"""), ("""lhoestq/squad""", """plain_text"""), ("""lhoestq/test""", """default"""), ("""lhoestq/demo1""", """lhoestq--demo1"""), ("""dalle-mini/wit""", """dalle-mini--wit"""), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: _snake_case : Optional[Any] = get_dataset_config_names(SCREAMING_SNAKE_CASE__ ) assert expected in config_names @pytest.mark.parametrize( """path, expected_configs, expected_splits_in_first_config""" , [ ("""squad""", ["""plain_text"""], ["""train""", """validation"""]), ("""dalle-mini/wit""", ["""dalle-mini--wit"""], ["""train"""]), ("""paws""", ["""labeled_final""", """labeled_swap""", """unlabeled_final"""], ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: _snake_case : Union[str, Any] = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert list(infos.keys() ) == expected_configs _snake_case : Optional[int] = expected_configs[0] assert expected_config in infos _snake_case : int = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( """path, expected_config, expected_splits""" , [ ("""squad""", """plain_text""", ["""train""", """validation"""]), ("""dalle-mini/wit""", """dalle-mini--wit""", ["""train"""]), ("""paws""", """labeled_final""", ["""train""", """test""", """validation"""]), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : int ) -> Tuple: _snake_case : Dict = get_dataset_infos(SCREAMING_SNAKE_CASE__ ) assert expected_config in infos _snake_case : Optional[int] = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( """path, config_name, expected_exception""" , [ ("""paws""", None, ValueError), ] , ) def lowercase ( SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: with pytest.raises(SCREAMING_SNAKE_CASE__ ): get_dataset_split_names(SCREAMING_SNAKE_CASE__ , config_name=SCREAMING_SNAKE_CASE__ )
317
1
import math import random from typing import Any from .hill_climbing import SearchProblem def lowercase ( SCREAMING_SNAKE_CASE__ : Tuple , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : float = math.inf , SCREAMING_SNAKE_CASE__ : float = -math.inf , SCREAMING_SNAKE_CASE__ : float = math.inf , SCREAMING_SNAKE_CASE__ : float = -math.inf , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : float = 100 , SCREAMING_SNAKE_CASE__ : float = 0.0_1 , SCREAMING_SNAKE_CASE__ : float = 1 , ) -> Any: _snake_case : int = False _snake_case : Union[str, Any] = search_prob _snake_case : str = start_temperate _snake_case : str = [] _snake_case : List[str] = 0 _snake_case : Union[str, Any] = None while not search_end: _snake_case : Any = current_state.score() if best_state is None or current_score > best_state.score(): _snake_case : Union[str, Any] = current_state scores.append(SCREAMING_SNAKE_CASE__ ) iterations += 1 _snake_case : Union[str, Any] = None _snake_case : Optional[int] = current_state.get_neighbors() while ( next_state is None and neighbors ): # till we do not find a neighbor that we can move to _snake_case : Tuple = random.randint(0 , len(SCREAMING_SNAKE_CASE__ ) - 1 ) # picking a random neighbor _snake_case : int = neighbors.pop(SCREAMING_SNAKE_CASE__ ) _snake_case : Dict = picked_neighbor.score() - current_score if ( picked_neighbor.x > max_x or picked_neighbor.x < min_x or picked_neighbor.y > max_y or picked_neighbor.y < min_y ): continue # neighbor outside our bounds if not find_max: _snake_case : Union[str, Any] = change * -1 # in case we are finding minimum if change > 0: # improves the solution _snake_case : Union[str, Any] = picked_neighbor else: _snake_case : List[str] = (math.e) ** ( change / current_temp ) # probability generation function if random.random() < probability: # random number within probability _snake_case : int = picked_neighbor _snake_case : str = current_temp - (current_temp * rate_of_decrease) if current_temp < threshold_temp or next_state is None: # temperature below threshold, or could not find a suitable neighbor _snake_case : Optional[int] = True else: _snake_case : str = next_state if visualization: from matplotlib import pyplot as plt plt.plot(range(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ ) plt.xlabel("""Iterations""" ) plt.ylabel("""Function values""" ) plt.show() return best_state if __name__ == "__main__": def lowercase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> int: return (x**2) + (y**2) # starting the problem with initial coordinates (12, 47) a__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a__ = simulated_annealing( prob, find_max=False, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The minimum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) # starting the problem with initial coordinates (12, 47) a__ = SearchProblem(x=12, y=47, step_size=1, function_to_optimize=test_fa) a__ = simulated_annealing( prob, find_max=True, max_x=1_00, min_x=5, max_y=50, min_y=-5, visualization=True ) print( """The maximum score for f(x, y) = x^2 + y^2 with the domain 100 > x > 5 """ F'''and 50 > y > - 5 found via hill climbing: {local_min.score()}''' ) def lowercase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: return (3 * x**2) - (6 * y) a__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a__ = simulated_annealing(prob, find_max=False, visualization=True) print( """The minimum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' ) a__ = SearchProblem(x=3, y=4, step_size=1, function_to_optimize=test_fa) a__ = simulated_annealing(prob, find_max=True, visualization=True) print( """The maximum score for f(x, y) = 3*x^2 - 6*y found via hill climbing: """ F'''{local_min.score()}''' )
317
import pprint import requests a__ = """https://zenquotes.io/api""" def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/today""" ).json() def lowercase ( ) -> list: return requests.get(API_ENDPOINT_URL + """/random""" ).json() if __name__ == "__main__": a__ = random_quotes() pprint.pprint(response)
317
1
def lowercase ( SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str ) -> List[str]: _snake_case : Any = [0 for i in range(r + 1 )] # nc0 = 1 _snake_case : Any = 1 for i in range(1 , n + 1 ): # to compute current row from previous row. _snake_case : Optional[Any] = min(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) while j > 0: c[j] += c[j - 1] j -= 1 return c[r] print(binomial_coefficient(n=10, r=5))
317
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices a__ = logging.get_logger(__name__) a__ = { """microsoft/swin-tiny-patch4-window7-224""": ( """https://huggingface.co/microsoft/swin-tiny-patch4-window7-224/resolve/main/config.json""" ), # See all Swin models at https://huggingface.co/models?filter=swin } class snake_case ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """swin""" snake_case_ : Optional[Any] = { """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self : str , lowerCAmelCase : Optional[int]=224 , lowerCAmelCase : int=4 , lowerCAmelCase : Any=3 , lowerCAmelCase : int=96 , lowerCAmelCase : Optional[Any]=[2, 2, 6, 2] , lowerCAmelCase : Optional[Any]=[3, 6, 12, 24] , lowerCAmelCase : Tuple=7 , lowerCAmelCase : List[Any]=4.0 , lowerCAmelCase : Tuple=True , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : Optional[int]=0.1 , lowerCAmelCase : Tuple="gelu" , lowerCAmelCase : Any=False , lowerCAmelCase : Union[str, Any]=0.02 , lowerCAmelCase : int=1E-5 , lowerCAmelCase : Optional[Any]=32 , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : Dict=None , **lowerCAmelCase : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : int = image_size _snake_case : Any = patch_size _snake_case : Union[str, Any] = num_channels _snake_case : int = embed_dim _snake_case : Dict = depths _snake_case : Dict = len(lowerCAmelCase) _snake_case : Optional[Any] = num_heads _snake_case : Tuple = window_size _snake_case : int = mlp_ratio _snake_case : Any = qkv_bias _snake_case : Union[str, Any] = hidden_dropout_prob _snake_case : List[str] = attention_probs_dropout_prob _snake_case : Optional[Any] = drop_path_rate _snake_case : List[Any] = hidden_act _snake_case : str = use_absolute_embeddings _snake_case : Tuple = layer_norm_eps _snake_case : Any = initializer_range _snake_case : Union[str, Any] = encoder_stride # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model _snake_case : Dict = int(embed_dim * 2 ** (len(lowerCAmelCase) - 1)) _snake_case : Optional[Any] = ["""stem"""] + [F'''stage{idx}''' for idx in range(1 , len(lowerCAmelCase) + 1)] _snake_case , _snake_case : List[str] = get_aligned_output_features_output_indices( out_features=lowerCAmelCase , out_indices=lowerCAmelCase , stage_names=self.stage_names) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Dict) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Dict) -> float: """simple docstring""" return 1E-4
317
from ..utils import DummyObject, requires_backends class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : str , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : str) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Dict , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : Optional[Any] ) -> Tuple: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Tuple ) -> List[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Optional[int]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : Dict ) -> int: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Optional[Any] , **SCREAMING_SNAKE_CASE__ : List[str] ) -> List[str]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) def lowercase ( *SCREAMING_SNAKE_CASE__ : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : int ) -> Union[str, Any]: requires_backends(SCREAMING_SNAKE_CASE__ , ["""torch"""] ) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Optional[int]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Dict) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Any) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : int , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Any , **lowerCAmelCase : int) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : str , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : str , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : Any) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : List[str]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Any) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Any , **lowerCAmelCase : str) -> List[str]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : int , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : int) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : int , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : List[str]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : int , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : str) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Any , **lowerCAmelCase : Any) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Tuple) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Union[str, Any] , **lowerCAmelCase : Union[str, Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[Any]) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Dict , **lowerCAmelCase : Union[str, Any]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : List[Any]) -> str: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : List[Any] , **lowerCAmelCase : Optional[int]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : List[str] , **lowerCAmelCase : int) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[str] = ["""torch"""] def __init__( self : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[Any] , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Any) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[int] = ["""torch"""] def __init__( self : Dict , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Dict , **lowerCAmelCase : Optional[Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : int) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : List[Any] = ["""torch"""] def __init__( self : int , *lowerCAmelCase : Any , **lowerCAmelCase : Union[str, Any]) -> str: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Union[str, Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[int]) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Dict) -> List[str]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[int]) -> int: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Optional[int]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Union[str, Any] , *lowerCAmelCase : int , **lowerCAmelCase : int) -> Tuple: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : List[str] , **lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[Any] , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : Tuple , **lowerCAmelCase : str) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Tuple , **lowerCAmelCase : Dict) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Any = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[str] , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : List[str] , **lowerCAmelCase : Union[str, Any]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Any , **lowerCAmelCase : Optional[Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = ["""torch"""] def __init__( self : Any , *lowerCAmelCase : List[Any] , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Any , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Union[str, Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : str , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[Any] , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : Union[str, Any]) -> Any: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = ["""torch"""] def __init__( self : List[Any] , *lowerCAmelCase : str , **lowerCAmelCase : Any) -> Any: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Tuple , **lowerCAmelCase : List[str]) -> int: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : Optional[int] , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : int = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : Dict , **lowerCAmelCase : Dict) -> Union[str, Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : Any , **lowerCAmelCase : Dict) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Dict = ["""torch"""] def __init__( self : Optional[int] , *lowerCAmelCase : int , **lowerCAmelCase : List[str]) -> List[Any]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Tuple , *lowerCAmelCase : Dict , **lowerCAmelCase : Tuple) -> Tuple: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : str , *lowerCAmelCase : Tuple , **lowerCAmelCase : Optional[Any]) -> Optional[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) class snake_case ( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Union[str, Any] = ["""torch"""] def __init__( self : List[str] , *lowerCAmelCase : Optional[Any] , **lowerCAmelCase : Tuple) -> Optional[int]: """simple docstring""" requires_backends(self , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : Dict , *lowerCAmelCase : str , **lowerCAmelCase : List[Any]) -> List[Any]: """simple docstring""" requires_backends(cls , ["""torch"""]) @classmethod def UpperCamelCase_ ( cls : List[str] , *lowerCAmelCase : str , **lowerCAmelCase : Tuple) -> Dict: """simple docstring""" requires_backends(cls , ["""torch"""])
317
1
class snake_case : '''simple docstring''' def __init__( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[str]=None , lowerCAmelCase : Dict=None) -> Dict: """simple docstring""" _snake_case : Any = data _snake_case : str = previous _snake_case : Optional[Any] = next_node def __str__( self : Dict) -> str: """simple docstring""" return F'''{self.data}''' def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" return self.data def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" return self.next def UpperCamelCase_ ( self : Optional[int]) -> Tuple: """simple docstring""" return self.previous class snake_case : '''simple docstring''' def __init__( self : Optional[int] , lowerCAmelCase : List[Any]) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = head def __iter__( self : Tuple) -> Dict: """simple docstring""" return self def UpperCamelCase_ ( self : Optional[Any]) -> int: """simple docstring""" if not self.current: raise StopIteration else: _snake_case : Union[str, Any] = self.current.get_data() _snake_case : Dict = self.current.get_next() return value class snake_case : '''simple docstring''' def __init__( self : List[str]) -> Any: """simple docstring""" _snake_case : Optional[Any] = None # First node in list _snake_case : int = None # Last node in list def __str__( self : Optional[int]) -> List[str]: """simple docstring""" _snake_case : Union[str, Any] = self.head _snake_case : Any = [] while current is not None: nodes.append(current.get_data()) _snake_case : Dict = current.get_next() return " ".join(str(lowerCAmelCase) for node in nodes) def __contains__( self : List[Any] , lowerCAmelCase : int) -> Optional[Any]: """simple docstring""" _snake_case : Tuple = self.head while current: if current.get_data() == value: return True _snake_case : str = current.get_next() return False def __iter__( self : List[str]) -> Union[str, Any]: """simple docstring""" return LinkedListIterator(self.head) def UpperCamelCase_ ( self : List[str]) -> Optional[Any]: """simple docstring""" if self.head: return self.head.get_data() return None def UpperCamelCase_ ( self : Optional[Any]) -> List[Any]: """simple docstring""" if self.tail: return self.tail.get_data() return None def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : Node) -> None: """simple docstring""" if self.head is None: _snake_case : Optional[Any] = node _snake_case : Dict = node else: self.insert_before_node(self.head , lowerCAmelCase) def UpperCamelCase_ ( self : List[str] , lowerCAmelCase : Node) -> None: """simple docstring""" if self.head is None: self.set_head(lowerCAmelCase) else: self.insert_after_node(self.tail , lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : int) -> None: """simple docstring""" _snake_case : Tuple = Node(lowerCAmelCase) if self.head is None: self.set_head(lowerCAmelCase) else: self.set_tail(lowerCAmelCase) def UpperCamelCase_ ( self : Union[str, Any] , lowerCAmelCase : Node , lowerCAmelCase : Node) -> None: """simple docstring""" _snake_case : List[str] = node _snake_case : Optional[Any] = node.previous if node.get_previous() is None: _snake_case : Union[str, Any] = node_to_insert else: _snake_case : List[str] = node_to_insert _snake_case : List[str] = node_to_insert def UpperCamelCase_ ( self : Any , lowerCAmelCase : Node , lowerCAmelCase : Node) -> None: """simple docstring""" _snake_case : List[Any] = node _snake_case : str = node.next if node.get_next() is None: _snake_case : List[str] = node_to_insert else: _snake_case : List[str] = node_to_insert _snake_case : Optional[int] = node_to_insert def UpperCamelCase_ ( self : Optional[int] , lowerCAmelCase : int , lowerCAmelCase : int) -> None: """simple docstring""" _snake_case : int = 1 _snake_case : Union[str, Any] = Node(lowerCAmelCase) _snake_case : Tuple = self.head while node: if current_position == position: self.insert_before_node(lowerCAmelCase , lowerCAmelCase) return current_position += 1 _snake_case : Dict = node.next self.insert_after_node(self.tail , lowerCAmelCase) def UpperCamelCase_ ( self : Dict , lowerCAmelCase : int) -> Node: """simple docstring""" _snake_case : int = self.head while node: if node.get_data() == item: return node _snake_case : str = node.get_next() raise Exception("""Node not found""") def UpperCamelCase_ ( self : Optional[Any] , lowerCAmelCase : List[Any]) -> Any: """simple docstring""" if (node := self.get_node(lowerCAmelCase)) is not None: if node == self.head: _snake_case : Optional[int] = self.head.get_next() if node == self.tail: _snake_case : Tuple = self.tail.get_previous() self.remove_node_pointers(lowerCAmelCase) @staticmethod def UpperCamelCase_ ( lowerCAmelCase : Node) -> None: """simple docstring""" if node.get_next(): _snake_case : List[str] = node.previous if node.get_previous(): _snake_case : str = node.next _snake_case : List[Any] = None _snake_case : Tuple = None def UpperCamelCase_ ( self : int) -> Optional[int]: """simple docstring""" return self.head is None def lowercase ( ) -> None: pass if __name__ == "__main__": import doctest doctest.testmod()
317
from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a__ = logging.get_logger(__name__) a__ = { """google/efficientnet-b7""": """https://huggingface.co/google/efficientnet-b7/resolve/main/config.json""", } class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Optional[Any] = """efficientnet""" def __init__( self : List[Any] , lowerCAmelCase : int = 3 , lowerCAmelCase : int = 600 , lowerCAmelCase : float = 2.0 , lowerCAmelCase : float = 3.1 , lowerCAmelCase : int = 8 , lowerCAmelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , lowerCAmelCase : List[int] = [32, 16, 24, 40, 80, 112, 192] , lowerCAmelCase : List[int] = [16, 24, 40, 80, 112, 192, 320] , lowerCAmelCase : List[int] = [] , lowerCAmelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , lowerCAmelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , lowerCAmelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , lowerCAmelCase : float = 0.25 , lowerCAmelCase : str = "swish" , lowerCAmelCase : int = 2560 , lowerCAmelCase : str = "mean" , lowerCAmelCase : float = 0.02 , lowerCAmelCase : float = 0.001 , lowerCAmelCase : float = 0.99 , lowerCAmelCase : float = 0.5 , lowerCAmelCase : float = 0.2 , **lowerCAmelCase : Tuple , ) -> Optional[Any]: """simple docstring""" super().__init__(**lowerCAmelCase) _snake_case : Optional[int] = num_channels _snake_case : str = image_size _snake_case : Tuple = width_coefficient _snake_case : List[str] = depth_coefficient _snake_case : List[Any] = depth_divisor _snake_case : str = kernel_sizes _snake_case : Any = in_channels _snake_case : Optional[Any] = out_channels _snake_case : str = depthwise_padding _snake_case : Tuple = strides _snake_case : Dict = num_block_repeats _snake_case : int = expand_ratios _snake_case : Tuple = squeeze_expansion_ratio _snake_case : Optional[int] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : Tuple = pooling_type _snake_case : Tuple = initializer_range _snake_case : List[Any] = batch_norm_eps _snake_case : Optional[Any] = batch_norm_momentum _snake_case : str = dropout_rate _snake_case : Union[str, Any] = drop_connect_rate _snake_case : Optional[int] = sum(lowerCAmelCase) * 4 class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase_ ( self : Optional[Any]) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ]) @property def UpperCamelCase_ ( self : Union[str, Any]) -> float: """simple docstring""" return 1E-5
317
1
import gc import unittest from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline from diffusers.utils import is_flax_available, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class snake_case ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self : Optional[Any]) -> Union[str, Any]: """simple docstring""" super().tearDown() gc.collect() def UpperCamelCase_ ( self : Tuple) -> Optional[int]: """simple docstring""" _snake_case , _snake_case : Optional[Any] = FlaxStableDiffusionPipeline.from_pretrained( """stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , ) _snake_case : int = """A painting of a squirrel eating a burger""" _snake_case : List[str] = jax.device_count() _snake_case : Any = num_samples * [prompt] _snake_case : Optional[int] = sd_pipe.prepare_inputs(lowerCAmelCase) _snake_case : List[Any] = replicate(lowerCAmelCase) _snake_case : Any = shard(lowerCAmelCase) _snake_case : Dict = jax.random.PRNGKey(0) _snake_case : List[Any] = jax.random.split(lowerCAmelCase , jax.device_count()) _snake_case : Optional[int] = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase)[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _snake_case : str = images[0, 253:256, 253:256, -1] _snake_case : Tuple = jnp.asarray(jax.device_get(image_slice.flatten())) _snake_case : Any = jnp.array([0.4_238, 0.4_414, 0.4_395, 0.4_453, 0.4_629, 0.4_590, 0.4_531, 0.45_508, 0.4_512]) print(F'''output_slice: {output_slice}''') assert jnp.abs(output_slice - expected_slice).max() < 1E-2 def UpperCamelCase_ ( self : List[str]) -> List[str]: """simple docstring""" _snake_case : List[str] = """stabilityai/stable-diffusion-2""" _snake_case , _snake_case : Optional[int] = FlaxDPMSolverMultistepScheduler.from_pretrained(lowerCAmelCase , subfolder="""scheduler""") _snake_case , _snake_case : Union[str, Any] = FlaxStableDiffusionPipeline.from_pretrained( lowerCAmelCase , scheduler=lowerCAmelCase , revision="""bf16""" , dtype=jnp.bfloataa , ) _snake_case : List[Any] = scheduler_params _snake_case : Any = """A painting of a squirrel eating a burger""" _snake_case : List[Any] = jax.device_count() _snake_case : Optional[Any] = num_samples * [prompt] _snake_case : Any = sd_pipe.prepare_inputs(lowerCAmelCase) _snake_case : Tuple = replicate(lowerCAmelCase) _snake_case : List[Any] = shard(lowerCAmelCase) _snake_case : Optional[int] = jax.random.PRNGKey(0) _snake_case : List[Any] = jax.random.split(lowerCAmelCase , jax.device_count()) _snake_case : int = sd_pipe(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , num_inference_steps=25 , jit=lowerCAmelCase)[0] assert images.shape == (jax.device_count(), 1, 768, 768, 3) _snake_case : Tuple = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:]) _snake_case : str = images[0, 253:256, 253:256, -1] _snake_case : Any = jnp.asarray(jax.device_get(image_slice.flatten())) _snake_case : Optional[Any] = jnp.array([0.4_336, 0.42_969, 0.4_453, 0.4_199, 0.4_297, 0.4_531, 0.4_434, 0.4_434, 0.4_297]) print(F'''output_slice: {output_slice}''') assert jnp.abs(output_slice - expected_slice).max() < 1E-2
317
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=SCREAMING_SNAKE_CASE_ ) class snake_case ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' snake_case_ : str = field(default="""question-answering-extractive""" ,metadata={"""include_in_asdict_even_if_is_default""": True} ) snake_case_ : ClassVar[Features] = Features({"""question""": Value("""string""" ), """context""": Value("""string""" )} ) snake_case_ : ClassVar[Features] = Features( { """answers""": Sequence( { """text""": Value("""string""" ), """answer_start""": Value("""int32""" ), } ) } ) snake_case_ : str = "question" snake_case_ : str = "context" snake_case_ : str = "answers" @property def UpperCamelCase_ ( self : Any) -> Dict[str, str]: """simple docstring""" return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
317
1