code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
'''simple docstring''' def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> int: if len(UpperCamelCase ) != len(UpperCamelCase ): raise ValueError("""String lengths must match!""" ) lowerCamelCase__ : int = 0 for chara, chara in zip(UpperCamelCase , UpperCamelCase ): if chara != chara: count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
41
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): @slow def lowerCamelCase ( self ): """simple docstring""" _snake_case = AutoModelForSeqaSeqLM.from_pretrained('google/mt5-small' , return_dict=lowerCAmelCase_ ).to(lowerCAmelCase_ ) _snake_case = AutoTokenizer.from_pretrained('google/mt5-small' ) _snake_case = tokenizer('Hello there' , return_tensors='pt' ).input_ids _snake_case = tokenizer('Hi I am' , return_tensors='pt' ).input_ids _snake_case = model(input_ids.to(lowerCAmelCase_ ) , labels=labels.to(lowerCAmelCase_ ) ).loss _snake_case = -(labels.shape[-1] * loss.item()) _snake_case = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
42
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
import os from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen, xsplitext from ..table import array_cast from ..utils.py_utils import no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: from .features import FeatureType __lowercase , __lowercase , __lowercase = False, False, False @dataclass class lowerCamelCase_ : '''simple docstring''' a__ : Optional[int] = None a__ : bool = True a__ : bool = True a__ : Optional[str] = None # Automatically constructed a__ : ClassVar[str] = "dict" a__ : ClassVar[Any] = pa.struct({"""bytes""": pa.binary(), """path""": pa.string()} ) a__ : str = field(default="""Audio""" , init=UpperCAmelCase_ , repr=UpperCAmelCase_ ) def __call__( self) -> Any: return self.pa_type def UpperCamelCase__ ( self , __lowercase) -> dict: try: import soundfile as sf # soundfile is a dependency of librosa, needed to decode audio files. except ImportError as err: raise ImportError('''To support encoding audio data, please install \'soundfile\'.''') from err if isinstance(__lowercase , __lowercase): return {"bytes": None, "path": value} elif isinstance(__lowercase , __lowercase): return {"bytes": value, "path": None} elif "array" in value: # convert the audio array to wav bytes __UpperCamelCase :int = BytesIO() sf.write(__lowercase , value['''array'''] , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} elif value.get('''path''') is not None and os.path.isfile(value['''path''']): # we set "bytes": None to not duplicate the data if they're already available locally if value["path"].endswith('''pcm'''): # "PCM" only has raw audio bytes if value.get('''sampling_rate''') is None: # At least, If you want to convert "PCM-byte" to "WAV-byte", you have to know sampling rate raise KeyError('''To use PCM files, please specify a \'sampling_rate\' in Audio object''') if value.get('''bytes'''): # If we already had PCM-byte, we don`t have to make "read file, make bytes" (just use it!) __UpperCamelCase :Optional[Any] = np.frombuffer(value['''bytes'''] , dtype=np.intaa).astype(np.floataa) / 32_767 else: __UpperCamelCase :Union[str, Any] = np.memmap(value['''path'''] , dtype='''h''' , mode='''r''').astype(np.floataa) / 32_767 __UpperCamelCase :Tuple = BytesIO(bytes()) sf.write(__lowercase , __lowercase , value['''sampling_rate'''] , format='''wav''') return {"bytes": buffer.getvalue(), "path": None} else: return {"bytes": None, "path": value.get('''path''')} elif value.get('''bytes''') is not None or value.get('''path''') is not None: # store the audio bytes, and path is used to infer the audio format using the file extension return {"bytes": value.get('''bytes'''), "path": value.get('''path''')} else: raise ValueError( f"""An audio sample should have one of 'path' or 'bytes' but they are missing or None in {value}.""") def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> dict: if not self.decode: raise RuntimeError('''Decoding is disabled for this feature. Please use Audio(decode=True) instead.''') __UpperCamelCase , __UpperCamelCase :List[Any] = (value['''path'''], BytesIO(value['''bytes'''])) if value['''bytes'''] is not None else (value['''path'''], None) if path is None and file is None: raise ValueError(f"""An audio sample should have one of 'path' or 'bytes' but both are None in {value}.""") try: import librosa import soundfile as sf except ImportError as err: raise ImportError('''To support decoding audio files, please install \'librosa\' and \'soundfile\'.''') from err __UpperCamelCase :Dict = xsplitext(__lowercase)[1][1:].lower() if path is not None else None if not config.IS_OPUS_SUPPORTED and audio_format == "opus": raise RuntimeError( '''Decoding \'opus\' files requires system library \'libsndfile\'>=1.0.31, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') elif not config.IS_MP3_SUPPORTED and audio_format == "mp3": raise RuntimeError( '''Decoding \'mp3\' files requires system library \'libsndfile\'>=1.1.0, ''' '''You can try to update `soundfile` python library: `pip install "soundfile>=0.12.1"`. ''') if file is None: __UpperCamelCase :Any = token_per_repo_id or {} __UpperCamelCase :Any = path.split('''::''')[-1] try: __UpperCamelCase :Optional[Any] = string_to_dict(__lowercase , config.HUB_DATASETS_URL)['''repo_id'''] __UpperCamelCase :Tuple = token_per_repo_id[repo_id] except (ValueError, KeyError): __UpperCamelCase :str = None with xopen(__lowercase , '''rb''' , use_auth_token=__lowercase) as f: __UpperCamelCase , __UpperCamelCase :List[str] = sf.read(__lowercase) else: __UpperCamelCase , __UpperCamelCase :Union[str, Any] = sf.read(__lowercase) __UpperCamelCase :List[str] = array.T if self.mono: __UpperCamelCase :Any = librosa.to_mono(__lowercase) if self.sampling_rate and self.sampling_rate != sampling_rate: __UpperCamelCase :Tuple = librosa.resample(__lowercase , orig_sr=__lowercase , target_sr=self.sampling_rate) __UpperCamelCase :Optional[int] = self.sampling_rate return {"path": path, "array": array, "sampling_rate": sampling_rate} def UpperCamelCase__ ( self) -> Union["FeatureType", Dict[str, "FeatureType"]]: from .features import Value if self.decode: raise ValueError('''Cannot flatten a decoded Audio feature.''') return { "bytes": Value('''binary'''), "path": Value('''string'''), } def UpperCamelCase__ ( self , __lowercase) -> pa.StructArray: if pa.types.is_string(storage.type): __UpperCamelCase :List[str] = pa.array([None] * len(__lowercase) , type=pa.binary()) __UpperCamelCase :Union[str, Any] = pa.StructArray.from_arrays([bytes_array, storage] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_binary(storage.type): __UpperCamelCase :Union[str, Any] = pa.array([None] * len(__lowercase) , type=pa.string()) __UpperCamelCase :Union[str, Any] = pa.StructArray.from_arrays([storage, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) elif pa.types.is_struct(storage.type) and storage.type.get_all_field_indices('''array'''): __UpperCamelCase :Any = pa.array([Audio().encode_example(__lowercase) if x is not None else None for x in storage.to_pylist()]) elif pa.types.is_struct(storage.type): if storage.type.get_field_index('''bytes''') >= 0: __UpperCamelCase :List[str] = storage.field('''bytes''') else: __UpperCamelCase :Union[str, Any] = pa.array([None] * len(__lowercase) , type=pa.binary()) if storage.type.get_field_index('''path''') >= 0: __UpperCamelCase :Tuple = storage.field('''path''') else: __UpperCamelCase :int = pa.array([None] * len(__lowercase) , type=pa.string()) __UpperCamelCase :List[str] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=storage.is_null()) return array_cast(__lowercase , self.pa_type) def UpperCamelCase__ ( self , __lowercase) -> pa.StructArray: @no_op_if_value_is_null def path_to_bytes(__lowercase): with xopen(__lowercase , '''rb''') as f: __UpperCamelCase :Any = f.read() return bytes_ __UpperCamelCase :Optional[int] = pa.array( [ (path_to_bytes(x['''path''']) if x['''bytes'''] is None else x['''bytes''']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) __UpperCamelCase :List[str] = pa.array( [os.path.basename(__lowercase) if path is not None else None for path in storage.field('''path''').to_pylist()] , type=pa.string() , ) __UpperCamelCase :Optional[Any] = pa.StructArray.from_arrays([bytes_array, path_array] , ['''bytes''', '''path'''] , mask=bytes_array.is_null()) return array_cast(__lowercase , self.pa_type)
43
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
"""simple docstring""" import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm _a : Union[str, Any] = re.compile('[^A-Za-z_0-9]') # parameters used in DuplicationIndex _a : List[str] = 10 _a : List[Any] = 256 def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[str] ) -> Optional[MinHash]: if len(_lowerCamelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase : Optional[Any] = MinHash(num_perm=_lowerCamelCase ) for token in set(_lowerCamelCase ): min_hash.update(token.encode() ) return min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ) -> Set[str]: return {t for t in NON_ALPHA.split(_lowerCamelCase ) if len(t.strip() ) > 0} class __A : def __init__( self , *, a__ = 0.8_5 , ): _lowerCAmelCase : List[Any] = duplication_jaccard_threshold _lowerCAmelCase : Union[str, Any] = NUM_PERM _lowerCAmelCase : Optional[int] = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase : Optional[int] = defaultdict(a__ ) def __A ( self , a__ , a__ ): _lowerCAmelCase : Optional[Any] = self._index.query(a__ ) if code_key in self._index.keys: print(F"Duplicate key {code_key}" ) return self._index.insert(a__ , a__ ) if len(a__ ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(a__ ) break else: self._duplicate_clusters[close_duplicates[0]].add(a__ ) def __A ( self ): _lowerCAmelCase : int = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase : List[str] = [base] + list(a__ ) # reformat the cluster to be a list of dict _lowerCAmelCase : List[Any] = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(a__ ) return duplicate_clusters def __A ( self , a__ ): _lowerCAmelCase : Dict = self.get_duplicate_clusters() with open(a__ , """w""" ) as f: json.dump(a__ , a__ ) def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Optional[Any] ) -> Tuple: _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : Tuple = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ) -> Optional[Any]: with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash ,ThreadedIterator(_lowerCamelCase ,max_queue_size=10000 ) ,chunksize=100 ,): if data is not None: yield data def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float ) -> List[str]: _lowerCAmelCase : Optional[Any] = DuplicationIndex(duplication_jaccard_threshold=_lowerCamelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(_lowerCamelCase ) ) ,max_queue_size=100 ) ): di.add(_lowerCamelCase ,_lowerCamelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def SCREAMING_SNAKE_CASE ( _lowerCamelCase : str ,_lowerCamelCase : str ) -> float: _lowerCAmelCase : Any = get_tokens(_lowerCamelCase ) _lowerCAmelCase : Optional[int] = get_tokens(_lowerCamelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) _a : str = None def SCREAMING_SNAKE_CASE ( _lowerCamelCase : int ,_lowerCamelCase : List[Any] ) -> Dict: _lowerCAmelCase : int = [] for elementa in cluster: _lowerCAmelCase : Dict = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase : Any = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(_lowerCamelCase ,_lowerCamelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase : Any = 1 extremes.append(_lowerCamelCase ) return extremes def SCREAMING_SNAKE_CASE ( _lowerCamelCase : List[Any] ,_lowerCamelCase : Optional[Any] ,_lowerCamelCase : Any ) -> str: global _shared_dataset _lowerCAmelCase : Tuple = dataset _lowerCAmelCase : Optional[Any] = [] _lowerCAmelCase : Optional[Any] = partial(_find_cluster_extremes_shared ,jaccard_threshold=_lowerCamelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( _lowerCamelCase ,_lowerCamelCase ,) ,total=len(_lowerCamelCase ) ,): extremes_list.append(_lowerCamelCase ) return extremes_list def SCREAMING_SNAKE_CASE ( _lowerCamelCase : Type[Dataset] ,_lowerCamelCase : float = 0.85 ) -> Tuple[Type[Dataset], List[List[Dict]]]: _lowerCAmelCase : Tuple = make_duplicate_clusters(_lowerCamelCase ,_lowerCamelCase ) _lowerCAmelCase : str = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase : Optional[int] = {} _lowerCAmelCase : Tuple = find_extremes(_lowerCamelCase ,_lowerCamelCase ,_lowerCamelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase : Union[str, Any] = element _lowerCAmelCase : List[Any] = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase : List[Any] = dataset.filter(lambda _lowerCamelCase ,_lowerCamelCase : idx not in remove_indices ,with_indices=_lowerCamelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase : Tuple = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase : Dict = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(_lowerCamelCase )}" ) print(f"Number of duplicate clusters: {len(_lowerCamelCase )}" ) print(f"Files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Unique files in duplicate cluster: {len(_lowerCamelCase )}" ) print(f"Filtered dataset size: {len(_lowerCamelCase )}" ) return ds_filter, duplicate_clusters
44
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_realm import RealmTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} lowercase_ = { "vocab_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/vocab.txt" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/vocab.txt" ), "google/realm-orqa-nq-openqa": "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/vocab.txt", "google/realm-orqa-nq-reader": "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/vocab.txt", "google/realm-orqa-wq-openqa": "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/vocab.txt", "google/realm-orqa-wq-reader": "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/vocab.txt", }, "tokenizer_file": { "google/realm-cc-news-pretrained-embedder": ( "https://huggingface.co/google/realm-cc-news-pretrained-embedder/resolve/main/tokenizer.jsont" ), "google/realm-cc-news-pretrained-encoder": ( "https://huggingface.co/google/realm-cc-news-pretrained-encoder/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-scorer": ( "https://huggingface.co/google/realm-cc-news-pretrained-scorer/resolve/main/tokenizer.json" ), "google/realm-cc-news-pretrained-openqa": ( "https://huggingface.co/google/realm-cc-news-pretrained-openqa/aresolve/main/tokenizer.json" ), "google/realm-orqa-nq-openqa": ( "https://huggingface.co/google/realm-orqa-nq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-nq-reader": ( "https://huggingface.co/google/realm-orqa-nq-reader/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-openqa": ( "https://huggingface.co/google/realm-orqa-wq-openqa/resolve/main/tokenizer.json" ), "google/realm-orqa-wq-reader": ( "https://huggingface.co/google/realm-orqa-wq-reader/resolve/main/tokenizer.json" ), }, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": 5_1_2, "google/realm-cc-news-pretrained-encoder": 5_1_2, "google/realm-cc-news-pretrained-scorer": 5_1_2, "google/realm-cc-news-pretrained-openqa": 5_1_2, "google/realm-orqa-nq-openqa": 5_1_2, "google/realm-orqa-nq-reader": 5_1_2, "google/realm-orqa-wq-openqa": 5_1_2, "google/realm-orqa-wq-reader": 5_1_2, } lowercase_ = { "google/realm-cc-news-pretrained-embedder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-encoder": {"do_lower_case": True}, "google/realm-cc-news-pretrained-scorer": {"do_lower_case": True}, "google/realm-cc-news-pretrained-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-openqa": {"do_lower_case": True}, "google/realm-orqa-nq-reader": {"do_lower_case": True}, "google/realm-orqa-wq-openqa": {"do_lower_case": True}, "google/realm-orqa-wq-reader": {"do_lower_case": True}, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : List[str] = VOCAB_FILES_NAMES __UpperCAmelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __UpperCAmelCase : Optional[int] = PRETRAINED_INIT_CONFIGURATION __UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __UpperCAmelCase : Tuple = RealmTokenizer def __init__( self , _a=None , _a=None , _a=True , _a="[UNK]" , _a="[SEP]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a=True , _a=None , **_a , ): super().__init__( _a , tokenizer_file=_a , do_lower_case=_a , unk_token=_a , sep_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , tokenize_chinese_chars=_a , strip_accents=_a , **_a , ) __a = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , _a ) != do_lower_case or normalizer_state.get('''strip_accents''' , _a ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , _a ) != tokenize_chinese_chars ): __a = getattr(_a , normalizer_state.pop('''type''' ) ) __a = do_lower_case __a = strip_accents __a = tokenize_chinese_chars __a = normalizer_class(**_a ) __a = do_lower_case def __UpperCAmelCase ( self , _a , **_a ): __a = PaddingStrategy.MAX_LENGTH __a = text __a = kwargs.pop('''text_pair''' , _a ) __a = kwargs.pop('''return_tensors''' , _a ) __a = { '''input_ids''': [], '''attention_mask''': [], '''token_type_ids''': [], } for idx, candidate_text in enumerate(_a ): if batch_text_pair is not None: __a = batch_text_pair[idx] else: __a = None __a = super().__call__(_a , _a , return_tensors=_a , **_a ) __a = encoded_candidates.get('''input_ids''' ) __a = encoded_candidates.get('''attention_mask''' ) __a = encoded_candidates.get('''token_type_ids''' ) if encoded_input_ids is not None: output_data["input_ids"].append(_a ) if encoded_attention_mask is not None: output_data["attention_mask"].append(_a ) if encoded_token_type_ids is not None: output_data["token_type_ids"].append(_a ) __a = {key: item for key, item in output_data.items() if len(_a ) != 0} return BatchEncoding(_a , tensor_type=_a ) def __UpperCAmelCase ( self , _a , _a=None ): __a = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __UpperCAmelCase ( self , _a , _a = None ): __a = [self.sep_token_id] __a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __UpperCAmelCase ( self , _a , _a = None ): __a = self._tokenizer.model.save(_a , name=_a ) return tuple(_a )
45
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE__ = { "configuration_squeezebert": [ "SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "SqueezeBertConfig", "SqueezeBertOnnxConfig", ], "tokenization_squeezebert": ["SqueezeBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["SqueezeBertTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "SqueezeBertForMaskedLM", "SqueezeBertForMultipleChoice", "SqueezeBertForQuestionAnswering", "SqueezeBertForSequenceClassification", "SqueezeBertForTokenClassification", "SqueezeBertModel", "SqueezeBertModule", "SqueezeBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
46
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : List[Any] = logging.get_logger(__name__) def _lowerCAmelCase ( _UpperCamelCase : str ) -> YolosConfig: """simple docstring""" _SCREAMING_SNAKE_CASE =YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: _SCREAMING_SNAKE_CASE =1_92 _SCREAMING_SNAKE_CASE =7_68 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =3 _SCREAMING_SNAKE_CASE =[8_00, 13_33] _SCREAMING_SNAKE_CASE =False elif yolos_name == "yolos_s_dWr": _SCREAMING_SNAKE_CASE =3_30 _SCREAMING_SNAKE_CASE =14 _SCREAMING_SNAKE_CASE =6 _SCREAMING_SNAKE_CASE =13_20 elif "yolos_s" in yolos_name: _SCREAMING_SNAKE_CASE =3_84 _SCREAMING_SNAKE_CASE =15_36 _SCREAMING_SNAKE_CASE =12 _SCREAMING_SNAKE_CASE =6 elif "yolos_b" in yolos_name: _SCREAMING_SNAKE_CASE =[8_00, 13_44] _SCREAMING_SNAKE_CASE =91 _SCREAMING_SNAKE_CASE ='huggingface/label-files' _SCREAMING_SNAKE_CASE ='coco-detection-id2label.json' _SCREAMING_SNAKE_CASE =json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type='dataset' ) , 'r' ) ) _SCREAMING_SNAKE_CASE ={int(_UpperCamelCase ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE =idalabel _SCREAMING_SNAKE_CASE ={v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( _UpperCamelCase : dict , _UpperCamelCase : YolosConfig , _UpperCamelCase : bool = False ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE =state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE =in_proj_weight[: config.hidden_size, :] _SCREAMING_SNAKE_CASE =in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE =in_proj_weight[-config.hidden_size :, :] _SCREAMING_SNAKE_CASE =in_proj_bias[-config.hidden_size :] def _lowerCAmelCase ( _UpperCamelCase : str ) -> str: """simple docstring""" if "backbone" in name: _SCREAMING_SNAKE_CASE =name.replace('backbone' , 'vit' ) if "cls_token" in name: _SCREAMING_SNAKE_CASE =name.replace('cls_token' , 'embeddings.cls_token' ) if "det_token" in name: _SCREAMING_SNAKE_CASE =name.replace('det_token' , 'embeddings.detection_tokens' ) if "mid_pos_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('mid_pos_embed' , 'encoder.mid_position_embeddings' ) if "pos_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('pos_embed' , 'embeddings.position_embeddings' ) if "patch_embed.proj" in name: _SCREAMING_SNAKE_CASE =name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "blocks" in name: _SCREAMING_SNAKE_CASE =name.replace('blocks' , 'encoder.layer' ) if "attn.proj" in name: _SCREAMING_SNAKE_CASE =name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name: _SCREAMING_SNAKE_CASE =name.replace('attn' , 'attention.self' ) if "norm1" in name: _SCREAMING_SNAKE_CASE =name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: _SCREAMING_SNAKE_CASE =name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: _SCREAMING_SNAKE_CASE =name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: _SCREAMING_SNAKE_CASE =name.replace('mlp.fc2' , 'output.dense' ) if "class_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('class_embed' , 'class_labels_classifier' ) if "bbox_embed" in name: _SCREAMING_SNAKE_CASE =name.replace('bbox_embed' , 'bbox_predictor' ) if "vit.norm" in name: _SCREAMING_SNAKE_CASE =name.replace('vit.norm' , 'vit.layernorm' ) return name def _lowerCAmelCase ( _UpperCamelCase : dict , _UpperCamelCase : YolosForObjectDetection ) -> dict: """simple docstring""" for key in orig_state_dict.copy().keys(): _SCREAMING_SNAKE_CASE =orig_state_dict.pop(_UpperCamelCase ) if "qkv" in key: _SCREAMING_SNAKE_CASE =key.split('.' ) _SCREAMING_SNAKE_CASE =int(key_split[2] ) _SCREAMING_SNAKE_CASE =model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: _SCREAMING_SNAKE_CASE =val[:dim, :] _SCREAMING_SNAKE_CASE =val[ dim : dim * 2, : ] _SCREAMING_SNAKE_CASE =val[-dim:, :] else: _SCREAMING_SNAKE_CASE =val[:dim] _SCREAMING_SNAKE_CASE =val[dim : dim * 2] _SCREAMING_SNAKE_CASE =val[-dim:] else: _SCREAMING_SNAKE_CASE =val return orig_state_dict def _lowerCAmelCase ( ) -> torch.Tensor: """simple docstring""" _SCREAMING_SNAKE_CASE ='http://images.cocodataset.org/val2017/000000039769.jpg' _SCREAMING_SNAKE_CASE =Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return im @torch.no_grad() def _lowerCAmelCase ( _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : str , _UpperCamelCase : bool = False ) -> Optional[Any]: """simple docstring""" _SCREAMING_SNAKE_CASE =get_yolos_config(_UpperCamelCase ) # load original state_dict _SCREAMING_SNAKE_CASE =torch.load(_UpperCamelCase , map_location='cpu' )['model'] # load 🤗 model _SCREAMING_SNAKE_CASE =YolosForObjectDetection(_UpperCamelCase ) model.eval() _SCREAMING_SNAKE_CASE =convert_state_dict(_UpperCamelCase , _UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) # Check outputs on an image, prepared by YolosImageProcessor _SCREAMING_SNAKE_CASE =8_00 if yolos_name != 'yolos_ti' else 5_12 _SCREAMING_SNAKE_CASE =YolosImageProcessor(format='coco_detection' , size=_UpperCamelCase ) _SCREAMING_SNAKE_CASE =image_processor(images=prepare_img() , return_tensors='pt' ) _SCREAMING_SNAKE_CASE =model(**_UpperCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =outputs.logits, outputs.pred_boxes _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =None, None if yolos_name == "yolos_ti": _SCREAMING_SNAKE_CASE =torch.tensor( [[-39.50_22, -11.98_20, -17.68_88], [-29.95_74, -9.97_69, -17.76_91], [-42.32_81, -20.72_00, -30.62_94]] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.40_21, 0.08_36, 0.79_79], [0.01_84, 0.26_09, 0.03_64], [0.17_81, 0.20_04, 0.20_95]] ) elif yolos_name == "yolos_s_200_pre": _SCREAMING_SNAKE_CASE =torch.tensor( [[-24.02_48, -10.30_24, -14.82_90], [-42.03_92, -16.82_00, -27.43_34], [-27.27_43, -11.81_54, -18.71_48]] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.25_59, 0.54_55, 0.47_06], [0.29_89, 0.72_79, 0.18_75], [0.77_32, 0.40_17, 0.44_62]] ) elif yolos_name == "yolos_s_300_pre": _SCREAMING_SNAKE_CASE =torch.tensor( [[-36.22_20, -14.43_85, -23.54_57], [-35.69_70, -14.75_83, -21.39_35], [-31.59_39, -13.60_42, -16.80_49]] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.76_14, 0.23_16, 0.47_28], [0.71_68, 0.44_95, 0.38_55], [0.49_96, 0.14_66, 0.99_96]] ) elif yolos_name == "yolos_s_dWr": _SCREAMING_SNAKE_CASE =torch.tensor( [[-42.86_68, -24.10_49, -41.16_90], [-34.74_56, -14.12_74, -24.91_94], [-33.78_98, -12.19_46, -25.64_95]] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.55_87, 0.27_73, 0.06_05], [0.50_04, 0.30_14, 0.99_94], [0.49_99, 0.15_48, 0.99_94]] ) elif yolos_name == "yolos_base": _SCREAMING_SNAKE_CASE =torch.tensor( [[-40.60_64, -24.30_84, -32.64_47], [-55.19_90, -30.77_19, -35.58_77], [-51.43_11, -33.35_07, -35.64_62]] ) _SCREAMING_SNAKE_CASE =torch.tensor( [[0.55_55, 0.27_94, 0.06_55], [0.90_49, 0.26_64, 0.18_94], [0.91_83, 0.19_84, 0.16_35]] ) else: raise ValueError(f"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _UpperCamelCase , atol=1E-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _UpperCamelCase , atol=1E-4 ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) print(f"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if push_to_hub: _SCREAMING_SNAKE_CASE ={ 'yolos_ti': 'yolos-tiny', 'yolos_s_200_pre': 'yolos-small', 'yolos_s_300_pre': 'yolos-small-300', 'yolos_s_dWr': 'yolos-small-dwr', 'yolos_base': 'yolos-base', } print('Pushing to the hub...' ) _SCREAMING_SNAKE_CASE =model_mapping[yolos_name] image_processor.push_to_hub(_UpperCamelCase , organization='hustvl' ) model.push_to_hub(_UpperCamelCase , organization='hustvl' ) if __name__ == "__main__": lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--yolos_name", default="yolos_s_200_pre", type=str, help=( "Name of the YOLOS model you'd like to convert. Should be one of 'yolos_ti', 'yolos_s_200_pre'," " 'yolos_s_300_pre', 'yolos_s_dWr', 'yolos_base'." ), ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original state dict (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) lowerCamelCase : int = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
47
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
import random def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> tuple: lowerCamelCase , lowerCamelCase , lowerCamelCase : Any = [], [], [] for element in data: if element < pivot: less.append(_SCREAMING_SNAKE_CASE ) elif element > pivot: greater.append(_SCREAMING_SNAKE_CASE ) else: equal.append(_SCREAMING_SNAKE_CASE ) return less, equal, greater def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> str: # index = len(items) // 2 when trying to find the median # (value of index when items is sorted) # invalid input if index >= len(_SCREAMING_SNAKE_CASE ) or index < 0: return None lowerCamelCase : List[Any] = items[random.randint(0 ,len(_SCREAMING_SNAKE_CASE ) - 1 )] lowerCamelCase : Dict = 0 lowerCamelCase , lowerCamelCase , lowerCamelCase : Tuple = _partition(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) lowerCamelCase : Union[str, Any] = len(_SCREAMING_SNAKE_CASE ) lowerCamelCase : str = len(_SCREAMING_SNAKE_CASE ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) # must be in larger else: return quick_select(_SCREAMING_SNAKE_CASE ,index - (m + count) )
48
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
def __snake_case ( _UpperCAmelCase ): __a = len(_UpperCAmelCase ) for i in range(length - 1 ): __a = i for k in range(i + 1 , _UpperCAmelCase ): if collection[k] < collection[least]: __a = k if least != i: __a , __a = (collection[i], collection[least]) return collection if __name__ == "__main__": __snake_case :int = input('''Enter numbers separated by a comma:\n''').strip() __snake_case :Optional[int] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
49
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
import socket def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Dict = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) lowerCamelCase__ : Union[str, Any] = socket.gethostname() lowerCamelCase__ : int = 1_2312 sock.connect((host, port) ) sock.send(b'Hello server!' ) with open('Received_file' , 'wb' ) as out_file: print('File opened' ) print('Receiving data...' ) while True: lowerCamelCase__ : Dict = sock.recv(1024 ) if not data: break out_file.write(_UpperCAmelCase ) print('Successfully received the file' ) sock.close() print('Connection closed' ) if __name__ == "__main__": main()
50
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
import warnings from functools import wraps from typing import Callable def A (__A : Callable ) -> Callable: """simple docstring""" @wraps(__A ) def _inner_fn(*__A : Dict , **__A : int ): warnings.warn( (F"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , __A , ) return fn(*__A , **__A ) return _inner_fn
51
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __lowerCamelCase : str = 0 __lowerCamelCase : Tuple = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __lowerCamelCase : Union[str, Any] = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __lowerCamelCase : Optional[Any] = tuple[int, int] class A__ : def __init__( self , A_ , A_ , A_ , A_ , A_ , A_ , ): '''simple docstring''' UpperCamelCase : Optional[Any] = pos_x UpperCamelCase : int = pos_y UpperCamelCase : Union[str, Any] = (pos_y, pos_x) UpperCamelCase : Optional[int] = goal_x UpperCamelCase : str = goal_y UpperCamelCase : Dict = g_cost UpperCamelCase : Tuple = parent UpperCamelCase : Optional[int] = self.calculate_heuristic() UpperCamelCase : List[str] = self.g_cost + self.h_cost def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = self.pos_x - self.goal_x UpperCamelCase : List[str] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(A_ ) + abs(A_ ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , A_ ): '''simple docstring''' return self.f_cost < other.f_cost class A__ : def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , A_ ) UpperCamelCase : Tuple = Node(goal[1] , goal[0] , goal[1] , goal[0] , 9_9999 , A_ ) UpperCamelCase : int = [self.start] UpperCamelCase : list[Node] = [] UpperCamelCase : Optional[int] = False def __UpperCamelCase( self ): '''simple docstring''' while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase : str = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(A_ ) self.closed_nodes.append(A_ ) UpperCamelCase : Tuple = self.get_successors(A_ ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(A_ ) else: # retrieve the best current path UpperCamelCase : Optional[Any] = self.open_nodes.pop(self.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(A_ ) else: self.open_nodes.append(A_ ) return [self.start.pos] def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : str = [] for action in delta: UpperCamelCase : List[Any] = parent.pos_x + action[1] UpperCamelCase : List[str] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(A_ ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( A_ , A_ , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , A_ , ) ) return successors def __UpperCamelCase( self , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = node UpperCamelCase : Dict = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase : int = current_node.parent path.reverse() return path class A__ : def __init__( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Tuple = AStar(A_ , A_ ) UpperCamelCase : Any = AStar(A_ , A_ ) UpperCamelCase : Optional[int] = False def __UpperCamelCase( self ): '''simple docstring''' while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase : List[Any] = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase : List[str] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( A_ , A_ ) self.fwd_astar.closed_nodes.append(A_ ) self.bwd_astar.closed_nodes.append(A_ ) UpperCamelCase : Union[str, Any] = current_bwd_node UpperCamelCase : Union[str, Any] = current_fwd_node UpperCamelCase : Dict = { self.fwd_astar: self.fwd_astar.get_successors(A_ ), self.bwd_astar: self.bwd_astar.get_successors(A_ ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(A_ ) else: # retrieve the best current path UpperCamelCase : Optional[Any] = astar.open_nodes.pop( astar.open_nodes.index(A_ ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(A_ ) else: astar.open_nodes.append(A_ ) return [self.fwd_astar.start.pos] def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : List[str] = self.fwd_astar.retrace_path(A_ ) UpperCamelCase : Optional[int] = self.bwd_astar.retrace_path(A_ ) bwd_path.pop() bwd_path.reverse() UpperCamelCase : int = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __lowerCamelCase : Optional[Any] = (0, 0) __lowerCamelCase : Any = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __lowerCamelCase : List[Any] = time.time() __lowerCamelCase : str = AStar(init, goal) __lowerCamelCase : int = a_star.search() __lowerCamelCase : List[str] = time.time() - start_time print(f"""AStar execution time = {end_time:f} seconds""") __lowerCamelCase : Union[str, Any] = time.time() __lowerCamelCase : Any = BidirectionalAStar(init, goal) __lowerCamelCase : Optional[int] = time.time() - bd_start_time print(f"""BidirectionalAStar execution time = {bd_end_time:f} seconds""")
52
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case ( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple =GPTSanJapaneseTokenizer SCREAMING_SNAKE_CASE_ : Optional[Any] =False SCREAMING_SNAKE_CASE_ : Optional[Any] ={"do_clean_text": False, "add_prefix_space": False} def _lowerCamelCase ( self : str ): super().setUp() # fmt: off __UpperCamelCase = ['こん', 'こんに', 'にちは', 'ばんは', '世界,㔺界', '、', '。', '<BR>', '<SP>', '<TAB>', '<URL>', '<EMAIL>', '<TEL>', '<DATE>', '<PRICE>', '<BLOCK>', '<KIGOU>', '<U2000U2BFF>', '<|emoji1|>', '<unk>', '<|bagoftoken|>', '<|endoftext|>'] # fmt: on __UpperCamelCase = {'emoji': {'\ud83d\ude00': '<|emoji1|>'}, 'emoji_inv': {'<|emoji1|>': '\ud83d\ude00'}} # 😀 __UpperCamelCase = {'unk_token': '<unk>'} __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['emoji_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) with open(self.emoji_file , 'w' ) as emoji_writer: emoji_writer.write(json.dumps(__A ) ) def _lowerCamelCase ( self : Union[str, Any] , **__A : List[Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **__A ) def _lowerCamelCase ( self : Any , __A : Dict ): __UpperCamelCase = 'こんにちは、世界。 \nこんばんは、㔺界。😀' __UpperCamelCase = 'こんにちは、世界。 \nこんばんは、世界。😀' return input_text, output_text def _lowerCamelCase ( self : Union[str, Any] , __A : Any ): __UpperCamelCase , __UpperCamelCase = self.get_input_output_texts(__A ) __UpperCamelCase = tokenizer.encode(__A , add_special_tokens=__A ) __UpperCamelCase = tokenizer.decode(__A , clean_up_tokenization_spaces=__A ) return text, ids def _lowerCamelCase ( self : int ): pass # TODO add if relevant def _lowerCamelCase ( self : Union[str, Any] ): pass # TODO add if relevant def _lowerCamelCase ( self : Optional[int] ): pass # TODO add if relevant def _lowerCamelCase ( self : Optional[int] ): __UpperCamelCase = self.get_tokenizer() # Testing tokenization __UpperCamelCase = 'こんにちは、世界。 こんばんは、㔺界。' __UpperCamelCase = ['こん', 'にちは', '、', '世界', '。', '<SP>', 'こん', 'ばんは', '、', '㔺界', '。'] __UpperCamelCase = tokenizer.tokenize(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids without special tokens __UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] __UpperCamelCase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) # Testing conversion to ids with special tokens __UpperCamelCase = tokens + [tokenizer.unk_token] __UpperCamelCase = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] __UpperCamelCase = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual(__A , __A ) def _lowerCamelCase ( self : Dict ): __UpperCamelCase = self.get_tokenizer() # Testing tokenization __UpperCamelCase = 'こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。' __UpperCamelCase = 'こんにちは、、、、世界。こんばんは、、、、世界。' __UpperCamelCase = tokenizer.encode(__A ) __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , __A ) @slow def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase = 'こんにちは、世界。' __UpperCamelCase = 'こんばんは、㔺界。😀' __UpperCamelCase = 'こんにちは、世界。こんばんは、世界。😀' __UpperCamelCase = tokenizer.encode(prefix_text + input_text ) __UpperCamelCase = tokenizer.encode('' , prefix_text=prefix_text + input_text ) __UpperCamelCase = tokenizer.encode(__A , prefix_text=__A ) __UpperCamelCase = tokenizer.decode(__A ) __UpperCamelCase = tokenizer.decode(__A ) __UpperCamelCase = tokenizer.decode(__A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) self.assertEqual(__A , __A ) @slow def _lowerCamelCase ( self : Optional[Any] ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) # Testing tokenization __UpperCamelCase = 'こんにちは、世界。' __UpperCamelCase = 'こんばんは、㔺界。😀' __UpperCamelCase = len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase = len(tokenizer.encode(__A ) ) - 2 __UpperCamelCase = [1] + [0] * (len_prefix + len_text + 1) __UpperCamelCase = [1] * (len_prefix + len_text + 1) + [0] __UpperCamelCase = [1] + [1] * (len_prefix) + [0] * (len_text + 1) __UpperCamelCase = tokenizer(prefix_text + input_text ).token_type_ids __UpperCamelCase = tokenizer('' , prefix_text=prefix_text + input_text ).token_type_ids __UpperCamelCase = tokenizer(__A , prefix_text=__A ).token_type_ids self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) self.assertListEqual(__A , __A ) @slow def _lowerCamelCase ( self : Any ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase = tokenizer.encode('あンいワ' ) __UpperCamelCase = tokenizer.encode('' , prefix_text='あンいワ' ) __UpperCamelCase = tokenizer.encode('いワ' , prefix_text='あン' ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertEqual(tokenizer.decode(__A ) , tokenizer.decode(__A ) ) self.assertNotEqual(__A , __A ) self.assertNotEqual(__A , __A ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowerCamelCase ( self : List[str] ): __UpperCamelCase = self.tokenizer_class.from_pretrained('Tanrei/GPTSAN-japanese' ) __UpperCamelCase = [['武田信玄', 'は、'], ['織田信長', 'の配下の、']] __UpperCamelCase = tokenizer(__A , padding=__A ) __UpperCamelCase = tokenizer.batch_encode_plus(__A , padding=__A ) # fmt: off __UpperCamelCase = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] __UpperCamelCase = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] __UpperCamelCase = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , __A ) self.assertListEqual(x_token.token_type_ids , __A ) self.assertListEqual(x_token.attention_mask , __A ) self.assertListEqual(x_token_a.input_ids , __A ) self.assertListEqual(x_token_a.token_type_ids , __A ) self.assertListEqual(x_token_a.attention_mask , __A ) def _lowerCamelCase ( self : str ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def _lowerCamelCase ( self : str ): # tokenizer has no padding token pass
53
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import requests a__ : Dict = '''''' # <-- Put your OpenWeatherMap appid here! a__ : Union[str, Any] = '''https://api.openweathermap.org/data/2.5/''' def UpperCAmelCase__ (lowerCAmelCase_ = "Chicago" , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def UpperCAmelCase__ (lowerCAmelCase_ = "Kolkata, India" , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def UpperCAmelCase__ (lowerCAmelCase_ = 55.68 , lowerCAmelCase_ = 12.57 , lowerCAmelCase_ = APPID ): '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: a__ : Any = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
54
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : Tuple = logging.get_logger(__name__) a_ : Dict = { """alibaba-damo/mgp-str-base""": """https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "mgp-str" def __init__( self , UpperCamelCase=[32, 128] , UpperCamelCase=4 , UpperCamelCase=3 , UpperCamelCase=27 , UpperCamelCase=38 , UpperCamelCase=5_0257 , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=4.0 , UpperCamelCase=True , UpperCamelCase=False , UpperCamelCase=1e-5 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=False , UpperCamelCase=0.02 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase ) lowerCamelCase_ = image_size lowerCamelCase_ = patch_size lowerCamelCase_ = num_channels lowerCamelCase_ = max_token_length lowerCamelCase_ = num_character_labels lowerCamelCase_ = num_bpe_labels lowerCamelCase_ = num_wordpiece_labels lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = mlp_ratio lowerCamelCase_ = distilled lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = drop_rate lowerCamelCase_ = qkv_bias lowerCamelCase_ = attn_drop_rate lowerCamelCase_ = drop_path_rate lowerCamelCase_ = output_aa_attentions lowerCamelCase_ = initializer_range
55
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
'''simple docstring''' import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class a ( unittest.TestCase ): def A_ ( self : List[str] ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : Tuple ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = tokenizer.decode(greedy_ids[0] ) snake_case_ = TextIteratorStreamer(lowercase_ ) snake_case_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() snake_case_ = '''''' for new_text in streamer: streamer_text += new_text self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : Dict ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ ) snake_case_ = greedy_ids[:, input_ids.shape[1] :] snake_case_ = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ , skip_prompt=lowercase_ ) model.generate(lowercase_ , max_new_tokens=10 , do_sample=lowercase_ , streamer=lowercase_ ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer snake_case_ = cs.out[:-1] self.assertEqual(lowercase_ , lowercase_ ) def A_ ( self : List[Any] ): # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them snake_case_ = AutoTokenizer.from_pretrained('''distilgpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''distilgpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = torch.ones((1, 5) , device=lowercase_ ).long() * model.config.bos_token_id with CaptureStdout() as cs: snake_case_ = TextStreamer(lowercase_ , skip_special_tokens=lowercase_ ) model.generate(lowercase_ , max_new_tokens=1 , do_sample=lowercase_ , streamer=lowercase_ ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token snake_case_ = cs.out[:-1] # Remove the final "\n" snake_case_ = tokenizer(lowercase_ , return_tensors='''pt''' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def A_ ( self : str ): snake_case_ = AutoTokenizer.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ) snake_case_ = AutoModelForCausalLM.from_pretrained('''hf-internal-testing/tiny-random-gpt2''' ).to(lowercase_ ) snake_case_ = -1 snake_case_ = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(lowercase_ ) snake_case_ = TextIteratorStreamer(lowercase_ , timeout=0.001 ) snake_case_ = {'''input_ids''': input_ids, '''max_new_tokens''': 10, '''do_sample''': False, '''streamer''': streamer} snake_case_ = Thread(target=model.generate , kwargs=lowercase_ ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(lowercase_ ): snake_case_ = '''''' for new_text in streamer: streamer_text += new_text
56
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
"""simple docstring""" def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' if not isinstance(_UpperCamelCase , _UpperCamelCase ): raise ValueError("iterations must be defined as integers" ) if not isinstance(_UpperCamelCase , _UpperCamelCase ) or not number >= 1: raise ValueError( "starting number must be\n and integer and be more than 0" ) if not iterations >= 1: raise ValueError("Iterations must be done more than 0 times to play FizzBuzz" ) __lowerCAmelCase = "" while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(_UpperCamelCase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
57
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available lowercase_ = {"""tokenization_herbert""": ["""HerbertTokenizer"""]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ = ["""HerbertTokenizerFast"""] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys lowercase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
58
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : A__ : float A__ : TreeNode | None = None A__ : TreeNode | None = None def UpperCamelCase ( __lowerCamelCase : TreeNode | None ): # Validation def is_valid_tree(__lowerCamelCase : TreeNode | None ) -> bool: if node is None: return True if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(__lowerCamelCase ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( __lowerCamelCase : TreeNode | None , __lowerCamelCase : float , __lowerCamelCase : float ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , __lowerCamelCase , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , __lowerCamelCase ) ) return is_binary_search_tree_recursive_check(__lowerCamelCase , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
59
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
"""simple docstring""" import numpy as np import datasets snake_case__ : Dict = ''' Compute the Mahalanobis Distance Mahalonobis distance is the distance between a point and a distribution. And not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance. It was introduced by Prof. P. C. Mahalanobis in 1936 and has been used in various statistical applications ever since [source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/] ''' snake_case__ : Union[str, Any] = '''\ @article{de2000mahalanobis, title={The mahalanobis distance}, author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L}, journal={Chemometrics and intelligent laboratory systems}, volume={50}, number={1}, pages={1--18}, year={2000}, publisher={Elsevier} } ''' snake_case__ : Any = ''' Args: X: List of datapoints to be compared with the `reference_distribution`. reference_distribution: List of datapoints from the reference distribution we want to compare to. Returns: mahalanobis: The Mahalonobis distance for each datapoint in `X`. Examples: >>> mahalanobis_metric = datasets.load_metric("mahalanobis") >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]]) >>> print(results) {\'mahalanobis\': array([0.5])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case_( datasets.Metric ): def lowerCamelCase__ ( self : List[str] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''X''': datasets.Sequence(datasets.Value('''float''' , id='''sequence''' ) , id='''X''' ), } ) , ) def lowerCamelCase__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : int ): # convert to numpy arrays lowerCAmelCase : List[str] = np.array(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.array(UpperCamelCase_ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError('''Expected `X` to be a 2D vector''' ) if len(reference_distribution.shape ) != 2: raise ValueError('''Expected `reference_distribution` to be a 2D vector''' ) if reference_distribution.shape[0] < 2: raise ValueError( '''Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension''' ) # Get mahalanobis distance for each prediction lowerCAmelCase : List[Any] = X - np.mean(UpperCamelCase_ ) lowerCAmelCase : Union[str, Any] = np.cov(reference_distribution.T ) try: lowerCAmelCase : Dict = np.linalg.inv(UpperCamelCase_ ) except np.linalg.LinAlgError: lowerCAmelCase : List[str] = np.linalg.pinv(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = np.dot(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = np.dot(UpperCamelCase_ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
60
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _a = logging.get_logger(__name__) _a = '▁' _a = {'vocab_file': 'sentencepiece.bpe.model'} _a = { 'vocab_file': { 'xlm-roberta-base': 'https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large': 'https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model', 'xlm-roberta-large-finetuned-conll02-dutch': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll02-spanish': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-english': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model' ), 'xlm-roberta-large-finetuned-conll03-german': ( 'https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model' ), } } _a = { 'xlm-roberta-base': 512, 'xlm-roberta-large': 512, 'xlm-roberta-large-finetuned-conll02-dutch': 512, 'xlm-roberta-large-finetuned-conll02-spanish': 512, 'xlm-roberta-large-finetuned-conll03-english': 512, 'xlm-roberta-large-finetuned-conll03-german': 512, } class A_ (lowercase__ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE__ : Dict = ["""input_ids""", """attention_mask"""] def __init__( self , lowercase_ , lowercase_="<s>" , lowercase_="</s>" , lowercase_="</s>" , lowercase_="<s>" , lowercase_="<unk>" , lowercase_="<pad>" , lowercase_="<mask>" , lowercase_ = None , **lowercase_ , ): """simple docstring""" # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ : Any = AddedToken(lowercase_ , lstrip=lowercase_ , rstrip=lowercase_ ) if isinstance(lowercase_ , lowercase_ ) else mask_token UpperCAmelCase_ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowercase_ , eos_token=lowercase_ , unk_token=lowercase_ , sep_token=lowercase_ , cls_token=lowercase_ , pad_token=lowercase_ , mask_token=lowercase_ , sp_model_kwargs=self.sp_model_kwargs , **lowercase_ , ) UpperCAmelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowercase_ ) ) UpperCAmelCase_ : Optional[int] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase_ : Any = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase_ : int = 1 UpperCAmelCase_ : str = len(self.sp_model ) + self.fairseq_offset UpperCAmelCase_ : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ): """simple docstring""" UpperCAmelCase_ : Optional[Any] = self.__dict__.copy() UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : int = self.sp_model.serialized_model_proto() return state def __setstate__( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ : str = {} UpperCAmelCase_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] UpperCAmelCase_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None , lowercase_ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowercase_ , token_ids_a=lowercase_ , already_has_special_tokens=lowercase_ ) if token_ids_a is None: return [1] + ([0] * len(lowercase_ )) + [1] return [1] + ([0] * len(lowercase_ )) + [1, 1] + ([0] * len(lowercase_ )) + [1] def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" UpperCAmelCase_ : Any = [self.sep_token_id] UpperCAmelCase_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def UpperCamelCase__ ( self ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] = {self.convert_ids_to_tokens(lowercase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" return self.sp_model.encode(lowercase_ , out_type=lowercase_ ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase_ : str = self.sp_model.PieceToId(lowercase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = "".join(lowercase_ ).replace(lowercase_ , " " ).strip() return out_string def UpperCamelCase__ ( self , lowercase_ , lowercase_ = None ): """simple docstring""" if not os.path.isdir(lowercase_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ : List[Any] = os.path.join( lowercase_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowercase_ , "wb" ) as fi: UpperCAmelCase_ : List[str] = self.sp_model.serialized_model_proto() fi.write(lowercase_ ) return (out_vocab_file,)
61
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : NDArray[floataa] , SCREAMING_SNAKE_CASE__ : NDArray[floataa] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : int , ): __UpperCamelCase , __UpperCamelCase =coefficient_matrix.shape __UpperCamelCase , __UpperCamelCase =constant_matrix.shape if rowsa != colsa: __UpperCamelCase =F'Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE__ ) if colsa != 1: __UpperCamelCase =F'Constant matrix must be nx1 but received {rowsa}x{colsa}' raise ValueError(SCREAMING_SNAKE_CASE__ ) if rowsa != rowsa: __UpperCamelCase =( 'Coefficient and constant matrices dimensions must be nxn and nx1 but ' F'received {rowsa}x{colsa} and {rowsa}x{colsa}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != rowsa: __UpperCamelCase =( 'Number of initial values must be equal to number of rows in coefficient ' F'matrix but received {len(SCREAMING_SNAKE_CASE__ )} and {rowsa}' ) raise ValueError(SCREAMING_SNAKE_CASE__ ) if iterations <= 0: raise ValueError('Iterations must be at least 1' ) __UpperCamelCase =np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __UpperCamelCase , __UpperCamelCase =table.shape strictly_diagonally_dominant(SCREAMING_SNAKE_CASE__ ) # Iterates the whole matrix for given number of times for _ in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =[] for row in range(SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =0 for col in range(SCREAMING_SNAKE_CASE__ ): if col == row: __UpperCamelCase =table[row][col] elif col == cols - 1: __UpperCamelCase =table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __UpperCamelCase =(temp + val) / denom new_val.append(SCREAMING_SNAKE_CASE__ ) __UpperCamelCase =new_val return [float(SCREAMING_SNAKE_CASE__ ) for i in new_val] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : NDArray[floataa] ): __UpperCamelCase , __UpperCamelCase =table.shape __UpperCamelCase =True for i in range(0 , SCREAMING_SNAKE_CASE__ ): __UpperCamelCase =0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError('Coefficient matrix is not strictly diagonally dominant' ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
62
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : Dict = logging.get_logger(__name__) lowerCAmelCase_ : int = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE (lowerCamelCase_ ): """simple docstring""" __a ='gpt_bigcode' __a =['past_key_values'] __a ={ 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : Optional[Any] , __a : Tuple=5_02_57 , __a : str=10_24 , __a : Dict=7_68 , __a : Tuple=12 , __a : str=12 , __a : Optional[int]=None , __a : Dict="gelu_pytorch_tanh" , __a : Tuple=0.1 , __a : Tuple=0.1 , __a : Union[str, Any]=0.1 , __a : Tuple=1e-5 , __a : str=0.02 , __a : Dict=True , __a : Union[str, Any]=True , __a : Optional[int]=5_02_56 , __a : Optional[int]=5_02_56 , __a : Union[str, Any]=True , __a : Dict=True , __a : Union[str, Any]=True , **__a : List[Any] , ): _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = n_inner _a = activation_function _a = resid_pdrop _a = embd_pdrop _a = attn_pdrop _a = layer_norm_epsilon _a = initializer_range _a = scale_attn_weights _a = use_cache _a = attention_softmax_in_fpaa _a = scale_attention_softmax_in_fpaa _a = multi_query _a = bos_token_id _a = eos_token_id super().__init__(bos_token_id=__a , eos_token_id=__a , **__a )
63
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = ["input_features"] def __init__( self: List[Any], a_: Tuple=80, a_: List[str]=16_000, a_: Tuple=160, a_: Optional[int]=30, a_: List[str]=400, a_: Union[str, Any]=0.0, a_: Union[str, Any]=False, **a_: Dict, ): '''simple docstring''' super().__init__( feature_size=a_, sampling_rate=a_, padding_value=a_, return_attention_mask=a_, **a_, ) _snake_case : Union[str, Any] = n_fft _snake_case : Optional[Any] = hop_length _snake_case : Optional[int] = chunk_length _snake_case : str = chunk_length * sampling_rate _snake_case : Dict = self.n_samples // hop_length _snake_case : List[str] = sampling_rate _snake_case : Optional[int] = mel_filter_bank( num_frequency_bins=1 + n_fft // 2, num_mel_filters=a_, min_frequency=0.0, max_frequency=8_000.0, sampling_rate=a_, norm="""slaney""", mel_scale="""slaney""", ) def UpperCamelCase_ ( self: List[Any], a_: np.array ): '''simple docstring''' _snake_case : str = spectrogram( a_, window_function(self.n_fft, """hann""" ), frame_length=self.n_fft, hop_length=self.hop_length, power=2.0, mel_filters=self.mel_filters, log_mel="""log10""", ) _snake_case : Dict = log_spec[:, :-1] _snake_case : List[Any] = np.maximum(a_, log_spec.max() - 8.0 ) _snake_case : int = (log_spec + 4.0) / 4.0 return log_spec @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCamelCase_ ( a_: List[np.ndarray], a_: List[np.ndarray], a_: float = 0.0 ): '''simple docstring''' if attention_mask is not None: _snake_case : str = np.array(a_, np.intaa ) _snake_case : str = [] for vector, length in zip(a_, attention_mask.sum(-1 ) ): _snake_case : List[str] = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _snake_case : Any = padding_value normed_input_values.append(a_ ) else: _snake_case : Dict = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def __call__( self: Optional[int], a_: Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]], a_: bool = True, a_: Optional[int] = None, a_: Optional[Union[str, TensorType]] = None, a_: Optional[bool] = None, a_: Optional[str] = "max_length", a_: Optional[int] = None, a_: Optional[int] = None, a_: Optional[bool] = None, **a_: Any, ): '''simple docstring''' if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f"The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a" f" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input" f" was sampled with {self.sampling_rate} and not {sampling_rate}." ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) _snake_case : str = isinstance(a_, np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f"Only mono-channel audio is supported for input to {self}" ) _snake_case : Optional[Any] = is_batched_numpy or ( isinstance(a_, (list, tuple) ) and (isinstance(raw_speech[0], (np.ndarray, tuple, list) )) ) if is_batched: _snake_case : Union[str, Any] = [np.asarray([speech], dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(a_, np.ndarray ): _snake_case : Optional[Any] = np.asarray(a_, dtype=np.floataa ) elif isinstance(a_, np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _snake_case : Tuple = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _snake_case : List[str] = [np.asarray([raw_speech] ).T] _snake_case : Optional[int] = BatchFeature({"""input_features""": raw_speech} ) # convert into correct format for padding _snake_case : Optional[Any] = self.pad( a_, padding=a_, max_length=max_length if max_length else self.n_samples, truncation=a_, pad_to_multiple_of=a_, return_attention_mask=return_attention_mask or do_normalize, ) # zero-mean and unit-variance normalization if do_normalize: _snake_case : Dict = self.zero_mean_unit_var_norm( padded_inputs["""input_features"""], attention_mask=padded_inputs["""attention_mask"""], padding_value=self.padding_value, ) _snake_case : Tuple = np.stack(padded_inputs["""input_features"""], axis=0 ) # make sure list is in array format _snake_case : Optional[int] = padded_inputs.get("""input_features""" ).transpose(2, 0, 1 ) _snake_case : Dict = [self._np_extract_fbank_features(a_ ) for waveform in input_features[0]] if isinstance(input_features[0], a_ ): _snake_case : List[str] = [np.asarray(a_, dtype=np.floataa ) for feature in input_features] else: _snake_case : List[Any] = input_features if return_attention_mask: # rescale from sample (48000) to feature (3000) _snake_case : Any = padded_inputs["""attention_mask"""][:, :: self.hop_length] if return_tensors is not None: _snake_case : List[str] = padded_inputs.convert_to_tensors(a_ ) return padded_inputs def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : Union[str, Any] = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] return output
64
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
import math def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' return math.sqrt(__A ) * math.sqrt(__A ) == num def lowerCAmelCase_ ( __A ) -> bool: '''simple docstring''' UpperCAmelCase__ = 0 UpperCAmelCase__ = n while left <= right: UpperCAmelCase__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: UpperCAmelCase__ = mid - 1 else: UpperCAmelCase__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
65
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
"""simple docstring""" import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' def __init__( self: List[Any] , snake_case: str = "▁" , snake_case: bool = True , snake_case: Union[str, AddedToken] = "<unk>" , snake_case: Union[str, AddedToken] = "</s>" , snake_case: Union[str, AddedToken] = "<pad>" , ) -> Any: snake_case_ :Any = { """pad""": {"""id""": 0, """token""": pad_token}, """eos""": {"""id""": 1, """token""": eos_token}, """unk""": {"""id""": 2, """token""": unk_token}, } snake_case_ :Dict = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): snake_case_ :Tuple = token_dict["""token"""] snake_case_ :Union[str, Any] = Tokenizer(Unigram() ) snake_case_ :Tuple = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(""" {2,}""" ) , """ """ ), normalizers.Lowercase(), ] ) snake_case_ :str = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=snake_case , add_prefix_space=snake_case ), pre_tokenizers.Digits(individual_digits=snake_case ), pre_tokenizers.Punctuation(), ] ) snake_case_ :Dict = decoders.Metaspace(replacement=snake_case , add_prefix_space=snake_case ) snake_case_ :str = TemplateProcessing( single=f"""$A {self.special_tokens['eos']['token']}""" , special_tokens=[(self.special_tokens["""eos"""]["""token"""], self.special_tokens["""eos"""]["""id"""])] , ) snake_case_ :Tuple = { """model""": """SentencePieceUnigram""", """replacement""": replacement, """add_prefix_space""": add_prefix_space, } super().__init__(snake_case , snake_case ) def lowerCAmelCase_ ( self: Dict , snake_case: Union[str, List[str]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> int: snake_case_ :List[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) if isinstance(snake_case , snake_case ): snake_case_ :int = [files] self._tokenizer.train(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: Dict , snake_case: Union[Iterator[str], Iterator[Iterator[str]]] , snake_case: int = 8_000 , snake_case: bool = True , ) -> List[str]: snake_case_ :Optional[Any] = trainers.UnigramTrainer( vocab_size=snake_case , special_tokens=self.special_tokens_list , show_progress=snake_case , ) self._tokenizer.train_from_iterator(snake_case , trainer=snake_case ) self.add_unk_id() def lowerCAmelCase_ ( self: List[Any] ) -> Tuple: snake_case_ :Dict = json.loads(self._tokenizer.to_str() ) snake_case_ :Optional[int] = self.special_tokens["""unk"""]["""id"""] snake_case_ :Optional[int] = Tokenizer.from_str(json.dumps(snake_case ) )
66
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
'''simple docstring''' from __future__ import annotations import requests __UpperCAmelCase =set( "approved_at_utc approved_by author_flair_background_color\nauthor_flair_css_class author_flair_richtext author_flair_template_id author_fullname\nauthor_premium can_mod_post category clicked content_categories created_utc downs\nedited gilded gildings hidden hide_score is_created_from_ads_ui is_meta\nis_original_content is_reddit_media_domain is_video link_flair_css_class\nlink_flair_richtext link_flair_text link_flair_text_color media_embed mod_reason_title\nname permalink pwls quarantine saved score secure_media secure_media_embed selftext\nsubreddit subreddit_name_prefixed subreddit_type thumbnail title top_awarded_type\ntotal_awards_received ups upvote_ratio url user_reports".split() ) def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ = 1 , UpperCamelCase__ = "new" , UpperCamelCase__ = None ) -> dict: __lowerCamelCase = wanted_data or [] if invalid_search_terms := ", ".join(sorted(set(UpperCamelCase__ ) - valid_terms ) ): __lowerCamelCase = f"""Invalid search term: {invalid_search_terms}""" raise ValueError(UpperCamelCase__ ) __lowerCamelCase = requests.get( f"""https://reddit.com/r/{subreddit}/{age}.json?limit={limit}""" , headers={'''User-agent''': '''A random string'''} , ) if response.status_code == 4_29: raise requests.HTTPError __lowerCamelCase = response.json() if not wanted_data: return {id_: data["data"]["children"][id_] for id_ in range(UpperCamelCase__ )} __lowerCamelCase = {} for id_ in range(UpperCamelCase__ ): __lowerCamelCase = { item: data['''data''']['''children'''][id_]['''data'''][item] for item in wanted_data } return data_dict if __name__ == "__main__": # If you get Error 429, that means you are rate limited.Try after some time print(get_subreddit_data("learnpython", wanted_data=["title", "url", "selftext"]))
67
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class a__ : """simple docstring""" __lowerCamelCase = 42 __lowerCamelCase = None __lowerCamelCase = None def lowerCAmelCase__ ( ) -> Node | None: '''simple docstring''' A__ = Node(1 ) A__ = Node(2 ) A__ = Node(3 ) A__ = Node(4 ) A__ = Node(5 ) return tree def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> list[int]: '''simple docstring''' return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> int: '''simple docstring''' return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] if root is None: return output A__ = deque([root] ) while process_queue: A__ = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> Sequence[Node | None]: '''simple docstring''' A__ = [] def populate_output(SCREAMING_SNAKE_CASE_: Node | None , SCREAMING_SNAKE_CASE_: int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return output def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: Node | None ) -> Sequence[Node | None] | list[Any]: '''simple docstring''' if root is None: return [] A__ = [] A__ = 0 A__ = height(SCREAMING_SNAKE_CASE_ ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 1 else: output.append(get_nodes_from_right_to_left(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) A__ = 0 return output def lowerCAmelCase__ ( ) -> None: # Main function for testing. '''simple docstring''' A__ = make_tree() print(F'In-order Traversal: {inorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Pre-order Traversal: {preorder(SCREAMING_SNAKE_CASE_ )}' ) print(F'Post-order Traversal: {postorder(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print(F'Height of Tree: {height(SCREAMING_SNAKE_CASE_ )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(SCREAMING_SNAKE_CASE_ ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(SCREAMING_SNAKE_CASE_ ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(SCREAMING_SNAKE_CASE_ , level=SCREAMING_SNAKE_CASE_ ) ) print("\nZigZag order Traversal: " ) print(zigzag(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
68
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase = { '''configuration_mctct''': ['''MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MCTCTConfig'''], '''feature_extraction_mctct''': ['''MCTCTFeatureExtractor'''], '''processing_mctct''': ['''MCTCTProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MCTCTForCTC''', '''MCTCTModel''', '''MCTCTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mctct import MCTCT_PRETRAINED_CONFIG_ARCHIVE_MAP, MCTCTConfig from .feature_extraction_mctct import MCTCTFeatureExtractor from .processing_mctct import MCTCTProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mctct import MCTCT_PRETRAINED_MODEL_ARCHIVE_LIST, MCTCTForCTC, MCTCTModel, MCTCTPreTrainedModel else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
'''simple docstring''' import json import multiprocessing as mp import re from collections import defaultdict from functools import partial from typing import Dict, List, Optional, Set, Tuple, Type from datasets import Dataset from datasketch import MinHash, MinHashLSH from dpu_utils.utils.iterators import ThreadedIterator from tqdm import tqdm A__ : str =re.compile('''[^A-Za-z_0-9]''') # parameters used in DuplicationIndex A__ : Any =10 A__ : Optional[int] =2_56 def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" if len(lowerCAmelCase ) < MIN_NUM_TOKENS: return None _lowerCAmelCase = MinHash(num_perm=lowerCAmelCase ) for token in set(lowerCAmelCase ): min_hash.update(token.encode() ) return min_hash def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" return {t for t in NON_ALPHA.split(lowerCAmelCase ) if len(t.strip() ) > 0} class UpperCAmelCase : def __init__( self : Any , *, __snake_case : float = 0.85 , ) -> List[Any]: _lowerCAmelCase = duplication_jaccard_threshold _lowerCAmelCase = NUM_PERM _lowerCAmelCase = MinHashLSH(threshold=self._duplication_jaccard_threshold , num_perm=self._num_perm ) _lowerCAmelCase = defaultdict(__snake_case ) def lowercase__ ( self : List[Any] , __snake_case : Tuple , __snake_case : MinHash ) -> None: _lowerCAmelCase = self._index.query(__snake_case ) if code_key in self._index.keys: print(f"Duplicate key {code_key}" ) return self._index.insert(__snake_case , __snake_case ) if len(__snake_case ) > 0: for base_duplicate in close_duplicates: if base_duplicate in self._duplicate_clusters: self._duplicate_clusters[base_duplicate].add(__snake_case ) break else: self._duplicate_clusters[close_duplicates[0]].add(__snake_case ) def lowercase__ ( self : Optional[Any] ) -> List[List[Dict]]: _lowerCAmelCase = [] for base, duplicates in self._duplicate_clusters.items(): _lowerCAmelCase = [base] + list(__snake_case ) # reformat the cluster to be a list of dict _lowerCAmelCase = [{"""base_index""": el[0], """repo_name""": el[1], """path""": el[2]} for el in cluster] duplicate_clusters.append(__snake_case ) return duplicate_clusters def lowercase__ ( self : str , __snake_case : Any ) -> None: _lowerCAmelCase = self.get_duplicate_clusters() with open(__snake_case , """w""" ) as f: json.dump(__snake_case , __snake_case ) def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" _lowerCAmelCase , _lowerCAmelCase = element _lowerCAmelCase = get_min_hash([t for t in NON_ALPHA.split(data["""content"""] ) if len(t.strip() ) > 0] ) if min_hash is not None: return (index, data["repo_name"], data["path"]), min_hash def UpperCamelCase__ ( lowerCAmelCase ): """simple docstring""" with mp.Pool() as pool: for data in pool.imap_unordered( _compute_min_hash , ThreadedIterator(lowerCAmelCase , max_queue_size=1_00_00 ) , chunksize=1_00 , ): if data is not None: yield data def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = DuplicationIndex(duplication_jaccard_threshold=lowerCAmelCase ) for filename, min_hash in tqdm(ThreadedIterator(minhash_iter(enumerate(lowerCAmelCase ) ) , max_queue_size=1_00 ) ): di.add(lowerCAmelCase , lowerCAmelCase ) # Returns a List[Cluster] where Cluster is List[str] with the filenames. return di.get_duplicate_clusters() def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = get_tokens(lowerCAmelCase ) _lowerCAmelCase = get_tokens(lowerCAmelCase ) return len(tokensa & tokensa ) / len(tokensa | tokensa ) A__ : Tuple =None def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase ): """simple docstring""" _lowerCAmelCase = [] for elementa in cluster: _lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] for elementa in extremes: _lowerCAmelCase = _shared_dataset[elementa["""base_index"""]]["""content"""] if jaccard_similarity(lowerCAmelCase , lowerCAmelCase ) >= jaccard_threshold: elementa["copies"] += 1 break else: _lowerCAmelCase = 1 extremes.append(lowerCAmelCase ) return extremes def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ): """simple docstring""" global _shared_dataset _lowerCAmelCase = dataset _lowerCAmelCase = [] _lowerCAmelCase = partial(_find_cluster_extremes_shared , jaccard_threshold=lowerCAmelCase ) with mp.Pool() as pool: for extremes in tqdm( pool.imap_unordered( lowerCAmelCase , lowerCAmelCase , ) , total=len(lowerCAmelCase ) , ): extremes_list.append(lowerCAmelCase ) return extremes_list def UpperCamelCase__ ( lowerCAmelCase , lowerCAmelCase = 0.85 ): """simple docstring""" _lowerCAmelCase = make_duplicate_clusters(lowerCAmelCase , lowerCAmelCase ) _lowerCAmelCase = {x["""base_index"""] for cluster in duplicate_clusters for x in cluster} _lowerCAmelCase = {} _lowerCAmelCase = find_extremes(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) for extremes in extremes_clusters: for element in extremes: _lowerCAmelCase = element _lowerCAmelCase = duplicate_indices - set(extreme_dict.keys() ) _lowerCAmelCase = dataset.filter(lambda lowerCAmelCase , lowerCAmelCase : idx not in remove_indices , with_indices=lowerCAmelCase ) # update duplicate_clusters for cluster in duplicate_clusters: for element in cluster: _lowerCAmelCase = element["""base_index"""] in extreme_dict if element["is_extreme"]: _lowerCAmelCase = extreme_dict[element["""base_index"""]]["""copies"""] print(f"Original dataset size: {len(lowerCAmelCase )}" ) print(f"Number of duplicate clusters: {len(lowerCAmelCase )}" ) print(f"Files in duplicate cluster: {len(lowerCAmelCase )}" ) print(f"Unique files in duplicate cluster: {len(lowerCAmelCase )}" ) print(f"Filtered dataset size: {len(lowerCAmelCase )}" ) return ds_filter, duplicate_clusters
70
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, EulerAncestralDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionInstructPixaPixPipeline, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.utils import floats_tensor, load_image, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __A ( a , a , a , unittest.TestCase ): """simple docstring""" UpperCamelCase__ : Tuple =StableDiffusionInstructPixaPixPipeline UpperCamelCase__ : Tuple =TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width""", """cross_attention_kwargs"""} UpperCamelCase__ : Any =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS UpperCamelCase__ : List[str] =IMAGE_TO_IMAGE_IMAGE_PARAMS UpperCamelCase__ : str =IMAGE_TO_IMAGE_IMAGE_PARAMS def __lowercase ( self ): """simple docstring""" torch.manual_seed(0 ) __UpperCamelCase : Any =UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=8 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) __UpperCamelCase : Optional[int] =PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) __UpperCamelCase : List[Any] =AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) __UpperCamelCase : Optional[int] =CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __UpperCamelCase : Tuple =CLIPTextModel(lowerCamelCase__ ) __UpperCamelCase : Any =CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) __UpperCamelCase : Tuple ={ 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def __lowercase ( self , lowerCamelCase__ , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : Tuple =floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __UpperCamelCase : Dict =image.cpu().permute(0 , 2 , 3 , 1 )[0] __UpperCamelCase : Tuple =Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert('RGB' ) if str(lowerCamelCase__ ).startswith('mps' ): __UpperCamelCase : Dict =torch.manual_seed(lowerCamelCase__ ) else: __UpperCamelCase : str =torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __UpperCamelCase : List[Any] ={ 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'image_guidance_scale': 1, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : Tuple =self.get_dummy_components() __UpperCamelCase : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) __UpperCamelCase : List[Any] =sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : List[str] =sd_pipe(**lowerCamelCase__ ).images __UpperCamelCase : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : Dict =np.array([0.7_526, 0.3_750, 0.4_547, 0.6_117, 0.5_866, 0.5_016, 0.4_327, 0.5_642, 0.4_815] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Union[str, Any] ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : int =self.get_dummy_components() __UpperCamelCase : str =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) __UpperCamelCase : str =sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] ='french fries' __UpperCamelCase : Union[str, Any] =sd_pipe(**lowerCamelCase__ , negative_prompt=lowerCamelCase__ ) __UpperCamelCase : int =output.images __UpperCamelCase : Any =image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase : Tuple =np.array([0.7_511, 0.3_642, 0.4_553, 0.6_236, 0.5_797, 0.5_013, 0.4_343, 0.5_611, 0.4_831] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : List[Any] =self.get_dummy_components() __UpperCamelCase : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) __UpperCamelCase : Optional[int] =sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : int =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : List[str] =[inputs['prompt']] * 2 __UpperCamelCase : List[str] =np.array(inputs['image'] ).astype(np.floataa ) / 255.0 __UpperCamelCase : Any =torch.from_numpy(lowerCamelCase__ ).unsqueeze(0 ).to(lowerCamelCase__ ) __UpperCamelCase : int =image / 2 + 0.5 __UpperCamelCase : Dict =image.permute(0 , 3 , 1 , 2 ) __UpperCamelCase : Dict =image.repeat(2 , 1 , 1 , 1 ) __UpperCamelCase : str =sd_pipe(**lowerCamelCase__ ).images __UpperCamelCase : Optional[Any] =image[-1, -3:, -3:, -1] assert image.shape == (2, 32, 32, 3) __UpperCamelCase : List[Any] =np.array([0.5_812, 0.5_748, 0.5_222, 0.5_908, 0.5_695, 0.7_174, 0.6_804, 0.5_523, 0.5_579] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Any ='cpu' # ensure determinism for the device-dependent torch.Generator __UpperCamelCase : Any =self.get_dummy_components() __UpperCamelCase : List[Any] =EulerAncestralDiscreteScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' ) __UpperCamelCase : Tuple =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) __UpperCamelCase : Dict =sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : List[str] =self.get_dummy_inputs(lowerCamelCase__ ) __UpperCamelCase : Optional[Any] =sd_pipe(**lowerCamelCase__ ).images __UpperCamelCase : Optional[int] =image[0, -3:, -3:, -1] __UpperCamelCase : Union[str, Any] =[round(lowerCamelCase__ , 4 ) for x in image_slice.flatten().tolist()] print(','.join([str(lowerCamelCase__ ) for x in slice] ) ) assert image.shape == (1, 32, 32, 3) __UpperCamelCase : Optional[Any] =np.array([0.7_417, 0.3_842, 0.4_732, 0.5_776, 0.5_891, 0.5_139, 0.4_052, 0.5_673, 0.4_986] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.get_dummy_components() __UpperCamelCase : List[str] =StableDiffusionInstructPixaPixPipeline(**lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =VaeImageProcessor(do_resize=lowerCamelCase__ , do_normalize=lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __UpperCamelCase : Optional[int] =pipe(**self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type='pt' ) )[0] __UpperCamelCase : Union[str, Any] =components['vae'] __UpperCamelCase : int =self.get_dummy_inputs_by_type(lowerCamelCase__ , input_image_type='pt' ) for image_param in self.image_latents_params: if image_param in inputs.keys(): __UpperCamelCase : List[str] =vae.encode(inputs[image_param] ).latent_dist.mode() __UpperCamelCase : Union[str, Any] =pipe(**lowerCamelCase__ )[0] __UpperCamelCase : Optional[int] =np.abs(out - out_latents_inputs ).max() self.assertLess(lowerCamelCase__ , 1E-4 , 'passing latents as image input generate different result from passing image' ) @slow @require_torch_gpu class __A ( unittest.TestCase ): """simple docstring""" def __lowercase ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowercase ( self , lowerCamelCase__=0 ): """simple docstring""" __UpperCamelCase : List[Any] =torch.manual_seed(lowerCamelCase__ ) __UpperCamelCase : Tuple =load_image( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/stable_diffusion_pix2pix/example.jpg' ) __UpperCamelCase : str ={ 'prompt': 'turn him into a cyborg', 'image': image, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 7.5, 'image_guidance_scale': 1.0, 'output_type': 'numpy', } return inputs def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Dict =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : int =self.get_inputs() __UpperCamelCase : Optional[Any] =pipe(**lowerCamelCase__ ).images __UpperCamelCase : Optional[int] =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCamelCase : str =np.array([0.5_902, 0.6_015, 0.6_027, 0.5_983, 0.6_092, 0.6_061, 0.5_765, 0.5_785, 0.5_555] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : Optional[int] =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCamelCase__ ) __UpperCamelCase : Tuple =LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : List[Any] =self.get_inputs() __UpperCamelCase : Optional[int] =pipe(**lowerCamelCase__ ).images __UpperCamelCase : Dict =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCamelCase : Union[str, Any] =np.array([0.6_578, 0.6_817, 0.6_972, 0.6_761, 0.6_856, 0.6_916, 0.6_428, 0.6_516, 0.6_301] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : int =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCamelCase__ ) __UpperCamelCase : List[Any] =DDIMScheduler.from_config(pipe.scheduler.config ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : Tuple =self.get_inputs() __UpperCamelCase : List[str] =pipe(**lowerCamelCase__ ).images __UpperCamelCase : int =image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 512, 512, 3) __UpperCamelCase : str =np.array([0.3_828, 0.3_834, 0.3_818, 0.3_792, 0.3_865, 0.3_752, 0.3_792, 0.3_847, 0.3_753] ) assert np.abs(expected_slice - image_slice ).max() < 1E-3 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : str =0 def callback_fn(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> None: __UpperCamelCase : List[Any] =True nonlocal number_of_steps number_of_steps += 1 if step == 1: __UpperCamelCase : Union[str, Any] =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __UpperCamelCase : List[Any] =latents[0, -3:, -3:, -1] __UpperCamelCase : Tuple =np.array([-0.2_463, -0.4_644, -0.9_756, 1.5_176, 1.4_414, 0.7_866, 0.9_897, 0.8_521, 0.7_983] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 elif step == 2: __UpperCamelCase : str =latents.detach().cpu().numpy() assert latents.shape == (1, 4, 64, 64) __UpperCamelCase : Dict =latents[0, -3:, -3:, -1] __UpperCamelCase : Any =np.array([-0.2_644, -0.4_626, -0.9_653, 1.5_176, 1.4_551, 0.7_686, 0.9_805, 0.8_452, 0.8_115] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 5E-2 __UpperCamelCase : Dict =False __UpperCamelCase : Any =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : Tuple =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : Any =self.get_inputs() pipe(**lowerCamelCase__ , callback=lowerCamelCase__ , callback_steps=1 ) assert callback_fn.has_been_called assert number_of_steps == 3 def __lowercase ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __UpperCamelCase : List[Any] =StableDiffusionInstructPixaPixPipeline.from_pretrained( 'timbrooks/instruct-pix2pix' , safety_checker=lowerCamelCase__ , torch_dtype=torch.floataa ) __UpperCamelCase : Dict =pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __UpperCamelCase : str =self.get_inputs() __UpperCamelCase : Optional[int] =pipe(**lowerCamelCase__ ) __UpperCamelCase : Union[str, Any] =torch.cuda.max_memory_allocated() # make sure that less than 2.2 GB is allocated assert mem_bytes < 2.2 * 10**9 def __lowercase ( self ): """simple docstring""" __UpperCamelCase : List[Any] =self.get_inputs() # resize to resolution that is divisible by 8 but not 16 or 32 __UpperCamelCase : List[Any] =inputs['image'].resize((504, 504) ) __UpperCamelCase : Tuple ='timbrooks/instruct-pix2pix' __UpperCamelCase : List[str] =StableDiffusionInstructPixaPixPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __UpperCamelCase : Optional[int] =pipe(**lowerCamelCase__ ) __UpperCamelCase : Tuple =output.images[0] __UpperCamelCase : Optional[Any] =image[255:258, 383:386, -1] assert image.shape == (504, 504, 3) __UpperCamelCase : Dict =np.array([0.2_726, 0.2_529, 0.2_664, 0.2_655, 0.2_641, 0.2_642, 0.2_591, 0.2_649, 0.2_590] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3
71
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
"""simple docstring""" import unittest from pathlib import Path from tempfile import NamedTemporaryFile, TemporaryDirectory from transformers import BertConfig, BertTokenizerFast, FeatureExtractionPipeline from transformers.convert_graph_to_onnx import ( convert, ensure_valid_input, generate_identified_filename, infer_shapes, quantize, ) from transformers.testing_utils import require_tf, require_tokenizers, require_torch, slow class __snake_case : def SCREAMING_SNAKE_CASE ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ): """simple docstring""" return None class __snake_case : def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Tuple , __lowerCAmelCase : int , __lowerCAmelCase : Any , __lowerCAmelCase : int ): """simple docstring""" return None class __snake_case ( unittest.TestCase): snake_case__ : Optional[Any] = [ # (model_name, model_kwargs) ("bert-base-cased", {}), ("gpt2", {"use_cache": False}), # We don't support exporting GPT2 past keys anymore ] @require_tf @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''tf''' , 1_2 , **__lowerCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , **__lowerCAmelCase ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" from transformers import BertModel _lowerCamelCase : Optional[int] = ['''[UNK]''', '''[SEP]''', '''[CLS]''', '''[PAD]''', '''[MASK]''', '''some''', '''other''', '''words'''] with NamedTemporaryFile(mode='''w+t''' ) as vocab_file: vocab_file.write('''\n'''.join(__lowerCAmelCase ) ) vocab_file.flush() _lowerCamelCase : str = BertTokenizerFast(vocab_file.name ) with TemporaryDirectory() as bert_save_dir: _lowerCamelCase : List[str] = BertModel(BertConfig(vocab_size=len(__lowerCAmelCase ) ) ) model.save_pretrained(__lowerCAmelCase ) self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , __lowerCAmelCase ) @require_tf @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase : Dict = self._test_export(__lowerCAmelCase , '''tf''' , 1_2 , **__lowerCAmelCase ) _lowerCamelCase : str = quantize(Path(__lowerCAmelCase ) ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) @require_torch @slow def SCREAMING_SNAKE_CASE ( self : List[str] ): """simple docstring""" for model, model_kwargs in OnnxExportTestCase.MODEL_TO_TEST: _lowerCamelCase : Dict = self._test_export(__lowerCAmelCase , '''pt''' , 1_2 , **__lowerCAmelCase ) _lowerCamelCase : str = quantize(__lowerCAmelCase ) # Ensure the actual quantized model is not bigger than the original one if quantized_path.stat().st_size >= Path(__lowerCAmelCase ).stat().st_size: self.fail('''Quantized model is bigger than initial ONNX model''' ) def SCREAMING_SNAKE_CASE ( self : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Dict , __lowerCAmelCase : List[Any]=None , **__lowerCAmelCase : int ): """simple docstring""" try: # Compute path with TemporaryDirectory() as tempdir: _lowerCamelCase : List[Any] = Path(__lowerCAmelCase ).joinpath('''model.onnx''' ) # Remove folder if exists if path.parent.exists(): path.parent.rmdir() # Export convert(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , **__lowerCAmelCase ) return path except Exception as e: self.fail(__lowerCAmelCase ) @require_torch @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" from transformers import BertModel _lowerCamelCase : Any = BertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase : Optional[Any] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''pt''' ) @require_tf @require_tokenizers @slow def SCREAMING_SNAKE_CASE ( self : Any ): """simple docstring""" from transformers import TFBertModel _lowerCamelCase : Union[str, Any] = TFBertModel(BertConfig.from_pretrained('''lysandre/tiny-bert-random''' ) ) _lowerCamelCase : Optional[int] = BertTokenizerFast.from_pretrained('''lysandre/tiny-bert-random''' ) self._test_infer_dynamic_axis(__lowerCAmelCase , __lowerCAmelCase , '''tf''' ) def SCREAMING_SNAKE_CASE ( self : str , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : List[str] = FeatureExtractionPipeline(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Dict = ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''output_0''', '''output_1'''] _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase : List[Any] = infer_shapes(__lowerCAmelCase , __lowerCAmelCase ) # Assert all variables are present self.assertEqual(len(__lowerCAmelCase ) , len(__lowerCAmelCase ) ) self.assertTrue(all(var_name in shapes for var_name in variable_names ) ) self.assertSequenceEqual(variable_names[:3] , __lowerCAmelCase ) self.assertSequenceEqual(variable_names[3:] , __lowerCAmelCase ) # Assert inputs are {0: batch, 1: sequence} for var_name in ["input_ids", "token_type_ids", "attention_mask"]: self.assertDictEqual(shapes[var_name] , {0: '''batch''', 1: '''sequence'''} ) # Assert outputs are {0: batch, 1: sequence} and {0: batch} self.assertDictEqual(shapes['''output_0'''] , {0: '''batch''', 1: '''sequence'''} ) self.assertDictEqual(shapes['''output_1'''] , {0: '''batch'''} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" _lowerCamelCase : Any = ['''input_ids''', '''attention_mask''', '''token_type_ids'''] _lowerCamelCase : List[str] = {'''input_ids''': [1, 2, 3, 4], '''attention_mask''': [0, 0, 0, 0], '''token_type_ids''': [1, 1, 1, 1]} _lowerCamelCase , _lowerCamelCase : str = ensure_valid_input(FuncContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the same number of args (all are valid) self.assertEqual(len(__lowerCAmelCase ) , 3 ) # Should have exactly the same input names self.assertEqual(set(__lowerCAmelCase ) , set(__lowerCAmelCase ) ) # Parameter should be reordered according to their respective place in the function: # (input_ids, token_type_ids, attention_mask) self.assertEqual(__lowerCAmelCase , (tokens['''input_ids'''], tokens['''token_type_ids'''], tokens['''attention_mask''']) ) # Generated args are interleaved with another args (for instance parameter "past" in GPT2) _lowerCamelCase , _lowerCamelCase : Optional[Any] = ensure_valid_input(FuncNonContiguousArgs() , __lowerCAmelCase , __lowerCAmelCase ) # Should have exactly the one arg (all before the one not provided "some_other_args") self.assertEqual(len(__lowerCAmelCase ) , 1 ) self.assertEqual(len(__lowerCAmelCase ) , 1 ) # Should have only "input_ids" self.assertEqual(inputs_args[0] , tokens['''input_ids'''] ) self.assertEqual(ordered_input_names[0] , '''input_ids''' ) def SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" _lowerCamelCase : Union[str, Any] = generate_identified_filename(Path('''/home/something/my_fake_model.onnx''' ) , '''-test''' ) self.assertEqual('''/home/something/my_fake_model-test.onnx''' , generated.as_posix() )
72
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
73
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import ( BackboneOutput, BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import ( add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings, ) from ...utils.backbone_utils import BackboneMixin from .configuration_resnet import ResNetConfig _lowercase = logging.get_logger(__name__) # General docstring _lowercase = '''ResNetConfig''' # Base docstring _lowercase = '''microsoft/resnet-50''' _lowercase = [1, 20_48, 7, 7] # Image classification docstring _lowercase = '''microsoft/resnet-50''' _lowercase = '''tiger cat''' _lowercase = [ '''microsoft/resnet-50''', # See all resnet models at https://huggingface.co/models?filter=resnet ] class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,A_ : int ,A_ : int ,A_ : int = 3 ,A_ : int = 1 ,A_ : str = "relu" ) -> Tuple: super().__init__() A = nn.Convad( A_ ,A_ ,kernel_size=A_ ,stride=A_ ,padding=kernel_size // 2 ,bias=A_ ) A = nn.BatchNormad(A_ ) A = ACTaFN[activation] if activation is not None else nn.Identity() def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ) -> Tensor: A = self.convolution(A_ ) A = self.normalization(A_ ) A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[Any] ,A_ : ResNetConfig ) -> Union[str, Any]: super().__init__() A = ResNetConvLayer( config.num_channels ,config.embedding_size ,kernel_size=7 ,stride=2 ,activation=config.hidden_act ) A = nn.MaxPoolad(kernel_size=3 ,stride=2 ,padding=1 ) A = config.num_channels def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ) -> Tensor: A = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( 'Make sure that the channel dimension of the pixel values match with the one set in the configuration.' ) A = self.embedder(A_ ) A = self.pooler(A_ ) return embedding class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : int ,A_ : int ,A_ : int = 2 ) -> Optional[int]: super().__init__() A = nn.Convad(A_ ,A_ ,kernel_size=1 ,stride=A_ ,bias=A_ ) A = nn.BatchNormad(A_ ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Tensor ) -> Tensor: A = self.convolution(A_ ) A = self.normalization(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : str ,A_ : int ,A_ : int ,A_ : int = 1 ,A_ : str = "relu" ) -> Dict: super().__init__() A = in_channels != out_channels or stride != 1 A = ( ResNetShortCut(A_ ,A_ ,stride=A_ ) if should_apply_shortcut else nn.Identity() ) A = nn.Sequential( ResNetConvLayer(A_ ,A_ ,stride=A_ ) ,ResNetConvLayer(A_ ,A_ ,activation=A_ ) ,) A = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self : Optional[int] ,A_ : Union[str, Any] ) -> Optional[Any]: A = hidden_state A = self.layer(A_ ) A = self.shortcut(A_ ) hidden_state += residual A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[Any] ,A_ : int ,A_ : int ,A_ : int = 1 ,A_ : str = "relu" ,A_ : int = 4 ) -> Dict: super().__init__() A = in_channels != out_channels or stride != 1 A = out_channels // reduction A = ( ResNetShortCut(A_ ,A_ ,stride=A_ ) if should_apply_shortcut else nn.Identity() ) A = nn.Sequential( ResNetConvLayer(A_ ,A_ ,kernel_size=1 ) ,ResNetConvLayer(A_ ,A_ ,stride=A_ ) ,ResNetConvLayer(A_ ,A_ ,kernel_size=1 ,activation=A_ ) ,) A = ACTaFN[activation] def _SCREAMING_SNAKE_CASE ( self : str ,A_ : str ) -> List[Any]: A = hidden_state A = self.layer(A_ ) A = self.shortcut(A_ ) hidden_state += residual A = self.activation(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : List[str] ,A_ : ResNetConfig ,A_ : int ,A_ : int ,A_ : int = 2 ,A_ : int = 2 ,) -> Tuple: super().__init__() A = ResNetBottleNeckLayer if config.layer_type == 'bottleneck' else ResNetBasicLayer A = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer(A_ ,A_ ,stride=A_ ,activation=config.hidden_act ) ,*[layer(A_ ,A_ ,activation=config.hidden_act ) for _ in range(depth - 1 )] ,) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Tensor ) -> Tensor: A = input for layer in self.layers: A = layer(A_ ) return hidden_state class lowerCAmelCase_ ( nn.Module ): '''simple docstring''' def __init__( self : Optional[int] ,A_ : ResNetConfig ) -> Dict: super().__init__() A = nn.ModuleList([] ) # based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input self.stages.append( ResNetStage( A_ ,config.embedding_size ,config.hidden_sizes[0] ,stride=2 if config.downsample_in_first_stage else 1 ,depth=config.depths[0] ,) ) A = zip(config.hidden_sizes ,config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(A_ ,config.depths[1:] ): self.stages.append(ResNetStage(A_ ,A_ ,A_ ,depth=A_ ) ) def _SCREAMING_SNAKE_CASE ( self : str ,A_ : Tensor ,A_ : bool = False ,A_ : bool = True ) -> BaseModelOutputWithNoAttention: A = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: A = hidden_states + (hidden_state,) A = stage_module(A_ ) if output_hidden_states: A = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention( last_hidden_state=A_ ,hidden_states=A_ ,) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: int = ResNetConfig _lowerCamelCase: List[Any] = '''resnet''' _lowerCamelCase: int = '''pixel_values''' _lowerCamelCase: int = True def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ,A_ : Any ) -> Any: if isinstance(A_ ,nn.Convad ): nn.init.kaiming_normal_(module.weight ,mode='fan_out' ,nonlinearity='relu' ) elif isinstance(A_ ,(nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight ,1 ) nn.init.constant_(module.bias ,0 ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ,A_ : List[Any] ,A_ : Tuple=False ) -> str: if isinstance(A_ ,A_ ): A = value _lowercase = r''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`ResNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' _lowercase = r''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConvNextImageProcessor.__call__`] for details. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( '''The bare ResNet model outputting raw features without any specific head on top.''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Dict ) -> Dict: super().__init__(A_ ) A = config A = ResNetEmbeddings(A_ ) A = ResNetEncoder(A_ ) A = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC ,output_type=A_ ,config_class=_CONFIG_FOR_DOC ,modality='vision' ,expected_output=_EXPECTED_OUTPUT_SHAPE ,) def _SCREAMING_SNAKE_CASE ( self : Any ,A_ : Tensor ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ) -> BaseModelOutputWithPoolingAndNoAttention: A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = return_dict if return_dict is not None else self.config.use_return_dict A = self.embedder(A_ ) A = self.encoder( A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = encoder_outputs[0] A = self.pooler(A_ ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=A_ ,pooler_output=A_ ,hidden_states=encoder_outputs.hidden_states ,) @add_start_docstrings( ''' ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' def __init__( self : List[Any] ,A_ : Any ) -> List[Any]: super().__init__(A_ ) A = config.num_labels A = ResNetModel(A_ ) # classification head A = nn.Sequential( nn.Flatten() ,nn.Linear(config.hidden_sizes[-1] ,config.num_labels ) if config.num_labels > 0 else nn.Identity() ,) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT ,output_type=A_ ,config_class=_CONFIG_FOR_DOC ,expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT ,) def _SCREAMING_SNAKE_CASE ( self : List[str] ,A_ : Optional[torch.FloatTensor] = None ,A_ : Optional[torch.LongTensor] = None ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ,) -> ImageClassifierOutputWithNoAttention: A = return_dict if return_dict is not None else self.config.use_return_dict A = self.resnet(A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = outputs.pooler_output if return_dict else outputs[1] A = self.classifier(A_ ) A = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A = 'regression' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A = 'single_label_classification' else: A = 'multi_label_classification' if self.config.problem_type == "regression": A = MSELoss() if self.num_labels == 1: A = loss_fct(logits.squeeze() ,labels.squeeze() ) else: A = loss_fct(A_ ,A_ ) elif self.config.problem_type == "single_label_classification": A = CrossEntropyLoss() A = loss_fct(logits.view(-1 ,self.num_labels ) ,labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A = BCEWithLogitsLoss() A = loss_fct(A_ ,A_ ) if not return_dict: A = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=A_ ,logits=A_ ,hidden_states=outputs.hidden_states ) @add_start_docstrings( ''' ResNet backbone, to be used with frameworks like DETR and MaskFormer. ''' , _lowercase , ) class lowerCAmelCase_ ( _lowercase , _lowercase ): '''simple docstring''' def __init__( self : int ,A_ : Union[str, Any] ) -> Optional[int]: super().__init__(A_ ) super()._init_backbone(A_ ) A = [config.embedding_size] + config.hidden_sizes A = ResNetEmbeddings(A_ ) A = ResNetEncoder(A_ ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(A_ ) @replace_return_docstrings(output_type=A_ ,config_class=_CONFIG_FOR_DOC ) def _SCREAMING_SNAKE_CASE ( self : Tuple ,A_ : Tensor ,A_ : Optional[bool] = None ,A_ : Optional[bool] = None ) -> BackboneOutput: A = return_dict if return_dict is not None else self.config.use_return_dict A = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A = self.embedder(A_ ) A = self.encoder(A_ ,output_hidden_states=A_ ,return_dict=A_ ) A = outputs.hidden_states A = () for idx, stage in enumerate(self.stage_names ): if stage in self.out_features: feature_maps += (hidden_states[idx],) if not return_dict: A = (feature_maps,) if output_hidden_states: output += (outputs.hidden_states,) return output return BackboneOutput( feature_maps=A_ ,hidden_states=outputs.hidden_states if output_hidden_states else None ,attentions=A_ ,)
74
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class __UpperCamelCase : def __init__( self, lowerCAmelCase, lowerCAmelCase=13, lowerCAmelCase=7, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=True, lowerCAmelCase=99, lowerCAmelCase=32, lowerCAmelCase=2, lowerCAmelCase=4, lowerCAmelCase=37, lowerCAmelCase="gelu", lowerCAmelCase=0.1, lowerCAmelCase=0.1, lowerCAmelCase=512, lowerCAmelCase=16, lowerCAmelCase=2, lowerCAmelCase=0.0_2, lowerCAmelCase=3, lowerCAmelCase=4, lowerCAmelCase=None, ): """simple docstring""" lowerCamelCase_ =parent lowerCamelCase_ =13 lowerCamelCase_ =7 lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =99 lowerCamelCase_ =384 lowerCamelCase_ =2 lowerCamelCase_ =4 lowerCamelCase_ =37 lowerCamelCase_ ='''gelu''' lowerCamelCase_ =0.1 lowerCamelCase_ =0.1 lowerCamelCase_ =512 lowerCamelCase_ =16 lowerCamelCase_ =2 lowerCamelCase_ =0.0_2 lowerCamelCase_ =3 lowerCamelCase_ =4 lowerCamelCase_ =128 lowerCamelCase_ =2 lowerCamelCase_ =9 lowerCamelCase_ =1 lowerCamelCase_ =None def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCamelCase_ =None if self.use_input_mask: lowerCamelCase_ =random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase_ =None if self.use_token_type_ids: lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCamelCase_ =None lowerCamelCase_ =None lowerCamelCase_ =None if self.use_labels: lowerCamelCase_ =ids_tensor([self.batch_size], self.type_sequence_label_size ) lowerCamelCase_ =ids_tensor([self.batch_size, self.seq_length], self.num_labels ) lowerCamelCase_ =ids_tensor([self.batch_size], self.num_choices ) lowerCamelCase_ =ConvBertConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, return_dict=lowerCAmelCase, ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertModel(config=lowerCAmelCase ) lowerCamelCase_ ={'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} lowerCamelCase_ =[input_ids, input_mask] lowerCamelCase_ =model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForMaskedLM(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForSequenceClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_choices lowerCamelCase_ =TFConvBertForMultipleChoice(config=lowerCAmelCase ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ =tf.tile(tf.expand_dims(lowerCAmelCase, 1 ), (1, self.num_choices, 1) ) lowerCamelCase_ ={ '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =self.num_labels lowerCamelCase_ =TFConvBertForTokenClassification(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def lowercase__ ( self, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase, lowerCAmelCase ): """simple docstring""" lowerCamelCase_ =TFConvBertForQuestionAnswering(config=lowerCAmelCase ) lowerCamelCase_ ={ '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } lowerCamelCase_ =model(lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.prepare_config_and_inputs() ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) =config_and_inputs lowerCamelCase_ ={'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class __UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): lowercase : Any =( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) lowercase : List[str] =( { 'feature-extraction': TFConvBertModel, 'fill-mask': TFConvBertForMaskedLM, 'question-answering': TFConvBertForQuestionAnswering, 'text-classification': TFConvBertForSequenceClassification, 'token-classification': TFConvBertForTokenClassification, 'zero-shot': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) lowercase : int =False lowercase : List[Any] =False lowercase : Dict =False def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModelTester(self ) lowerCamelCase_ =ConfigTester(self, config_class=lowerCAmelCase, hidden_size=37 ) def lowercase__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*lowerCAmelCase ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =True if hasattr(lowerCAmelCase, '''use_cache''' ): lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) for model_class in self.all_model_classes: lowerCamelCase_ =self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =len(model(lowerCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(lowerCAmelCase, saved_model=lowerCAmelCase ) lowerCamelCase_ =os.path.join(lowerCAmelCase, '''saved_model''', '''1''' ) lowerCamelCase_ =tf.keras.models.load_model(lowerCAmelCase ) lowerCamelCase_ =model(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =outputs['''encoder_hidden_states'''] lowerCamelCase_ =outputs['''encoder_attentions'''] else: lowerCamelCase_ =outputs['''hidden_states'''] lowerCamelCase_ =outputs['''attentions'''] self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) lowerCamelCase_ =getattr( self.model_tester, '''expected_num_hidden_layers''', self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(lowerCAmelCase ), lowerCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ), [self.model_tester.seq_length, self.model_tester.hidden_size], ) self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) self.assertIsNotNone(lowerCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCamelCase_, lowerCamelCase_ =self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ =True lowerCamelCase_ =getattr(self.model_tester, '''decoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''encoder_seq_length''', self.model_tester.seq_length ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) lowerCamelCase_ =getattr(self.model_tester, '''key_length''', lowerCAmelCase ) def check_decoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(out_len % 2, 0 ) lowerCamelCase_ =outputs.decoder_attentions self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length], ) def check_encoder_attentions_output(lowerCAmelCase ): lowerCamelCase_ =[ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(lowerCAmelCase ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length], ) for model_class in self.all_model_classes: lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) lowerCamelCase_ =len(lowerCAmelCase ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) if self.is_encoder_decoder: lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_decoder_attentions_output(lowerCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) # Check attention is always last and order is fine lowerCamelCase_ =True lowerCamelCase_ =True lowerCamelCase_ =model_class(lowerCAmelCase ) lowerCamelCase_ =model(self._prepare_for_class(lowerCAmelCase, lowerCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1), len(lowerCAmelCase ) ) self.assertEqual(model.config.output_hidden_states, lowerCAmelCase ) check_encoder_attentions_output(lowerCAmelCase ) @require_tf class __UpperCamelCase ( unittest.TestCase ): @slow def lowercase__ ( self ): """simple docstring""" lowerCamelCase_ =TFConvBertModel.from_pretrained('''YituTech/conv-bert-base''' ) lowerCamelCase_ =tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase_ =model(lowerCAmelCase )[0] lowerCamelCase_ =[1, 6, 768] self.assertEqual(output.shape, lowerCAmelCase ) lowerCamelCase_ =tf.constant( [ [ [-0.0_3_4_7_5_4_9_3, -0.4_6_8_6_0_3_4, -0.3_0_6_3_8_8_3_2], [0.2_2_6_3_7_2_4_8, -0.2_6_9_8_8_6_4_6, -0.7_4_2_3_4_2_4], [0.1_0_3_2_4_8_6_8, -0.4_5_0_1_3_5_0_8, -0.5_8_2_8_0_7_8_4], ] ] ) tf.debugging.assert_near(output[:, :3, :3], lowerCAmelCase, atol=1e-4 )
75
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase__ ( _a , _a , _a=1E-12): SCREAMING_SNAKE_CASE : Optional[Any] = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_a , axis=1) , a_min=_a)).T SCREAMING_SNAKE_CASE : Any = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_a , axis=1) , a_min=_a)).T return jnp.matmul(_a , norm_emb_a.T) class _UpperCamelCase ( nn.Module ): '''simple docstring''' lowerCamelCase__ =42 lowerCamelCase__ =jnp.floataa def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = FlaxCLIPVisionModule(self.config.vision_config ) SCREAMING_SNAKE_CASE : Any = nn.Dense(self.config.projection_dim , use_bias=a , dtype=self.dtype ) SCREAMING_SNAKE_CASE : str = self.param("concept_embeds" , jax.nn.initializers.ones , (17, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : Optional[int] = self.param( "special_care_embeds" , jax.nn.initializers.ones , (3, self.config.projection_dim) ) SCREAMING_SNAKE_CASE : List[Any] = self.param("concept_embeds_weights" , jax.nn.initializers.ones , (17,) ) SCREAMING_SNAKE_CASE : Any = self.param("special_care_embeds_weights" , jax.nn.initializers.ones , (3,) ) def __call__( self : Optional[Any] , a : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = self.vision_model(a )[1] SCREAMING_SNAKE_CASE : Optional[Any] = self.visual_projection(a ) SCREAMING_SNAKE_CASE : List[Any] = jax_cosine_distance(a , self.special_care_embeds ) SCREAMING_SNAKE_CASE : str = jax_cosine_distance(a , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE : Optional[int] = 0.0 SCREAMING_SNAKE_CASE : List[str] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE : str = jnp.round(a , 3 ) SCREAMING_SNAKE_CASE : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=a ) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE : Union[str, Any] = is_special_care * 0.01 SCREAMING_SNAKE_CASE : Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE : Dict = jnp.round(a , 3 ) SCREAMING_SNAKE_CASE : int = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ =CLIPConfig lowerCamelCase__ ='clip_input' lowerCamelCase__ =FlaxStableDiffusionSafetyCheckerModule def __init__( self : str , a : CLIPConfig , a : Optional[Tuple] = None , a : int = 0 , a : jnp.dtype = jnp.floataa , a : bool = True , **a : str , ) -> int: """simple docstring""" if input_shape is None: SCREAMING_SNAKE_CASE : List[Any] = (1, 224, 224, 3) SCREAMING_SNAKE_CASE : Optional[int] = self.module_class(config=a , dtype=a , **a ) super().__init__(a , a , input_shape=a , seed=a , dtype=a , _do_init=_do_init ) def __UpperCamelCase ( self : str , a : jax.random.KeyArray , a : Tuple , a : FrozenDict = None ) -> FrozenDict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = jax.random.normal(a , a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Tuple = jax.random.split(a ) SCREAMING_SNAKE_CASE : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} SCREAMING_SNAKE_CASE : int = self.module.init(a , a )["params"] return random_params def __call__( self : List[Any] , a : Optional[int] , a : dict = None , ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = jnp.transpose(a , (0, 2, 3, 1) ) return self.module.apply( {"params": params or self.params} , jnp.array(a , dtype=jnp.floataa ) , rngs={} , )
76
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
"""simple docstring""" def a_ ( _lowerCAmelCase : str , _lowerCAmelCase : str ): '''simple docstring''' lowercase__ : List[str] = len(_lowerCAmelCase ) + 1 lowercase__ : Any = len(_lowerCAmelCase ) + 1 # dp is a 2d matrix where dp[i][j] denotes whether prefix string of # length i of input_string matches with prefix string of length j of # given pattern. # "dp" stands for dynamic programming. lowercase__ : List[str] = [[0 for i in range(_lowerCAmelCase )] for j in range(_lowerCAmelCase )] # since string of zero length match pattern of zero length lowercase__ : Any = 1 # since pattern of zero length will never match with string of non-zero length for i in range(1 , _lowerCAmelCase ): lowercase__ : Tuple = 0 # since string of zero length will match with pattern where there # is at least one * alternatively for j in range(1 , _lowerCAmelCase ): lowercase__ : Union[str, Any] = dp[0][j - 2] if pattern[j - 1] == '*' else 0 # now using bottom-up approach to find for all remaining lengths for i in range(1 , _lowerCAmelCase ): for j in range(1 , _lowerCAmelCase ): if input_string[i - 1] == pattern[j - 1] or pattern[j - 1] == ".": lowercase__ : List[Any] = dp[i - 1][j - 1] elif pattern[j - 1] == "*": if dp[i][j - 2] == 1: lowercase__ : Union[str, Any] = 1 elif pattern[j - 2] in (input_string[i - 1], "."): lowercase__ : Tuple = dp[i - 1][j] else: lowercase__ : Tuple = 0 else: lowercase__ : List[Any] = 0 return bool(dp[-1][-1] ) if __name__ == "__main__": import doctest doctest.testmod() # inputing the strings # input_string = input("input a string :") # pattern = input("input a pattern :") _UpperCamelCase : Any = "aab" _UpperCamelCase : int = "c*a*b" # using function to check whether given string matches the given pattern if match_pattern(input_string, pattern): print(f'''{input_string} matches the given pattern {pattern}''') else: print(f'''{input_string} does not match with the given pattern {pattern}''')
77
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
"""simple docstring""" from __future__ import annotations snake_case_ = 10 def _lowerCAmelCase ( lowercase_ ): UpperCAmelCase = 1 UpperCAmelCase = max(lowercase_ ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase = [[] for _ in range(lowercase_ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase = int((i / placement) % RADIX ) buckets[tmp].append(lowercase_ ) # put each buckets' contents into list_of_ints UpperCAmelCase = 0 for b in range(lowercase_ ): for i in buckets[b]: UpperCAmelCase = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
'''simple docstring''' from __future__ import annotations lowerCamelCase_ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> tuple[list[list[int]], list[list[int]]]: '''simple docstring''' _A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowercase ) ) ] # the reference grid _A = 1 _A = [ [0 for col in range(len(grid[0] ) )] for row in range(len(__lowercase ) ) ] # the action grid _A = init[0] _A = init[1] _A = 0 _A = g + heuristic[x][y] # cost from starting cell to destination cell _A = [[f, g, x, y]] _A = False # flag that is set when search is complete _A = False # flag set if we can't find expand while not found and not resign: if len(__lowercase ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() _A = cell.pop() _A = next_cell[2] _A = next_cell[3] _A = next_cell[1] if x == goal[0] and y == goal[1]: _A = True else: for i in range(len(__lowercase ) ): # to try out different valid actions _A = x + DIRECTIONS[i][0] _A = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(__lowercase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: _A = g + cost _A = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) _A = 1 _A = i _A = [] _A = goal[0] _A = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: _A = x - DIRECTIONS[action[x][y]][0] _A = y - DIRECTIONS[action[x][y]][1] _A = xa _A = ya invpath.append([x, y] ) _A = [] for i in range(len(__lowercase ) ): path.append(invpath[len(__lowercase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase_ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase_ = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase_ = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase_ = 1 # the cost map which pushes the path closer to the goal lowerCamelCase_ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase_ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase_ = 99 lowerCamelCase_ , lowerCamelCase_ = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
79
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
'''simple docstring''' from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch a__ : Union[str, Any] = logging.get_logger(__name__) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_55 , a = True , a = None , a = True , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"shortest_edge": 2_24} UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCamelCase__ = get_size_dict(a , param_name="crop_size" ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_center_crop UpperCamelCase__ = crop_size UpperCamelCase__ = do_flip_channel_order def __a ( self , a , a , a = PIL.Image.BILINEAR , a = None , **a , ): UpperCamelCase__ = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(f'''The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size(a , size=size["shortest_edge"] , default_to_square=a ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}''' ) return center_crop(a , size=(size["height"], size["width"]) , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a = None ): return flip_channel_order(a , data_format=a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCamelCase__ = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a , default_to_square=a ) UpperCamelCase__ = crop_size if crop_size is not None else self.crop_size UpperCamelCase__ = get_size_dict(a , param_name="crop_size" ) UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_center_crop: UpperCamelCase__ = [self.center_crop(image=a , size=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCamelCase__ = [self.flip_channel_order(image=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
80
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" lowerCamelCase_ : int = """ # Installazione di Transformers ! pip install transformers datasets # Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e # rimuovi la modalità commento al comando seguente. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCamelCase_ : Dict = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCamelCase_ : Union[str, Any] = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
81
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
import gc import unittest import numpy as np import torch from diffusers import AutoencoderKL, DDIMScheduler, DiTPipeline, DPMSolverMultistepScheduler, TransformeraDModel from diffusers.utils import is_xformers_available, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS, CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( lowerCamelCase__ , unittest.TestCase ): __lowerCamelCase = DiTPipeline __lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_PARAMS __lowerCamelCase = PipelineTesterMixin.required_optional_params - { '''latents''', '''num_images_per_prompt''', '''callback''', '''callback_steps''', } __lowerCamelCase = CLASS_CONDITIONED_IMAGE_GENERATION_BATCH_PARAMS __lowerCamelCase = False def snake_case ( self ): """simple docstring""" torch.manual_seed(0 ) _lowerCAmelCase = TransformeraDModel( sample_size=16 , num_layers=2 , patch_size=4 , attention_head_dim=8 , num_attention_heads=2 , in_channels=4 , out_channels=8 , attention_bias=_snake_case , activation_fn="""gelu-approximate""" , num_embeds_ada_norm=1000 , norm_type="""ada_norm_zero""" , norm_elementwise_affine=_snake_case , ) _lowerCAmelCase = AutoencoderKL() _lowerCAmelCase = DDIMScheduler() _lowerCAmelCase = {"""transformer""": transformer.eval(), """vae""": vae.eval(), """scheduler""": scheduler} return components def snake_case ( self , _snake_case , _snake_case=0 ): """simple docstring""" if str(_snake_case ).startswith("""mps""" ): _lowerCAmelCase = torch.manual_seed(_snake_case ) else: _lowerCAmelCase = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) _lowerCAmelCase = { """class_labels""": [1], """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def snake_case ( self ): """simple docstring""" _lowerCAmelCase = """cpu""" _lowerCAmelCase = self.get_dummy_components() _lowerCAmelCase = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) _lowerCAmelCase = self.get_dummy_inputs(_snake_case ) _lowerCAmelCase = pipe(**_snake_case ).images _lowerCAmelCase = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 16, 16, 3) ) _lowerCAmelCase = np.array([0.2946, 0.6601, 0.4329, 0.3296, 0.4144, 0.5319, 0.7273, 0.5013, 0.4457] ) _lowerCAmelCase = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_snake_case , 1e-3 ) def snake_case ( self ): """simple docstring""" self._test_inference_batch_single_identical(relax_max_difference=_snake_case , expected_max_diff=1e-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def snake_case ( self ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def snake_case ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case ( self ): """simple docstring""" _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-256""" ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella""", """white shark""", """white wolf"""] _lowerCAmelCase = pipe.get_label_ids(_snake_case ) _lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=40 , output_type="""np""" ).images for word, image in zip(_snake_case , _snake_case ): _lowerCAmelCase = load_numpy( F'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/dit/{word}.npy' ) assert np.abs((expected_image - image).max() ) < 1e-2 def snake_case ( self ): """simple docstring""" _lowerCAmelCase = DiTPipeline.from_pretrained("""facebook/DiT-XL-2-512""" ) _lowerCAmelCase = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.to("""cuda""" ) _lowerCAmelCase = ["""vase""", """umbrella"""] _lowerCAmelCase = pipe.get_label_ids(_snake_case ) _lowerCAmelCase = torch.manual_seed(0 ) _lowerCAmelCase = pipe(_snake_case , generator=_snake_case , num_inference_steps=25 , output_type="""np""" ).images for word, image in zip(_snake_case , _snake_case ): _lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" F'/dit/{word}_512.npy' ) assert np.abs((expected_image - image).max() ) < 1e-1
82
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
'''simple docstring''' from statistics import mean, stdev def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = 3 ): _UpperCamelCase : List[Any] = min(UpperCAmelCase_ ) _UpperCamelCase : Dict = max(UpperCAmelCase_ ) # normalize data return [round((x - x_min) / (x_max - x_min) , UpperCAmelCase_ ) for x in data] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ = 3 ): _UpperCamelCase : str = mean(UpperCAmelCase_ ) _UpperCamelCase : Tuple = stdev(UpperCAmelCase_ ) # standardize data return [round((x - mu) / (sigma) , UpperCAmelCase_ ) for x in data]
83
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> str: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __lowerCAmelCase ( self ) -> Union[str, Any]: lowerCAmelCase_ :Union[str, Any] = 1 lowerCAmelCase_ :Any = 3 lowerCAmelCase_ :Tuple = (32, 32) lowerCAmelCase_ :Dict = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__A ) return image @property def __lowerCAmelCase ( self ) -> Any: torch.manual_seed(0 ) lowerCAmelCase_ :Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def __lowerCAmelCase ( self ) -> List[Any]: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def __lowerCAmelCase ( self ) -> Tuple: torch.manual_seed(0 ) lowerCAmelCase_ :Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=5006 , ) return RobertaSeriesModelWithTransformation(__A ) @property def __lowerCAmelCase ( self ) -> int: def extract(*__A , **__A ): class _SCREAMING_SNAKE_CASE : def __init__( self ) -> str: lowerCAmelCase_ :List[str] = torch.ones([0] ) def __lowerCAmelCase ( self , __A ) -> int: self.pixel_values.to(__A ) return self return Out() return extract def __lowerCAmelCase ( self ) -> str: lowerCAmelCase_ :List[str] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ :Dict = self.dummy_cond_unet lowerCAmelCase_ :List[Any] = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :int = self.dummy_vae lowerCAmelCase_ :Union[str, Any] = self.dummy_text_encoder lowerCAmelCase_ :Optional[int] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase_ :Dict = 77 lowerCAmelCase_ :Tuple = self.dummy_image.to(__A ) lowerCAmelCase_ :Any = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk lowerCAmelCase_ :Dict = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ :Dict = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) lowerCAmelCase_ :Any = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :Optional[Any] = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Optional[Any] = torch.Generator(device=__A ).manual_seed(0 ) lowerCAmelCase_ :List[Any] = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__A , ) lowerCAmelCase_ :Tuple = output.images lowerCAmelCase_ :str = torch.Generator(device=__A ).manual_seed(0 ) lowerCAmelCase_ :str = alt_pipe( [prompt] , generator=__A , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , image=__A , return_dict=__A , )[0] lowerCAmelCase_ :Tuple = image[0, -3:, -3:, -1] lowerCAmelCase_ :List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCAmelCase_ :str = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 5E-3 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :Tuple = self.dummy_cond_unet lowerCAmelCase_ :int = PNDMScheduler(skip_prk_steps=__A ) lowerCAmelCase_ :int = self.dummy_vae lowerCAmelCase_ :Dict = self.dummy_text_encoder lowerCAmelCase_ :List[Any] = XLMRobertaTokenizer.from_pretrained("""hf-internal-testing/tiny-xlm-roberta""" ) lowerCAmelCase_ :Optional[Any] = 77 lowerCAmelCase_ :Optional[int] = self.dummy_image.to(__A ) # put models in fp16 lowerCAmelCase_ :Any = unet.half() lowerCAmelCase_ :Union[str, Any] = vae.half() lowerCAmelCase_ :Optional[Any] = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ :Tuple = AltDiffusionImgaImgPipeline( unet=__A , scheduler=__A , vae=__A , text_encoder=__A , tokenizer=__A , safety_checker=__A , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ :List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor , do_normalize=__A ) lowerCAmelCase_ :Union[str, Any] = alt_pipe.to(__A ) alt_pipe.set_progress_bar_config(disable=__A ) lowerCAmelCase_ :int = """A painting of a squirrel eating a burger""" lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :Union[str, Any] = alt_pipe( [prompt] , generator=__A , num_inference_steps=2 , output_type="""np""" , image=__A , ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def __lowerCAmelCase ( self ) -> Optional[int]: lowerCAmelCase_ :List[str] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) # resize to resolution that is divisible by 8 but not 16 or 32 lowerCAmelCase_ :Tuple = init_image.resize((760, 504) ) lowerCAmelCase_ :str = """BAAI/AltDiffusion""" lowerCAmelCase_ :str = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowerCAmelCase_ :Any = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :Dict = torch.manual_seed(0 ) lowerCAmelCase_ :str = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Dict = output.images[0] lowerCAmelCase_ :List[str] = image[255:258, 383:386, -1] assert image.shape == (504, 760, 3) lowerCAmelCase_ :int = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __lowerCAmelCase ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __lowerCAmelCase ( self ) -> Any: lowerCAmelCase_ :Union[str, Any] = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) lowerCAmelCase_ :Union[str, Any] = init_image.resize((768, 512) ) lowerCAmelCase_ :str = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy""" ) lowerCAmelCase_ :Union[str, Any] = """BAAI/AltDiffusion""" lowerCAmelCase_ :Any = AltDiffusionImgaImgPipeline.from_pretrained( __A , safety_checker=__A , ) pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) pipe.enable_attention_slicing() lowerCAmelCase_ :Tuple = """A fantasy landscape, trending on artstation""" lowerCAmelCase_ :int = torch.manual_seed(0 ) lowerCAmelCase_ :Tuple = pipe( prompt=__A , image=__A , strength=0.7_5 , guidance_scale=7.5 , generator=__A , output_type="""np""" , ) lowerCAmelCase_ :Optional[int] = output.images[0] assert image.shape == (512, 768, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image ).max() < 1E-2
84
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : List[str] = { "EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Any = "gpt_neox" def __init__( self , a__=50_432 , a__=6_144 , a__=44 , a__=64 , a__=24_576 , a__="gelu" , a__=0.2_5 , a__=10_000 , a__=0.0 , a__=0.0 , a__=0.1 , a__=2_048 , a__=0.0_2 , a__=1e-5 , a__=True , a__=0 , a__=2 , a__=False , a__=True , a__=None , **a__ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(bos_token_id=a__ , eos_token_id=a__ , **a__ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = attention_dropout snake_case_ = hidden_dropout snake_case_ = classifier_dropout snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = tie_word_embeddings snake_case_ = use_parallel_residual snake_case_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def lowerCAmelCase__ ( self ) -> Any: '''simple docstring''' if self.rope_scaling is None: return if not isinstance(self.rope_scaling , a__ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " F'got {self.rope_scaling}' ) snake_case_ = self.rope_scaling.get("type" , a__ ) snake_case_ = self.rope_scaling.get("factor" , a__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}' ) if rope_scaling_factor is None or not isinstance(a__ , a__ ) or rope_scaling_factor <= 1.0: raise ValueError(F'`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}' )
85
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """SCUT-DLVCLab/lilt-roberta-en-base""": ( """https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json""" ), } class A__ ( _lowerCamelCase): A_ : Union[str, Any] = 'lilt' def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1E-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=10_24 , **_SCREAMING_SNAKE_CASE , ): super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) __lowerCAmelCase : List[Any] = vocab_size __lowerCAmelCase : List[str] = hidden_size __lowerCAmelCase : Optional[int] = num_hidden_layers __lowerCAmelCase : str = num_attention_heads __lowerCAmelCase : Tuple = hidden_act __lowerCAmelCase : Any = intermediate_size __lowerCAmelCase : List[Any] = hidden_dropout_prob __lowerCAmelCase : Optional[Any] = attention_probs_dropout_prob __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : List[str] = type_vocab_size __lowerCAmelCase : str = initializer_range __lowerCAmelCase : Tuple = layer_norm_eps __lowerCAmelCase : int = position_embedding_type __lowerCAmelCase : Dict = classifier_dropout __lowerCAmelCase : str = channel_shrink_ratio __lowerCAmelCase : Dict = max_ad_position_embeddings
86
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
from datetime import datetime as dt import os from github import Github UpperCamelCase = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''feature request''', '''new model''', '''wip''', ] def lowercase_ ( ): lowercase__ : Dict = Github(os.environ["GITHUB_TOKEN"]) lowercase__ : Optional[int] = g.get_repo("huggingface/transformers") lowercase__ : Optional[Any] = repo.get_issues(state="open") for issue in open_issues: lowercase__ : Union[str, Any] = sorted([comment for comment in issue.get_comments()] , key=lambda _lowerCamelCase: i.created_at , reverse=_lowerCamelCase) lowercase__ : Dict = comments[0] if len(_lowerCamelCase) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed") elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored.") if __name__ == "__main__": main()
87
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() __lowerCAmelCase : Dict = logging.get_logger('transformers.models.speecht5') def a__ ( A_, A_, A_ ): '''simple docstring''' hf_model.apply_weight_norm() __magic_name__ = checkpoint["""input_conv.weight_g"""] __magic_name__ = checkpoint["""input_conv.weight_v"""] __magic_name__ = checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): __magic_name__ = checkpoint[f'''upsamples.{i}.1.weight_g'''] __magic_name__ = checkpoint[f'''upsamples.{i}.1.weight_v'''] __magic_name__ = checkpoint[f'''upsamples.{i}.1.bias'''] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): __magic_name__ = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_g'''] __magic_name__ = checkpoint[f'''blocks.{i}.convs1.{j}.1.weight_v'''] __magic_name__ = checkpoint[f'''blocks.{i}.convs1.{j}.1.bias'''] __magic_name__ = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_g'''] __magic_name__ = checkpoint[f'''blocks.{i}.convs2.{j}.1.weight_v'''] __magic_name__ = checkpoint[f'''blocks.{i}.convs2.{j}.1.bias'''] __magic_name__ = checkpoint["""output_conv.1.weight_g"""] __magic_name__ = checkpoint["""output_conv.1.weight_v"""] __magic_name__ = checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def a__ ( A_, A_, A_, A_=None, A_=None, ): '''simple docstring''' if config_path is not None: __magic_name__ = SpeechTaHifiGanConfig.from_pretrained(A_ ) else: __magic_name__ = SpeechTaHifiGanConfig() __magic_name__ = SpeechTaHifiGan(A_ ) __magic_name__ = torch.load(A_ ) load_weights(orig_checkpoint["""model"""]["""generator"""], A_, A_ ) __magic_name__ = np.load(A_ ) __magic_name__ = stats[0].reshape(-1 ) __magic_name__ = stats[1].reshape(-1 ) __magic_name__ = torch.from_numpy(A_ ).float() __magic_name__ = torch.from_numpy(A_ ).float() model.save_pretrained(A_ ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(A_ ) if __name__ == "__main__": __lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) __lowerCAmelCase : List[Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
88
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
'''simple docstring''' import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = 'upernet' def __init__( self : List[Any] ,_UpperCAmelCase : str=None ,_UpperCAmelCase : List[Any]=512 ,_UpperCAmelCase : int=0.02 ,_UpperCAmelCase : int=[1, 2, 3, 6] ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Dict=0.4 ,_UpperCAmelCase : Optional[int]=384 ,_UpperCAmelCase : Optional[Any]=256 ,_UpperCAmelCase : List[Any]=1 ,_UpperCAmelCase : List[Any]=False ,_UpperCAmelCase : Tuple=255 ,**_UpperCAmelCase : int ,): super().__init__(**_UpperCAmelCase ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _a : List[str] = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(_UpperCAmelCase ,_UpperCAmelCase ): _a : List[Any] = backbone_config.get('model_type' ) _a : List[str] = CONFIG_MAPPING[backbone_model_type] _a : Optional[int] = config_class.from_dict(_UpperCAmelCase ) _a : Optional[int] = backbone_config _a : Union[str, Any] = hidden_size _a : str = initializer_range _a : Any = pool_scales _a : str = use_auxiliary_head _a : Tuple = auxiliary_loss_weight _a : Optional[Any] = auxiliary_in_channels _a : Union[str, Any] = auxiliary_channels _a : List[str] = auxiliary_num_convs _a : List[str] = auxiliary_concat_input _a : Any = loss_ignore_index def __lowercase ( self : Optional[int] ): _a : int = copy.deepcopy(self.__dict__ ) _a : List[Any] = self.backbone_config.to_dict() _a : Dict = self.__class__.model_type return output
89
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
import multiprocessing from typing import TYPE_CHECKING, Optional, Union from .. import Dataset, Features, config from ..formatting import query_table from ..packaged_modules.sql.sql import Sql from ..utils import logging from .abc import AbstractDatasetInputStream if TYPE_CHECKING: import sqlitea import sqlalchemy class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , lowerCamelCase__ = False , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__(features=lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = Sql( cache_dir=lowerCamelCase__ , features=lowerCamelCase__ , sql=lowerCamelCase__ , con=lowerCamelCase__ , **lowerCamelCase__ , ) def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None __lowerCamelCase = None self.builder.download_and_prepare( download_config=lowerCamelCase__ , download_mode=lowerCamelCase__ , verification_mode=lowerCamelCase__ , base_path=lowerCamelCase__ , ) # Build dataset for splits __lowerCamelCase = self.builder.as_dataset( split='train' , verification_mode=lowerCamelCase__ , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : """simple docstring""" def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = None , lowerCamelCase__ = None , **lowerCamelCase__ , ) -> List[str]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(f"""num_proc {num_proc} must be an integer > 0.""" ) __lowerCamelCase = dataset __lowerCamelCase = name __lowerCamelCase = con __lowerCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __lowerCamelCase = num_proc __lowerCamelCase = to_sql_kwargs def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = self.to_sql_kwargs.pop('sql' , lowerCamelCase__ ) __lowerCamelCase = self.to_sql_kwargs.pop('con' , lowerCamelCase__ ) __lowerCamelCase = self.to_sql_kwargs.pop('index' , lowerCamelCase__ ) __lowerCamelCase = self._write(index=lowerCamelCase__ , **self.to_sql_kwargs ) return written def lowercase_ ( self , lowerCamelCase__ ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = args __lowerCamelCase = {**to_sql_kwargs, 'if_exists': 'append'} if offset > 0 else to_sql_kwargs __lowerCamelCase = query_table( table=self.dataset.data , key=slice(lowerCamelCase__ , offset + self.batch_size ) , indices=self.dataset._indices , ) __lowerCamelCase = batch.to_pandas() __lowerCamelCase = df.to_sql(self.name , self.con , index=lowerCamelCase__ , **lowerCamelCase__ ) return num_rows or len(lowerCamelCase__ ) def lowercase_ ( self , lowerCamelCase__ , **lowerCamelCase__ ) -> int: '''simple docstring''' __lowerCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += self._batch_sql((offset, index, to_sql_kwargs) ) else: __lowerCamelCase , __lowerCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for num_rows in logging.tqdm( pool.imap( self._batch_sql , [(offset, index, to_sql_kwargs) for offset in range(0 , lowerCamelCase__ , lowerCamelCase__ )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating SQL from Arrow format' , ): written += num_rows return written
90
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) class lowerCAmelCase__ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : List[str] , *lowercase_ : Tuple , **lowercase_ : Tuple): '''simple docstring''' warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_)
91
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
import inspect import unittest import warnings from transformers import DeiTConfig from transformers.models.auto import get_values from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_MAPPING, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, DeiTModel, ) from transformers.models.deit.modeling_deit import DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class a__ : def __init__( self , _A , _A=1_3 , _A=3_0 , _A=2 , _A=3 , _A=True , _A=True , _A=3_2 , _A=5 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=1_0 , _A=0.02 , _A=3 , _A=None , _A=2 , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = image_size __lowerCAmelCase = patch_size __lowerCAmelCase = num_channels __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = type_sequence_label_size __lowerCAmelCase = initializer_range __lowerCAmelCase = scope __lowerCAmelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __lowerCAmelCase = (image_size // patch_size) ** 2 __lowerCAmelCase = num_patches + 2 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_A , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTModel(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = DeiTForMaskedImageModeling(config=_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForMaskedImageModeling(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.type_sequence_label_size __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __lowerCAmelCase = 1 __lowerCAmelCase = DeiTForImageClassification(_A ) model.to(_A ) model.eval() __lowerCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __lowerCAmelCase = model(_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Optional[Any] = ( ( DeiTModel, DeiTForImageClassification, DeiTForImageClassificationWithTeacher, DeiTForMaskedImageModeling, ) if is_torch_available() else () ) _a : int = ( { """feature-extraction""": DeiTModel, """image-classification""": (DeiTForImageClassification, DeiTForImageClassificationWithTeacher), } if is_torch_available() else {} ) _a : Optional[Any] = False _a : Tuple = False _a : Tuple = False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , has_text_modality=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="DeiT does not use inputs_embeds" ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" pass def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __lowerCAmelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_A , nn.Linear ) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowerCAmelCase = model_class(_A ) __lowerCAmelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowerCAmelCase = [*signature.parameters.keys()] __lowerCAmelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , _A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_A ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A=False ): """simple docstring""" __lowerCAmelCase = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "DeiTForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" if not self.model_tester.is_training: return __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = True for model_class in self.all_model_classes: # DeiTForImageClassificationWithTeacher supports inference-only if ( model_class in get_values(_A ) or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __lowerCAmelCase = False __lowerCAmelCase = True for model_class in self.all_model_classes: if model_class in get_values(_A ) or not model_class.supports_gradient_checkpointing: continue # DeiTForImageClassificationWithTeacher supports inference-only if model_class.__name__ == "DeiTForImageClassificationWithTeacher": continue __lowerCAmelCase = model_class(_A ) model.gradient_checkpointing_enable() model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) __lowerCAmelCase = model(**_A ).loss loss.backward() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() __lowerCAmelCase = [ {"title": "multi_label_classification", "num_labels": 2, "dtype": torch.float}, {"title": "single_label_classification", "num_labels": 1, "dtype": torch.long}, {"title": "regression", "num_labels": 1, "dtype": torch.float}, ] for model_class in self.all_model_classes: if ( model_class not in [ *get_values(_A ), *get_values(_A ), ] or model_class.__name__ == "DeiTForImageClassificationWithTeacher" ): continue for problem_type in problem_types: with self.subTest(msg=f"""Testing {model_class} with {problem_type['title']}""" ): __lowerCAmelCase = problem_type["title"] __lowerCAmelCase = problem_type["num_labels"] __lowerCAmelCase = model_class(_A ) model.to(_A ) model.train() __lowerCAmelCase = self._prepare_for_class(_A , _A , return_labels=_A ) if problem_type["num_labels"] > 1: __lowerCAmelCase = inputs["labels"].unsqueeze(1 ).repeat(1 , problem_type["num_labels"] ) __lowerCAmelCase = inputs["labels"].to(problem_type["dtype"] ) # This tests that we do not trigger the warning form PyTorch "Using a target size that is different # to the input size. This will likely lead to incorrect results due to broadcasting. Please ensure # they have the same size." which is a symptom something in wrong for the regression problem. # See https://github.com/huggingface/transformers/issues/11780 with warnings.catch_warnings(record=_A ) as warning_list: __lowerCAmelCase = model(**_A ).loss for w in warning_list: if "Using a target size that is different to the input size" in str(w.message ): raise ValueError( f"""Something is going wrong in the regression problem: intercepted {w.message}""" ) loss.backward() @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" for model_name in DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowerCAmelCase = DeiTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def _a ( ): __lowerCAmelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained("facebook/deit-base-distilled-patch16-224" ) if is_vision_available() else None ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTForImageClassificationWithTeacher.from_pretrained("facebook/deit-base-distilled-patch16-224" ).to( _A ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ).to(_A ) # forward pass with torch.no_grad(): __lowerCAmelCase = model(**_A ) # verify the logits __lowerCAmelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , _A ) __lowerCAmelCase = torch.tensor([-1.02_66, 0.19_12, -1.28_61] ).to(_A ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _A , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = DeiTModel.from_pretrained( "facebook/deit-base-distilled-patch16-224" , torch_dtype=torch.floataa , device_map="auto" ) __lowerCAmelCase = self.default_image_processor __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_A , return_tensors="pt" ) __lowerCAmelCase = inputs.pixel_values.to(_A ) # forward pass to make sure inference works in fp16 with torch.no_grad(): __lowerCAmelCase = model(_A )
92
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def snake_case_ ( __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" assert isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Any , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Union[str, Any] = tmp_path / '''cache''' lowercase_ : Optional[Any] = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): lowercase_ : Dict = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE , keep_in_memory=__SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def snake_case_ ( __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" lowercase_ : Optional[Any] = tmp_path / '''cache''' lowercase_ : int = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} lowercase_ : Dict = features.copy() if features else default_expected_features lowercase_ : Tuple = ( Features({feature: Value(__SCREAMING_SNAKE_CASE ) for feature, dtype in features.items()} ) if features is not None else None ) lowercase_ : int = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=__SCREAMING_SNAKE_CASE , cache_dir=__SCREAMING_SNAKE_CASE ).read() _check_sql_dataset(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def snake_case_ ( __SCREAMING_SNAKE_CASE : int ): """simple docstring""" with contextlib.closing(sqlitea.connect(__SCREAMING_SNAKE_CASE ) ) as con: lowercase_ : List[Any] = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def snake_case_ ( __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : int ): """simple docstring""" lowercase_ : Tuple = tmp_path / '''cache''' lowercase_ : int = os.path.join(__SCREAMING_SNAKE_CASE , '''tmp.sql''' ) lowercase_ : Optional[Any] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(__SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() lowercase_ : List[str] = iter_sql_file(__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = iter_sql_file(__SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : Union[str, Any] , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Dict = tmp_path / '''cache''' lowercase_ : List[Any] = os.path.join(__SCREAMING_SNAKE_CASE , '''tmp.sql''' ) lowercase_ : Any = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() SqlDatasetWriter(__SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() lowercase_ : Dict = iter_sql_file(__SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = iter_sql_file(__SCREAMING_SNAKE_CASE ) for rowa, rowa in zip(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): assert rowa == rowa @require_sqlalchemy def snake_case_ ( __SCREAMING_SNAKE_CASE : List[str] , __SCREAMING_SNAKE_CASE : Dict , __SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" lowercase_ : Optional[Any] = tmp_path / '''cache''' lowercase_ : str = os.path.join(__SCREAMING_SNAKE_CASE , '''tmp.sql''' ) lowercase_ : Optional[int] = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=__SCREAMING_SNAKE_CASE ).read() with pytest.raises(__SCREAMING_SNAKE_CASE ): SqlDatasetWriter(__SCREAMING_SNAKE_CASE , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
93
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import TransformeraDModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings from diffusers.utils import load_numpy, slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu snake_case : List[str] = False class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def SCREAMING_SNAKE_CASE__ ( self ): return 12 @property def SCREAMING_SNAKE_CASE__ ( self ): return 12 @property def SCREAMING_SNAKE_CASE__ ( self ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :Optional[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=3 , num_vq_embeddings=self.num_embed , vq_embed_dim=3 , ) return model @property def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_lowerCamelCase ) @property def SCREAMING_SNAKE_CASE__ ( self ): torch.manual_seed(0 ) a :str = 12 a :Optional[Any] = 12 a :Dict = { '''attention_bias''': True, '''cross_attention_dim''': 32, '''attention_head_dim''': height * width, '''num_attention_heads''': 1, '''num_vector_embeds''': self.num_embed, '''num_embeds_ada_norm''': self.num_embeds_ada_norm, '''norm_num_groups''': 32, '''sample_size''': width, '''activation_fn''': '''geglu-approximate''', } a :Dict = TransformeraDModel(**_lowerCamelCase ) return model def SCREAMING_SNAKE_CASE__ ( self ): a :Union[str, Any] = '''cpu''' a :Optional[int] = self.dummy_vqvae a :Any = self.dummy_text_encoder a :Tuple = self.dummy_tokenizer a :List[str] = self.dummy_transformer a :str = VQDiffusionScheduler(self.num_embed ) a :Optional[int] = LearnedClassifierFreeSamplingEmbeddings(learnable=_lowerCamelCase ) a :Union[str, Any] = VQDiffusionPipeline( vqvae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , transformer=_lowerCamelCase , scheduler=_lowerCamelCase , learned_classifier_free_sampling_embeddings=_lowerCamelCase , ) a :List[Any] = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :List[str] = '''teddy bear playing in the pool''' a :Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) a :List[str] = pipe([prompt] , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''np''' ) a :List[str] = output.images a :List[Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) a :Any = pipe( [prompt] , generator=_lowerCamelCase , output_type='''np''' , return_dict=_lowerCamelCase , num_inference_steps=2 )[0] a :List[Any] = image[0, -3:, -3:, -1] a :Tuple = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) a :int = np.array([0.6551, 0.6168, 0.5008, 0.5676, 0.5659, 0.4295, 0.6073, 0.5599, 0.4992] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def SCREAMING_SNAKE_CASE__ ( self ): a :List[str] = '''cpu''' a :Union[str, Any] = self.dummy_vqvae a :Optional[Any] = self.dummy_text_encoder a :int = self.dummy_tokenizer a :Optional[int] = self.dummy_transformer a :Optional[int] = VQDiffusionScheduler(self.num_embed ) a :str = LearnedClassifierFreeSamplingEmbeddings( learnable=_lowerCamelCase , hidden_size=self.text_embedder_hidden_size , length=tokenizer.model_max_length ) a :Tuple = VQDiffusionPipeline( vqvae=_lowerCamelCase , text_encoder=_lowerCamelCase , tokenizer=_lowerCamelCase , transformer=_lowerCamelCase , scheduler=_lowerCamelCase , learned_classifier_free_sampling_embeddings=_lowerCamelCase , ) a :int = pipe.to(_lowerCamelCase ) pipe.set_progress_bar_config(disable=_lowerCamelCase ) a :Optional[Any] = '''teddy bear playing in the pool''' a :List[str] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) a :Tuple = pipe([prompt] , generator=_lowerCamelCase , num_inference_steps=2 , output_type='''np''' ) a :Union[str, Any] = output.images a :Union[str, Any] = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) a :int = pipe( [prompt] , generator=_lowerCamelCase , output_type='''np''' , return_dict=_lowerCamelCase , num_inference_steps=2 )[0] a :Union[str, Any] = image[0, -3:, -3:, -1] a :List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 24, 24, 3) a :Optional[int] = np.array([0.6693, 0.6075, 0.4959, 0.5701, 0.5583, 0.4333, 0.6171, 0.5684, 0.4988] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2.0 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self ): a :Optional[int] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy''' ) a :Any = VQDiffusionPipeline.from_pretrained('''microsoft/vq-diffusion-ithq''' ) a :List[Any] = pipeline.to(_lowerCamelCase ) pipeline.set_progress_bar_config(disable=_lowerCamelCase ) # requires GPU generator for gumbel softmax # don't use GPU generator in tests though a :Dict = torch.Generator(device=_lowerCamelCase ).manual_seed(0 ) a :Any = pipeline( '''teddy bear playing in the pool''' , num_images_per_prompt=1 , generator=_lowerCamelCase , output_type='''np''' , ) a :Union[str, Any] = output.images[0] assert image.shape == (256, 256, 3) assert np.abs(expected_image - image ).max() < 2.0
94
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class __lowerCAmelCase ( UpperCamelCase__): _lowercase : int = 0 _lowercase : bool = False _lowercase : float = 3.0 class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"a": 2} ) self.assertDictEqual(MockClass(a=2 , b=lowerCAmelCase__ ).to_kwargs() , {"a": 2, "b": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"a": 2, "c": 2.25} ) @require_cuda def _lowercase ( self ) -> str: '''simple docstring''' a__ : int =GradScalerKwargs(init_scale=1_0_2_4 , growth_factor=2 ) AcceleratorState._reset_state() a__ : List[str] =Accelerator(mixed_precision="fp16" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) a__ : Optional[Any] =accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 10_24.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 2_0_0_0 ) self.assertEqual(scaler._enabled , lowerCAmelCase__ ) @require_multi_gpu def _lowercase ( self ) -> str: '''simple docstring''' a__ : List[Any] =["torchrun", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(lowerCAmelCase__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase : List[str] = DistributedDataParallelKwargs(bucket_cap_mb=15, find_unused_parameters=True) UpperCAmelCase : Optional[Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase : str = torch.nn.Linear(100, 200) UpperCAmelCase : Dict = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase : int = """""" UpperCAmelCase : Union[str, Any] = model.bucket_bytes_cap // (1024 * 1024) if observed_bucket_cap_map != 15: error_msg += F"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += F"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += F"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += F"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += F"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
95
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowercase__ = logging.get_logger(__name__) lowercase__ = OrderedDict( [ ("""audio-spectrogram-transformer""", """ASTFeatureExtractor"""), ("""beit""", """BeitFeatureExtractor"""), ("""chinese_clip""", """ChineseCLIPFeatureExtractor"""), ("""clap""", """ClapFeatureExtractor"""), ("""clip""", """CLIPFeatureExtractor"""), ("""clipseg""", """ViTFeatureExtractor"""), ("""conditional_detr""", """ConditionalDetrFeatureExtractor"""), ("""convnext""", """ConvNextFeatureExtractor"""), ("""cvt""", """ConvNextFeatureExtractor"""), ("""data2vec-audio""", """Wav2Vec2FeatureExtractor"""), ("""data2vec-vision""", """BeitFeatureExtractor"""), ("""deformable_detr""", """DeformableDetrFeatureExtractor"""), ("""deit""", """DeiTFeatureExtractor"""), ("""detr""", """DetrFeatureExtractor"""), ("""dinat""", """ViTFeatureExtractor"""), ("""donut-swin""", """DonutFeatureExtractor"""), ("""dpt""", """DPTFeatureExtractor"""), ("""encodec""", """EncodecFeatureExtractor"""), ("""flava""", """FlavaFeatureExtractor"""), ("""glpn""", """GLPNFeatureExtractor"""), ("""groupvit""", """CLIPFeatureExtractor"""), ("""hubert""", """Wav2Vec2FeatureExtractor"""), ("""imagegpt""", """ImageGPTFeatureExtractor"""), ("""layoutlmv2""", """LayoutLMv2FeatureExtractor"""), ("""layoutlmv3""", """LayoutLMv3FeatureExtractor"""), ("""levit""", """LevitFeatureExtractor"""), ("""maskformer""", """MaskFormerFeatureExtractor"""), ("""mctct""", """MCTCTFeatureExtractor"""), ("""mobilenet_v1""", """MobileNetV1FeatureExtractor"""), ("""mobilenet_v2""", """MobileNetV2FeatureExtractor"""), ("""mobilevit""", """MobileViTFeatureExtractor"""), ("""nat""", """ViTFeatureExtractor"""), ("""owlvit""", """OwlViTFeatureExtractor"""), ("""perceiver""", """PerceiverFeatureExtractor"""), ("""poolformer""", """PoolFormerFeatureExtractor"""), ("""regnet""", """ConvNextFeatureExtractor"""), ("""resnet""", """ConvNextFeatureExtractor"""), ("""segformer""", """SegformerFeatureExtractor"""), ("""sew""", """Wav2Vec2FeatureExtractor"""), ("""sew-d""", """Wav2Vec2FeatureExtractor"""), ("""speech_to_text""", """Speech2TextFeatureExtractor"""), ("""speecht5""", """SpeechT5FeatureExtractor"""), ("""swiftformer""", """ViTFeatureExtractor"""), ("""swin""", """ViTFeatureExtractor"""), ("""swinv2""", """ViTFeatureExtractor"""), ("""table-transformer""", """DetrFeatureExtractor"""), ("""timesformer""", """VideoMAEFeatureExtractor"""), ("""tvlt""", """TvltFeatureExtractor"""), ("""unispeech""", """Wav2Vec2FeatureExtractor"""), ("""unispeech-sat""", """Wav2Vec2FeatureExtractor"""), ("""van""", """ConvNextFeatureExtractor"""), ("""videomae""", """VideoMAEFeatureExtractor"""), ("""vilt""", """ViltFeatureExtractor"""), ("""vit""", """ViTFeatureExtractor"""), ("""vit_mae""", """ViTFeatureExtractor"""), ("""vit_msn""", """ViTFeatureExtractor"""), ("""wav2vec2""", """Wav2Vec2FeatureExtractor"""), ("""wav2vec2-conformer""", """Wav2Vec2FeatureExtractor"""), ("""wavlm""", """Wav2Vec2FeatureExtractor"""), ("""whisper""", """WhisperFeatureExtractor"""), ("""xclip""", """CLIPFeatureExtractor"""), ("""yolos""", """YolosFeatureExtractor"""), ] ) lowercase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def _snake_case ( lowercase__ ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: _lowerCamelCase : Optional[int] = model_type_to_module_name(lowercase__ ) _lowerCamelCase : List[str] = importlib.import_module(f'''.{module_name}''' , 'transformers.models' ) try: return getattr(lowercase__ , lowercase__ ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(lowercase__ , '__name__' , lowercase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowerCamelCase : Tuple = importlib.import_module('transformers' ) if hasattr(lowercase__ , lowercase__ ): return getattr(lowercase__ , lowercase__ ) return None def _snake_case ( lowercase__ , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , **lowercase__ , ): _lowerCamelCase : Dict = get_file_from_repo( lowercase__ , lowercase__ , cache_dir=lowercase__ , force_download=lowercase__ , resume_download=lowercase__ , proxies=lowercase__ , use_auth_token=lowercase__ , revision=lowercase__ , local_files_only=lowercase__ , ) if resolved_config_file is None: logger.info( 'Could not locate the feature extractor configuration file, will try to use the model config instead.' ) return {} with open(lowercase__ , encoding='utf-8' ) as reader: return json.load(lowercase__ ) class lowerCAmelCase__ : '''simple docstring''' def __init__( self ): raise EnvironmentError( 'AutoFeatureExtractor is designed to be instantiated ' 'using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowercase ) def A_ ( cls , lowercase , **lowercase ): _lowerCamelCase : List[Any] = kwargs.pop('config' , lowercase ) _lowerCamelCase : int = kwargs.pop('trust_remote_code' , lowercase ) _lowerCamelCase : Any = True _lowerCamelCase, _lowerCamelCase : Tuple = FeatureExtractionMixin.get_feature_extractor_dict(lowercase , **lowercase ) _lowerCamelCase : str = config_dict.get('feature_extractor_type' , lowercase ) _lowerCamelCase : Optional[Any] = None if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _lowerCamelCase : Union[str, Any] = config_dict['auto_map']['AutoFeatureExtractor'] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(lowercase , lowercase ): _lowerCamelCase : List[str] = AutoConfig.from_pretrained(lowercase , **lowercase ) # It could be in `config.feature_extractor_type`` _lowerCamelCase : Dict = getattr(lowercase , 'feature_extractor_type' , lowercase ) if hasattr(lowercase , 'auto_map' ) and "AutoFeatureExtractor" in config.auto_map: _lowerCamelCase : int = config.auto_map['AutoFeatureExtractor'] if feature_extractor_class is not None: _lowerCamelCase : int = feature_extractor_class_from_name(lowercase ) _lowerCamelCase : List[str] = feature_extractor_auto_map is not None _lowerCamelCase : Union[str, Any] = feature_extractor_class is not None or type(lowercase ) in FEATURE_EXTRACTOR_MAPPING _lowerCamelCase : Dict = resolve_trust_remote_code( lowercase , lowercase , lowercase , lowercase ) if has_remote_code and trust_remote_code: _lowerCamelCase : Optional[Any] = get_class_from_dynamic_module( lowercase , lowercase , **lowercase ) _lowerCamelCase : List[Any] = kwargs.pop('code_revision' , lowercase ) if os.path.isdir(lowercase ): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(lowercase , **lowercase ) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(lowercase , **lowercase ) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(lowercase ) in FEATURE_EXTRACTOR_MAPPING: _lowerCamelCase : Tuple = FEATURE_EXTRACTOR_MAPPING[type(lowercase )] return feature_extractor_class.from_dict(lowercase , **lowercase ) raise ValueError( F'''Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ''' F'''`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ''' F'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def A_ ( lowercase , lowercase ): FEATURE_EXTRACTOR_MAPPING.register(lowercase , lowercase )
96
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = tempfile.mkdtemp() # fmt: off UpperCamelCase__ :int = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on UpperCamelCase__ :int = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) UpperCamelCase__ :Optional[int] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] UpperCamelCase__ :Union[str, Any] = {'''unk_token''': '''<unk>'''} UpperCamelCase__ :Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) UpperCamelCase__ :Union[str, Any] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.48145466, 0.4578275, 0.40821073], '''image_std''': [0.26862954, 0.26130258, 0.27577711], } UpperCamelCase__ :Any = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :Optional[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_rust_tokenizer() UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :Optional[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_slow.save_pretrained(self.tmpdirname ) UpperCamelCase__ :str = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=UpperCamelCase_ ) UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor_fast.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Any = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , UpperCamelCase_ ) self.assertIsInstance(processor_fast.tokenizer , UpperCamelCase_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , UpperCamelCase_ ) self.assertIsInstance(processor_fast.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[Any] = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Dict = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :Optional[Any] = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :List[str] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , UpperCamelCase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :List[Any] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :str = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Dict = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :Optional[Any] = self.get_tokenizer() UpperCamelCase__ :List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = '''lower newer''' UpperCamelCase__ :str = processor(text=UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :Tuple = self.get_tokenizer() UpperCamelCase__ :List[str] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Tuple = '''lower newer''' UpperCamelCase__ :List[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[Any] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_image_processor() UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :Dict = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = self.prepare_image_inputs() UpperCamelCase__ :List[Any] = processor(images=UpperCamelCase_ , visual_prompt=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''pixel_values''', '''conditional_pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :Optional[Any] = self.get_tokenizer() UpperCamelCase__ :Optional[int] = CLIPSegProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :Union[str, Any] = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :Dict = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
97
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract lowerCAmelCase__ : Union[str, Any] = logging.get_logger(__name__) def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def a_ ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = to_pil_image(lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ = pil_image.size UpperCAmelCase__ = pytesseract.image_to_data(lowerCamelCase , lang=lowerCamelCase , output_type='dict' , config=lowerCamelCase ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates UpperCAmelCase__ = [idx for idx, word in enumerate(lowerCamelCase ) if not word.strip()] UpperCAmelCase__ = [word for idx, word in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] UpperCAmelCase__ = [coord for idx, coord in enumerate(lowerCamelCase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format UpperCAmelCase__ = [] for x, y, w, h in zip(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = [x, y, x + w, y + h] actual_boxes.append(lowerCamelCase ) # finally, normalize the bounding boxes UpperCAmelCase__ = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowerCamelCase , lowerCamelCase , lowerCamelCase ) ) assert len(lowerCamelCase ) == len(lowerCamelCase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class snake_case ( __UpperCAmelCase ): """simple docstring""" snake_case__ = ["pixel_values"] def __init__( self : int ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : float = 1 / 255 ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = "" ,**lowerCamelCase__ : Any ,): super().__init__(**lowerCamelCase__ ) UpperCAmelCase__ = size if size is not None else {'height': 224, 'width': 224} UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = do_resize UpperCAmelCase__ = size UpperCAmelCase__ = resample UpperCAmelCase__ = do_rescale UpperCAmelCase__ = rescale_value UpperCAmelCase__ = do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCAmelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD UpperCAmelCase__ = apply_ocr UpperCAmelCase__ = ocr_lang UpperCAmelCase__ = tesseract_config def __lowerCAmelCase ( self : List[str] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCAmelCase__ = (size['height'], size['width']) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : str ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[int, float] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Dict ,): return rescale(lowerCamelCase__ ,scale=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : Dict ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Union[float, Iterable[float]] ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Optional[int] ,): return normalize(lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def __lowerCAmelCase ( self : List[Any] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : float = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : Union[float, Iterable[float]] = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : str ,): UpperCAmelCase__ = do_resize if do_resize is not None else self.do_resize UpperCAmelCase__ = size if size is not None else self.size UpperCAmelCase__ = get_size_dict(lowerCamelCase__ ) UpperCAmelCase__ = resample if resample is not None else self.resample UpperCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase__ = image_mean if image_mean is not None else self.image_mean UpperCAmelCase__ = image_std if image_std is not None else self.image_std UpperCAmelCase__ = apply_ocr if apply_ocr is not None else self.apply_ocr UpperCAmelCase__ = ocr_lang if ocr_lang is not None else self.ocr_lang UpperCAmelCase__ = tesseract_config if tesseract_config is not None else self.tesseract_config UpperCAmelCase__ = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('If do_normalize is True, image_mean and image_std must be specified.' ) # All transformations expect numpy arrays. UpperCAmelCase__ = [to_numpy_array(lowerCamelCase__ ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self ,'pytesseract' ) UpperCAmelCase__ = [] UpperCAmelCase__ = [] for image in images: UpperCAmelCase__ , UpperCAmelCase__ = apply_tesseract(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: UpperCAmelCase__ = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] if do_rescale: UpperCAmelCase__ = [self.rescale(image=lowerCamelCase__ ,scale=lowerCamelCase__ ) for image in images] if do_normalize: UpperCAmelCase__ = [self.normalize(image=lowerCamelCase__ ,mean=lowerCamelCase__ ,std=lowerCamelCase__ ) for image in images] UpperCAmelCase__ = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] UpperCAmelCase__ = BatchFeature(data={'pixel_values': images} ,tensor_type=lowerCamelCase__ ) if apply_ocr: UpperCAmelCase__ = words_batch UpperCAmelCase__ = boxes_batch return data
98
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase : Tuple = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Optional[Any] = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : Union[str, Any] = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
99
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = { "configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"], "tokenization_mvp": ["MvpTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["MvpTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "MVP_PRETRAINED_MODEL_ARCHIVE_LIST", "MvpForCausalLM", "MvpForConditionalGeneration", "MvpForQuestionAnswering", "MvpForSequenceClassification", "MvpModel", "MvpPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
100
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase__ :List[Any] = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) lowercase__ :List[Any] = parser.parse_args() lowercase__ :List[str] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase__ :Dict = CLIPImageProcessor() lowercase__ :Dict = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") lowercase__ :Any = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
101
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
"""simple docstring""" from __future__ import annotations def lowercase ( _snake_case : int = 4 ) ->list[list[int]]: """simple docstring""" __snake_case : str = abs(_snake_case ) or 4 return [[1 + x + y * row_size for x in range(_snake_case )] for y in range(_snake_case )] def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(transpose(_snake_case ) ) # OR.. transpose(reverse_column(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_row(reverse_column(_snake_case ) ) # OR.. reverse_column(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" return reverse_column(transpose(_snake_case ) ) # OR.. transpose(reverse_row(matrix)) def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[Any] = [list(_snake_case ) for x in zip(*_snake_case )] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : List[Any] = matrix[::-1] return matrix def lowercase ( _snake_case : list[list[int]] ) ->list[list[int]]: """simple docstring""" __snake_case : str = [x[::-1] for x in matrix] return matrix def lowercase ( _snake_case : list[list[int]] ) ->None: """simple docstring""" for i in matrix: print(*_snake_case ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : Any = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 90 counterclockwise:\n""") print_matrix(rotate_aa(matrix)) SCREAMING_SNAKE_CASE : List[str] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 180:\n""") print_matrix(rotate_aaa(matrix)) SCREAMING_SNAKE_CASE : Optional[int] = make_matrix() print("""\norigin:\n""") print_matrix(matrix) print("""\nrotate 270 counterclockwise:\n""") print_matrix(rotate_aaa(matrix))
102
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ : Optional[Any] = {'''configuration_xglm''': ['''XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XGLMConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Any = ['''XGLMTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = ['''XGLMTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Tuple = [ '''XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XGLMForCausalLM''', '''XGLMModel''', '''XGLMPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : Dict = [ '''FlaxXGLMForCausalLM''', '''FlaxXGLMModel''', '''FlaxXGLMPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : List[Any] = [ '''TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXGLMForCausalLM''', '''TFXGLMModel''', '''TFXGLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys A__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
103
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
'''simple docstring''' import tempfile import torch from diffusers import PNDMScheduler from .test_schedulers import SchedulerCommonTest class lowercase_ (lowerCamelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = (PNDMScheduler,) SCREAMING_SNAKE_CASE : Any = (('num_inference_steps', 5_0),) def SCREAMING_SNAKE_CASE ( self : str ,**lowercase__ : Union[str, Any] ): __lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**lowercase__ ) return config def SCREAMING_SNAKE_CASE ( self : Dict ,lowercase__ : Any=0 ,**lowercase__ : Union[str, Any] ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config(**lowercase__ ) __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __lowercase = scheduler_class.from_pretrained(lowercase__ ) new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : int ): pass def SCREAMING_SNAKE_CASE ( self : str ,lowercase__ : Optional[int]=0 ,**lowercase__ : str ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # copy over dummy past residuals (must be after setting timesteps) __lowercase = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowercase__ ) __lowercase = scheduler_class.from_pretrained(lowercase__ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowercase__ ) # copy over dummy past residual (must be after setting timesteps) __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = new_scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ,**lowercase__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : str ,**lowercase__ : Optional[Any] ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(**lowercase__ ) __lowercase = scheduler_class(**lowercase__ ) __lowercase = 1_0 __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter scheduler.set_timesteps(lowercase__ ) for i, t in enumerate(scheduler.prk_timesteps ): __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample for i, t in enumerate(scheduler.plms_timesteps ): __lowercase = model(lowercase__ ,lowercase__ ) __lowercase = scheduler.step_plms(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : List[Any] ): __lowercase = dict(self.forward_default_kwargs ) __lowercase = kwargs.pop('''num_inference_steps''' ,lowercase__ ) for scheduler_class in self.scheduler_classes: __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) __lowercase = self.dummy_sample __lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(lowercase__ ,'''set_timesteps''' ): scheduler.set_timesteps(lowercase__ ) elif num_inference_steps is not None and not hasattr(lowercase__ ,'''set_timesteps''' ): __lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) __lowercase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5] __lowercase = dummy_past_residuals[:] __lowercase = scheduler.step_prk(lowercase__ ,0 ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = scheduler.step_prk(lowercase__ ,1 ,lowercase__ ,**lowercase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) __lowercase = scheduler.step_plms(lowercase__ ,0 ,lowercase__ ,**lowercase__ ).prev_sample __lowercase = scheduler.step_plms(lowercase__ ,1 ,lowercase__ ,**lowercase__ ).prev_sample self.assertEqual(output_a.shape ,sample.shape ) self.assertEqual(output_a.shape ,output_a.shape ) def SCREAMING_SNAKE_CASE ( self : int ): for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : int ): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=lowercase__ ) __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(steps_offset=1 ) __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(1_0 ) assert torch.equal( scheduler.timesteps ,torch.LongTensor( [9_0_1, 8_5_1, 8_5_1, 8_0_1, 8_0_1, 7_5_1, 7_5_1, 7_0_1, 7_0_1, 6_5_1, 6_5_1, 6_0_1, 6_0_1, 5_0_1, 4_0_1, 3_0_1, 2_0_1, 1_0_1, 1] ) ,) def SCREAMING_SNAKE_CASE ( self : Dict ): for beta_start, beta_end in zip([0.0_0_0_1, 0.0_0_1] ,[0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=lowercase__ ,beta_end=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Any ): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): for t in [1, 5, 1_0]: self.check_over_forward(time_step=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] ): for t, num_inference_steps in zip([1, 5, 1_0] ,[1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=lowercase__ ) def SCREAMING_SNAKE_CASE ( self : List[str] ): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 __lowercase = 2_7 for scheduler_class in self.scheduler_classes: __lowercase = self.dummy_sample __lowercase = 0.1 * sample __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.set_timesteps(lowercase__ ) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2] ): __lowercase = scheduler.step_prk(lowercase__ ,lowercase__ ,lowercase__ ).prev_sample def SCREAMING_SNAKE_CASE ( self : Tuple ): with self.assertRaises(lowercase__ ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowercase__ ) scheduler.step_plms(self.dummy_sample ,1 ,self.dummy_sample ).prev_sample def SCREAMING_SNAKE_CASE ( self : Tuple ): __lowercase = self.full_loop() __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_9_8.1_3_1_8 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_8_0 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): __lowercase = self.full_loop(prediction_type='''v_prediction''' ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 6_7.3_9_8_6 ) < 1e-2 assert abs(result_mean.item() - 0.0_8_7_8 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : str ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=lowercase__ ,beta_start=0.0_1 ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 2_3_0.0_3_9_9 ) < 1e-2 assert abs(result_mean.item() - 0.2_9_9_5 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : str ): # We specify different beta, so that the first alpha is 0.99 __lowercase = self.full_loop(set_alpha_to_one=lowercase__ ,beta_start=0.0_1 ) __lowercase = torch.sum(torch.abs(lowercase__ ) ) __lowercase = torch.mean(torch.abs(lowercase__ ) ) assert abs(result_sum.item() - 1_8_6.9_4_8_2 ) < 1e-2 assert abs(result_mean.item() - 0.2_4_3_4 ) < 1e-3
104
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
105
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def __lowerCAmelCase ( self : Dict ): lowerCAmelCase__ : Tuple = tempfile.mkdtemp() lowerCAmelCase__ : List[Any] = BlipImageProcessor() lowerCAmelCase__ : Dict = GPTaTokenizer.from_pretrained('''hf-internal-testing/tiny-random-GPT2Model''' ) lowerCAmelCase__ : Optional[Any] = BlipaProcessor(lowercase_ ,lowercase_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCAmelCase ( self : Dict ,**lowercase_ : Dict ): return AutoProcessor.from_pretrained(self.tmpdirname ,**lowercase_ ).tokenizer def __lowerCAmelCase ( self : Union[str, Any] ,**lowercase_ : Tuple ): return AutoProcessor.from_pretrained(self.tmpdirname ,**lowercase_ ).image_processor def __lowerCAmelCase ( self : List[Any] ): shutil.rmtree(self.tmpdirname ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Union[str, Any] = [np.random.randint(2_5_5 ,size=(3, 3_0, 4_0_0) ,dtype=np.uinta )] lowerCAmelCase__ : Any = [Image.fromarray(np.moveaxis(lowercase_ ,0 ,-1 ) ) for x in image_inputs] return image_inputs def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : str = BlipaProcessor(tokenizer=self.get_tokenizer() ,image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase__ : str = self.get_tokenizer(bos_token='''(BOS)''' ,eos_token='''(EOS)''' ) lowerCAmelCase__ : Optional[int] = self.get_image_processor(do_normalize=lowercase_ ,padding_value=1.0 ) lowerCAmelCase__ : List[str] = BlipaProcessor.from_pretrained( self.tmpdirname ,bos_token='''(BOS)''' ,eos_token='''(EOS)''' ,do_normalize=lowercase_ ,padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() ,tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer ,lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() ,image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor ,lowercase_ ) def __lowerCAmelCase ( self : Optional[Any] ): lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : List[Any] = self.get_tokenizer() lowerCAmelCase__ : Tuple = BlipaProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) lowerCAmelCase__ : int = self.prepare_image_inputs() lowerCAmelCase__ : Dict = image_processor(lowercase_ ,return_tensors='''np''' ) lowerCAmelCase__ : Dict = processor(images=lowercase_ ,return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() ,input_processor[key].sum() ,delta=1E-2 ) def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : Union[str, Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = BlipaProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) lowerCAmelCase__ : Any = '''lower newer''' lowerCAmelCase__ : Optional[Any] = processor(text=lowercase_ ) lowerCAmelCase__ : Dict = tokenizer(lowercase_ ,return_token_type_ids=lowercase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] ,encoded_processor[key] ) def __lowerCAmelCase ( self : Optional[int] ): lowerCAmelCase__ : int = self.get_image_processor() lowerCAmelCase__ : Optional[Any] = self.get_tokenizer() lowerCAmelCase__ : Optional[Any] = BlipaProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) lowerCAmelCase__ : Any = '''lower newer''' lowerCAmelCase__ : Optional[int] = self.prepare_image_inputs() lowerCAmelCase__ : List[Any] = processor(text=lowercase_ ,images=lowercase_ ) self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def __lowerCAmelCase ( self : List[Any] ): lowerCAmelCase__ : Tuple = self.get_image_processor() lowerCAmelCase__ : Tuple = self.get_tokenizer() lowerCAmelCase__ : List[Any] = BlipaProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) lowerCAmelCase__ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase__ : Dict = processor.batch_decode(lowercase_ ) lowerCAmelCase__ : Optional[int] = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ ,lowercase_ ) def __lowerCAmelCase ( self : List[str] ): lowerCAmelCase__ : Union[str, Any] = self.get_image_processor() lowerCAmelCase__ : Dict = self.get_tokenizer() lowerCAmelCase__ : Union[str, Any] = BlipaProcessor(tokenizer=lowercase_ ,image_processor=lowercase_ ) lowerCAmelCase__ : List[Any] = '''lower newer''' lowerCAmelCase__ : Tuple = self.prepare_image_inputs() lowerCAmelCase__ : List[Any] = processor(text=lowercase_ ,images=lowercase_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) ,['''pixel_values''', '''input_ids''', '''attention_mask'''] )
106
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class snake_case__ : """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict=2 , __lowerCamelCase : Dict=32 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : int=True , __lowerCamelCase : int=True , __lowerCamelCase : Any=32 , __lowerCamelCase : List[Any]=4 , __lowerCamelCase : Tuple=[0, 1, 2, 3] , __lowerCamelCase : Union[str, Any]=4 , __lowerCamelCase : Union[str, Any]=37 , __lowerCamelCase : Optional[int]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : List[str]=0.1 , __lowerCamelCase : Optional[Any]=0.02 , __lowerCamelCase : Optional[int]=3 , __lowerCamelCase : List[Any]=[1, 3_84, 24, 24] , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=None , ) -> Optional[int]: a = parent a = batch_size a = image_size a = patch_size a = num_channels a = is_training a = use_labels a = hidden_size a = num_hidden_layers a = backbone_out_indices a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = initializer_range a = num_labels a = backbone_featmap_shape a = scope a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) a = (image_size // patch_size) ** 2 a = num_patches + 1 def __UpperCAmelCase ( self : Union[str, Any] ) -> str: a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: a = { "global_padding": "same", "layer_type": "bottleneck", "depths": [3, 4, 9], "out_features": ["stage1", "stage2", "stage3"], "embedding_dynamic_padding": True, "hidden_sizes": [96, 1_92, 3_84, 7_68], "num_groups": 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__lowerCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__lowerCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ) -> Optional[Any]: a = DPTModel(config=__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : List[str] , __lowerCamelCase : Any ) -> str: a = self.num_labels a = DPTForDepthEstimation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str , __lowerCamelCase : List[Any] , __lowerCamelCase : str , __lowerCamelCase : Tuple ) -> Any: a = self.num_labels a = DPTForSemanticSegmentation(__lowerCamelCase ) model.to(__lowerCamelCase ) model.eval() a = model(__lowerCamelCase , labels=__lowerCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def __UpperCAmelCase ( self : str ) -> str: a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case__ (_UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( { """depth-estimation""": DPTForDepthEstimation, """feature-extraction""": DPTModel, """image-segmentation""": DPTForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : str = False SCREAMING_SNAKE_CASE_ : str = False def __UpperCAmelCase ( self : int ) -> List[str]: a = DPTModelTester(self ) a = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase , hidden_size=37 ) def __UpperCAmelCase ( self : int ) -> List[str]: self.config_tester.run_common_tests() @unittest.skip(reason="DPT does not use inputs_embeds" ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[str]: pass def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__lowerCamelCase , nn.Linear ) ) def __UpperCAmelCase ( self : Tuple ) -> List[str]: a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(__lowerCamelCase ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def __UpperCAmelCase ( self : Any ) -> Dict: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__lowerCamelCase ) def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = True if model_class in get_values(__lowerCamelCase ): continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Dict ) -> List[str]: for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue a , a = self.model_tester.prepare_config_and_inputs_for_common() a = False a = True if model_class in get_values(__lowerCamelCase ) or not model_class.supports_gradient_checkpointing: continue a = model_class(__lowerCamelCase ) model.to(__lowerCamelCase ) model.gradient_checkpointing_enable() model.train() a = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase , return_labels=__lowerCamelCase ) a = model(**__lowerCamelCase ).loss loss.backward() def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: a , a = self.model_tester.prepare_config_and_inputs_for_common() a = _config_zero_init(__lowerCamelCase ) for model_class in self.all_model_classes: a = model_class(config=__lowerCamelCase ) # Skip the check for the backbone a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": a = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self : int ) -> Any: pass @slow def __UpperCAmelCase ( self : str ) -> Optional[int]: for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: a = DPTModel.from_pretrained(__lowerCamelCase ) self.assertIsNotNone(__lowerCamelCase ) def __UpperCAmelCase ( self : Tuple ) -> Dict: # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type a , a = self.model_tester.prepare_config_and_inputs_for_common() a = "add" with self.assertRaises(__lowerCamelCase ): a = DPTForDepthEstimation(__lowerCamelCase ) def __magic_name__ ( ): '''simple docstring''' a = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision @slow class snake_case__ (unittest.TestCase ): """simple docstring""" def __UpperCAmelCase ( self : List[str] ) -> Optional[Any]: a = DPTImageProcessor.from_pretrained("Intel/dpt-hybrid-midas" ) a = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas" ).to(__lowerCamelCase ) a = prepare_img() a = image_processor(images=__lowerCamelCase , return_tensors="pt" ).to(__lowerCamelCase ) # forward pass with torch.no_grad(): a = model(**__lowerCamelCase ) a = outputs.predicted_depth # verify the predicted depth a = torch.Size((1, 3_84, 3_84) ) self.assertEqual(predicted_depth.shape , __lowerCamelCase ) a = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__lowerCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 1_00 , __lowerCamelCase , atol=1e-4 ) )
107
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
"""simple docstring""" from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase ): """simple docstring""" a : str =["transformers", "torch", "note_seq"] def __init__( self , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def lowercase__ ( cls , *snake_case__ , **snake_case__ ): """simple docstring""" requires_backends(cls , ["transformers", "torch", "note_seq"] )
108
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A: Union[str, Any] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Dict = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Any = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: str = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A: Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys A: List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
109
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from tokenizers import processors from ...tokenization_utils import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_mbart import MBartTokenizer else: __A = None __A = logging.get_logger(__name__) __A = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __A = { "vocab_file": { "facebook/mbart-large-en-ro": ( "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model" ), "facebook/mbart-large-cc25": ( "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "facebook/mbart-large-en-ro": "https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/tokenizer.json", "facebook/mbart-large-cc25": "https://huggingface.co/facebook/mbart-large-cc25/resolve/main/tokenizer.json", }, } __A = { "facebook/mbart-large-en-ro": 1_0_2_4, "facebook/mbart-large-cc25": 1_0_2_4, } # fmt: off __A = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :Union[str, Any] = VOCAB_FILES_NAMES _UpperCAmelCase :str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase :int = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase :Tuple = ["input_ids", "attention_mask"] _UpperCAmelCase :Dict = MBartTokenizer _UpperCAmelCase :Union[str, Any] = [] _UpperCAmelCase :Dict = [] def __init__( self , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase="<s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="</s>" , _UpperCAmelCase="<s>" , _UpperCAmelCase="<unk>" , _UpperCAmelCase="<pad>" , _UpperCAmelCase="<mask>" , _UpperCAmelCase=None , _UpperCAmelCase=None , _UpperCAmelCase=None , **_UpperCAmelCase , ): lowercase__: Dict = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token super().__init__( vocab_file=__UpperCAmelCase , tokenizer_file=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , additional_special_tokens=__UpperCAmelCase , **__UpperCAmelCase , ) lowercase__: int = vocab_file lowercase__: Tuple = False if not self.vocab_file else True lowercase__: Tuple = FAIRSEQ_LANGUAGE_CODES.copy() if additional_special_tokens is not None: # Only add those special tokens if they are not already there. _additional_special_tokens.extend( [t for t in additional_special_tokens if t not in _additional_special_tokens] ) self.add_special_tokens({'''additional_special_tokens''': _additional_special_tokens} ) lowercase__: List[str] = { lang_code: self.convert_tokens_to_ids(__UpperCAmelCase ) for lang_code in FAIRSEQ_LANGUAGE_CODES } lowercase__: int = src_lang if src_lang is not None else '''en_XX''' lowercase__: int = self.convert_tokens_to_ids(self._src_lang ) lowercase__: int = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def _snake_case ( self ): return self._src_lang @src_lang.setter def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__: Dict = [self.sep_token_id] lowercase__: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowercase__: Union[str, Any] = src_lang lowercase__: str = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) lowercase__: Dict = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: int = tgt_lang_id return inputs def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = "en_XX" , _UpperCAmelCase = None , _UpperCAmelCase = "ro_RO" , **_UpperCAmelCase , ): lowercase__: int = src_lang lowercase__: Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ) def _snake_case ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def _snake_case ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: List[Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: List[Any] = [] lowercase__: Any = [self.eos_token_id, self.cur_lang_code] lowercase__: Optional[Any] = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: Any = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: List[Any] = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase ): lowercase__: Union[str, Any] = self.convert_tokens_to_ids(__UpperCAmelCase ) lowercase__: Any = [] lowercase__: List[Any] = [self.eos_token_id, self.cur_lang_code] lowercase__: Dict = self.convert_ids_to_tokens(self.prefix_tokens ) lowercase__: int = self.convert_ids_to_tokens(self.suffix_tokens ) lowercase__: str = processors.TemplateProcessing( single=prefix_tokens_str + ['''$A'''] + suffix_tokens_str , pair=prefix_tokens_str + ['''$A''', '''$B'''] + suffix_tokens_str , special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str , self.prefix_tokens + self.suffix_tokens ) ) , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory.""" ) return lowercase__: List[str] = os.path.join( __UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ): copyfile(self.vocab_file , __UpperCAmelCase ) return (out_vocab_file,)
177
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
"""simple docstring""" from __future__ import annotations import time import numpy as np _snake_case : str = [8, 5, 9, 7] _snake_case : List[Any] = [ [2, 0, 1, 1], [0, 1, 2, 1], [4, 0, 0, 3], [0, 2, 1, 0], [1, 0, 3, 0], ] _snake_case : Union[str, Any] = [ [3, 2, 1, 4], [0, 2, 5, 2], [5, 1, 0, 5], [1, 5, 3, 0], [3, 0, 3, 3], ] class _UpperCAmelCase : def __init__( self :List[str] , __UpperCamelCase :int , __UpperCamelCase :List[str] , __UpperCamelCase :Union[str, Any] , ): A = claim_vector A = allocated_resources_table A = maximum_claim_table def lowerCamelCase ( self :str ): return [ sum(p_item[i] for p_item in self.__allocated_resources_table ) for i in range(len(self.__allocated_resources_table[0] ) ) ] def lowerCamelCase ( self :List[str] ): return np.array(self.__claim_vector ) - np.array( self.__processes_resource_summation() ) def lowerCamelCase ( self :str ): return [ list(np.array(self.__maximum_claim_table[i] ) - np.array(__UpperCAmelCase ) ) for i, allocated_resource in enumerate(self.__allocated_resources_table ) ] def lowerCamelCase ( self :str ): return {self.__need().index(__UpperCAmelCase ): i for i in self.__need()} def lowerCamelCase ( self :Optional[int] , **__UpperCamelCase :Dict ): A = self.__need() A = self.__allocated_resources_table A = self.__available_resources() A = self.__need_index_manager() for kw, val in kwargs.items(): if kw and val is True: self.__pretty_data() print("_" * 50 + "\n" ) while need_list: A = False for each_need in need_list: A = True for index, need in enumerate(__UpperCAmelCase ): if need > available_resources[index]: A = False break if execution: A = True # get the original index of the process from ind_ctrl db for original_need_index, need_clone in need_index_manager.items(): if each_need == need_clone: A = original_need_index print(f"Process {process_number + 1} is executing." ) # remove the process run from stack need_list.remove(__UpperCAmelCase ) # update available/freed resources stack A = np.array(__UpperCAmelCase ) + np.array( alloc_resources_table[process_number] ) print( "Updated available resource stack for processes: " + " ".join([str(__UpperCAmelCase ) for x in available_resources] ) ) break if safe: print("The process is in a safe state.\n" ) else: print("System in unsafe state. Aborting...\n" ) break def lowerCamelCase ( self :Union[str, Any] ): print(" " * 9 + "Allocated Resource Table" ) for item in self.__allocated_resources_table: print( f"P{self.__allocated_resources_table.index(__UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print(" " * 9 + "System Resource Table" ) for item in self.__maximum_claim_table: print( f"P{self.__maximum_claim_table.index(__UpperCAmelCase ) + 1}" + " ".join(f"{it:>8}" for it in item ) + "\n" ) print( "Current Usage by Active Processes: " + " ".join(str(__UpperCAmelCase ) for x in self.__claim_vector ) ) print( "Initial Available Resources: " + " ".join(str(__UpperCAmelCase ) for x in self.__available_resources() ) ) time.sleep(1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def __UpperCamelCase ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Any ): __a : Optional[Any] = s.rsplit(lowerCAmelCase__ , lowerCAmelCase__ ) return new.join(lowerCAmelCase__ ) def __UpperCamelCase ( lowerCAmelCase__ : List[Any] ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if '''encoder.embeddings''' not in key else 0 for key, param in state_dict.items() ) def __UpperCamelCase ( lowerCAmelCase__ : str ): __a : str = {} __a : int = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __a : int = key.replace(f"{group_key}." , f"{group_key}.group." ) if "res_path" in key: __a : int = key.replace('''res_path.''' , '''res_path.path.''' ) if key.endswith('''.w''' ): __a : Union[str, Any] = rreplace(lowerCAmelCase__ , '''.w''' , '''.weight''' , 1 ) if key.endswith('''.b''' ): __a : List[Any] = rreplace(lowerCAmelCase__ , '''.b''' , '''.bias''' , 1 ) __a : Any = value.float() return upgrade @torch.no_grad() def __UpperCamelCase ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any]=None , lowerCAmelCase__ : str=True ): from dall_e import Encoder __a : int = Encoder() if os.path.exists(lowerCAmelCase__ ): __a : Dict = torch.load(lowerCAmelCase__ ) else: __a : Dict = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): __a : Optional[int] = ckpt.state_dict() encoder.load_state_dict(lowerCAmelCase__ ) if config_path is not None: __a : List[str] = FlavaImageCodebookConfig.from_pretrained(lowerCAmelCase__ ) else: __a : Tuple = FlavaImageCodebookConfig() __a : Optional[int] = FlavaImageCodebook(lowerCAmelCase__ ).eval() __a : List[str] = encoder.state_dict() __a : Any = upgrade_state_dict(lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) __a : List[Any] = hf_model.state_dict() __a : List[str] = count_parameters(lowerCAmelCase__ ) __a : int = count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(lowerCAmelCase__ ) else: return hf_state_dict if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to flava checkpoint') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') lowercase__ =parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
216
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
import numpy as np def lowercase_ ( _A : np.array ): """simple docstring""" return 1 / (1 + np.exp(-vector )) def lowercase_ ( _A : np.array ): """simple docstring""" return vector * sigmoid(1.702 * vector ) if __name__ == "__main__": import doctest doctest.testmod()
184
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__SCREAMING_SNAKE_CASE) , """Tatoeba directory does not exist.""") class lowercase ( unittest.TestCase): @cached_property def a_ ( self : Any ): """simple docstring""" A_ : Union[str, Any] = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase ) @slow def a_ ( self : Union[str, Any] ): """simple docstring""" self.resolver.convert_models(['''heb-eng'''] ) @slow def a_ ( self : Optional[Any] ): """simple docstring""" A_ , A_ : List[Any] = self.resolver.write_model_card('''opus-mt-he-en''' , dry_run=__UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
167
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> str: '''simple docstring''' lowercase_ = old_name if "patch_embed" in old_name: lowercase_ , lowercase_ , lowercase_ = old_name.split(""".""" ) if layer == "0": lowercase_ = old_name.replace("""0""" , """convolution1""" ) elif layer == "1": lowercase_ = old_name.replace("""1""" , """batchnorm_before""" ) elif layer == "3": lowercase_ = old_name.replace("""3""" , """convolution2""" ) else: lowercase_ = old_name.replace("""4""" , """batchnorm_after""" ) if "network" in old_name and re.search(R"""\d\.\d""" , __lowerCAmelCase ): lowercase_ = R"""\b\d{2}\b""" if bool(re.search(__lowerCAmelCase , __lowerCAmelCase ) ): lowercase_ = re.search(R"""\d\.\d\d.""" , __lowerCAmelCase ).group() else: lowercase_ = re.search(R"""\d\.\d.""" , __lowerCAmelCase ).group() if int(match[0] ) < 6: lowercase_ = old_name.replace(__lowerCAmelCase , """""" ) lowercase_ = trimmed_name.replace("""network""" , match[0] + """.meta4D_layers.blocks.""" + match[2:-1] ) lowercase_ = """intermediate_stages.""" + trimmed_name else: lowercase_ = old_name.replace(__lowerCAmelCase , """""" ) if int(match[2] ) < num_meta4D_last_stage: lowercase_ = trimmed_name.replace("""network""" , """meta4D_layers.blocks.""" + match[2] ) else: lowercase_ = str(int(match[2] ) - num_meta4D_last_stage ) lowercase_ = trimmed_name.replace("""network""" , """meta3D_layers.blocks.""" + layer_index ) if "norm1" in old_name: lowercase_ = trimmed_name.replace("""norm1""" , """layernorm1""" ) elif "norm2" in old_name: lowercase_ = trimmed_name.replace("""norm2""" , """layernorm2""" ) elif "fc1" in old_name: lowercase_ = trimmed_name.replace("""fc1""" , """linear_in""" ) elif "fc2" in old_name: lowercase_ = trimmed_name.replace("""fc2""" , """linear_out""" ) lowercase_ = """last_stage.""" + trimmed_name elif "network" in old_name and re.search(R""".\d.""" , __lowerCAmelCase ): lowercase_ = old_name.replace("""network""" , """intermediate_stages""" ) if "fc" in new_name: lowercase_ = new_name.replace("""fc""" , """convolution""" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowercase_ = new_name.replace("""norm1""" , """batchnorm_before""" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowercase_ = new_name.replace("""norm2""" , """batchnorm_after""" ) if "proj" in new_name: lowercase_ = new_name.replace("""proj""" , """projection""" ) if "dist_head" in new_name: lowercase_ = new_name.replace("""dist_head""" , """distillation_classifier""" ) elif "head" in new_name: lowercase_ = new_name.replace("""head""" , """classifier""" ) elif "patch_embed" in new_name: lowercase_ = """efficientformer.""" + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowercase_ = new_name.replace("""norm""" , """layernorm""" ) lowercase_ = """efficientformer.""" + new_name else: lowercase_ = """efficientformer.encoder.""" + new_name return new_name def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Tuple: '''simple docstring''' for key in checkpoint.copy().keys(): lowercase_ = checkpoint.pop(__lowerCAmelCase ) lowercase_ = val return checkpoint def _SCREAMING_SNAKE_CASE () -> Union[str, Any]: '''simple docstring''' lowercase_ = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase_ = Image.open(requests.get(__lowerCAmelCase , stream=__lowerCAmelCase ).raw ) return image def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict: '''simple docstring''' lowercase_ = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""model"""] lowercase_ = EfficientFormerConfig.from_json_file(__lowerCAmelCase ) lowercase_ = EfficientFormerForImageClassificationWithTeacher(__lowerCAmelCase ) lowercase_ = """_""".join(checkpoint_path.split("""/""" )[-1].split(""".""" )[0].split("""_""" )[:-1] ) lowercase_ = config.depths[-1] - config.num_metaad_blocks + 1 lowercase_ = convert_torch_checkpoint(__lowerCAmelCase , __lowerCAmelCase ) model.load_state_dict(__lowerCAmelCase ) model.eval() lowercase_ = { """bilinear""": PILImageResampling.BILINEAR, """bicubic""": PILImageResampling.BICUBIC, """nearest""": PILImageResampling.NEAREST, } # prepare image lowercase_ = prepare_img() lowercase_ = 2_56 lowercase_ = 2_24 lowercase_ = EfficientFormerImageProcessor( size={"""shortest_edge""": image_size} , crop_size={"""height""": crop_size, """width""": crop_size} , resample=pillow_resamplings["""bicubic"""] , ) lowercase_ = processor(images=__lowerCAmelCase , return_tensors="""pt""" ).pixel_values # original processing pipeline lowercase_ = Compose( [ Resize(__lowerCAmelCase , interpolation=pillow_resamplings["""bicubic"""] ), CenterCrop(__lowerCAmelCase ), ToTensor(), Normalize(__lowerCAmelCase , __lowerCAmelCase ), ] ) lowercase_ = image_transforms(__lowerCAmelCase ).unsqueeze(0 ) assert torch.allclose(__lowerCAmelCase , __lowerCAmelCase ) lowercase_ = model(__lowerCAmelCase ) lowercase_ = outputs.logits lowercase_ = (1, 10_00) if "l1" in model_name: lowercase_ = torch.Tensor( [-0.1_312, 0.4_353, -1.0_499, -0.5_124, 0.4_183, -0.6_793, -1.3_777, -0.0_893, -0.7_358, -2.4_328] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowercase_ = torch.Tensor( [-1.3_150, -1.5_456, -1.2_556, -0.8_496, -0.7_127, -0.7_897, -0.9_728, -0.3_052, 0.3_751, -0.3_127] ) assert torch.allclose(logits[0, :10] , __lowerCAmelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowercase_ = torch.Tensor( [-1.0_283, -1.4_131, -0.5_644, -1.3_115, -0.5_785, -1.2_049, -0.7_528, 0.1_992, -0.3_822, -0.0_878] ) assert logits.shape == expected_shape else: raise ValueError( F'''Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7''' ) # Save Checkpoints Path(__lowerCAmelCase ).mkdir(exist_ok=__lowerCAmelCase ) model.save_pretrained(__lowerCAmelCase ) print(F'''Checkpoint successfuly converted. Model saved at {pytorch_dump_path}''' ) processor.save_pretrained(__lowerCAmelCase ) print(F'''Processor successfuly saved at {pytorch_dump_path}''' ) if push_to_hub: print("""Pushing model to the hub...""" ) model.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add model""" , use_temp_dir=__lowerCAmelCase , ) processor.push_to_hub( repo_id=F'''Bearnardd/{pytorch_dump_path}''' , commit_message="""Add image processor""" , use_temp_dir=__lowerCAmelCase , ) if __name__ == "__main__": UpperCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) UpperCAmelCase : Optional[int] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
136
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
"""simple docstring""" def __a ( _SCREAMING_SNAKE_CASE ) ->Tuple: a__: int = [0] * len(_SCREAMING_SNAKE_CASE ) a__: List[Any] = [] a__: List[str] = [] a__: Dict = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(_SCREAMING_SNAKE_CASE ) ): if indegree[i] == 0: queue.append(_SCREAMING_SNAKE_CASE ) while queue: a__: Optional[Any] = queue.pop(0 ) cnt += 1 topo.append(_SCREAMING_SNAKE_CASE ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(_SCREAMING_SNAKE_CASE ) if cnt != len(_SCREAMING_SNAKE_CASE ): print('Cycle exists' ) else: print(_SCREAMING_SNAKE_CASE ) # Adjacency List of Graph lowercase__ = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
290
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
"""simple docstring""" import argparse import os import re import torch from flax.traverse_util import flatten_dict from tax import checkpoints from transformers import ( AutoTokenizer, PixaStructConfig, PixaStructForConditionalGeneration, PixaStructImageProcessor, PixaStructProcessor, PixaStructTextConfig, PixaStructVisionConfig, ) def lowercase ( a__ : int ) -> Optional[int]: _UpperCamelCase = checkpoints.load_tax_checkpoint(a__ ) _UpperCamelCase = flatten_dict(a__ ) return flax_params def lowercase ( a__ : List[str] ) -> Tuple: _UpperCamelCase = {} _UpperCamelCase = { '''token_embedder''': '''embeddings''', '''encoder_norm''': '''layernorm''', '''kernel''': '''weight''', '''.out''': '''.output''', '''scale''': '''weight''', '''embedders_0.pos_embedding''': '''row_embedder.weight''', '''embedders_1.pos_embedding''': '''column_embedder.weight''', } _UpperCamelCase = { '''query''': '''attention.query''', '''key''': '''attention.key''', '''value''': '''attention.value''', '''output.dense''': '''output''', '''encoder_decoder_attention.o''': '''encoder_decoder_attention.attention.o''', '''pre_self_attention_layer_norm''': '''self_attention.layer_norm''', '''pre_cross_attention_layer_norm''': '''encoder_decoder_attention.layer_norm''', '''mlp.''': '''mlp.DenseReluDense.''', '''pre_mlp_layer_norm''': '''mlp.layer_norm''', '''self_attention.o''': '''self_attention.attention.o''', '''decoder.embeddings.embedding''': '''decoder.embed_tokens.weight''', '''decoder.relpos_bias.rel_embedding''': '''decoder.layer.0.self_attention.attention.relative_attention_bias.weight''', '''decoder.decoder_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.logits_dense.weight''': '''decoder.lm_head.weight''', } for key in flax_dict.keys(): if "target" in key: # remove the first prefix from the key _UpperCamelCase = '''.'''.join(key[1:] ) # rename the key for old, new in CONVERSION_MAPPING.items(): _UpperCamelCase = new_key.replace(a__ , a__ ) if "decoder" in new_key: for old, new in DECODER_CONVERSION_MAPPING.items(): _UpperCamelCase = new_key.replace(a__ , a__ ) if "layers" in new_key and "decoder" not in new_key: # use regex to replace the layer number _UpperCamelCase = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , a__ ) _UpperCamelCase = new_key.replace('''encoder''' , '''encoder.encoder''' ) elif "layers" in new_key and "decoder" in new_key: # use regex to replace the layer number _UpperCamelCase = re.sub(R'''layers_(\d+)''' , R'''layer.\1''' , a__ ) _UpperCamelCase = flax_dict[key] _UpperCamelCase = {} # convert converted_dict into torch format for key in converted_dict.keys(): if ("embed_tokens" not in key) and ("embedder" not in key): _UpperCamelCase = torch.from_numpy(converted_dict[key].T ) else: _UpperCamelCase = torch.from_numpy(converted_dict[key] ) return converted_torch_dict def lowercase ( a__ : int , a__ : List[Any] , a__ : Optional[Any]=False , a__ : str=False ) -> Dict: _UpperCamelCase = get_flax_param(a__ ) if not use_large: _UpperCamelCase = PixaStructVisionConfig() _UpperCamelCase = PixaStructTextConfig() else: _UpperCamelCase = PixaStructVisionConfig( hidden_size=1536 , d_ff=3968 , num_attention_heads=24 , num_hidden_layers=18 ) _UpperCamelCase = PixaStructTextConfig(hidden_size=1536 , d_ff=3968 , num_heads=24 , num_layers=18 ) _UpperCamelCase = PixaStructConfig( vision_config=encoder_config.to_dict() , text_config=decoder_config.to_dict() , is_vqa=a__ ) _UpperCamelCase = PixaStructForConditionalGeneration(a__ ) _UpperCamelCase = rename_and_convert_flax_params(a__ ) model.load_state_dict(a__ ) _UpperCamelCase = AutoTokenizer.from_pretrained('''ybelkada/test-pix2struct-tokenizer''' ) _UpperCamelCase = PixaStructImageProcessor() _UpperCamelCase = PixaStructProcessor(image_processor=a__ , tokenizer=a__ ) if use_large: _UpperCamelCase = 4096 _UpperCamelCase = True # mkdir if needed os.makedirs(a__ , exist_ok=a__ ) model.save_pretrained(a__ ) processor.save_pretrained(a__ ) print('''Model saved in {}'''.format(a__ ) ) if __name__ == "__main__": UpperCAmelCase = argparse.ArgumentParser() parser.add_argument("""--t5x_checkpoint_path""", default=None, type=str, help="""Path to the original T5x checkpoint.""") parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--use_large""", action="""store_true""", help="""Use large model.""") parser.add_argument("""--is_vqa""", action="""store_true""", help="""Use large model.""") UpperCAmelCase = parser.parse_args() convert_pixastruct_original_pytorch_checkpoint_to_hf( args.tax_checkpoint_path, args.pytorch_dump_folder_path, args.use_large )
256
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 snake_case__ : str = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 128, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class A_ ( unittest.TestCase ): @classmethod def _lowerCAmelCase (cls :Dict )-> int: __A = TOKEN HfFolder.save_token(__UpperCAmelCase ) @classmethod def _lowerCAmelCase (cls :Tuple )-> List[str]: try: delete_repo(token=cls._token , repo_id='''test-config''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id='''test-dynamic-config''' ) except HTTPError: pass def _lowerCAmelCase (self :List[str] )-> Optional[int]: __A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''test-config''' , use_auth_token=self._token ) __A = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''test-config''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(__UpperCAmelCase , repo_id='''test-config''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __A = BertConfig.from_pretrained(f"""{USER}/test-config""" ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def _lowerCAmelCase (self :int )-> int: __A = BertConfig( vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 ) config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token ) __A = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) # Reset repo delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( __UpperCAmelCase , repo_id='''valid_org/test-config-org''' , push_to_hub=__UpperCAmelCase , use_auth_token=self._token ) __A = BertConfig.from_pretrained('''valid_org/test-config-org''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(__UpperCAmelCase , getattr(__UpperCAmelCase , __UpperCAmelCase ) ) def _lowerCAmelCase (self :Any )-> Union[str, Any]: CustomConfig.register_for_auto_class() __A = CustomConfig(attribute=42 ) config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} ) __A = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=__UpperCAmelCase ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' ) self.assertEqual(new_config.attribute , 42 ) class A_ ( unittest.TestCase ): def _lowerCAmelCase (self :Any )-> Dict: __A = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated __A = c.n_embd + 1 # int __A = c.resid_pdrop + 1.0 # float __A = not c.scale_attn_weights # bool __A = c.summary_type + '''foo''' # str c.update_from_string( f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" ) self.assertEqual(__UpperCAmelCase , c.n_embd , '''mismatch for key: n_embd''' ) self.assertEqual(__UpperCAmelCase , c.resid_pdrop , '''mismatch for key: resid_pdrop''' ) self.assertEqual(__UpperCAmelCase , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' ) self.assertEqual(__UpperCAmelCase , c.summary_type , '''mismatch for key: summary_type''' ) def _lowerCAmelCase (self :Optional[int] )-> Any: __A = PretrainedConfig() __A = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( __UpperCAmelCase , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] ) __A = [key for key, value in config_common_kwargs.items() if value == getattr(__UpperCAmelCase , __UpperCAmelCase )] if len(__UpperCAmelCase ) > 0: raise ValueError( '''The following keys are set with the default values in''' ''' `test_configuration_common.config_common_kwargs` pick another value for them:''' f""" {', '.join(__UpperCAmelCase )}.""" ) def _lowerCAmelCase (self :str )-> Optional[int]: with self.assertRaises(__UpperCAmelCase ): # config is in subfolder, the following should not work without specifying the subfolder __A = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' ) __A = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' ) self.assertIsNotNone(__UpperCAmelCase ) def _lowerCAmelCase (self :int )-> Any: __A = mock.Mock() __A = 500 __A = {} __A = HTTPError __A = {} # Download this model to make sure it's in the cache. __A = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('''requests.Session.request''' , return_value=__UpperCAmelCase ) as mock_head: __A = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' ) # This check we did call the fake head request mock_head.assert_called() def _lowerCAmelCase (self :Tuple )-> Any: __A = BertConfig.from_pretrained( '''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' ) def _lowerCAmelCase (self :List[Any] )-> Any: __A = AutoConfig.from_pretrained('''bert-base-cased''' ) __A = ['''config.4.0.0.json'''] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(__UpperCAmelCase ) __A = 2 json.dump(configuration.to_dict() , open(os.path.join(__UpperCAmelCase , '''config.4.0.0.json''' ) , '''w''' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 __A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 __A = ['''config.42.0.0.json'''] __A = 768 configuration.save_pretrained(__UpperCAmelCase ) shutil.move(os.path.join(__UpperCAmelCase , '''config.4.0.0.json''' ) , os.path.join(__UpperCAmelCase , '''config.42.0.0.json''' ) ) __A = AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 768 ) def _lowerCAmelCase (self :Tuple )-> List[Any]: __A = '''hf-internal-testing/test-two-configs''' import transformers as new_transformers __A = '''v4.0.0''' __A , __A = new_transformers.models.auto.AutoConfig.from_pretrained( __UpperCAmelCase , return_unused_kwargs=__UpperCAmelCase ) self.assertEqual(new_configuration.hidden_size , 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(__UpperCAmelCase , {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers __A = '''v3.0.0''' __A = old_transformers.models.auto.AutoConfig.from_pretrained(__UpperCAmelCase ) self.assertEqual(old_configuration.hidden_size , 768 )
117
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
'''simple docstring''' _lowercase : Any = { 0: "0", 1: "1", 2: "2", 3: "3", 4: "4", 5: "5", 6: "6", 7: "7", 8: "8", 9: "9", 10: "a", 11: "b", 12: "c", 13: "d", 14: "e", 15: "f", } def lowerCamelCase ( UpperCAmelCase__ : float ) -> str: assert type(UpperCAmelCase__ ) in (int, float) and decimal == int(UpperCAmelCase__ ) lowercase_ : int = int(UpperCAmelCase__ ) lowercase_ : Optional[int] = """""" lowercase_ : Optional[int] = False if decimal < 0: lowercase_ : Any = True decimal *= -1 while decimal > 0: lowercase_ , lowercase_ : List[str] = divmod(UpperCAmelCase__ , 16 ) lowercase_ : Optional[int] = values[remainder] + hexadecimal lowercase_ : List[Any] = """0x""" + hexadecimal if negative: lowercase_ : Optional[int] = """-""" + hexadecimal return hexadecimal if __name__ == "__main__": import doctest doctest.testmod()
239
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
from __future__ import annotations def lowercase_ ( _lowerCamelCase : str , _lowerCamelCase : list[str] | None = None , _lowerCamelCase : dict[str, float] | None = None , _lowerCamelCase : bool = False , ): lowercase__ : List[Any] = cipher_alphabet or [chr(_lowerCamelCase) for i in range(97 , 123)] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowercase__ : Tuple = { "a": 0.08497, "b": 0.01492, "c": 0.02202, "d": 0.04253, "e": 0.11162, "f": 0.02228, "g": 0.02015, "h": 0.06094, "i": 0.07546, "j": 0.00153, "k": 0.01292, "l": 0.04025, "m": 0.02406, "n": 0.06749, "o": 0.07507, "p": 0.01929, "q": 0.00095, "r": 0.07587, "s": 0.06327, "t": 0.09356, "u": 0.02758, "v": 0.00978, "w": 0.02560, "x": 0.00150, "y": 0.01994, "z": 0.00077, } else: # Custom frequencies dictionary lowercase__ : str = frequencies_dict if not case_sensitive: lowercase__ : List[str] = ciphertext.lower() # Chi squared statistic values lowercase__ : Any = {} # cycle through all of the shifts for shift in range(len(_lowerCamelCase)): lowercase__ : Optional[Any] = "" # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowercase__ : Optional[int] = (alphabet_letters.index(letter.lower()) - shift) % len( _lowerCamelCase) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowercase__ : Union[str, Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowercase__ : Dict = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowercase__ : int = decrypted_with_shift.lower().count(_lowerCamelCase) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowercase__ : Dict = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowercase__ : str = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowercase__ : Any = decrypted_with_shift.count(_lowerCamelCase) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowercase__ : Tuple = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowercase__ : Dict = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowercase__ : List[Any] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_lowerCamelCase : int) -> tuple[float, str]: return chi_squared_statistic_values[key] lowercase__ : int = min( _lowerCamelCase , key=_lowerCamelCase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowercase__ ) , ( lowercase__ ) , ) : Union[str, Any] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
87
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
"""simple docstring""" import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : """simple docstring""" def __init__( self , _UpperCAmelCase , _UpperCAmelCase=2 , _UpperCAmelCase=32 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=True , _UpperCAmelCase=True , _UpperCAmelCase=32 , _UpperCAmelCase=4 , _UpperCAmelCase=[0, 1, 2, 3] , _UpperCAmelCase=4 , _UpperCAmelCase=37 , _UpperCAmelCase="gelu" , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.1 , _UpperCAmelCase=0.02 , _UpperCAmelCase=3 , _UpperCAmelCase=[1, 384, 24, 24] , _UpperCAmelCase=True , _UpperCAmelCase=None , ): lowercase__: List[Any] = parent lowercase__: Any = batch_size lowercase__: Union[str, Any] = image_size lowercase__: str = patch_size lowercase__: str = num_channels lowercase__: List[Any] = is_training lowercase__: Any = use_labels lowercase__: Optional[int] = hidden_size lowercase__: Any = num_hidden_layers lowercase__: int = backbone_out_indices lowercase__: Union[str, Any] = num_attention_heads lowercase__: Optional[Any] = intermediate_size lowercase__: str = hidden_act lowercase__: Optional[int] = hidden_dropout_prob lowercase__: Optional[Any] = attention_probs_dropout_prob lowercase__: Any = initializer_range lowercase__: List[str] = num_labels lowercase__: Optional[Any] = backbone_featmap_shape lowercase__: Dict = scope lowercase__: List[str] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) lowercase__: Tuple = (image_size // patch_size) ** 2 lowercase__: Optional[int] = num_patches + 1 def _snake_case ( self ): lowercase__: List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase__: List[str] = None if self.use_labels: lowercase__: Dict = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowercase__: List[Any] = self.get_config() return config, pixel_values, labels def _snake_case ( self ): lowercase__: Dict = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[int] = DPTModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__: List[str] = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: List[Any] = self.num_labels lowercase__: Tuple = DPTForDepthEstimation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__: Any = model(__UpperCAmelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): lowercase__: Optional[Any] = self.num_labels lowercase__: Dict = DPTForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() lowercase__: Any = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _snake_case ( self ): lowercase__: Any = self.prepare_config_and_inputs() lowercase__, lowercase__, lowercase__: Tuple = config_and_inputs lowercase__: Any = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase (__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,unittest.TestCase ): """simple docstring""" _UpperCAmelCase :Optional[int] = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () _UpperCAmelCase :Any = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) _UpperCAmelCase :List[Any] = False _UpperCAmelCase :Any = False _UpperCAmelCase :List[Any] = False def _snake_case ( self ): lowercase__: int = DPTModelTester(self ) lowercase__: Any = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _snake_case ( self ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _snake_case ( self ): pass def _snake_case ( self ): lowercase__, lowercase__: Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Any = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowercase__: Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def _snake_case ( self ): lowercase__, lowercase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase__: Union[str, Any] = model_class(__UpperCAmelCase ) lowercase__: List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase__: Tuple = [*signature.parameters.keys()] lowercase__: Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _snake_case ( self ): lowercase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _snake_case ( self ): lowercase__: Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase ) def _snake_case ( self ): lowercase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def _snake_case ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__, lowercase__: int = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: List[Any] = True if model_class in get_values(__UpperCAmelCase ): continue lowercase__: Any = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() lowercase__: List[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowercase__: Dict = model(**__UpperCAmelCase ).loss loss.backward() def _snake_case ( self ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue lowercase__, lowercase__: str = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Any = False lowercase__: Tuple = True if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing: continue lowercase__: Tuple = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.train() lowercase__: Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) lowercase__: str = model(**__UpperCAmelCase ).loss loss.backward() def _snake_case ( self ): lowercase__, lowercase__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: int = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: lowercase__: Any = model_class(config=__UpperCAmelCase ) # Skip the check for the backbone lowercase__: Optional[int] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": lowercase__: Optional[Any] = [F"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _snake_case ( self ): pass @slow def _snake_case ( self ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: lowercase__: Optional[int] = DPTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def _snake_case ( self ): lowercase__, lowercase__: Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase__: Tuple = '''add''' with self.assertRaises(__UpperCAmelCase ): lowercase__: str = DPTForDepthEstimation(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: lowercase__: Union[str, Any] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase (unittest.TestCase ): """simple docstring""" def _snake_case ( self ): lowercase__: Tuple = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) lowercase__: str = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__UpperCAmelCase ) lowercase__: str = prepare_img() lowercase__: Any = image_processor(images=__UpperCAmelCase , return_tensors='''pt''' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): lowercase__: List[str] = model(**__UpperCAmelCase ) lowercase__: Optional[int] = outputs.predicted_depth # verify the predicted depth lowercase__: Dict = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCAmelCase ) lowercase__: Tuple = torch.tensor( [[[5.6_437, 5.6_146, 5.6_511], [5.4_371, 5.5_649, 5.5_958], [5.5_215, 5.5_184, 5.5_293]]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCAmelCase , atol=1e-4 ) )
177
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
"""simple docstring""" import json import os import unittest from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): UpperCamelCase = GPTaTokenizer UpperCamelCase = GPTaTokenizerFast UpperCamelCase = True UpperCamelCase = {'''add_prefix_space''': True} UpperCamelCase = False def lowerCamelCase ( self :List[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt A = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", "<|endoftext|>", ] A = dict(zip(__UpperCAmelCase , range(len(__UpperCAmelCase ) ) ) ) A = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] A = {"unk_token": "<unk>"} A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) A = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(__UpperCAmelCase ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(__UpperCAmelCase ) ) def lowerCamelCase ( self :Dict , **__UpperCamelCase :Any ): kwargs.update(self.special_tokens_map ) return GPTaTokenizer.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowerCamelCase ( self :List[Any] , **__UpperCamelCase :Union[str, Any] ): kwargs.update(self.special_tokens_map ) return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **__UpperCAmelCase ) def lowerCamelCase ( self :Optional[int] , __UpperCamelCase :Any ): A = "lower newer" A = "lower newer" return input_text, output_text def lowerCamelCase ( self :int ): A = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) A = "lower newer" A = ["\u0120low", "er", "\u0120", "n", "e", "w", "er"] A = tokenizer.tokenize(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) A = tokens + [tokenizer.unk_token] A = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self :Optional[int] ): if not self.test_rust_tokenizer: return A = self.get_tokenizer() A = self.get_rust_tokenizer(add_prefix_space=__UpperCAmelCase ) A = "lower newer" # Testing tokenization A = tokenizer.tokenize(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) A = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids without special tokens A = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) A = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing conversion to ids with special tokens A = self.get_rust_tokenizer(add_prefix_space=__UpperCAmelCase ) A = tokenizer.encode(__UpperCAmelCase , add_prefix_space=__UpperCAmelCase ) A = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # Testing the unknown token A = tokens + [rust_tokenizer.unk_token] A = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , __UpperCAmelCase ) def lowerCamelCase ( self :Optional[Any] , *__UpperCamelCase :Any , **__UpperCamelCase :Union[str, Any] ): pass def lowerCamelCase ( self :List[str] , __UpperCamelCase :Optional[int]=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})" ): A = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) # Simple input A = "This is a simple input" A = ["This is a simple input 1", "This is a simple input 2"] A = ("This is a simple input", "This is a pair") A = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Simple input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" , ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises(__UpperCAmelCase , tokenizer_r.encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" ) # Pair input self.assertRaises( __UpperCAmelCase , tokenizer_r.batch_encode_plus , __UpperCAmelCase , max_length=__UpperCAmelCase , padding="max_length" , ) def lowerCamelCase ( self :Optional[Any] ): A = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="<pad>" ) # Simple input A = "This is a simple input" A = ["This is a simple input looooooooong", "This is a simple input"] A = ("This is a simple input", "This is a pair") A = [ ("This is a simple input loooooong", "This is a simple input"), ("This is a simple pair loooooong", "This is a simple pair"), ] A = tokenizer.pad_token_id A = tokenizer(__UpperCAmelCase , padding="max_length" , max_length=30 , return_tensors="np" ) A = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncate=__UpperCAmelCase , return_tensors="np" ) A = tokenizer(*__UpperCAmelCase , padding="max_length" , max_length=60 , return_tensors="np" ) A = tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , truncate=__UpperCAmelCase , return_tensors="np" ) # s # test single string max_length padding self.assertEqual(out_s["input_ids"].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s["input_ids"] ) self.assertTrue(0 in out_s["attention_mask"] ) # s2 # test automatic padding self.assertEqual(out_sa["input_ids"].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa["input_ids"][0] ) self.assertFalse(0 in out_sa["attention_mask"][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa["input_ids"][1] ) self.assertTrue(0 in out_sa["attention_mask"][1] ) # p # test single pair max_length padding self.assertEqual(out_p["input_ids"].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p["input_ids"] ) self.assertTrue(0 in out_p["attention_mask"] ) # p2 # test automatic padding pair self.assertEqual(out_pa["input_ids"].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa["input_ids"][0] ) self.assertFalse(0 in out_pa["attention_mask"][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa["input_ids"][1] ) self.assertTrue(0 in out_pa["attention_mask"][1] ) def lowerCamelCase ( self :Any ): A = "$$$" A = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=__UpperCAmelCase , add_bos_token=__UpperCAmelCase ) A = "This is a simple input" A = ["This is a simple input 1", "This is a simple input 2"] A = tokenizer.bos_token_id A = tokenizer(__UpperCAmelCase ) A = tokenizer(__UpperCAmelCase ) self.assertEqual(out_s.input_ids[0] , __UpperCAmelCase ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) A = tokenizer.decode(out_s.input_ids ) A = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , __UpperCAmelCase ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) def lowerCamelCase ( self :List[str] ): pass def lowerCamelCase ( self :List[Any] ): A = [self.get_tokenizer(do_lower_case=__UpperCAmelCase , add_bos_token=__UpperCAmelCase )] for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): A = "Encode this." A = "This one too please." A = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) encoded_sequence += tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) A = tokenizer.encode_plus( __UpperCAmelCase , __UpperCAmelCase , add_special_tokens=__UpperCAmelCase , return_special_tokens_mask=__UpperCAmelCase , ) A = encoded_sequence_dict["input_ids"] A = encoded_sequence_dict["special_tokens_mask"] self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) A = [ (x if not special_tokens_mask[i] else None) for i, x in enumerate(__UpperCAmelCase ) ] A = [x for x in filtered_sequence if x is not None] self.assertEqual(__UpperCAmelCase , __UpperCAmelCase ) @require_tokenizers class _UpperCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self :int ): A = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__UpperCAmelCase ) A = "A photo of a cat" A = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("test_opt" ) A = AutoTokenizer.from_pretrained("./test_opt" ) A = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] ) def lowerCamelCase ( self :Optional[Any] ): A = AutoTokenizer.from_pretrained("facebook/opt-350m" , use_slow=__UpperCAmelCase ) A = "A photo of a cat" A = tokenizer.encode( __UpperCAmelCase , ) # Same as above self.assertEqual(__UpperCAmelCase , [2, 2_50, 13_45, 9, 10, 47_58] ) @unittest.skip("This test is failing because of a bug in the fast tokenizer" ) def lowerCamelCase ( self :List[str] ): A = AutoTokenizer.from_pretrained("facebook/opt-350m" , from_slow=__UpperCAmelCase ) A = "bos" A = tokenizer.get_vocab()["bos"] A = "A photo of a cat" A = tokenizer.encode( __UpperCAmelCase , ) # We changed the bos token self.assertEqual(__UpperCAmelCase , [3_19_57, 2_50, 13_45, 9, 10, 47_58] ) tokenizer.save_pretrained("./tok" ) A = AutoTokenizer.from_pretrained("./tok" ) self.assertTrue(tokenizer.is_fast ) A = tokenizer.encode( __UpperCAmelCase , ) self.assertEqual(__UpperCAmelCase , [3_19_57, 2_50, 13_45, 9, 10, 47_58] )
292
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ,unittest.TestCase ): _SCREAMING_SNAKE_CASE : Tuple = ConsistencyModelPipeline _SCREAMING_SNAKE_CASE : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS _SCREAMING_SNAKE_CASE : List[str] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt _SCREAMING_SNAKE_CASE : Any = frozenset( [ "num_inference_steps", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) @property def lowerCAmelCase (self : Any ): __a : List[str] = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet''' , ) return unet @property def lowerCAmelCase (self : str ): __a : Dict = UNetaDModel.from_pretrained( '''diffusers/consistency-models-test''' , subfolder='''test_unet_class_cond''' , ) return unet def lowerCAmelCase (self : Optional[int] , snake_case_ : List[Any]=False ): if class_cond: __a : Union[str, Any] = self.dummy_cond_unet else: __a : Tuple = self.dummy_uncond_unet # Default to CM multistep sampler __a : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) __a : int = { '''unet''': unet, '''scheduler''': scheduler, } return components def lowerCAmelCase (self : List[str] , snake_case_ : Optional[Any] , snake_case_ : int=0 ): if str(__UpperCAmelCase ).startswith('''mps''' ): __a : List[str] = torch.manual_seed(__UpperCAmelCase ) else: __a : Dict = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __a : Any = { '''batch_size''': 1, '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''generator''': generator, '''output_type''': '''np''', } return inputs def lowerCAmelCase (self : Union[str, Any] ): __a : List[Any] = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.get_dummy_components() __a : int = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Any = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Any = self.get_dummy_inputs(__UpperCAmelCase ) __a : List[str] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __a : Any = image[0, -3:, -3:, -1] __a : Tuple = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase (self : Any ): __a : int = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Any = self.get_dummy_components(class_cond=__UpperCAmelCase ) __a : List[str] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Dict = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : str = self.get_dummy_inputs(__UpperCAmelCase ) __a : Any = 0 __a : List[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __a : Tuple = image[0, -3:, -3:, -1] __a : Dict = np.array([0.3572, 0.6273, 0.4031, 0.3961, 0.4321, 0.5730, 0.5266, 0.4780, 0.5004] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase (self : Dict ): __a : str = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : List[str] = self.get_dummy_components() __a : Optional[Any] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : Tuple = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : List[Any] = self.get_dummy_inputs(__UpperCAmelCase ) __a : str = 1 __a : List[str] = None __a : List[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __a : Optional[Any] = image[0, -3:, -3:, -1] __a : Dict = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def lowerCAmelCase (self : List[Any] ): __a : Any = '''cpu''' # ensure determinism for the device-dependent torch.Generator __a : Optional[Any] = self.get_dummy_components(class_cond=__UpperCAmelCase ) __a : Optional[int] = ConsistencyModelPipeline(**__UpperCAmelCase ) __a : List[Any] = pipe.to(__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Optional[int] = self.get_dummy_inputs(__UpperCAmelCase ) __a : Optional[int] = 1 __a : str = None __a : Tuple = 0 __a : List[Any] = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 3_2, 3_2, 3) __a : Optional[int] = image[0, -3:, -3:, -1] __a : Optional[int] = np.array([0.5004, 0.5004, 0.4994, 0.5008, 0.4976, 0.5018, 0.4990, 0.4982, 0.4987] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): def lowerCAmelCase (self : Optional[int] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase (self : Dict , snake_case_ : int=0 , snake_case_ : Dict=False , snake_case_ : Tuple="cpu" , snake_case_ : Any=torch.floataa , snake_case_ : List[str]=(1, 3, 6_4, 6_4) ): __a : Dict = torch.manual_seed(__UpperCAmelCase ) __a : Any = { '''num_inference_steps''': None, '''timesteps''': [2_2, 0], '''class_labels''': 0, '''generator''': generator, '''output_type''': '''np''', } if get_fixed_latents: __a : Union[str, Any] = self.get_fixed_latents(seed=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase , shape=__UpperCAmelCase ) __a : Dict = latents return inputs def lowerCAmelCase (self : str , snake_case_ : int=0 , snake_case_ : Tuple="cpu" , snake_case_ : List[Any]=torch.floataa , snake_case_ : Tuple=(1, 3, 6_4, 6_4) ): if type(__UpperCAmelCase ) == str: __a : Any = torch.device(__UpperCAmelCase ) __a : str = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __a : Tuple = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase ) return latents def lowerCAmelCase (self : Union[str, Any] ): __a : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __a : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) __a : List[Any] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : List[str] = self.get_inputs() __a : Tuple = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __a : List[str] = image[0, -3:, -3:, -1] __a : Any = np.array([0.0888, 0.0881, 0.0666, 0.0479, 0.0292, 0.0195, 0.0201, 0.0163, 0.0254] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def lowerCAmelCase (self : List[Any] ): __a : Dict = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __a : Union[str, Any] = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) __a : Union[str, Any] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Any = self.get_inputs() __a : Dict = 1 __a : Any = None __a : Dict = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __a : Optional[int] = image[0, -3:, -3:, -1] __a : str = np.array([0.0340, 0.0152, 0.0063, 0.0267, 0.0221, 0.0107, 0.0416, 0.0186, 0.0217] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def lowerCAmelCase (self : Union[str, Any] ): __a : List[str] = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __a : int = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) __a : List[str] = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Optional[int] = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): __a : Tuple = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __a : int = image[0, -3:, -3:, -1] __a : List[Any] = np.array([0.1875, 0.1428, 0.1289, 0.2151, 0.2092, 0.1477, 0.1877, 0.1641, 0.1353] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def lowerCAmelCase (self : Dict ): __a : Tuple = UNetaDModel.from_pretrained('''diffusers/consistency_models''' , subfolder='''diffusers_cd_imagenet64_l2''' ) __a : str = CMStochasticIterativeScheduler( num_train_timesteps=4_0 , sigma_min=0.002 , sigma_max=8_0.0 , ) __a : int = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=__UpperCAmelCase ) __a : Tuple = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase ) __a : Tuple = 1 __a : Tuple = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ): __a : Tuple = pipe(**__UpperCAmelCase ).images assert image.shape == (1, 6_4, 6_4, 3) __a : str = image[0, -3:, -3:, -1] __a : Union[str, Any] = np.array([0.1663, 0.1948, 0.2275, 0.1680, 0.1204, 0.1245, 0.1858, 0.1338, 0.2095] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
216
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
def lowercase_ ( _A : int ): """simple docstring""" if p < 2: raise ValueError("p should not be less than 2!" ) elif p == 2: return True lowerCamelCase__ : List[str] = 4 lowerCamelCase__ : Any = (1 << p) - 1 for _ in range(p - 2 ): lowerCamelCase__ : Tuple = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(11))
184
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
"""simple docstring""" import math import tensorflow as tf from packaging import version def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Optional[Any] = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Any = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Any = tf.cast(math.pi , x.dtype ) A_ : Union[str, Any] = tf.cast(0.04_4715 , x.dtype ) A_ : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(_UpperCAmelCase , 3 )) )) return x * cdf def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : List[str] = tf.convert_to_tensor(_UpperCAmelCase ) return x * tf.tanh(tf.math.softplus(_UpperCAmelCase ) ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Any = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Optional[int] = tf.cast(0.04_4715 , x.dtype ) A_ : List[Any] = tf.cast(0.79_7884_5608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" A_ : Tuple = tf.convert_to_tensor(_UpperCAmelCase ) A_ : Any = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" return tf.clip_by_value(_gelu(_UpperCAmelCase ) , -10 , 10 ) def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase=-1 ): """simple docstring""" A_ , A_ : int = tf.split(_UpperCAmelCase , 2 , axis=_UpperCAmelCase ) return a * tf.math.sigmoid(_UpperCAmelCase ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def lowercase_ ( _UpperCAmelCase ): """simple docstring""" return tf.keras.activations.gelu(_UpperCAmelCase , approximate=_UpperCAmelCase ) _lowerCamelCase : List[str] = tf.keras.activations.gelu _lowerCamelCase : Optional[int] = approximate_gelu_wrap else: _lowerCamelCase : int = _gelu _lowerCamelCase : List[str] = _gelu_new _lowerCamelCase : Optional[Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase_ ( _UpperCAmelCase ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f"""function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}""" )
167
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
"""simple docstring""" from ....utils import logging UpperCAmelCase : List[str] = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE__ ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : List[str]=None , lowerCAmelCase_ : str=2_0_4_8): """simple docstring""" lowercase_ = config.__dict__ lowercase_ = modal_hidden_size if num_labels: lowercase_ = num_labels
136
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
"""simple docstring""" from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( __SCREAMING_SNAKE_CASE ): a__ = ["""vqvae"""] def __init__( self , lowercase , lowercase , lowercase , lowercase , ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase , mel=__UpperCAmelCase , vqvae=__UpperCAmelCase) def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' return 50 if isinstance(self.scheduler , __UpperCAmelCase) else 10_00 @torch.no_grad() def __call__( self , lowercase = 1 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = None , lowercase = 0 , lowercase = 0 , lowercase = None , lowercase = 0 , lowercase = None , lowercase = None , lowercase=True , ) -> int: '''simple docstring''' a__: Dict = steps or self.get_default_steps() self.scheduler.set_timesteps(__UpperCAmelCase) a__: str = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: a__: List[str] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: a__: str = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=__UpperCAmelCase , device=self.device , ) a__: List[str] = noise a__: Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(__UpperCAmelCase , __UpperCAmelCase) a__: str = self.mel.audio_slice_to_image(__UpperCAmelCase) a__: Optional[int] = np.frombuffer(input_image.tobytes() , dtype='uint8').reshape( (input_image.height, input_image.width)) a__: Any = (input_image / 2_55) * 2 - 1 a__: int = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: a__: Tuple = self.vqvae.encode(torch.unsqueeze(__UpperCAmelCase , 0)).latent_dist.sample( generator=__UpperCAmelCase)[0] a__: Union[str, Any] = self.vqvae.config.scaling_factor * input_images if start_step > 0: a__: List[str] = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , self.scheduler.timesteps[start_step - 1]) a__: Optional[int] = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) a__: Any = int(mask_start_secs * pixels_per_second) a__: Optional[Any] = int(mask_end_secs * pixels_per_second) a__: int = self.scheduler.add_noise(__UpperCAmelCase , __UpperCAmelCase , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , __UpperCAmelCase): a__: Optional[Any] = self.unet(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase)['sample'] else: a__: int = self.unet(__UpperCAmelCase , __UpperCAmelCase)['sample'] if isinstance(self.scheduler , __UpperCAmelCase): a__: int = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , eta=__UpperCAmelCase , generator=__UpperCAmelCase , )['prev_sample'] else: a__: List[Any] = self.scheduler.step( model_output=__UpperCAmelCase , timestep=__UpperCAmelCase , sample=__UpperCAmelCase , generator=__UpperCAmelCase , )['prev_sample'] if mask is not None: if mask_start > 0: a__: str = mask[:, step, :, :mask_start] if mask_end > 0: a__: List[str] = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance a__: List[Any] = 1 / self.vqvae.config.scaling_factor * images a__: Optional[int] = self.vqvae.decode(__UpperCAmelCase)['sample'] a__: Optional[Any] = (images / 2 + 0.5).clamp(0 , 1) a__: Union[str, Any] = images.cpu().permute(0 , 2 , 3 , 1).numpy() a__: Optional[int] = (images * 2_55).round().astype('uint8') a__: Optional[Any] = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(__UpperCAmelCase , mode='RGB').convert('L') for _ in images)) a__: Optional[int] = [self.mel.image_to_audio(__UpperCAmelCase) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(__UpperCAmelCase)[:, np.newaxis, :]) , **ImagePipelineOutput(__UpperCAmelCase)) @torch.no_grad() def lowerCamelCase_ ( self , lowercase , lowercase = 50) -> Tuple: '''simple docstring''' assert isinstance(self.scheduler , __UpperCAmelCase) self.scheduler.set_timesteps(__UpperCAmelCase) a__: Dict = np.array( [np.frombuffer(image.tobytes() , dtype='uint8').reshape((1, image.height, image.width)) for image in images]) a__: Optional[int] = (sample / 2_55) * 2 - 1 a__: Optional[Any] = torch.Tensor(__UpperCAmelCase).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): a__: str = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps a__: Optional[int] = self.scheduler.alphas_cumprod[t] a__: str = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) a__: Any = 1 - alpha_prod_t a__: List[str] = self.unet(__UpperCAmelCase , __UpperCAmelCase)['sample'] a__: Union[str, Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output a__: str = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) a__: Any = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def lowerCamelCase_ ( lowercase , lowercase , lowercase) -> Tuple: '''simple docstring''' a__: int = acos(torch.dot(torch.flatten(__UpperCAmelCase) , torch.flatten(__UpperCAmelCase)) / torch.norm(__UpperCAmelCase) / torch.norm(__UpperCAmelCase)) return sin((1 - alpha) * theta) * xa / sin(__UpperCAmelCase) + sin(alpha * theta) * xa / sin(__UpperCAmelCase)
290
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): def __init__( self : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Dict = None , __UpperCamelCase : List[str] = None , __UpperCamelCase : str = None , __UpperCamelCase : int = False , __UpperCamelCase : Optional[Any] = False , __UpperCamelCase : Union[str, Any] = None , __UpperCamelCase : int = None , **__UpperCamelCase : int , ) -> Optional[Any]: super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) _UpperCamelCase = field _UpperCamelCase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} _UpperCamelCase = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def _UpperCamelCase ( self : int ) -> str: if self.streaming: _UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) _UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class UpperCAmelCase_ : def __init__( self : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] = None , __UpperCamelCase : Union[str, Any] = None , **__UpperCamelCase : Union[str, Any] , ) -> Dict: if num_proc is not None and num_proc <= 0: raise ValueError(F'''num_proc {num_proc} must be an integer > 0.''' ) _UpperCamelCase = dataset _UpperCamelCase = path_or_buf _UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE _UpperCamelCase = num_proc _UpperCamelCase = '''utf-8''' _UpperCamelCase = to_json_kwargs def _UpperCamelCase ( self : Tuple ) -> List[str]: _UpperCamelCase = self.to_json_kwargs.pop('''path_or_buf''' , __UpperCAmelCase ) _UpperCamelCase = self.to_json_kwargs.pop('''orient''' , '''records''' ) _UpperCamelCase = self.to_json_kwargs.pop('''lines''' , True if orient == '''records''' else False ) _UpperCamelCase = self.to_json_kwargs.pop('''index''' , False if orient in ['''split''', '''table'''] else True ) _UpperCamelCase = self.to_json_kwargs.pop('''compression''' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'''`datasets` currently does not support {compression} compression''' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , '''wb''' , compression=__UpperCAmelCase ) as buffer: _UpperCamelCase = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'''The compression parameter is not supported when writing to a buffer, but compression={compression}''' ''' was passed. Please provide a local path instead.''' ) _UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def _UpperCamelCase ( self : Tuple , __UpperCamelCase : Tuple ) -> str: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = args _UpperCamelCase = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) _UpperCamelCase = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('''\n''' ): json_str += "\n" return json_str.encode(self.encoding ) def _UpperCamelCase ( self : Tuple , __UpperCamelCase : str , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Any , **__UpperCamelCase : Dict , ) -> List[Any]: _UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): _UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: _UpperCamelCase , _UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='''ba''' , disable=not logging.is_progress_bar_enabled() , desc='''Creating json from Arrow format''' , ): written += file_obj.write(__UpperCAmelCase ) return written
256
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar snake_case__ : List[str] = TypeVar('KEY') snake_case__ : List[str] = TypeVar('VAL') @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class A_ ( Generic[KEY, VAL] ): lowerCAmelCase__ = 42 lowerCAmelCase__ = 42 class A_ ( _Item ): def __init__(self :Union[str, Any] )-> Any: super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__(self :Union[str, Any] )-> Dict: return False snake_case__ : Any = _DeletedItem() class A_ ( MutableMapping[KEY, VAL] ): def __init__(self :str , _UpperCamelCase :Union[str, Any] = 8 , _UpperCamelCase :Tuple = 0.7_5 )-> Optional[Any]: __A = initial_block_size __A = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __A = capacity_factor __A = 0 def _lowerCAmelCase (self :Union[str, Any] , _UpperCamelCase :Tuple )-> int: return hash(__UpperCAmelCase ) % len(self._buckets ) def _lowerCAmelCase (self :List[str] , _UpperCamelCase :str )-> List[Any]: return (ind + 1) % len(self._buckets ) def _lowerCAmelCase (self :Dict , _UpperCamelCase :Any , _UpperCamelCase :Any , _UpperCamelCase :Union[str, Any] )-> Optional[Any]: __A = self._buckets[ind] if not stored: __A = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __A = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def _lowerCAmelCase (self :Tuple )-> str: __A = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def _lowerCAmelCase (self :str )-> Optional[int]: if len(self._buckets ) <= self._initial_block_size: return False __A = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _lowerCAmelCase (self :str , _UpperCamelCase :Optional[int] )-> Union[str, Any]: __A = self._buckets __A = [None] * new_size __A = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _lowerCAmelCase (self :str )-> int: self._resize(len(self._buckets ) * 2 ) def _lowerCAmelCase (self :str )-> Optional[Any]: self._resize(len(self._buckets ) // 2 ) def _lowerCAmelCase (self :int , _UpperCamelCase :str )-> Tuple: __A = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __A = self._get_next_ind(__UpperCAmelCase ) def _lowerCAmelCase (self :Optional[Any] , _UpperCamelCase :List[str] , _UpperCamelCase :List[str] )-> Optional[Any]: for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__(self :str , _UpperCamelCase :str , _UpperCamelCase :Union[str, Any] )-> Tuple: if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__(self :Optional[Any] , _UpperCamelCase :Optional[Any] )-> Union[str, Any]: for ind in self._iterate_buckets(__UpperCAmelCase ): __A = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __A = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__(self :Any , _UpperCamelCase :List[str] )-> Any: for ind in self._iterate_buckets(__UpperCAmelCase ): __A = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__(self :Optional[Any] )-> Dict: return self._len def __iter__(self :Union[str, Any] )-> Dict: yield from (item.key for item in self._buckets if item) def __repr__(self :Optional[int] )-> Union[str, Any]: __A = ''' ,'''.join( f"""{item.key}: {item.val}""" for item in self._buckets if item ) return f"""HashMap({val_string})"""
117
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
'''simple docstring''' import torch from transformers import AutoModel class __magic_name__ ( torch.nn.Module): def __init__( self : Optional[Any] , lowercase_ : Union[str, Any]="sayef/fsner-bert-base-uncased" ): super(__UpperCAmelCase , self ).__init__() lowercase_ : Union[str, Any] = AutoModel.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase ) lowercase_ : Tuple = torch.nn.CosineSimilarity(3 , 1E-08 ) lowercase_ : Any = torch.nn.Softmax(dim=1 ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] , **lowercase_ : int ): return self.bert(**__UpperCAmelCase ).last_hidden_state def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : List[Any] ): return token_embeddings.sum(2 , keepdim=__UpperCAmelCase ) def SCREAMING_SNAKE_CASE_ ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] , lowercase_ : str=1 ): return self.softmax(T * self.cos(__UpperCAmelCase , __UpperCAmelCase ) ) def SCREAMING_SNAKE_CASE_ ( self : Optional[Any] , lowercase_ : str , lowercase_ : Union[str, Any] ): lowercase_ : str = W_supports["""sizes"""].tolist() lowercase_ : Optional[int] = W_supports["""start_token_id"""].item() lowercase_ : Dict = W_supports["""end_token_id"""].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase_ : Optional[Any] = self.BERT(**__UpperCAmelCase ) lowercase_ : Any = self.BERT(**__UpperCAmelCase ) lowercase_ : Tuple = None lowercase_ : List[Any] = None lowercase_ : Dict = W_supports["""input_ids"""] == start_token_id lowercase_ : Any = W_supports["""input_ids"""] == end_token_id for i, size in enumerate(__UpperCAmelCase ): if i == 0: lowercase_ : str = 0 else: lowercase_ : List[Any] = support_sizes[i - 1] lowercase_ : Dict = S[s : s + size][start_token_masks[s : s + size]] lowercase_ : str = S[s : s + size][end_token_masks[s : s + size]] lowercase_ : Union[str, Any] = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase_ : Tuple = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase_ : Optional[int] = torch.vstack((p_starts, p_start) ) lowercase_ : str = torch.vstack((p_ends, p_end) ) else: lowercase_ : Any = p_start lowercase_ : str = p_end return p_starts, p_ends
239
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
from math import ceil, sqrt def lowercase_ ( _lowerCamelCase : int = 100_0000): lowercase__ : List[str] = 0 for outer_width in range(3 , (limit // 4) + 2): if outer_width**2 > limit: lowercase__ : int = max(ceil(sqrt(outer_width**2 - limit)) , 1) else: lowercase__ : List[Any] = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"{solution() = }")
87
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging __A = logging.get_logger(__name__) class UpperCAmelCase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase :str = ["pixel_values"] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = 1 / 255 , _UpperCAmelCase = True , _UpperCAmelCase = 8 , **_UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowercase__: int = do_rescale lowercase__: Tuple = rescale_factor lowercase__: Dict = do_pad lowercase__: List[Any] = pad_size def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None ): lowercase__, lowercase__: Optional[Any] = get_image_size(__UpperCAmelCase ) lowercase__: Union[str, Any] = (old_height // size + 1) * size - old_height lowercase__: str = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='''symmetric''' , data_format=__UpperCAmelCase ) def _snake_case ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): lowercase__: Optional[int] = do_rescale if do_rescale is not None else self.do_rescale lowercase__: Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowercase__: int = do_pad if do_pad is not None else self.do_pad lowercase__: int = pad_size if pad_size is not None else self.pad_size lowercase__: Optional[Any] = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) # All transformations expect numpy arrays. lowercase__: int = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: lowercase__: List[Any] = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: lowercase__: Optional[Any] = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] lowercase__: List[str] = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] lowercase__: Optional[int] = {'''pixel_values''': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
177
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : List[str] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { "tanreinama/GPTSAN-2.8B-spout_is_uniform": ( "https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json" ), } class _UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): UpperCamelCase = '''gptsan-japanese''' UpperCamelCase = [ '''past_key_values''', ] UpperCamelCase = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''num_heads''', '''num_hidden_layers''': '''num_layers''', } def __init__( self :Dict , __UpperCamelCase :Dict=3_60_00 , __UpperCamelCase :Any=12_80 , __UpperCamelCase :Tuple=10_24 , __UpperCamelCase :Union[str, Any]=81_92 , __UpperCamelCase :Dict=40_96 , __UpperCamelCase :List[str]=1_28 , __UpperCamelCase :List[Any]=10 , __UpperCamelCase :Optional[Any]=0 , __UpperCamelCase :Tuple=16 , __UpperCamelCase :Union[str, Any]=16 , __UpperCamelCase :Optional[Any]=1_28 , __UpperCamelCase :int=0.0 , __UpperCamelCase :Optional[Any]=1e-5 , __UpperCamelCase :Tuple=False , __UpperCamelCase :Union[str, Any]=0.0 , __UpperCamelCase :List[str]="float32" , __UpperCamelCase :List[Any]=False , __UpperCamelCase :Any=False , __UpperCamelCase :int=False , __UpperCamelCase :Optional[int]=0.002 , __UpperCamelCase :Optional[Any]=False , __UpperCamelCase :Optional[int]=True , __UpperCamelCase :List[Any]=3_59_98 , __UpperCamelCase :Dict=3_59_95 , __UpperCamelCase :Optional[Any]=3_59_99 , **__UpperCamelCase :Dict , ): A = vocab_size A = max_position_embeddings A = d_model A = d_ff A = d_ext A = d_spout A = num_switch_layers A = num_ext_layers A = num_switch_layers + num_ext_layers A = num_heads A = num_experts A = expert_capacity A = dropout_rate A = layer_norm_epsilon A = router_bias A = router_jitter_noise A = router_dtype A = router_ignore_padding_tokens A = output_hidden_states A = output_attentions A = initializer_factor A = output_router_logits A = use_cache super().__init__( separator_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
292
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() lowercase__ =logging.get_logger(__name__) lowercase__ ="Hello world! cécé herlolip" def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : bool ): __a : str = FairseqRobertaModel.from_pretrained(lowerCAmelCase__ ) roberta.eval() # disable dropout __a : Union[str, Any] = roberta.model.encoder.sentence_encoder __a : Dict = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , ) if classification_head: __a : List[Any] = roberta.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print('''Our RoBERTa config:''' , lowerCAmelCase__ ) __a : Optional[Any] = XLMRobertaXLForSequenceClassification(lowerCAmelCase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCAmelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings __a : List[Any] = roberta_sent_encoder.embed_tokens.weight __a : Tuple = roberta_sent_encoder.embed_positions.weight __a : Tuple = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. __a : Union[str, Any] = roberta_sent_encoder.layer_norm.weight __a : Dict = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer __a : int = model.roberta.encoder.layer[i] __a : Any = roberta_sent_encoder.layers[i] __a : str = layer.attention __a : Tuple = roberta_layer.self_attn_layer_norm.weight __a : Dict = roberta_layer.self_attn_layer_norm.bias # self attention __a : Any = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) __a : List[Any] = roberta_layer.self_attn.q_proj.weight __a : List[str] = roberta_layer.self_attn.q_proj.bias __a : List[str] = roberta_layer.self_attn.k_proj.weight __a : List[str] = roberta_layer.self_attn.k_proj.bias __a : Optional[int] = roberta_layer.self_attn.v_proj.weight __a : str = roberta_layer.self_attn.v_proj.bias # self-attention output __a : str = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape __a : str = roberta_layer.self_attn.out_proj.weight __a : Tuple = roberta_layer.self_attn.out_proj.bias # this one is final layer norm __a : Optional[Any] = roberta_layer.final_layer_norm.weight __a : Optional[int] = roberta_layer.final_layer_norm.bias # intermediate __a : Union[str, Any] = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape __a : Union[str, Any] = roberta_layer.fca.weight __a : Optional[Any] = roberta_layer.fca.bias # output __a : str = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape __a : Any = roberta_layer.fca.weight __a : int = roberta_layer.fca.bias # end of layer if classification_head: __a : Optional[Any] = roberta.model.classification_heads['''mnli'''].dense.weight __a : int = roberta.model.classification_heads['''mnli'''].dense.bias __a : int = roberta.model.classification_heads['''mnli'''].out_proj.weight __a : Tuple = roberta.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head __a : Any = roberta.model.encoder.lm_head.dense.weight __a : Optional[Any] = roberta.model.encoder.lm_head.dense.bias __a : Optional[int] = roberta.model.encoder.lm_head.layer_norm.weight __a : List[Any] = roberta.model.encoder.lm_head.layer_norm.bias __a : str = roberta.model.encoder.lm_head.weight __a : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. __a : str = roberta.encode(lowerCAmelCase__ ).unsqueeze(0 ) # batch of size 1 __a : Dict = model(lowerCAmelCase__ )[0] if classification_head: __a : str = roberta.model.classification_heads['''mnli'''](roberta.extract_features(lowerCAmelCase__ ) ) else: __a : Optional[Any] = roberta.model(lowerCAmelCase__ )[0] print(our_output.shape , their_output.shape ) __a : List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 __a : Union[str, Any] = torch.allclose(lowerCAmelCase__ , lowerCAmelCase__ , atol=1e-3 ) print('''Do both models output the same tensors?''' , '''🔥''' if success else '''💩''' ) if not success: raise Exception('''Something went wRoNg''' ) pathlib.Path(lowerCAmelCase__ ).mkdir(parents=lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": lowercase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) lowercase__ =parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
216
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
def lowercase_ ( _A : list[int] ): """simple docstring""" if not numbers: return 0 if not isinstance(_A , (list, tuple) ) or not all( isinstance(_A , _A ) for number in numbers ): raise ValueError("numbers must be an iterable of integers" ) lowerCamelCase__ : Optional[Any] = numbers[0] for i in range(1 , len(_A ) ): # update the maximum and minimum subarray products lowerCamelCase__ : Dict = numbers[i] if number < 0: lowerCamelCase__ , lowerCamelCase__ : List[Any] = min_till_now, max_till_now lowerCamelCase__ : Dict = max(_A , max_till_now * number ) lowerCamelCase__ : Tuple = min(_A , min_till_now * number ) # update the maximum product found till now lowerCamelCase__ : Optional[Any] = max(_A , _A ) return max_prod
184
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
"""simple docstring""" import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def lowercase_ ( _UpperCAmelCase=None , _UpperCAmelCase=None ): """simple docstring""" return field(default_factory=lambda: default , metadata=_UpperCAmelCase ) @dataclass class lowercase : __lowerCAmelCase : int = field( metadata={"""help""": """The csv file to plot."""} , ) __lowerCAmelCase : Union[str, Any] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether to plot along batch size or sequence length. Defaults to sequence length."""} , ) __lowerCAmelCase : List[str] = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Whether the csv file has time results or memory results. Defaults to memory results."""} , ) __lowerCAmelCase : int = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Disable logarithmic scale when plotting"""} , ) __lowerCAmelCase : Tuple = field( default=__SCREAMING_SNAKE_CASE , metadata={ """help""": """Whether the csv file has training results or inference results. Defaults to inference results.""" } , ) __lowerCAmelCase : Dict = field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """Filename under which the plot will be saved. If unused no plot is saved."""} , ) __lowerCAmelCase : Optional[int] = list_field( default=__SCREAMING_SNAKE_CASE , metadata={"""help""": """List of model names that are used instead of the ones in the csv file."""}) def lowercase_ ( _UpperCAmelCase ): """simple docstring""" try: int(_UpperCAmelCase ) return True except ValueError: return False def lowercase_ ( _UpperCAmelCase ): """simple docstring""" try: float(_UpperCAmelCase ) return True except ValueError: return False class lowercase : def __init__( self : Optional[Any] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : str = args A_ : Tuple = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline='''''' ) as csv_file: A_ : int = csv.DictReader(__UpperCAmelCase ) for row in reader: A_ : List[str] = row['''model'''] self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) ) self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) ) if can_convert_to_int(row['''result'''] ): # value is not None A_ : Dict = int(row['''result'''] ) elif can_convert_to_float(row['''result'''] ): # value is not None A_ : str = float(row['''result'''] ) def a_ ( self : Tuple ): """simple docstring""" A_ , A_ : Dict = plt.subplots() A_ : Any = '''Time usage''' if self.args.is_time else '''Memory usage''' A_ : Optional[int] = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference''' if not self.args.no_log_scale: # set logarithm scales ax.set_xscale('''log''' ) ax.set_yscale('''log''' ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): A_ : List[str] = sorted(set(self.result_dict[model_name]['''bsz'''] ) ) A_ : int = sorted(set(self.result_dict[model_name]['''seq_len'''] ) ) A_ : Tuple = self.result_dict[model_name]['''result'''] ((A_) , (A_)) : List[str] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) A_ : List[Any] = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: A_ : int = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__UpperCAmelCase , ) else: A_ : Union[str, Any] = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((A_) , (A_)) : Any = ( ('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''') ) A_ : List[str] = np.asarray(__UpperCAmelCase , __UpperCAmelCase )[: len(__UpperCAmelCase )] plt.scatter( __UpperCAmelCase , __UpperCAmelCase , label=F"""{label_model_name} - {inner_loop_label}: {inner_loop_value}""" ) plt.plot(__UpperCAmelCase , __UpperCAmelCase , '''--''' ) title_str += F""" {label_model_name} vs.""" A_ : str = title_str[:-4] A_ : Any = '''Time in s''' if self.args.is_time else '''Memory in MB''' # plot plt.title(__UpperCAmelCase ) plt.xlabel(__UpperCAmelCase ) plt.ylabel(__UpperCAmelCase ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def lowercase_ ( ): """simple docstring""" A_ : str = HfArgumentParser(_UpperCAmelCase ) A_ : Optional[int] = parser.parse_args_into_dataclasses()[0] A_ : Tuple = Plot(args=_UpperCAmelCase ) plot.plot() if __name__ == "__main__": main()
167
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCAmelCase : Optional[Any] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ): def __init__( self : List[Any] , lowerCAmelCase_ : Tuple = " "): """simple docstring""" lowercase_ = sentence_delimiter def _UpperCAmelCase ( self : str , lowerCAmelCase_ : Any): """simple docstring""" return list(__UpperCAmelCase) def _UpperCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Tuple): """simple docstring""" lowercase_ = [] for sent_idx, sentence in enumerate(__UpperCAmelCase): chars.extend(self.process_string(__UpperCAmelCase)) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__UpperCAmelCase) - 1: chars.append(self.sentence_delimiter) return chars UpperCAmelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCAmelCase : List[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCAmelCase : Any = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCAmelCase : Optional[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" UpperCAmelCase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _UpperCAmelCase ( self : str): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence"""), """references""": datasets.Value("""string""" , id="""sequence"""), }) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", """https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""", ] , ) def _UpperCAmelCase ( self : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Optional[int]=False): """simple docstring""" if concatenate_texts: return jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , )["wer"] lowercase_ = 0 lowercase_ = 0 for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase): lowercase_ = jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
136
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
"""simple docstring""" class __snake_case : def __init__( self) -> Union[str, Any]: '''simple docstring''' a__: str = 0 a__: int = 0 a__: List[Any] = {} def lowerCamelCase_ ( self , lowercase) -> Any: '''simple docstring''' if vertex not in self.adjacency: a__: List[Any] = {} self.num_vertices += 1 def lowerCamelCase_ ( self , lowercase , lowercase , lowercase) -> str: '''simple docstring''' self.add_vertex(__UpperCAmelCase) self.add_vertex(__UpperCAmelCase) if head == tail: return a__: Any = weight a__: Optional[int] = weight def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' a__: Tuple = self.get_edges() for edge in edges: a__ , a__ , a__: List[str] = edge edges.remove((tail, head, weight)) for i in range(len(__UpperCAmelCase)): a__: Optional[Any] = list(edges[i]) edges.sort(key=lambda lowercase: e[2]) for i in range(len(__UpperCAmelCase) - 1): if edges[i][2] >= edges[i + 1][2]: a__: Any = edges[i][2] + 1 for edge in edges: a__ , a__ , a__: Union[str, Any] = edge a__: str = weight a__: Dict = weight def __str__( self) -> Any: '''simple docstring''' a__: Union[str, Any] = '' for tail in self.adjacency: for head in self.adjacency[tail]: a__: Tuple = self.adjacency[head][tail] string += f'{head} -> {tail} == {weight}\n' return string.rstrip('\n') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' a__: int = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail])) return output def lowerCamelCase_ ( self) -> str: '''simple docstring''' return self.adjacency.keys() @staticmethod def lowerCamelCase_ ( lowercase=None , lowercase=None) -> Optional[Any]: '''simple docstring''' a__: Tuple = Graph() if vertices is None: a__: Union[str, Any] = [] if edges is None: a__: Any = [] for vertex in vertices: g.add_vertex(__UpperCAmelCase) for edge in edges: g.add_edge(*__UpperCAmelCase) return g class __snake_case : def __init__( self) -> List[Any]: '''simple docstring''' a__: Optional[int] = {} a__: Optional[Any] = {} def __len__( self) -> str: '''simple docstring''' return len(self.parent) def lowerCamelCase_ ( self , lowercase) -> Optional[int]: '''simple docstring''' if item in self.parent: return self.find(__UpperCAmelCase) a__: Optional[Any] = item a__: str = 0 return item def lowerCamelCase_ ( self , lowercase) -> Tuple: '''simple docstring''' if item not in self.parent: return self.make_set(__UpperCAmelCase) if item != self.parent[item]: a__: Tuple = self.find(self.parent[item]) return self.parent[item] def lowerCamelCase_ ( self , lowercase , lowercase) -> Dict: '''simple docstring''' a__: Union[str, Any] = self.find(__UpperCAmelCase) a__: Dict = self.find(__UpperCAmelCase) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: a__: Union[str, Any] = roota return roota if self.rank[roota] < self.rank[roota]: a__: Optional[int] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 a__: Any = roota return roota return None @staticmethod def lowerCamelCase_ ( lowercase) -> Union[str, Any]: '''simple docstring''' a__: str = graph.num_vertices a__: List[str] = Graph.UnionFind() a__: int = [] while num_components > 1: a__: int = {} for vertex in graph.get_vertices(): a__: Dict = -1 a__: int = graph.get_edges() for edge in edges: a__ , a__ , a__: Dict = edge edges.remove((tail, head, weight)) for edge in edges: a__ , a__ , a__: Dict = edge a__: Tuple = union_find.find(__UpperCAmelCase) a__: List[str] = union_find.find(__UpperCAmelCase) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__: Tuple = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: a__: List[Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: a__ , a__ , a__: Optional[int] = cheap_edge[vertex] if union_find.find(__UpperCAmelCase) != union_find.find(__UpperCAmelCase): union_find.union(__UpperCAmelCase , __UpperCAmelCase) mst_edges.append(cheap_edge[vertex]) a__: int = num_components - 1 a__: str = Graph.build(edges=__UpperCAmelCase) return mst
290
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class UpperCAmelCase_ ( __SCREAMING_SNAKE_CASE): snake_case__ = ['''image_processor''', '''tokenizer'''] snake_case__ = '''OwlViTImageProcessor''' snake_case__ = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Optional[Any] , __UpperCamelCase : Optional[Any]=None , __UpperCamelCase : Optional[Any]=None , **__UpperCamelCase : str ) -> Union[str, Any]: _UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __UpperCAmelCase , ) _UpperCamelCase = kwargs.pop('''feature_extractor''' ) _UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self : Optional[Any] , __UpperCamelCase : Tuple=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Union[str, Any]="max_length" , __UpperCamelCase : Optional[Any]="np" , **__UpperCamelCase : str ) -> Union[str, Any]: if text is None and query_images is None and images is None: raise ValueError( '''You have to specify at least one text or query image or image. All three cannot be none.''' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): _UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): _UpperCamelCase = [] # Maximum number of queries across batch _UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: _UpperCamelCase = t + [''' '''] * (max_num_queries - len(__UpperCAmelCase )) _UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('''Input text should be a string, a list of strings or a nested list of strings''' ) if return_tensors == "np": _UpperCamelCase = np.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = np.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp _UpperCamelCase = jnp.concatenate([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = jnp.concatenate([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch _UpperCamelCase = torch.cat([encoding['''input_ids'''] for encoding in encodings] , dim=0 ) _UpperCamelCase = torch.cat([encoding['''attention_mask'''] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf _UpperCamelCase = tf.stack([encoding['''input_ids'''] for encoding in encodings] , axis=0 ) _UpperCamelCase = tf.stack([encoding['''attention_mask'''] for encoding in encodings] , axis=0 ) else: raise ValueError('''Target return tensor type could not be returned''' ) _UpperCamelCase = BatchEncoding() _UpperCamelCase = input_ids _UpperCamelCase = attention_mask if query_images is not None: _UpperCamelCase = BatchEncoding() _UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values _UpperCamelCase = query_pixel_values if images is not None: _UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: _UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def _UpperCamelCase ( self : List[str] , *__UpperCamelCase : Any , **__UpperCamelCase : Dict ) -> Any: return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCamelCase ( self : Optional[int] , *__UpperCamelCase : List[str] , **__UpperCamelCase : str ) -> int: return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCamelCase ( self : int , *__UpperCamelCase : Optional[Any] , **__UpperCamelCase : str ) -> List[str]: return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCamelCase ( self : Dict , *__UpperCamelCase : List[Any] , **__UpperCamelCase : Optional[Any] ) -> Union[str, Any]: return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def _UpperCamelCase ( self : Optional[Any] , *__UpperCamelCase : Optional[int] , **__UpperCamelCase : Optional[int] ) -> Union[str, Any]: return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def _UpperCamelCase ( self : Tuple ) -> List[str]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __UpperCAmelCase , ) return self.image_processor_class @property def _UpperCamelCase ( self : List[str] ) -> Tuple: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __UpperCAmelCase , ) return self.image_processor
256
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a ( lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: np.ndarray , lowerCamelCase: int , lowerCamelCase: int ) -> np.ndarray: '''simple docstring''' __A = cva.getAffineTransform(lowerCamelCase , lowerCamelCase ) return cva.warpAffine(lowerCamelCase , lowerCamelCase , (rows, cols) ) if __name__ == "__main__": # read original image snake_case__ : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value snake_case__ : Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape snake_case__ : Dict = gray_img.shape # set different points to rotate image snake_case__ : Tuple = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) snake_case__ : str = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) snake_case__ : Tuple = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) snake_case__ : Optional[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list snake_case__ : Optional[int] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations snake_case__ : str = plt.figure(1) snake_case__ : Tuple = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
117
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0