code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :list[int] , snake_case :int ) -> list[list[int]]: __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = 0 __UpperCamelCase = sum(snake_case ) create_state_space_tree(snake_case , snake_case , snake_case , snake_case , snake_case , snake_case ) return result def A ( snake_case :list[int] , snake_case :int , snake_case :int , snake_case :list[int] , snake_case :list[list[int]] , snake_case :int , ) -> None: if sum(snake_case ) > max_sum or (remaining_nums_sum + sum(snake_case )) < max_sum: return if sum(snake_case ) == max_sum: result.append(snake_case ) return for index in range(snake_case , len(snake_case ) ): create_state_space_tree( snake_case , snake_case , index + 1 , [*path, nums[index]] , snake_case , remaining_nums_sum - nums[index] , ) UpperCamelCase : List[Any] = [3, 3_4, 4, 1_2, 5, 2] UpperCamelCase : str = 9 UpperCamelCase : Dict = generate_sum_of_subsets_soln(nums, max_sum) print(*result)
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "studio-ousia/luke-base": "https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json", "studio-ousia/luke-large": "https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "luke" def __init__( self , __UpperCAmelCase=5_0267 , __UpperCAmelCase=50_0000 , __UpperCAmelCase=768 , __UpperCAmelCase=256 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase ) __UpperCamelCase = vocab_size __UpperCamelCase = entity_vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = entity_emb_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = type_vocab_size __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = use_entity_aware_attention __UpperCamelCase = classifier_dropout
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__SCREAMING_SNAKE_CASE ) , "Tatoeba directory does not exist." ) class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() return TatoebaConverter(save_dir=__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' self.resolver.convert_models(['heb-eng'] ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.resolver.write_model_card('opus-mt-he-en' , dry_run=__UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] __UpperCamelCase = 'fp16' self.assertTrue(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] __UpperCamelCase = 'fp16' self.assertFalse(is_safetensors_compatible(__UpperCAmelCase , variant=__UpperCAmelCase ) )
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor UpperCamelCase : str = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' warnings.warn( 'The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use VideoMAEImageProcessor instead.' , __UpperCAmelCase , ) super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" # Logistic Regression from scratch # In[62]: # In[63]: # importing all the required libraries import numpy as np from matplotlib import pyplot as plt from sklearn import datasets def A ( snake_case :Tuple ) -> List[Any]: return 1 / (1 + np.exp(-z )) def A ( snake_case :Tuple , snake_case :Any ) -> Dict: return (-y * np.log(snake_case ) - (1 - y) * np.log(1 - h )).mean() def A ( snake_case :str , snake_case :Union[str, Any] , snake_case :Tuple ) -> Any: __UpperCamelCase = np.dot(snake_case , snake_case ) return np.sum(y * scores - np.log(1 + np.exp(snake_case ) ) ) def A ( snake_case :Any , snake_case :Optional[int] , snake_case :Optional[Any] , snake_case :Optional[Any]=7_0_0_0_0 ) -> Optional[Any]: __UpperCamelCase = np.zeros(x.shape[1] ) for iterations in range(snake_case ): __UpperCamelCase = np.dot(snake_case , snake_case ) __UpperCamelCase = sigmoid_function(snake_case ) __UpperCamelCase = np.dot(x.T , h - y ) / y.size __UpperCamelCase = theta - alpha * gradient # updating the weights __UpperCamelCase = np.dot(snake_case , snake_case ) __UpperCamelCase = sigmoid_function(snake_case ) __UpperCamelCase = cost_function(snake_case , snake_case ) if iterations % 1_0_0 == 0: print(f'loss: {j} \t' ) # printing the loss after every 100 iterations return theta # In[68]: if __name__ == "__main__": UpperCamelCase : Any = datasets.load_iris() UpperCamelCase : Optional[int] = iris.data[:, :2] UpperCamelCase : int = (iris.target != 0) * 1 UpperCamelCase : List[Any] = 0.1 UpperCamelCase : List[Any] = logistic_reg(alpha, x, y, max_iterations=7_0_0_0_0) print("theta: ", theta) # printing the theta i.e our weights vector def A ( snake_case :Union[str, Any] ) -> List[str]: return sigmoid_function( np.dot(snake_case , snake_case ) ) # predicting the value of probability from the logistic regression algorithm plt.figure(figsize=(1_0, 6)) plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0") plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1") ((UpperCamelCase) , (UpperCamelCase)) : List[str] = (x[:, 0].min(), x[:, 0].max()) ((UpperCamelCase) , (UpperCamelCase)) : Union[str, Any] = (x[:, 1].min(), x[:, 1].max()) ((UpperCamelCase) , (UpperCamelCase)) : str = np.meshgrid(np.linspace(xa_min, xa_max), np.linspace(xa_min, xa_max)) UpperCamelCase : Dict = np.c_[xxa.ravel(), xxa.ravel()] UpperCamelCase : List[str] = predict_prob(grid).reshape(xxa.shape) plt.contour(xxa, xxa, probs, [0.5], linewidths=1, colors="black") plt.legend() plt.show()
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs UpperCamelCase : Optional[int] = imread(R"digital_image_processing/image_data/lena_small.jpg") UpperCamelCase : Optional[Any] = cvtColor(img, COLOR_BGR2GRAY) def A ( ) -> int: __UpperCamelCase = cn.convert_to_negative(snake_case ) # assert negative_img array for at least one True assert negative_img.any() def A ( ) -> Optional[int]: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(snake_case , 1_1_0 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def A ( ) -> int: __UpperCamelCase = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def A ( ) -> Dict: __UpperCamelCase = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() __UpperCamelCase = canny.canny(snake_case ) # assert canny array for at least one True assert canny_array.any() def A ( ) -> List[str]: assert gg.gaussian_filter(snake_case , 5 , sigma=0.9 ).all() def A ( ) -> List[str]: # laplace diagonals __UpperCamelCase = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) __UpperCamelCase = conv.img_convolve(snake_case , snake_case ).astype(snake_case ) assert res.any() def A ( ) -> Optional[int]: assert med.median_filter(snake_case , 3 ).any() def A ( ) -> List[str]: __UpperCamelCase , __UpperCamelCase = sob.sobel_filter(snake_case ) assert grad.any() and theta.any() def A ( ) -> List[Any]: __UpperCamelCase = sp.make_sepia(snake_case , 2_0 ) assert sepia.all() def A ( snake_case :str = "digital_image_processing/image_data/lena_small.jpg" ) -> Optional[Any]: __UpperCamelCase = bs.Burkes(imread(snake_case , 1 ) , 1_2_0 ) burkes.process() assert burkes.output_img.any() def A ( snake_case :str = "digital_image_processing/image_data/lena_small.jpg" , ) -> List[Any]: __UpperCamelCase = rs.NearestNeighbour(imread(snake_case , 1 ) , 4_0_0 , 2_0_0 ) nn.process() assert nn.output.any() def A ( ) -> Optional[int]: __UpperCamelCase = 'digital_image_processing/image_data/lena.jpg' # Reading the image and converting it to grayscale. __UpperCamelCase = imread(snake_case , 0 ) # Test for get_neighbors_pixel function() return not None __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = image[x_coordinate][y_coordinate] __UpperCamelCase = lbp.get_neighbors_pixel( snake_case , snake_case , snake_case , snake_case ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image __UpperCamelCase = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): __UpperCamelCase = lbp.local_binary_value(snake_case , snake_case , snake_case ) assert lbp_image.any()
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int = 1_0_0_0 ) -> int: __UpperCamelCase = -1 __UpperCamelCase = 0 for a in range(1 , n // 3 ): # Solving the two equations a**2+b**2=c**2 and a+b+c=N eliminating c __UpperCamelCase = (n * n - 2 * a * n) // (2 * n - 2 * a) __UpperCamelCase = n - a - b if c * c == (a * a + b * b): __UpperCamelCase = a * b * c if candidate >= product: __UpperCamelCase = candidate return product if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class __lowerCAmelCase : @staticmethod def UpperCAmelCase ( *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' pass @is_pipeline_test @require_vision @require_timm @require_torch class __lowerCAmelCase ( unittest.TestCase ): lowercase = MODEL_FOR_OBJECT_DETECTION_MAPPING def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = ObjectDetectionPipeline(model=__UpperCAmelCase , image_processor=__UpperCAmelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(__UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCAmelCase , { 'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase ), 'box': {'xmin': ANY(__UpperCAmelCase ), 'ymin': ANY(__UpperCAmelCase ), 'xmax': ANY(__UpperCAmelCase ), 'ymax': ANY(__UpperCAmelCase )}, } , ) import datasets __UpperCamelCase = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) __UpperCamelCase = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] __UpperCamelCase = object_detector(__UpperCAmelCase , threshold=0.0 ) self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) ) for outputs in batch_outputs: self.assertGreater(len(__UpperCAmelCase ) , 0 ) for detected_object in outputs: self.assertEqual( __UpperCAmelCase , { 'score': ANY(__UpperCAmelCase ), 'label': ANY(__UpperCAmelCase ), 'box': {'xmin': ANY(__UpperCAmelCase ), 'ymin': ANY(__UpperCAmelCase ), 'xmax': ANY(__UpperCAmelCase ), 'ymax': ANY(__UpperCAmelCase )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'hf-internal-testing/tiny-detr-mobilenetsv3' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) __UpperCamelCase = ObjectDetectionPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ] , ) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], [ {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, {'score': 0.3_3_7_6, 'label': 'LABEL_0', 'box': {'xmin': 159, 'ymin': 120, 'xmax': 480, 'ymax': 359}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = AutoModelForObjectDetection.from_pretrained(__UpperCAmelCase ) __UpperCamelCase = AutoFeatureExtractor.from_pretrained(__UpperCAmelCase ) __UpperCamelCase = ObjectDetectionPipeline(model=__UpperCAmelCase , feature_extractor=__UpperCAmelCase ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection' , model=__UpperCAmelCase ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) __UpperCamelCase = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], [ {'score': 0.9_9_8_2, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 175, 'ymax': 117}}, {'score': 0.9_9_6_0, 'label': 'remote', 'box': {'xmin': 333, 'ymin': 72, 'xmax': 368, 'ymax': 187}}, {'score': 0.9_9_5_5, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 639, 'ymax': 473}}, {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ], ] , ) @require_torch @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 0.9_9_8_5 __UpperCamelCase = 'facebook/detr-resnet-50' __UpperCamelCase = pipeline('object-detection' , model=__UpperCAmelCase ) __UpperCamelCase = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=__UpperCAmelCase ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_8_8, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 314, 'ymax': 470}}, {'score': 0.9_9_8_7, 'label': 'cat', 'box': {'xmin': 345, 'ymin': 23, 'xmax': 640, 'ymax': 368}}, ] , ) @require_torch @require_pytesseract @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = 'Narsil/layoutlmv3-finetuned-funsd' __UpperCamelCase = 0.9_9_9_3 __UpperCamelCase = pipeline('object-detection' , model=__UpperCAmelCase , threshold=__UpperCAmelCase ) __UpperCamelCase = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(__UpperCAmelCase , decimals=4 ) , [ {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, {'score': 0.9_9_9_3, 'label': 'I-ANSWER', 'box': {'xmin': 294, 'ymin': 254, 'xmax': 343, 'ymax': 264}}, ] , )
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" def A ( snake_case :str , snake_case :List[Any] ) -> Optional[int]: __UpperCamelCase = '' for i in table: res += inp[i - 1] return res def A ( snake_case :int ) -> List[Any]: return data[1:] + data[0] def A ( snake_case :Any , snake_case :Tuple ) -> Optional[Any]: __UpperCamelCase = '' for i in range(len(snake_case ) ): if a[i] == b[i]: res += "0" else: res += "1" return res def A ( snake_case :List[str] , snake_case :Optional[Any] ) -> List[str]: __UpperCamelCase = int('0b' + data[0] + data[-1] , 2 ) __UpperCamelCase = int('0b' + data[1:3] , 2 ) return bin(s[row][col] )[2:] def A ( snake_case :str , snake_case :Union[str, Any] , snake_case :List[str] , snake_case :Dict , snake_case :str ) -> Union[str, Any]: __UpperCamelCase = message[:4] __UpperCamelCase = message[4:] __UpperCamelCase = apply_table(snake_case , snake_case ) __UpperCamelCase = xor(snake_case , snake_case ) __UpperCamelCase = apply_sbox(snake_case , temp[:4] ) # noqa: E741 __UpperCamelCase = apply_sbox(snake_case , temp[4:] ) __UpperCamelCase = '0' * (2 - len(snake_case )) + l # noqa: E741 __UpperCamelCase = '0' * (2 - len(snake_case )) + r __UpperCamelCase = apply_table(l + r , snake_case ) __UpperCamelCase = xor(snake_case , snake_case ) return temp + right if __name__ == "__main__": UpperCamelCase : Any = input("Enter 10 bit key: ") UpperCamelCase : Optional[int] = input("Enter 8 bit message: ") UpperCamelCase : List[Any] = [6, 3, 7, 4, 8, 5, 1_0, 9] UpperCamelCase : List[Any] = [3, 5, 2, 7, 4, 1_0, 1, 9, 8, 6] UpperCamelCase : Tuple = [2, 4, 3, 1] UpperCamelCase : Any = [2, 6, 3, 1, 4, 8, 5, 7] UpperCamelCase : Dict = [4, 1, 3, 5, 7, 2, 8, 6] UpperCamelCase : Tuple = [4, 1, 2, 3, 2, 3, 4, 1] UpperCamelCase : str = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]] UpperCamelCase : Optional[int] = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]] # key generation UpperCamelCase : Optional[Any] = apply_table(key, paa_table) UpperCamelCase : int = temp[:5] UpperCamelCase : Optional[int] = temp[5:] UpperCamelCase : int = left_shift(left) UpperCamelCase : str = left_shift(right) UpperCamelCase : Optional[Any] = apply_table(left + right, pa_table) UpperCamelCase : Dict = left_shift(left) UpperCamelCase : Tuple = left_shift(right) UpperCamelCase : Any = left_shift(left) UpperCamelCase : Any = left_shift(right) UpperCamelCase : Dict = apply_table(left + right, pa_table) # encryption UpperCamelCase : int = apply_table(message, IP) UpperCamelCase : Any = function(expansion, sa, sa, keya, temp) UpperCamelCase : List[str] = temp[4:] + temp[:4] UpperCamelCase : List[str] = function(expansion, sa, sa, keya, temp) UpperCamelCase : Optional[int] = apply_table(temp, IP_inv) print("Cipher text is:", CT) # decryption UpperCamelCase : int = apply_table(CT, IP) UpperCamelCase : int = function(expansion, sa, sa, keya, temp) UpperCamelCase : Optional[Any] = temp[4:] + temp[:4] UpperCamelCase : str = function(expansion, sa, sa, keya, temp) UpperCamelCase : Tuple = apply_table(temp, IP_inv) print("Plain text after decypting is:", PT)
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 2 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TFDeiTModel(config=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TFDeiTForMaskedImageModeling(config=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFDeiTForMaskedImageModeling(__UpperCAmelCase ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = TFDeiTForImageClassification(__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFDeiTForImageClassification(__UpperCAmelCase ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFDeiTModel, "image-classification": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFDeiTModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , tf.keras.layers.Dense ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFDeiTModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> Optional[int]: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='tf' ) # forward pass __UpperCamelCase = model(**__UpperCAmelCase ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets UpperCamelCase : Any = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" UpperCamelCase : Optional[int] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" UpperCamelCase : int = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='https://github.com/krishnap25/mauve' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/krishnap25/mauve'] , reference_urls=[ 'https://arxiv.org/abs/2102.01454', 'https://github.com/krishnap25/mauve', ] , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="auto" , __UpperCAmelCase=-1 , __UpperCAmelCase=0.9 , __UpperCAmelCase=5 , __UpperCAmelCase=500 , __UpperCAmelCase="gpt2-large" , __UpperCAmelCase=-1 , __UpperCAmelCase=1024 , __UpperCAmelCase=25 , __UpperCAmelCase=5 , __UpperCAmelCase=True , __UpperCAmelCase=25 , ): '''simple docstring''' __UpperCamelCase = compute_mauve( p_text=__UpperCAmelCase , q_text=__UpperCAmelCase , p_features=__UpperCAmelCase , q_features=__UpperCAmelCase , p_tokens=__UpperCAmelCase , q_tokens=__UpperCAmelCase , num_buckets=__UpperCAmelCase , pca_max_data=__UpperCAmelCase , kmeans_explained_var=__UpperCAmelCase , kmeans_num_redo=__UpperCAmelCase , kmeans_max_iter=__UpperCAmelCase , featurize_model_name=__UpperCAmelCase , device_id=__UpperCAmelCase , max_text_length=__UpperCAmelCase , divergence_curve_discretization_size=__UpperCAmelCase , mauve_scaling_factor=__UpperCAmelCase , verbose=__UpperCAmelCase , seed=__UpperCAmelCase , ) return out
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" def A ( snake_case :Any ) -> Tuple: __UpperCamelCase = [0] * len(snake_case ) __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = 0 for values in graph.values(): for i in values: indegree[i] += 1 for i in range(len(snake_case ) ): if indegree[i] == 0: queue.append(snake_case ) while queue: __UpperCamelCase = queue.pop(0 ) cnt += 1 topo.append(snake_case ) for x in graph[vertex]: indegree[x] -= 1 if indegree[x] == 0: queue.append(snake_case ) if cnt != len(snake_case ): print('Cycle exists' ) else: print(snake_case ) # Adjacency List of Graph UpperCamelCase : int = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []} topological_sort(graph)
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase : List[str] = { "configuration_megatron_bert": ["MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegatronBertConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Tuple = [ "MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "MegatronBertForCausalLM", "MegatronBertForMaskedLM", "MegatronBertForMultipleChoice", "MegatronBertForNextSentencePrediction", "MegatronBertForPreTraining", "MegatronBertForQuestionAnswering", "MegatronBertForSequenceClassification", "MegatronBertForTokenClassification", "MegatronBertModel", "MegatronBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_megatron_bert import MEGATRON_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MegatronBertConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_megatron_bert import ( MEGATRON_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, MegatronBertForCausalLM, MegatronBertForMaskedLM, MegatronBertForMultipleChoice, MegatronBertForNextSentencePrediction, MegatronBertForPreTraining, MegatronBertForQuestionAnswering, MegatronBertForSequenceClassification, MegatronBertForTokenClassification, MegatronBertModel, MegatronBertPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" from __future__ import annotations UpperCamelCase : Dict = 8.988E9 # units = N * m^s * C^-2 def A ( snake_case :float , snake_case :float , snake_case :float , snake_case :float ) -> dict[str, float]: __UpperCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if distance < 0: raise ValueError('Distance cannot be negative' ) if force == 0: __UpperCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: __UpperCamelCase = abs(snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: __UpperCamelCase = abs(snake_case ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: __UpperCamelCase = (COULOMBS_CONSTANT * charge_product / abs(snake_case )) ** 0.5 return {"distance": distance} raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , split=__UpperCAmelCase , features=__UpperCAmelCase , cache_dir=__UpperCAmelCase , keep_in_memory=__UpperCAmelCase , streaming=__UpperCAmelCase , num_proc=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = field __UpperCamelCase = path_or_paths if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else {self.split: path_or_paths} __UpperCamelCase = Json( cache_dir=__UpperCAmelCase , data_files=__UpperCAmelCase , features=__UpperCAmelCase , field=__UpperCAmelCase , **__UpperCAmelCase , ) def UpperCAmelCase ( self ): '''simple docstring''' if self.streaming: __UpperCamelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None self.builder.download_and_prepare( download_config=__UpperCAmelCase , download_mode=__UpperCAmelCase , verification_mode=__UpperCAmelCase , base_path=__UpperCAmelCase , num_proc=self.num_proc , ) __UpperCamelCase = self.builder.as_dataset( split=self.split , verification_mode=__UpperCAmelCase , in_memory=self.keep_in_memory ) return dataset class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) __UpperCamelCase = dataset __UpperCamelCase = path_or_buf __UpperCamelCase = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE __UpperCamelCase = num_proc __UpperCamelCase = 'utf-8' __UpperCamelCase = to_json_kwargs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.to_json_kwargs.pop('path_or_buf' , __UpperCAmelCase ) __UpperCamelCase = self.to_json_kwargs.pop('orient' , 'records' ) __UpperCamelCase = self.to_json_kwargs.pop('lines' , True if orient == 'records' else False ) __UpperCamelCase = self.to_json_kwargs.pop('index' , False if orient in ['split', 'table'] else True ) __UpperCamelCase = self.to_json_kwargs.pop('compression' , __UpperCAmelCase ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf , 'wb' , compression=__UpperCAmelCase ) as buffer: __UpperCamelCase = self._write(file_obj=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) __UpperCamelCase = self._write( file_obj=self.path_or_buf , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **self.to_json_kwargs ) return written def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = args __UpperCamelCase = query_table( table=self.dataset.data , key=slice(__UpperCAmelCase , offset + self.batch_size ) , indices=self.dataset._indices , ) __UpperCamelCase = batch.to_pandas().to_json( path_or_buf=__UpperCAmelCase , orient=__UpperCAmelCase , lines=__UpperCAmelCase , index=__UpperCAmelCase , **__UpperCAmelCase ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0 , len(self.dataset ) , self.batch_size ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): __UpperCamelCase = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(__UpperCAmelCase ) else: __UpperCamelCase , __UpperCamelCase = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json , [(offset, orient, lines, index, to_json_kwargs) for offset in range(0 , __UpperCAmelCase , __UpperCAmelCase )] , ) , total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating json from Arrow format' , ): written += file_obj.write(__UpperCAmelCase ) return written
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" from argparse import ArgumentParser, Namespace from typing import Any, List, Optional from ..pipelines import Pipeline, get_supported_tasks, pipeline from ..utils import logging from . import BaseTransformersCLICommand try: from fastapi import Body, FastAPI, HTTPException from fastapi.routing import APIRoute from pydantic import BaseModel from starlette.responses import JSONResponse from uvicorn import run UpperCamelCase : Tuple = True except (ImportError, AttributeError): UpperCamelCase : Optional[Any] = object def A ( *snake_case :Union[str, Any] , **snake_case :Dict ) -> Optional[Any]: pass UpperCamelCase : Any = False UpperCamelCase : Any = logging.get_logger("transformers-cli/serving") def A ( snake_case :Namespace ) -> int: __UpperCamelCase = pipeline( task=args.task , model=args.model if args.model else None , config=args.config , tokenizer=args.tokenizer , device=args.device , ) return ServeCommand(snake_case , args.host , args.port , args.workers ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): @staticmethod def UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = parser.add_parser( 'serve' , help='CLI tool to run inference requests through REST and GraphQL endpoints.' ) serve_parser.add_argument( '--task' , type=__UpperCAmelCase , choices=get_supported_tasks() , help='The task to run the pipeline on' , ) serve_parser.add_argument('--host' , type=__UpperCAmelCase , default='localhost' , help='Interface the server will listen on.' ) serve_parser.add_argument('--port' , type=__UpperCAmelCase , default=8888 , help='Port the serving will listen to.' ) serve_parser.add_argument('--workers' , type=__UpperCAmelCase , default=1 , help='Number of http workers' ) serve_parser.add_argument('--model' , type=__UpperCAmelCase , help='Model\'s name or path to stored model.' ) serve_parser.add_argument('--config' , type=__UpperCAmelCase , help='Model\'s config name or path to stored model.' ) serve_parser.add_argument('--tokenizer' , type=__UpperCAmelCase , help='Tokenizer name to use.' ) serve_parser.add_argument( '--device' , type=__UpperCAmelCase , default=-1 , help='Indicate the device to run onto, -1 indicates CPU, >= 0 indicates GPU (default: -1)' , ) serve_parser.set_defaults(func=__UpperCAmelCase ) def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = pipeline __UpperCamelCase = host __UpperCamelCase = port __UpperCamelCase = workers if not _serve_dependencies_installed: raise RuntimeError( 'Using serve command requires FastAPI and uvicorn. ' 'Please install transformers with [serving]: pip install "transformers[serving]".' 'Or install FastAPI and uvicorn separately.' ) else: logger.info(F'Serving model over {host}:{port}' ) __UpperCamelCase = FastAPI( routes=[ APIRoute( '/' , self.model_info , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['GET'] , ), APIRoute( '/tokenize' , self.tokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['POST'] , ), APIRoute( '/detokenize' , self.detokenize , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['POST'] , ), APIRoute( '/forward' , self.forward , response_model=__UpperCAmelCase , response_class=__UpperCAmelCase , methods=['POST'] , ), ] , timeout=600 , ) def UpperCAmelCase ( self ): '''simple docstring''' run(self._app , host=self.host , port=self.port , workers=self.workers ) def UpperCAmelCase ( self ): '''simple docstring''' return ServeModelInfoResult(infos=vars(self._pipeline.model.config ) ) def UpperCAmelCase ( self , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) ): '''simple docstring''' try: __UpperCamelCase = self._pipeline.tokenizer.tokenize(__UpperCAmelCase ) if return_ids: __UpperCamelCase = self._pipeline.tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) return ServeTokenizeResult(tokens=__UpperCAmelCase , tokens_ids=__UpperCAmelCase ) else: return ServeTokenizeResult(tokens=__UpperCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__UpperCAmelCase )} ) def UpperCAmelCase ( self , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , __UpperCAmelCase = Body(__UpperCAmelCase , embed=__UpperCAmelCase ) , ): '''simple docstring''' try: __UpperCamelCase = self._pipeline.tokenizer.decode(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) return ServeDeTokenizeResult(model='' , text=__UpperCAmelCase ) except Exception as e: raise HTTPException(status_code=500 , detail={'model': '', 'error': str(__UpperCAmelCase )} ) async def UpperCAmelCase ( self , __UpperCAmelCase=Body(__UpperCAmelCase , embed=__UpperCAmelCase ) ): '''simple docstring''' if len(__UpperCAmelCase ) == 0: return ServeForwardResult(output=[] , attention=[] ) try: # Forward through the model __UpperCamelCase = self._pipeline(__UpperCAmelCase ) return ServeForwardResult(output=__UpperCAmelCase ) except Exception as e: raise HTTPException(500 , {'error': str(__UpperCAmelCase )} )
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def A ( snake_case :Union[str, Any] , snake_case :str=7 ) -> Any: __UpperCamelCase = None if token is not None: __UpperCamelCase = {'Accept': 'application/vnd.github+json', 'Authorization': f'Bearer {token}'} # The id of a workflow (not of a workflow run) __UpperCamelCase = '636036' __UpperCamelCase = f'https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f'?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}' __UpperCamelCase = requests.get(snake_case , headers=snake_case ).json() return result["workflow_runs"] def A ( snake_case :Dict ) -> Union[str, Any]: __UpperCamelCase = get_daily_ci_runs(snake_case ) __UpperCamelCase = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": __UpperCamelCase = workflow_run['id'] break return workflow_run_id def A ( snake_case :Tuple , snake_case :Union[str, Any] , snake_case :List[Any] ) -> int: __UpperCamelCase = get_last_daily_ci_runs(snake_case ) if workflow_run_id is not None: __UpperCamelCase = get_artifacts_links(worflow_run_id=snake_case , token=snake_case ) for artifact_name in artifact_names: if artifact_name in artifacts_links: __UpperCamelCase = artifacts_links[artifact_name] download_artifact( artifact_name=snake_case , artifact_url=snake_case , output_dir=snake_case , token=snake_case ) def A ( snake_case :str , snake_case :List[Any] , snake_case :List[str] ) -> Any: get_last_daily_ci_artifacts(snake_case , snake_case , snake_case ) __UpperCamelCase = {} for artifact_name in artifact_names: __UpperCamelCase = os.path.join(snake_case , f'{artifact_name}.zip' ) if os.path.isfile(snake_case ): __UpperCamelCase = {} with zipfile.ZipFile(snake_case ) as z: for filename in z.namelist(): if not os.path.isdir(snake_case ): # read the file with z.open(snake_case ) as f: __UpperCamelCase = f.read().decode('UTF-8' ) return results
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" import math import tensorflow as tf from packaging import version def A ( snake_case :Optional[int] ) -> Dict: __UpperCamelCase = tf.convert_to_tensor(snake_case ) __UpperCamelCase = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def A ( snake_case :Dict ) -> List[str]: __UpperCamelCase = tf.convert_to_tensor(snake_case ) __UpperCamelCase = tf.cast(math.pi , x.dtype ) __UpperCamelCase = tf.cast(0.044_715 , x.dtype ) __UpperCamelCase = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(snake_case , 3 )) )) return x * cdf def A ( snake_case :List[Any] ) -> str: __UpperCamelCase = tf.convert_to_tensor(snake_case ) return x * tf.tanh(tf.math.softplus(snake_case ) ) def A ( snake_case :List[str] ) -> Any: __UpperCamelCase = tf.convert_to_tensor(snake_case ) __UpperCamelCase = tf.cast(0.044_715 , x.dtype ) __UpperCamelCase = tf.cast(0.7_978_845_608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def A ( snake_case :List[Any] ) -> Any: __UpperCamelCase = tf.convert_to_tensor(snake_case ) __UpperCamelCase = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def A ( snake_case :Optional[int] ) -> int: return tf.clip_by_value(_gelu(snake_case ) , -1_0 , 1_0 ) def A ( snake_case :Optional[int] , snake_case :int=-1 ) -> int: __UpperCamelCase , __UpperCamelCase = tf.split(snake_case , 2 , axis=snake_case ) return a * tf.math.sigmoid(snake_case ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def A ( snake_case :int ) -> Union[str, Any]: return tf.keras.activations.gelu(snake_case , approximate=snake_case ) UpperCamelCase : List[str] = tf.keras.activations.gelu UpperCamelCase : Optional[int] = approximate_gelu_wrap else: UpperCamelCase : int = _gelu UpperCamelCase : List[str] = _gelu_new UpperCamelCase : Optional[Any] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def A ( snake_case :int ) -> Tuple: if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}' )
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=99 , __UpperCAmelCase=13 , __UpperCAmelCase=16 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=30 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=None , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = decoder_seq_length # For common tests __UpperCamelCase = self.decoder_seq_length __UpperCamelCase = is_training __UpperCamelCase = use_attention_mask __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = d_model __UpperCamelCase = d_model __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_attention_heads __UpperCamelCase = decoder_attention_heads __UpperCamelCase = eos_token_id __UpperCamelCase = bos_token_id __UpperCamelCase = pad_token_id __UpperCamelCase = decoder_start_token_id __UpperCamelCase = use_cache __UpperCamelCase = max_position_embeddings __UpperCamelCase = None __UpperCamelCase = decoder_seq_length __UpperCamelCase = 2 __UpperCamelCase = 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_attention_mask: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) __UpperCamelCase = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = True __UpperCamelCase = TrOCRDecoder(config=__UpperCAmelCase ).to(__UpperCAmelCase ).eval() __UpperCamelCase = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass __UpperCamelCase = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase , use_cache=__UpperCAmelCase ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) ) self.parent.assertTrue(len(__UpperCAmelCase ) == len(__UpperCAmelCase ) + 1 ) __UpperCamelCase = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids __UpperCamelCase = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and __UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) __UpperCamelCase = model(__UpperCAmelCase )['last_hidden_state'] __UpperCamelCase = model(__UpperCAmelCase , past_key_values=__UpperCAmelCase )['last_hidden_state'] # select random slice __UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() __UpperCamelCase = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() __UpperCamelCase = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () lowercase = (TrOCRForCausalLM,) if is_torch_available() else () lowercase = {"text-generation": TrOCRForCausalLM} if is_torch_available() else {} lowercase = True lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TrOCRStandaloneDecoderModelTester(self , is_training=__UpperCAmelCase ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def UpperCAmelCase ( self ): '''simple docstring''' pass
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: while b: __UpperCamelCase , __UpperCamelCase = b, a % b return a def A ( snake_case :int , snake_case :int ) -> int: return a if b == 0 else euclidean_gcd_recursive(snake_case , a % b ) def A ( ) -> Any: print(f'euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}' ) print(f'euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}' ) print(f'euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}' ) print(f'euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}' ) print(f'euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}' ) print(f'euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}' ) print(f'euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}' ) print(f'euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}' ) print(f'euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}' ) if __name__ == "__main__": main()
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def A ( snake_case :np.ndarray , snake_case :np.ndarray , snake_case :np.ndarray , snake_case :int , snake_case :int ) -> np.ndarray: __UpperCamelCase = cva.getAffineTransform(snake_case , snake_case ) return cva.warpAffine(snake_case , snake_case , (rows, cols) ) if __name__ == "__main__": # read original image UpperCamelCase : Tuple = cva.imread( str(Path(__file__).resolve().parent.parent / "image_data" / "lena.jpg") ) # turn image in gray scale value UpperCamelCase : Tuple = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCamelCase , UpperCamelCase : Dict = gray_img.shape # set different points to rotate image UpperCamelCase : Tuple = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) UpperCamelCase : str = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) UpperCamelCase : Tuple = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) UpperCamelCase : Optional[Any] = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list UpperCamelCase : Optional[int] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCamelCase : str = plt.figure(1) UpperCamelCase : Tuple = ["Original", "Rotation 1", "Rotation 2", "Rotation 3"] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, "gray") plt.title(titles[i]) plt.axis("off") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 3 __UpperCamelCase = 250 __UpperCamelCase = ids_tensor((batch_size, length) , __UpperCAmelCase ) __UpperCamelCase = torch.ones((batch_size, length) , device=__UpperCAmelCase , dtype=torch.float ) / length return input_ids, scores def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self._get_tensors(5 ) __UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = MaxLengthCriteria(max_length=10 ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase , __UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self._get_tensors(5 ) __UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) __UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(__UpperCAmelCase , __UpperCAmelCase ) ) def UpperCAmelCase ( self ): '''simple docstring''' validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(__UpperCAmelCase ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(__UpperCAmelCase ) , 1 )
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" def A ( snake_case :Dict ) -> Optional[Any]: __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator __UpperCamelCase = len(snake_case ) if (len(snake_case ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) , 'Stack'.center(snake_case ) , 'Postfix'.center(snake_case ) , sep=' | ' , ) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(snake_case ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(snake_case ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(snake_case ) == 0: stack.append(snake_case ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(snake_case ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(snake_case ) # push x to stack print( x.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format while len(snake_case ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) , (''.join(snake_case )).ljust(snake_case ) , (''.join(snake_case )).ljust(snake_case ) , sep=' | ' , ) # Output in tabular format return "".join(snake_case ) # return Postfix as str def A ( snake_case :List[Any] ) -> Tuple: __UpperCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(snake_case ) ): if infix[i] == "(": __UpperCamelCase = ')' # change "(" to ")" elif infix[i] == ")": __UpperCamelCase = '(' # change ")" to "(" return (infix_2_postfix(''.join(snake_case ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": UpperCamelCase : Optional[int] = input("\nEnter an Infix Equation = ") # Input an Infix equation UpperCamelCase : List[Any] = "".join(Infix.split()) # Remove spaces from the input print("\n\t", Infix, "(Infix) -> ", infix_2_prefix(Infix), "(Prefix)")
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def A ( snake_case :int ) -> Optional[int]: __UpperCamelCase = SwinConfig( embed_dim=1_9_2 , depths=(2, 2, 1_8, 2) , num_heads=(6, 1_2, 2_4, 4_8) , window_size=1_2 , out_features=['stage2', 'stage3', 'stage4'] , ) __UpperCamelCase = DetaConfig( backbone_config=snake_case , num_queries=9_0_0 , encoder_ffn_dim=2_0_4_8 , decoder_ffn_dim=2_0_4_8 , num_feature_levels=5 , assign_first_stage=snake_case , with_box_refine=snake_case , two_stage=snake_case , ) # set labels __UpperCamelCase = 'huggingface/label-files' if "o365" in model_name: __UpperCamelCase = 3_6_6 __UpperCamelCase = 'object365-id2label.json' else: __UpperCamelCase = 9_1 __UpperCamelCase = 'coco-detection-id2label.json' __UpperCamelCase = num_labels __UpperCamelCase = json.load(open(cached_download(hf_hub_url(snake_case , snake_case , repo_type='dataset' ) ) , 'r' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} return config def A ( snake_case :Union[str, Any] ) -> Union[str, Any]: __UpperCamelCase = [] # stem # fmt: off rename_keys.append(('backbone.0.body.patch_embed.proj.weight', 'model.backbone.model.embeddings.patch_embeddings.projection.weight') ) rename_keys.append(('backbone.0.body.patch_embed.proj.bias', 'model.backbone.model.embeddings.patch_embeddings.projection.bias') ) rename_keys.append(('backbone.0.body.patch_embed.norm.weight', 'model.backbone.model.embeddings.norm.weight') ) rename_keys.append(('backbone.0.body.patch_embed.norm.bias', 'model.backbone.model.embeddings.norm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.norm2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias', f'model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias') ) if i < 3: rename_keys.append((f'backbone.0.body.layers.{i}.downsample.reduction.weight', f'model.backbone.model.encoder.layers.{i}.downsample.reduction.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.weight', f'model.backbone.model.encoder.layers.{i}.downsample.norm.weight') ) rename_keys.append((f'backbone.0.body.layers.{i}.downsample.norm.bias', f'model.backbone.model.encoder.layers.{i}.downsample.norm.bias') ) rename_keys.append(('backbone.0.body.norm1.weight', 'model.backbone.model.hidden_states_norms.stage2.weight') ) rename_keys.append(('backbone.0.body.norm1.bias', 'model.backbone.model.hidden_states_norms.stage2.bias') ) rename_keys.append(('backbone.0.body.norm2.weight', 'model.backbone.model.hidden_states_norms.stage3.weight') ) rename_keys.append(('backbone.0.body.norm2.bias', 'model.backbone.model.hidden_states_norms.stage3.bias') ) rename_keys.append(('backbone.0.body.norm3.weight', 'model.backbone.model.hidden_states_norms.stage4.weight') ) rename_keys.append(('backbone.0.body.norm3.bias', 'model.backbone.model.hidden_states_norms.stage4.bias') ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight', f'model.encoder.layers.{i}.self_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias', f'model.encoder.layers.{i}.self_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.weight', f'model.encoder.layers.{i}.self_attn.attention_weights.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.attention_weights.bias', f'model.encoder.layers.{i}.self_attn.attention_weights.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.weight', f'model.encoder.layers.{i}.self_attn.value_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.value_proj.bias', f'model.encoder.layers.{i}.self_attn.value_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.weight', f'model.encoder.layers.{i}.self_attn.output_proj.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.self_attn.output_proj.bias', f'model.encoder.layers.{i}.self_attn.output_proj.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.weight', f'model.encoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm1.bias', f'model.encoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.weight', f'model.encoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear1.bias', f'model.encoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.weight', f'model.encoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.linear2.bias', f'model.encoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.weight', f'model.encoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.encoder.layers.{i}.norm2.bias', f'model.encoder.layers.{i}.final_layer_norm.bias') ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias', f'model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.weight', f'model.decoder.layers.{i}.encoder_attn.attention_weights.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.attention_weights.bias', f'model.decoder.layers.{i}.encoder_attn.attention_weights.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.weight', f'model.decoder.layers.{i}.encoder_attn.value_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.value_proj.bias', f'model.decoder.layers.{i}.encoder_attn.value_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.weight', f'model.decoder.layers.{i}.encoder_attn.output_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.cross_attn.output_proj.bias', f'model.decoder.layers.{i}.encoder_attn.output_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.weight', f'model.decoder.layers.{i}.encoder_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm1.bias', f'model.decoder.layers.{i}.encoder_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.weight', f'model.decoder.layers.{i}.self_attn.out_proj.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.self_attn.out_proj.bias', f'model.decoder.layers.{i}.self_attn.out_proj.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.weight', f'model.decoder.layers.{i}.self_attn_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm2.bias', f'model.decoder.layers.{i}.self_attn_layer_norm.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.weight', f'model.decoder.layers.{i}.fc1.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear1.bias', f'model.decoder.layers.{i}.fc1.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.weight', f'model.decoder.layers.{i}.fc2.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.linear2.bias', f'model.decoder.layers.{i}.fc2.bias') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.weight', f'model.decoder.layers.{i}.final_layer_norm.weight') ) rename_keys.append((f'transformer.decoder.layers.{i}.norm3.bias', f'model.decoder.layers.{i}.final_layer_norm.bias') ) # fmt: on return rename_keys def A ( snake_case :List[str] , snake_case :Optional[Any] , snake_case :List[str] ) -> List[str]: __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val def A ( snake_case :List[Any] , snake_case :str ) -> Any: __UpperCamelCase = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): __UpperCamelCase = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight' ) __UpperCamelCase = state_dict.pop(f'backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[:dim, :] __UpperCamelCase = in_proj_bias[: dim] __UpperCamelCase = in_proj_weight[ dim : dim * 2, : ] __UpperCamelCase = in_proj_bias[ dim : dim * 2 ] __UpperCamelCase = in_proj_weight[ -dim :, : ] __UpperCamelCase = in_proj_bias[-dim :] # fmt: on def A ( snake_case :Dict , snake_case :Dict ) -> Optional[Any]: # transformer decoder self-attention layers __UpperCamelCase = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention __UpperCamelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_weight' ) __UpperCamelCase = state_dict.pop(f'transformer.decoder.layers.{i}.self_attn.in_proj_bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[:hidden_size, :] __UpperCamelCase = in_proj_bias[:hidden_size] __UpperCamelCase = in_proj_weight[ hidden_size : hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[hidden_size : hidden_size * 2] __UpperCamelCase = in_proj_weight[-hidden_size:, :] __UpperCamelCase = in_proj_bias[-hidden_size:] def A ( ) -> List[Any]: __UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg' __UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw ) return im @torch.no_grad() def A ( snake_case :List[str] , snake_case :Any , snake_case :Union[str, Any] ) -> Any: __UpperCamelCase = get_deta_config(snake_case ) # load original state dict if model_name == "deta-swin-large": __UpperCamelCase = hf_hub_download(repo_id='nielsr/deta-checkpoints' , filename='adet_swin_ft.pth' ) elif model_name == "deta-swin-large-o365": __UpperCamelCase = hf_hub_download(repo_id='jozhang97/deta-swin-l-o365' , filename='deta_swin_pt_o365.pth' ) else: raise ValueError(f'Model name {model_name} not supported' ) __UpperCamelCase = torch.load(snake_case , map_location='cpu' )['model'] # original state dict for name, param in state_dict.items(): print(snake_case , param.shape ) # rename keys __UpperCamelCase = create_rename_keys(snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_swin_q_k_v(snake_case , config.backbone_config ) read_in_decoder_q_k_v(snake_case , snake_case ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = val if "input_proj" in key: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: __UpperCamelCase = state_dict.pop(snake_case ) __UpperCamelCase = val # finally, create HuggingFace model and load state dict __UpperCamelCase = DetaForObjectDetection(snake_case ) model.load_state_dict(snake_case ) model.eval() __UpperCamelCase = 'cuda' if torch.cuda.is_available() else 'cpu' model.to(snake_case ) # load image processor __UpperCamelCase = DetaImageProcessor(format='coco_detection' ) # verify our conversion on image __UpperCamelCase = prepare_img() __UpperCamelCase = processor(images=snake_case , return_tensors='pt' ) __UpperCamelCase = encoding['pixel_values'] __UpperCamelCase = model(pixel_values.to(snake_case ) ) # verify logits print('Logits:' , outputs.logits[0, :3, :3] ) print('Boxes:' , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": __UpperCamelCase = torch.tensor( [[-7.6_308, -2.8_485, -5.3_737], [-7.2_037, -4.5_505, -4.8_027], [-7.2_943, -4.2_611, -4.6_617]] ) __UpperCamelCase = torch.tensor([[0.4_987, 0.4_969, 0.9_999], [0.2_549, 0.5_498, 0.4_805], [0.5_498, 0.2_757, 0.0_569]] ) elif model_name == "deta-swin-large-o365": __UpperCamelCase = torch.tensor( [[-8.0_122, -3.5_720, -4.9_717], [-8.1_547, -3.6_886, -4.6_389], [-7.6_610, -3.6_194, -5.0_134]] ) __UpperCamelCase = torch.tensor([[0.2_523, 0.5_549, 0.4_881], [0.7_715, 0.4_149, 0.4_601], [0.5_503, 0.2_753, 0.0_575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(snake_case ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(snake_case ) , atol=1e-4 ) print('Everything ok!' ) if pytorch_dump_folder_path: # Save model and processor logger.info(f'Saving PyTorch model and processor to {pytorch_dump_folder_path}...' ) Path(snake_case ).mkdir(exist_ok=snake_case ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) # Push to hub if push_to_hub: print('Pushing model and processor to hub...' ) model.push_to_hub(f'jozhang97/{model_name}' ) processor.push_to_hub(f'jozhang97/{model_name}' ) if __name__ == "__main__": UpperCamelCase : int = argparse.ArgumentParser() parser.add_argument( "--model_name", type=str, default="deta-swin-large", choices=["deta-swin-large", "deta-swin-large-o365"], help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase : List[str] = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "CLIPImageProcessor" lowercase = ("XLMRobertaTokenizer", "XLMRobertaTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __UpperCamelCase = self.tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.tokenizer.model_input_names __UpperCamelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" import argparse import json import numpy import torch from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def A ( snake_case :List[str] , snake_case :str ) -> Dict: # Load checkpoint __UpperCamelCase = torch.load(snake_case , map_location='cpu' ) __UpperCamelCase = chkpt['model'] # We have the base model one level deeper than the original XLM repository __UpperCamelCase = {} for k, v in state_dict.items(): if "pred_layer" in k: __UpperCamelCase = v else: __UpperCamelCase = v __UpperCamelCase = chkpt['params'] __UpperCamelCase = {n: v for n, v in config.items() if not isinstance(snake_case , (torch.FloatTensor, numpy.ndarray) )} __UpperCamelCase = chkpt['dico_word2id'] __UpperCamelCase = {s + '</w>' if s.find('@@' ) == -1 and i > 1_3 else s.replace('@@' , '' ): i for s, i in vocab.items()} # Save pytorch-model __UpperCamelCase = pytorch_dump_folder_path + '/' + WEIGHTS_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + CONFIG_NAME __UpperCamelCase = pytorch_dump_folder_path + '/' + VOCAB_FILES_NAMES['vocab_file'] print(f'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(snake_case , snake_case ) print(f'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , indent=2 ) + '\n' ) print(f'Save vocab file to {pytorch_config_dump_path}' ) with open(snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(snake_case , indent=2 ) + '\n' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--xlm_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) UpperCamelCase : Optional[Any] = parser.parse_args() convert_xlm_checkpoint_to_pytorch(args.xlm_checkpoint_path, args.pytorch_dump_folder_path)
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase : str = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "deformable_detr" lowercase = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=3 , __UpperCAmelCase=300 , __UpperCAmelCase=1024 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=6 , __UpperCAmelCase=1024 , __UpperCAmelCase=8 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="relu" , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase="sine" , __UpperCAmelCase="resnet50" , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=300 , __UpperCAmelCase=False , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , __UpperCAmelCase=5 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.2_5 , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.' ) if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) __UpperCamelCase = CONFIG_MAPPING['resnet'](out_features=['stage4'] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = backbone_config.get('model_type' ) __UpperCamelCase = CONFIG_MAPPING[backbone_model_type] __UpperCamelCase = config_class.from_dict(__UpperCAmelCase ) __UpperCamelCase = use_timm_backbone __UpperCamelCase = backbone_config __UpperCamelCase = num_channels __UpperCamelCase = num_queries __UpperCamelCase = max_position_embeddings __UpperCamelCase = d_model __UpperCamelCase = encoder_ffn_dim __UpperCamelCase = encoder_layers __UpperCamelCase = encoder_attention_heads __UpperCamelCase = decoder_ffn_dim __UpperCamelCase = decoder_layers __UpperCamelCase = decoder_attention_heads __UpperCamelCase = dropout __UpperCamelCase = attention_dropout __UpperCamelCase = activation_dropout __UpperCamelCase = activation_function __UpperCamelCase = init_std __UpperCamelCase = init_xavier_std __UpperCamelCase = encoder_layerdrop __UpperCamelCase = auxiliary_loss __UpperCamelCase = position_embedding_type __UpperCamelCase = backbone __UpperCamelCase = use_pretrained_backbone __UpperCamelCase = dilation # deformable attributes __UpperCamelCase = num_feature_levels __UpperCamelCase = encoder_n_points __UpperCamelCase = decoder_n_points __UpperCamelCase = two_stage __UpperCamelCase = two_stage_num_proposals __UpperCamelCase = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.' ) # Hungarian matcher __UpperCamelCase = class_cost __UpperCamelCase = bbox_cost __UpperCamelCase = giou_cost # Loss coefficients __UpperCamelCase = mask_loss_coefficient __UpperCamelCase = dice_loss_coefficient __UpperCamelCase = bbox_loss_coefficient __UpperCamelCase = giou_loss_coefficient __UpperCamelCase = eos_coefficient __UpperCamelCase = focal_alpha __UpperCamelCase = disable_custom_kernels super().__init__(is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self ): '''simple docstring''' return self.d_model def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) if self.backbone_config is not None: __UpperCamelCase = self.backbone_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" from ....utils import logging UpperCamelCase : List[str] = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=2048 ): '''simple docstring''' __UpperCamelCase = config.__dict__ __UpperCamelCase = modal_hidden_size if num_labels: __UpperCamelCase = num_labels
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase : Union[str, Any] = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : int = ["CLIPFeatureExtractor"] UpperCamelCase : Any = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Union[str, Any] = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> int: __UpperCamelCase = 1 # To kept the Calculated Value # Since C(n, k) = C(n, n-k) if k > (n - k): __UpperCamelCase = n - k # Calculate C(n,k) for i in range(snake_case ): result *= n - i result //= i + 1 return result def A ( snake_case :int ) -> int: return binomial_coefficient(2 * node_count , snake_case ) // (node_count + 1) def A ( snake_case :int ) -> int: if n < 0: raise ValueError('factorial() not defined for negative values' ) __UpperCamelCase = 1 for i in range(1 , n + 1 ): result *= i return result def A ( snake_case :int ) -> int: return catalan_number(snake_case ) * factorial(snake_case ) if __name__ == "__main__": UpperCamelCase : Tuple = int(input("Enter the number of nodes: ").strip() or 0) if node_count <= 0: raise ValueError("We need some nodes to work with.") print( f'''Given {node_count} nodes, there are {binary_tree_count(node_count)} ''' f'''binary trees and {catalan_number(node_count)} binary search trees.''' )
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase : Tuple = logging.get_logger(__name__) def A ( snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , snake_case :Optional[Any]=False , snake_case :Any=False ) -> Optional[int]: __UpperCamelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f'transformer.blocks.{i}.norm1.weight', f'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm1.bias', f'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.weight', f'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (f'transformer.blocks.{i}.attn.proj.bias', f'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.norm2.weight', f'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((f'transformer.blocks.{i}.norm2.bias', f'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (f'transformer.blocks.{i}.mlp.fc1.weight', f'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc1.bias', f'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.weight', f'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((f'transformer.blocks.{i}.mlp.fc2.bias', f'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ('text_embeddings.word_embeddings.weight', 'vilt.embeddings.text_embeddings.word_embeddings.weight'), ( 'text_embeddings.position_embeddings.weight', 'vilt.embeddings.text_embeddings.position_embeddings.weight', ), ('text_embeddings.position_ids', 'vilt.embeddings.text_embeddings.position_ids'), ( 'text_embeddings.token_type_embeddings.weight', 'vilt.embeddings.text_embeddings.token_type_embeddings.weight', ), ('text_embeddings.LayerNorm.weight', 'vilt.embeddings.text_embeddings.LayerNorm.weight'), ('text_embeddings.LayerNorm.bias', 'vilt.embeddings.text_embeddings.LayerNorm.bias'), # patch embeddings ('transformer.cls_token', 'vilt.embeddings.cls_token'), ('transformer.patch_embed.proj.weight', 'vilt.embeddings.patch_embeddings.projection.weight'), ('transformer.patch_embed.proj.bias', 'vilt.embeddings.patch_embeddings.projection.bias'), ('transformer.pos_embed', 'vilt.embeddings.position_embeddings'), # token type embeddings ('token_type_embeddings.weight', 'vilt.embeddings.token_type_embeddings.weight'), ] ) # final layernorm + pooler rename_keys.extend( [ ('transformer.norm.weight', 'vilt.layernorm.weight'), ('transformer.norm.bias', 'vilt.layernorm.bias'), ('pooler.dense.weight', 'vilt.pooler.dense.weight'), ('pooler.dense.bias', 'vilt.pooler.dense.bias'), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('vqa_classifier.0.weight', 'classifier.0.weight'), ('vqa_classifier.0.bias', 'classifier.0.bias'), ('vqa_classifier.1.weight', 'classifier.1.weight'), ('vqa_classifier.1.bias', 'classifier.1.bias'), ('vqa_classifier.3.weight', 'classifier.3.weight'), ('vqa_classifier.3.bias', 'classifier.3.bias'), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('nlvr2_classifier.0.weight', 'classifier.0.weight'), ('nlvr2_classifier.0.bias', 'classifier.0.bias'), ('nlvr2_classifier.1.weight', 'classifier.1.weight'), ('nlvr2_classifier.1.bias', 'classifier.1.bias'), ('nlvr2_classifier.3.weight', 'classifier.3.weight'), ('nlvr2_classifier.3.bias', 'classifier.3.bias'), ] ) else: pass return rename_keys def A ( snake_case :Optional[int] , snake_case :Optional[Any] ) -> List[str]: for i in range(config.num_hidden_layers ): __UpperCamelCase = 'vilt.' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __UpperCamelCase = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.weight' ) __UpperCamelCase = state_dict.pop(f'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict __UpperCamelCase = in_proj_weight[ : config.hidden_size, : ] __UpperCamelCase = in_proj_bias[: config.hidden_size] __UpperCamelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __UpperCamelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __UpperCamelCase = in_proj_weight[ -config.hidden_size :, : ] __UpperCamelCase = in_proj_bias[-config.hidden_size :] def A ( snake_case :Optional[int] ) -> Tuple: __UpperCamelCase = ['head.weight', 'head.bias'] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) def A ( snake_case :Any , snake_case :int , snake_case :Optional[int] ) -> Tuple: __UpperCamelCase = dct.pop(snake_case ) __UpperCamelCase = val @torch.no_grad() def A ( snake_case :List[Any] , snake_case :Any ) -> Dict: __UpperCamelCase = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=snake_case ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False if "vqa" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 3_1_2_9 __UpperCamelCase = 'huggingface/label-files' __UpperCamelCase = 'vqa2-id2label.json' __UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) ) __UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()} __UpperCamelCase = idalabel __UpperCamelCase = {v: k for k, v in idalabel.items()} __UpperCamelCase = ViltForQuestionAnswering(snake_case ) elif "nlvr" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = 2 __UpperCamelCase = {0: 'False', 1: 'True'} __UpperCamelCase = {v: k for k, v in config.idalabel.items()} __UpperCamelCase = 3 __UpperCamelCase = ViltForImagesAndTextClassification(snake_case ) elif "irtr" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = ViltForImageAndTextRetrieval(snake_case ) elif "mlm_itm" in checkpoint_url: __UpperCamelCase = True __UpperCamelCase = ViltForMaskedLM(snake_case ) else: raise ValueError('Unknown model type' ) # load state_dict of original model, remove and rename some keys __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case , map_location='cpu' )['state_dict'] __UpperCamelCase = create_rename_keys(snake_case , snake_case , snake_case , snake_case ) for src, dest in rename_keys: rename_key(snake_case , snake_case , snake_case ) read_in_q_k_v(snake_case , snake_case ) if mlm_model or irtr_model: __UpperCamelCase = ['itm_score.fc.weight', 'itm_score.fc.bias'] for k in ignore_keys: state_dict.pop(snake_case , snake_case ) # load state dict into HuggingFace model model.eval() if mlm_model: __UpperCamelCase , __UpperCamelCase = model.load_state_dict(snake_case , strict=snake_case ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(snake_case ) # Define processor __UpperCamelCase = ViltImageProcessor(size=3_8_4 ) __UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) __UpperCamelCase = ViltProcessor(snake_case , snake_case ) # Forward pass on example inputs (image + text) if nlvr_model: __UpperCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=snake_case ).raw ) __UpperCamelCase = Image.open(requests.get('https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg' , stream=snake_case ).raw ) __UpperCamelCase = ( 'The left image contains twice the number of dogs as the right image, and at least two dogs in total are' ' standing.' ) __UpperCamelCase = processor(snake_case , snake_case , return_tensors='pt' ) __UpperCamelCase = processor(snake_case , snake_case , return_tensors='pt' ) __UpperCamelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: __UpperCamelCase = Image.open(requests.get('http://images.cocodataset.org/val2017/000000039769.jpg' , stream=snake_case ).raw ) if mlm_model: __UpperCamelCase = 'a bunch of [MASK] laying on a [MASK].' else: __UpperCamelCase = 'How many cats are there?' __UpperCamelCase = processor(snake_case , snake_case , return_tensors='pt' ) __UpperCamelCase = model(**snake_case ) # Verify outputs if mlm_model: __UpperCamelCase = torch.Size([1, 1_1, 3_0_5_2_2] ) __UpperCamelCase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case , atol=1e-4 ) # verify masked token prediction equals "cats" __UpperCamelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: __UpperCamelCase = torch.Size([1, 3_1_2_9] ) __UpperCamelCase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , snake_case , atol=1e-4 ) # verify vqa prediction equals "2" __UpperCamelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: __UpperCamelCase = torch.Size([1, 2] ) __UpperCamelCase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , snake_case , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(snake_case ).mkdir(exist_ok=snake_case ) print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase : Tuple = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" import numpy # List of input, output pairs UpperCamelCase : Dict = ( ((5, 2, 3), 1_5), ((6, 5, 9), 2_5), ((1_1, 1_2, 1_3), 4_1), ((1, 1, 1), 8), ((1_1, 1_2, 1_3), 4_1), ) UpperCamelCase : List[Any] = (((5_1_5, 2_2, 1_3), 5_5_5), ((6_1, 3_5, 4_9), 1_5_0)) UpperCamelCase : Dict = [2, 4, 1, 5] UpperCamelCase : Union[str, Any] = len(train_data) UpperCamelCase : Dict = 0.0_09 def A ( snake_case :Any , snake_case :Tuple="train" ) -> str: return calculate_hypothesis_value(snake_case , snake_case ) - output( snake_case , snake_case ) def A ( snake_case :Union[str, Any] ) -> str: __UpperCamelCase = 0 for i in range(len(snake_case ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def A ( snake_case :List[str] , snake_case :List[Any] ) -> Union[str, Any]: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def A ( snake_case :List[Any] , snake_case :Optional[int] ) -> Union[str, Any]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def A ( snake_case :List[str] , snake_case :Dict=m ) -> Dict: __UpperCamelCase = 0 for i in range(snake_case ): if index == -1: summation_value += _error(snake_case ) else: summation_value += _error(snake_case ) * train_data[i][0][index] return summation_value def A ( snake_case :int ) -> Dict: __UpperCamelCase = summation_of_cost_derivative(snake_case , snake_case ) / m return cost_derivative_value def A ( ) -> List[str]: global parameter_vector # Tune these values to set a tolerance value for predicted output __UpperCamelCase = 0.000_002 __UpperCamelCase = 0 __UpperCamelCase = 0 while True: j += 1 __UpperCamelCase = [0, 0, 0, 0] for i in range(0 , len(snake_case ) ): __UpperCamelCase = get_cost_derivative(i - 1 ) __UpperCamelCase = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( snake_case , snake_case , atol=snake_case , rtol=snake_case , ): break __UpperCamelCase = temp_parameter_vector print(('Number of iterations:', j) ) def A ( ) -> Any: for i in range(len(snake_case ) ): print(('Actual output value:', output(snake_case , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(snake_case , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("\nTesting gradient descent for a linear hypothesis function.\n") test_gradient_descent()
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from __future__ import annotations from collections import deque class __lowerCAmelCase : def __init__( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] self.adlist.append( {'value': '', 'next_states': [], 'fail_state': 0, 'output': []} ) for keyword in keywords: self.add_keyword(__UpperCAmelCase ) self.set_fail_transitions() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 0 for character in keyword: __UpperCamelCase = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase ) if next_state is None: self.adlist.append( { 'value': character, 'next_states': [], 'fail_state': 0, 'output': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) __UpperCamelCase = len(self.adlist ) - 1 else: __UpperCamelCase = next_state self.adlist[current_state]["output"].append(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = deque() for node in self.adlist[0]["next_states"]: q.append(__UpperCAmelCase ) __UpperCamelCase = 0 while q: __UpperCamelCase = q.popleft() for child in self.adlist[r]["next_states"]: q.append(__UpperCAmelCase ) __UpperCamelCase = self.adlist[r]['fail_state'] while ( self.find_next_state(__UpperCAmelCase , self.adlist[child]['value'] ) is None and state != 0 ): __UpperCamelCase = self.adlist[state]['fail_state'] __UpperCamelCase = self.find_next_state( __UpperCAmelCase , self.adlist[child]['value'] ) if self.adlist[child]["fail_state"] is None: __UpperCamelCase = 0 __UpperCamelCase = ( self.adlist[child]['output'] + self.adlist[self.adlist[child]['fail_state']]['output'] ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = {} # returns a dict with keywords and list of its occurrences __UpperCamelCase = 0 for i in range(len(__UpperCAmelCase ) ): while ( self.find_next_state(__UpperCAmelCase , string[i] ) is None and current_state != 0 ): __UpperCamelCase = self.adlist[current_state]['fail_state'] __UpperCamelCase = self.find_next_state(__UpperCAmelCase , string[i] ) if next_state is None: __UpperCamelCase = 0 else: __UpperCamelCase = next_state for key in self.adlist[current_state]["output"]: if key not in result: __UpperCamelCase = [] result[key].append(i - len(__UpperCAmelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase : Optional[Any] = logging.get_logger(__name__) UpperCamelCase : Optional[Any] = { "google/pix2struct-textcaps-base": ( "https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "pix2struct_text_model" lowercase = ["past_key_values"] lowercase = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , __UpperCAmelCase=5_0244 , __UpperCAmelCase=768 , __UpperCAmelCase=64 , __UpperCAmelCase=2048 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1E-6 , __UpperCAmelCase=1.0 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = d_kv __UpperCamelCase = d_ff __UpperCamelCase = num_layers __UpperCamelCase = num_heads __UpperCamelCase = relative_attention_num_buckets __UpperCamelCase = relative_attention_max_distance __UpperCamelCase = dropout_rate __UpperCamelCase = layer_norm_epsilon __UpperCamelCase = initializer_factor __UpperCamelCase = use_cache __UpperCamelCase = eos_token_id __UpperCamelCase = decoder_start_token_id # for backwards compatibility __UpperCamelCase = dense_act_fn super().__init__( pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , tie_word_embeddings=__UpperCAmelCase , is_decoder=__UpperCAmelCase , **__UpperCAmelCase , ) @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": __UpperCamelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "pix2struct_vision_model" def __init__( self , __UpperCAmelCase=768 , __UpperCAmelCase=768 , __UpperCAmelCase=2048 , __UpperCAmelCase=64 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase="gelu_new" , __UpperCAmelCase=1E-6 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-10 , __UpperCAmelCase=1.0 , __UpperCAmelCase=4096 , __UpperCAmelCase=32 , __UpperCAmelCase=128 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = hidden_size __UpperCamelCase = patch_embed_hidden_size __UpperCamelCase = d_ff __UpperCamelCase = dropout_rate __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = initializer_range __UpperCamelCase = initializer_factor __UpperCamelCase = attention_dropout __UpperCamelCase = layer_norm_eps __UpperCamelCase = dense_act_fn __UpperCamelCase = seq_len __UpperCamelCase = relative_attention_num_buckets __UpperCamelCase = relative_attention_max_distance __UpperCamelCase = d_kv @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' cls._set_token_in_kwargs(__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = cls.get_config_dict(__UpperCAmelCase , **__UpperCAmelCase ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('model_type' ) == "pix2struct": __UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(__UpperCAmelCase , **__UpperCAmelCase ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = "pix2struct" lowercase = True def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=1.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(tie_word_embeddings=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , **__UpperCAmelCase ) if text_config is None: __UpperCamelCase = {} logger.info('text_config is None. Initializing the Pix2StructTextConfig with default values.' ) if vision_config is None: __UpperCamelCase = {} logger.info('vision_config is None. Initializing the Pix2StructVisionConfig with default values.' ) __UpperCamelCase = PixaStructTextConfig(**__UpperCAmelCase ) __UpperCamelCase = PixaStructVisionConfig(**__UpperCAmelCase ) __UpperCamelCase = self.text_config.decoder_start_token_id __UpperCamelCase = self.text_config.pad_token_id __UpperCamelCase = self.text_config.eos_token_id __UpperCamelCase = initializer_factor __UpperCamelCase = initializer_range __UpperCamelCase = self.initializer_range __UpperCamelCase = self.initializer_range __UpperCamelCase = is_vqa @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.text_config.to_dict() __UpperCamelCase = self.vision_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
316
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
1
"""simple docstring""" import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu UpperCamelCase : Tuple = get_tests_dir() + "/test_data/fsmt/fsmt_val_data.json" with io.open(filename, "r", encoding="utf-8") as f: UpperCamelCase : int = json.load(f) @require_torch class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return FSMTTokenizer.from_pretrained(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = FSMTForConditionalGeneration.from_pretrained(__UpperCAmelCase ).to(__UpperCAmelCase ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ['en-ru', 2_6.0], ['ru-en', 2_2.0], ['en-de', 2_2.0], ['de-en', 2_9.0], ] ) @slow def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = F'facebook/wmt19-{pair}' __UpperCamelCase = self.get_tokenizer(__UpperCAmelCase ) __UpperCamelCase = self.get_model(__UpperCAmelCase ) __UpperCamelCase = bleu_data[pair]['src'] __UpperCamelCase = bleu_data[pair]['tgt'] __UpperCamelCase = tokenizer(__UpperCAmelCase , return_tensors='pt' , truncation=__UpperCAmelCase , padding='longest' ).to(__UpperCAmelCase ) __UpperCamelCase = model.generate( input_ids=batch.input_ids , num_beams=8 , ) __UpperCamelCase = tokenizer.batch_decode( __UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase ) __UpperCamelCase = calculate_bleu(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) self.assertGreaterEqual(scores['bleu'] , __UpperCAmelCase )
316
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
1
"""simple docstring""" def A ( snake_case :int , snake_case :int , snake_case :int ) -> int: if exponent == 1: return base if exponent % 2 == 0: __UpperCamelCase = _modexpt(snake_case , exponent // 2 , snake_case ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(snake_case , exponent - 1 , snake_case )) % modulo_value def A ( snake_case :int = 1_7_7_7 , snake_case :int = 1_8_5_5 , snake_case :int = 8 ) -> int: __UpperCamelCase = base for _ in range(1 , snake_case ): __UpperCamelCase = _modexpt(snake_case , snake_case , 1_0**digits ) return result if __name__ == "__main__": print(f'''{solution() = }''')
316
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
1
"""simple docstring""" from __future__ import annotations def A ( snake_case :float , snake_case :float , snake_case :float ) -> dict[str, float]: if (voltage, current, resistance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance < 0: raise ValueError('Resistance cannot be negative' ) if voltage == 0: return {"voltage": float(current * resistance )} elif current == 0: return {"current": voltage / resistance} elif resistance == 0: return {"resistance": voltage / current} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
316
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
1
"""simple docstring""" import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def A ( snake_case :int ) -> List[Any]: __UpperCamelCase = model.config __UpperCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 1_6, 3_2] , window_size=original_config.window_size , embed_dim=1_2_8 , ) __UpperCamelCase = MBartConfig( is_decoder=snake_case , is_encoder_decoder=snake_case , add_cross_attention=snake_case , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=snake_case , add_final_layer_norm=snake_case , ) return encoder_config, decoder_config def A ( snake_case :List[str] ) -> Union[str, Any]: if "encoder.model" in name: __UpperCamelCase = name.replace('encoder.model' , 'encoder' ) if "decoder.model" in name: __UpperCamelCase = name.replace('decoder.model' , 'decoder' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace('patch_embed.norm' , 'embeddings.norm' ) if name.startswith('encoder' ): if "layers" in name: __UpperCamelCase = 'encoder.' + name if "attn.proj" in name: __UpperCamelCase = name.replace('attn.proj' , 'attention.output.dense' ) if "attn" in name and "mask" not in name: __UpperCamelCase = name.replace('attn' , 'attention.self' ) if "norm1" in name: __UpperCamelCase = name.replace('norm1' , 'layernorm_before' ) if "norm2" in name: __UpperCamelCase = name.replace('norm2' , 'layernorm_after' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('mlp.fc1' , 'intermediate.dense' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('mlp.fc2' , 'output.dense' ) if name == "encoder.norm.weight": __UpperCamelCase = 'encoder.layernorm.weight' if name == "encoder.norm.bias": __UpperCamelCase = 'encoder.layernorm.bias' return name def A ( snake_case :str , snake_case :str ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(snake_case ) if "qkv" in key: __UpperCamelCase = key.split('.' ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = int(key_split[5] ) __UpperCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[:dim] __UpperCamelCase = val[dim : dim * 2] __UpperCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCamelCase = val return orig_state_dict def A ( snake_case :List[Any] , snake_case :List[Any]=None , snake_case :int=False ) -> List[Any]: # load original model __UpperCamelCase = DonutModel.from_pretrained(snake_case ).eval() # load HuggingFace model __UpperCamelCase , __UpperCamelCase = get_configs(snake_case ) __UpperCamelCase = DonutSwinModel(snake_case ) __UpperCamelCase = MBartForCausalLM(snake_case ) __UpperCamelCase = VisionEncoderDecoderModel(encoder=snake_case , decoder=snake_case ) model.eval() __UpperCamelCase = original_model.state_dict() __UpperCamelCase = convert_state_dict(snake_case , snake_case ) model.load_state_dict(snake_case ) # verify results on scanned document __UpperCamelCase = load_dataset('hf-internal-testing/example-documents' ) __UpperCamelCase = dataset['test'][0]['image'].convert('RGB' ) __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained(snake_case , from_slow=snake_case ) __UpperCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCamelCase = DonutProcessor(snake_case , snake_case ) __UpperCamelCase = processor(snake_case , return_tensors='pt' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCamelCase = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __UpperCamelCase = 'When is the coffee break?' __UpperCamelCase = task_prompt.replace('{user_input}' , snake_case ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCamelCase = '<s_rvlcdip>' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCamelCase = '<s_cord>' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCamelCase = 's_cord-v2>' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCamelCase = '<s_zhtrainticket>' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCamelCase = 'hello world' else: raise ValueError('Model name not supported' ) __UpperCamelCase = original_model.decoder.tokenizer(snake_case , add_special_tokens=snake_case , return_tensors='pt' )[ 'input_ids' ] __UpperCamelCase = original_model.encoder.model.patch_embed(snake_case ) __UpperCamelCase , __UpperCamelCase = model.encoder.embeddings(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) # verify encoder hidden states __UpperCamelCase = original_model.encoder(snake_case ) __UpperCamelCase = model.encoder(snake_case ).last_hidden_state assert torch.allclose(snake_case , snake_case , atol=1e-2 ) # verify decoder hidden states __UpperCamelCase = original_model(snake_case , snake_case , snake_case ).logits __UpperCamelCase = model(snake_case , decoder_input_ids=snake_case ).logits assert torch.allclose(snake_case , snake_case , atol=1e-3 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(f'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case ) processor.save_pretrained(snake_case ) if push_to_hub: model.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) processor.push_to_hub('nielsr/' + model_name.split('/' )[-1] , commit_message='Update model' ) if __name__ == "__main__": UpperCamelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) UpperCamelCase : List[Any] = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
316
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata UpperCamelCase : Optional[Any] = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class __lowerCAmelCase ( tr.AbstractTransform ): def __init__( self , __UpperCAmelCase = " " ): '''simple docstring''' __UpperCamelCase = sentence_delimiter def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return list(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for sent_idx, sentence in enumerate(__UpperCAmelCase ): chars.extend(self.process_string(__UpperCAmelCase ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(__UpperCAmelCase ) - 1: chars.append(self.sentence_delimiter ) return chars UpperCamelCase : Any = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: UpperCamelCase : List[Any] = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) UpperCamelCase : Any = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" UpperCamelCase : Optional[Any] = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" UpperCamelCase : Dict = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): def UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' if concatenate_texts: return jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , )["wer"] __UpperCamelCase = 0 __UpperCamelCase = 0 for prediction, reference in zip(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = jiwer.compute_measures( __UpperCAmelCase , __UpperCAmelCase , truth_transform=__UpperCAmelCase , hypothesis_transform=__UpperCAmelCase , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
316
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
1
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
1
"""simple docstring""" import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCamelCase : Optional[int] = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def A ( snake_case :np.ndarray , snake_case :float , snake_case :int = 1_6_0_0_0 ) -> List[str]: __UpperCamelCase = int(round(sample_rate * max_length ) ) if len(snake_case ) <= sample_length: return wav __UpperCamelCase = randint(0 , len(snake_case ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class __lowerCAmelCase : lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name of a dataset from the datasets package"} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A file containing the training audio paths and labels."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "A file containing the validation audio paths and labels."} ) lowercase = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) lowercase = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) lowercase = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) lowercase = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) lowercase = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class __lowerCAmelCase : lowercase = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) lowercase = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Name or path of preprocessor config."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( 'The argument `--freeze_feature_extractor` is deprecated and ' 'will be removed in a future version. Use `--freeze_feature_encoder`' 'instead. Setting `freeze_feature_encoder==True`.' , __UpperCAmelCase , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( 'The argument `--freeze_feature_extractor` is deprecated and ' 'should not be used in combination with `--freeze_feature_encoder`.' 'Only make use of `--freeze_feature_encoder`.' ) def A ( ) -> Any: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. __UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_audio_classification' , snake_case , snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __UpperCamelCase = training_args.get_process_log_level() logger.setLevel(snake_case ) transformers.utils.logging.set_verbosity(snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + f'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(f'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. __UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. ' 'Use --overwrite_output_dir to train from scratch.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( f'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset and prepare it for the audio classification task. __UpperCamelCase = DatasetDict() __UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' 'Make sure to set `--audio_column_name` to the correct audio column - one of ' f'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( f'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' 'Make sure to set `--label_column_name` to the correct text column - one of ' f'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy __UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. __UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) __UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(snake_case :Tuple ): __UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: __UpperCamelCase = random_subsample( audio['array'] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(snake_case ) __UpperCamelCase = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __UpperCamelCase = {model_input_name: inputs.get(snake_case )} __UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(snake_case :Any ): __UpperCamelCase = [audio['array'] for audio in batch[data_args.audio_column_name]] __UpperCamelCase = feature_extractor(snake_case , sampling_rate=feature_extractor.sampling_rate ) __UpperCamelCase = {model_input_name: inputs.get(snake_case )} __UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. __UpperCamelCase = raw_datasets['train'].features[data_args.label_column_name].names __UpperCamelCase , __UpperCamelCase = {}, {} for i, label in enumerate(snake_case ): __UpperCamelCase = str(snake_case ) __UpperCamelCase = label # Load the accuracy metric from the datasets package __UpperCamelCase = evaluate.load('accuracy' ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(snake_case :List[Any] ): __UpperCamelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=snake_case , references=eval_pred.label_ids ) __UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(snake_case ) , labelaid=snake_case , idalabel=snake_case , finetuning_task='audio-classification' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) __UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: __UpperCamelCase = ( raw_datasets['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(snake_case , output_all_columns=snake_case ) if training_args.do_eval: if data_args.max_eval_samples is not None: __UpperCamelCase = ( raw_datasets['eval'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(snake_case , output_all_columns=snake_case ) # Initialize our trainer __UpperCamelCase = Trainer( model=snake_case , args=snake_case , train_dataset=raw_datasets['train'] if training_args.do_train else None , eval_dataset=raw_datasets['eval'] if training_args.do_eval else None , compute_metrics=snake_case , tokenizer=snake_case , ) # Training if training_args.do_train: __UpperCamelCase = None if training_args.resume_from_checkpoint is not None: __UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: __UpperCamelCase = last_checkpoint __UpperCamelCase = trainer.train(resume_from_checkpoint=snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __UpperCamelCase = trainer.evaluate() trainer.log_metrics('eval' , snake_case ) trainer.save_metrics('eval' , snake_case ) # Write model card and (optionally) push to hub __UpperCamelCase = { 'finetuned_from': model_args.model_name_or_path, 'tasks': 'audio-classification', 'dataset': data_args.dataset_name, 'tags': ['audio-classification'], } if training_args.push_to_hub: trainer.push_to_hub(**snake_case ) else: trainer.create_model_card(**snake_case ) if __name__ == "__main__": main()
316
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :list ) -> list: if len(snake_case ) <= 1: return [tuple(snake_case )] __UpperCamelCase = [] def generate(snake_case :int , snake_case :list ): if k == 1: res.append(tuple(arr[:] ) ) return generate(k - 1 , snake_case ) for i in range(k - 1 ): if k % 2 == 0: # k is even __UpperCamelCase , __UpperCamelCase = arr[k - 1], arr[i] else: # k is odd __UpperCamelCase , __UpperCamelCase = arr[k - 1], arr[0] generate(k - 1 , snake_case ) generate(len(snake_case ) , snake_case ) return res if __name__ == "__main__": UpperCamelCase : Optional[Any] = input("Enter numbers separated by a comma:\n").strip() UpperCamelCase : List[Any] = [int(item) for item in user_input.split(",")] print(heaps(arr))
316
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
1
"""simple docstring""" import numpy as np # Importing the Keras libraries and packages import tensorflow as tf from tensorflow.keras import layers, models if __name__ == "__main__": # Initialising the CNN # (Sequential- Building the model layer by layer) UpperCamelCase : Optional[int] = models.Sequential() # Step 1 - Convolution # Here 64,64 is the length & breadth of dataset images and 3 is for the RGB channel # (3,3) is the kernel size (filter matrix) classifier.add( layers.ConvaD(3_2, (3, 3), input_shape=(6_4, 6_4, 3), activation="relu") ) # Step 2 - Pooling classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Adding a second convolutional layer classifier.add(layers.ConvaD(3_2, (3, 3), activation="relu")) classifier.add(layers.MaxPoolingaD(pool_size=(2, 2))) # Step 3 - Flattening classifier.add(layers.Flatten()) # Step 4 - Full connection classifier.add(layers.Dense(units=1_2_8, activation="relu")) classifier.add(layers.Dense(units=1, activation="sigmoid")) # Compiling the CNN classifier.compile( optimizer="adam", loss="binary_crossentropy", metrics=["accuracy"] ) # Part 2 - Fitting the CNN to the images # Load Trained model weights # from keras.models import load_model # regressor=load_model('cnn.h5') UpperCamelCase : str = tf.keras.preprocessing.image.ImageDataGenerator( rescale=1.0 / 2_5_5, shear_range=0.2, zoom_range=0.2, horizontal_flip=True ) UpperCamelCase : Optional[int] = tf.keras.preprocessing.image.ImageDataGenerator(rescale=1.0 / 2_5_5) UpperCamelCase : List[Any] = train_datagen.flow_from_directory( "dataset/training_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) UpperCamelCase : Optional[Any] = test_datagen.flow_from_directory( "dataset/test_set", target_size=(6_4, 6_4), batch_size=3_2, class_mode="binary" ) classifier.fit_generator( training_set, steps_per_epoch=5, epochs=3_0, validation_data=test_set ) classifier.save("cnn.h5") # Part 3 - Making new predictions UpperCamelCase : Optional[Any] = tf.keras.preprocessing.image.load_img( "dataset/single_prediction/image.png", target_size=(6_4, 6_4) ) UpperCamelCase : str = tf.keras.preprocessing.image.img_to_array(test_image) UpperCamelCase : Tuple = np.expand_dims(test_image, axis=0) UpperCamelCase : List[Any] = classifier.predict(test_image) # training_set.class_indices if result[0][0] == 0: UpperCamelCase : Optional[Any] = "Normal" if result[0][0] == 1: UpperCamelCase : List[str] = "Abnormality detected"
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM __UpperCamelCase = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = None , __UpperCAmelCase = 0.0 , __UpperCAmelCase = 50 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , ): '''simple docstring''' if isinstance(self.unet.config.sample_size , __UpperCAmelCase ): __UpperCamelCase = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: __UpperCamelCase = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) and len(__UpperCAmelCase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(__UpperCAmelCase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 __UpperCamelCase = self.scheduler.step( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , eta=__UpperCAmelCase , use_clipped_model_output=__UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample __UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) __UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
1
"""simple docstring""" import cva import numpy as np class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if k in (0.0_4, 0.0_6): __UpperCamelCase = k __UpperCamelCase = window_size else: raise ValueError('invalid k value' ) def __str__( self ): '''simple docstring''' return str(self.k ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = cva.imread(__UpperCAmelCase , 0 ) __UpperCamelCase , __UpperCamelCase = img.shape __UpperCamelCase = [] __UpperCamelCase = img.copy() __UpperCamelCase = cva.cvtColor(__UpperCAmelCase , cva.COLOR_GRAY2RGB ) __UpperCamelCase , __UpperCamelCase = np.gradient(__UpperCAmelCase ) __UpperCamelCase = dx**2 __UpperCamelCase = dy**2 __UpperCamelCase = dx * dy __UpperCamelCase = 0.0_4 __UpperCamelCase = self.window_size // 2 for y in range(__UpperCAmelCase , h - offset ): for x in range(__UpperCAmelCase , w - offset ): __UpperCamelCase = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __UpperCamelCase = (wxx * wyy) - (wxy**2) __UpperCamelCase = wxx + wyy __UpperCamelCase = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": UpperCamelCase : int = HarrisCorner(0.04, 3) UpperCamelCase , UpperCamelCase : Any = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
316
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
1
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from accelerate import PartialState from accelerate.utils.operations import broadcast, gather, gather_object, pad_across_processes, reduce def A ( snake_case :str ) -> Any: return (torch.arange(state.num_processes ) + 1.0 + (state.num_processes * state.process_index)).to(state.device ) def A ( snake_case :Optional[Any] ) -> List[Any]: __UpperCamelCase = create_tensor(snake_case ) __UpperCamelCase = gather(snake_case ) assert gathered_tensor.tolist() == list(range(1 , state.num_processes**2 + 1 ) ) def A ( snake_case :int ) -> Tuple: __UpperCamelCase = [state.process_index] __UpperCamelCase = gather_object(snake_case ) assert len(snake_case ) == state.num_processes, f'{gathered_obj}, {len(snake_case )} != {state.num_processes}' assert gathered_obj == list(range(state.num_processes ) ), f'{gathered_obj} != {list(range(state.num_processes ) )}' def A ( snake_case :Any ) -> Dict: __UpperCamelCase = create_tensor(snake_case ) __UpperCamelCase = broadcast(snake_case ) assert broadcasted_tensor.shape == torch.Size([state.num_processes] ) assert broadcasted_tensor.tolist() == list(range(1 , state.num_processes + 1 ) ) def A ( snake_case :Union[str, Any] ) -> Optional[Any]: # We need to pad the tensor with one more element if we are the main process # to ensure that we can pad if state.is_main_process: __UpperCamelCase = torch.arange(state.num_processes + 1 ).to(state.device ) else: __UpperCamelCase = torch.arange(state.num_processes ).to(state.device ) __UpperCamelCase = pad_across_processes(snake_case ) assert padded_tensor.shape == torch.Size([state.num_processes + 1] ) if not state.is_main_process: assert padded_tensor.tolist() == list(range(0 , state.num_processes ) ) + [0] def A ( snake_case :Optional[Any] ) -> Dict: # For now runs on only two processes if state.num_processes != 2: return __UpperCamelCase = create_tensor(snake_case ) __UpperCamelCase = reduce(snake_case , 'sum' ) __UpperCamelCase = torch.tensor([4.0, 6] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), f'{reduced_tensor} != {truth_tensor}' def A ( snake_case :Tuple ) -> List[str]: # For now runs on only two processes if state.num_processes != 2: return __UpperCamelCase = create_tensor(snake_case ) __UpperCamelCase = reduce(snake_case , 'mean' ) __UpperCamelCase = torch.tensor([2.0, 3] ).to(state.device ) assert torch.allclose(snake_case , snake_case ), f'{reduced_tensor} != {truth_tensor}' def A ( snake_case :int ) -> List[Any]: # For xla_spawn (TPUs) main() def A ( ) -> Optional[int]: __UpperCamelCase = PartialState() state.print(f'State: {state}' ) state.print('testing gather' ) test_gather(snake_case ) state.print('testing gather_object' ) test_gather_object(snake_case ) state.print('testing broadcast' ) test_broadcast(snake_case ) state.print('testing pad_across_processes' ) test_pad_across_processes(snake_case ) state.print('testing reduce_sum' ) test_reduce_sum(snake_case ) state.print('testing reduce_mean' ) test_reduce_mean(snake_case ) if __name__ == "__main__": main()
316
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
1
"""simple docstring""" UpperCamelCase : List[Any] = 2_5_6 # Modulus to hash a string UpperCamelCase : Optional[Any] = 1_0_0_0_0_0_3 def A ( snake_case :str , snake_case :str ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = len(snake_case ) if p_len > t_len: return False __UpperCamelCase = 0 __UpperCamelCase = 0 __UpperCamelCase = 1 # Calculating the hash of pattern and substring of text for i in range(snake_case ): __UpperCamelCase = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus __UpperCamelCase = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue __UpperCamelCase = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash __UpperCamelCase = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def A ( ) -> None: __UpperCamelCase = 'abc1abc12' __UpperCamelCase = 'alskfjaldsabc1abc1abc12k23adsfabcabc' __UpperCamelCase = 'alskfjaldsk23adsfabcabc' assert rabin_karp(snake_case , snake_case ) and not rabin_karp(snake_case , snake_case ) # Test 2) __UpperCamelCase = 'ABABX' __UpperCamelCase = 'ABABZABABYABABX' assert rabin_karp(snake_case , snake_case ) # Test 3) __UpperCamelCase = 'AAAB' __UpperCamelCase = 'ABAAAAAB' assert rabin_karp(snake_case , snake_case ) # Test 4) __UpperCamelCase = 'abcdabcy' __UpperCamelCase = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(snake_case , snake_case ) # Test 5) __UpperCamelCase = 'Lü' __UpperCamelCase = 'Lüsai' assert rabin_karp(snake_case , snake_case ) __UpperCamelCase = 'Lue' assert not rabin_karp(snake_case , snake_case ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
316
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
1
"""simple docstring""" def A ( snake_case :str , snake_case :str ) -> str: __UpperCamelCase = len(snake_case ) __UpperCamelCase = len(snake_case ) __UpperCamelCase = ( first_str_length if first_str_length > second_str_length else second_str_length ) __UpperCamelCase = [] for char_count in range(snake_case ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(snake_case ) if __name__ == "__main__": print(alternative_string_arrange("AB", "XYZ"), end=" ")
316
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" def A ( snake_case :int ) -> bool: if p < 2: raise ValueError('p should not be less than 2!' ) elif p == 2: return True __UpperCamelCase = 4 __UpperCamelCase = (1 << p) - 1 for _ in range(p - 2 ): __UpperCamelCase = ((s * s) - 2) % m return s == 0 if __name__ == "__main__": print(lucas_lehmer_test(7)) print(lucas_lehmer_test(1_1))
316
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
1
"""simple docstring""" # DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax import jax.numpy as jnp from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils_flax import ( CommonSchedulerState, FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, add_noise_common, get_velocity_common, ) @flax.struct.dataclass class __lowerCAmelCase : lowercase = 42 # setable values lowercase = 42 lowercase = 42 lowercase = None @classmethod def UpperCAmelCase ( cls , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return cls(common=__UpperCAmelCase , init_noise_sigma=__UpperCAmelCase , timesteps=__UpperCAmelCase ) @dataclass class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowercase = [e.name for e in FlaxKarrasDiffusionSchedulers] lowercase = 42 @property def UpperCAmelCase ( self ): '''simple docstring''' return True @register_to_config def __init__( self , __UpperCAmelCase = 1000 , __UpperCAmelCase = 0.0_0_0_1 , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = "linear" , __UpperCAmelCase = None , __UpperCAmelCase = "fixed_small" , __UpperCAmelCase = True , __UpperCAmelCase = "epsilon" , __UpperCAmelCase = jnp.floataa , ): '''simple docstring''' __UpperCamelCase = dtype def UpperCAmelCase ( self , __UpperCAmelCase = None ): '''simple docstring''' if common is None: __UpperCamelCase = CommonSchedulerState.create(self ) # standard deviation of the initial noise distribution __UpperCamelCase = jnp.array(1.0 , dtype=self.dtype ) __UpperCamelCase = jnp.arange(0 , self.config.num_train_timesteps ).round()[::-1] return DDPMSchedulerState.create( common=__UpperCAmelCase , init_noise_sigma=__UpperCAmelCase , timesteps=__UpperCAmelCase , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' return sample def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = () ): '''simple docstring''' __UpperCamelCase = self.config.num_train_timesteps // num_inference_steps # creates integer timesteps by multiplying by ratio # rounding to avoid issues when num_inference_step is power of 3 __UpperCamelCase = (jnp.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1] return state.replace( num_inference_steps=__UpperCAmelCase , timesteps=__UpperCAmelCase , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None ): '''simple docstring''' __UpperCamelCase = state.common.alphas_cumprod[t] __UpperCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample __UpperCamelCase = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * state.common.betas[t] if variance_type is None: __UpperCamelCase = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small": __UpperCamelCase = jnp.clip(__UpperCAmelCase , a_min=1E-20 ) # for rl-diffuser https://arxiv.org/abs/2205.09991 elif variance_type == "fixed_small_log": __UpperCamelCase = jnp.log(jnp.clip(__UpperCAmelCase , a_min=1E-20 ) ) elif variance_type == "fixed_large": __UpperCamelCase = state.common.betas[t] elif variance_type == "fixed_large_log": # Glide max_log __UpperCamelCase = jnp.log(state.common.betas[t] ) elif variance_type == "learned": return predicted_variance elif variance_type == "learned_range": __UpperCamelCase = variance __UpperCamelCase = state.common.betas[t] __UpperCamelCase = (predicted_variance + 1) / 2 __UpperCamelCase = frac * max_log + (1 - frac) * min_log return variance def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True , ): '''simple docstring''' __UpperCamelCase = timestep if key is None: __UpperCamelCase = jax.random.PRNGKey(0 ) if model_output.shape[1] == sample.shape[1] * 2 and self.config.variance_type in ["learned", "learned_range"]: __UpperCamelCase , __UpperCamelCase = jnp.split(__UpperCAmelCase , sample.shape[1] , axis=1 ) else: __UpperCamelCase = None # 1. compute alphas, betas __UpperCamelCase = state.common.alphas_cumprod[t] __UpperCamelCase = jnp.where(t > 0 , state.common.alphas_cumprod[t - 1] , jnp.array(1.0 , dtype=self.dtype ) ) __UpperCamelCase = 1 - alpha_prod_t __UpperCamelCase = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": __UpperCamelCase = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": __UpperCamelCase = model_output elif self.config.prediction_type == "v_prediction": __UpperCamelCase = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output else: raise ValueError( F'prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` ' ' for the FlaxDDPMScheduler.' ) # 3. Clip "predicted x_0" if self.config.clip_sample: __UpperCamelCase = jnp.clip(__UpperCAmelCase , -1 , 1 ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = (alpha_prod_t_prev ** 0.5 * state.common.betas[t]) / beta_prod_t __UpperCamelCase = state.common.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf __UpperCamelCase = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise def random_variance(): __UpperCamelCase = jax.random.split(__UpperCAmelCase , num=1 ) __UpperCamelCase = jax.random.normal(__UpperCAmelCase , shape=model_output.shape , dtype=self.dtype ) return (self._get_variance(__UpperCAmelCase , __UpperCAmelCase , predicted_variance=__UpperCAmelCase ) ** 0.5) * noise __UpperCamelCase = jnp.where(t > 0 , random_variance() , jnp.zeros(model_output.shape , dtype=self.dtype ) ) __UpperCamelCase = pred_prev_sample + variance if not return_dict: return (pred_prev_sample, state) return FlaxDDPMSchedulerOutput(prev_sample=__UpperCAmelCase , state=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' return add_noise_common(state.common , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' return get_velocity_common(state.common , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self.config.num_train_timesteps
316
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
1
"""simple docstring""" import os import time import numpy as np import onnxruntime as ort UpperCamelCase : int = "1" UpperCamelCase : str = "0" UpperCamelCase : Tuple = "1" UpperCamelCase : Union[str, Any] = ort.SessionOptions() UpperCamelCase : Optional[int] = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("Create inference session...") UpperCamelCase : int = ["TensorrtExecutionProvider", "CUDAExecutionProvider"] UpperCamelCase : Tuple = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider) UpperCamelCase : str = ort.RunOptions() UpperCamelCase : Optional[Any] = 1_2_8 UpperCamelCase : List[Any] = 1 UpperCamelCase : str = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase : str = np.ones((batch, sequence), dtype=np.intaa) UpperCamelCase : List[Any] = np.ones((batch, sequence), dtype=np.intaa) print("Warm up phase...") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Start inference...") UpperCamelCase : Dict = time.time() UpperCamelCase : Optional[Any] = 2_0_0_0 UpperCamelCase : List[str] = {} for iter in range(max_iters): UpperCamelCase : List[str] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1_0_0_0 / max_iters))
316
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input UpperCamelCase : int = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def A ( ) -> List[str]: __UpperCamelCase = _ask_options( 'In which compute environment are you running?' , ['This machine', 'AWS (Amazon SageMaker)'] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __UpperCamelCase = get_sagemaker_input() else: __UpperCamelCase = get_cluster_input() return config def A ( snake_case :Optional[Any]=None ) -> Tuple: if subparsers is not None: __UpperCamelCase = subparsers.add_parser('config' , description=snake_case ) else: __UpperCamelCase = argparse.ArgumentParser('Accelerate config command' , description=snake_case ) parser.add_argument( '--config_file' , default=snake_case , help=( 'The path to use to store the config file. Will default to a file named default_config.yaml in the cache ' 'location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ' 'such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ' 'with \'huggingface\'.' ) , ) if subparsers is not None: parser.set_defaults(func=snake_case ) return parser def A ( snake_case :str ) -> List[Any]: __UpperCamelCase = get_user_input() if args.config_file is not None: __UpperCamelCase = args.config_file else: if not os.path.isdir(snake_case ): os.makedirs(snake_case ) __UpperCamelCase = default_yaml_config_file if config_file.endswith('.json' ): config.to_json_file(snake_case ) else: config.to_yaml_file(snake_case ) print(f'accelerate configuration saved at {config_file}' ) def A ( ) -> str: __UpperCamelCase = config_command_parser() __UpperCamelCase = parser.parse_args() config_command(snake_case ) if __name__ == "__main__": main()
316
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
1
"""simple docstring""" import inspect import unittest from typing import List import numpy as np from transformers import EfficientFormerConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerModel, ) from transformers.models.efficientformer.modeling_tf_efficientformer import ( TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ) if is_vision_available(): from PIL import Image from transformers import EfficientFormerImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase = 13 , __UpperCAmelCase = 64 , __UpperCAmelCase = 2 , __UpperCAmelCase = 3 , __UpperCAmelCase = 3 , __UpperCAmelCase = True , __UpperCAmelCase = True , __UpperCAmelCase = 128 , __UpperCAmelCase=[16, 32, 64, 128] , __UpperCAmelCase = 7 , __UpperCAmelCase = 4 , __UpperCAmelCase = 37 , __UpperCAmelCase = "gelu" , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 0.1 , __UpperCAmelCase = 10 , __UpperCAmelCase = 0.0_2 , __UpperCAmelCase = 2 , __UpperCAmelCase = 1 , __UpperCAmelCase = 128 , __UpperCAmelCase = [2, 2, 2, 2] , __UpperCAmelCase = 2 , __UpperCAmelCase = 2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = encoder_stride __UpperCamelCase = num_attention_outputs __UpperCamelCase = embed_dim __UpperCamelCase = embed_dim + 1 __UpperCamelCase = resolution __UpperCamelCase = depths __UpperCamelCase = hidden_sizes __UpperCamelCase = dim __UpperCamelCase = mlp_expansion_ratio def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = self.get_config() return config, pixel_values, labels def UpperCAmelCase ( self ): '''simple docstring''' return EfficientFormerConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , resolution=self.resolution , depths=self.depths , hidden_sizes=self.hidden_sizes , dim=self.dim , mlp_expansion_ratio=self.mlp_expansion_ratio , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = TFEfficientFormerModel(config=__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = TFEfficientFormerForImageClassification(__UpperCAmelCase ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = TFEfficientFormerForImageClassification(__UpperCAmelCase ) __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFEfficientFormerModel, TFEfficientFormerForImageClassificationWithTeacher, TFEfficientFormerForImageClassification, ) if is_tf_available() else () ) lowercase = ( { "feature-extraction": TFEfficientFormerModel, "image-classification": ( TFEfficientFormerForImageClassification, TFEfficientFormerForImageClassificationWithTeacher, ), } if is_tf_available() else {} ) lowercase = False lowercase = False lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFEfficientFormerModelTester(self ) __UpperCamelCase = ConfigTester( self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='EfficientFormer does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @unittest.skip(reason='EfficientFormer does not support input and output embeddings' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' def check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) __UpperCamelCase = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __UpperCamelCase = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) if hasattr(self.model_tester , 'encoder_seq_length' ): __UpperCamelCase = self.model_tester.encoder_seq_length if hasattr(self.model_tester , 'chunk_length' ) and self.model_tester.chunk_length > 1: __UpperCamelCase = seq_length * self.model_tester.chunk_length else: __UpperCamelCase = self.model_tester.seq_length self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) if config.is_encoder_decoder: __UpperCamelCase = outputs.decoder_hidden_states self.asseretIsInstance(__UpperCAmelCase , (list, tuple) ) self.assertEqual(len(__UpperCAmelCase ) , __UpperCAmelCase ) __UpperCamelCase = getattr(self.model_tester , 'seq_length' , __UpperCAmelCase ) __UpperCamelCase = getattr(self.model_tester , 'decoder_seq_length' , __UpperCAmelCase ) self.assertListEqual( list(hidden_states[-1].shape[-2:] ) , [decoder_seq_length, self.model_tester.hidden_size] , ) __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __UpperCamelCase = True check_hidden_states_output(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ): '''simple docstring''' __UpperCamelCase = super()._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) if return_labels: if model_class.__name__ == "TFEfficientFormerForImageClassificationWithTeacher": del inputs_dict["labels"] return inputs_dict def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) @unittest.skip(reason='EfficientFormer does not implement masked image modeling yet' ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_EFFICIENTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFEfficientFormerModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True __UpperCamelCase = getattr(self.model_tester , 'seq_length' , __UpperCAmelCase ) __UpperCamelCase = getattr(self.model_tester , 'encoder_seq_length' , __UpperCAmelCase ) __UpperCamelCase = getattr(self.model_tester , 'key_length' , __UpperCAmelCase ) __UpperCamelCase = getattr(self.model_tester , 'chunk_length' , __UpperCAmelCase ) if chunk_length is not None and hasattr(self.model_tester , 'num_hashes' ): __UpperCamelCase = encoder_seq_length * self.model_tester.num_hashes for model_class in self.all_model_classes: __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) __UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_attention_outputs ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __UpperCamelCase = True __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = model(**self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) , training=__UpperCAmelCase ) __UpperCamelCase = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(__UpperCAmelCase ) , self.model_tester.num_attention_outputs ) if chunk_length is not None: self.assertListEqual( list(attentions[0].shape[-4:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, chunk_length, encoder_key_length] , ) else: self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, encoder_key_length] , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # Prepare our model __UpperCamelCase = model_class(__UpperCAmelCase ) # These are maximally general inputs for the model, with multiple None dimensions # Hopefully this will catch any conditionals that fail for flexible shapes __UpperCamelCase = { key: tf.keras.Input(shape=val.shape[1:] , dtype=val.dtype , name=__UpperCAmelCase ) for key, val in model.input_signature.items() if key in model.dummy_inputs } __UpperCamelCase = model(__UpperCAmelCase ) self.assertTrue(outputs_dict is not None ) def A ( ) -> Any: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return ( EfficientFormerImageProcessor.from_pretrained('snap-research/efficientformer-l1-300' ) if is_vision_available() else None ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFEfficientFormerForImageClassification.from_pretrained('snap-research/efficientformer-l1-300' ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='tf' ) # forward pass __UpperCamelCase = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = tf.constant([-0.0_5_5_5, 0.4_8_2_5, -0.0_8_5_2] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFEfficientFormerForImageClassificationWithTeacher.from_pretrained( 'snap-research/efficientformer-l1-300' ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='tf' ) # forward pass __UpperCamelCase = model(**__UpperCAmelCase , training=__UpperCAmelCase ) # verify the logits __UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , __UpperCAmelCase ) __UpperCamelCase = tf.constant([-0.1_3_1_2, 0.4_3_5_3, -1.0_4_9_9] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
316
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
1
"""simple docstring""" import os import random import sys from . import cryptomath_module as cryptoMath # noqa: N812 from . import rabin_miller as rabinMiller # noqa: N812 def A ( ) -> None: print('Making key files...' ) make_key_files('rsa' , 1_0_2_4 ) print('Key files generation successful.' ) def A ( snake_case :int ) -> tuple[tuple[int, int], tuple[int, int]]: print('Generating prime p...' ) __UpperCamelCase = rabinMiller.generate_large_prime(snake_case ) print('Generating prime q...' ) __UpperCamelCase = rabinMiller.generate_large_prime(snake_case ) __UpperCamelCase = p * q print('Generating e that is relatively prime to (p - 1) * (q - 1)...' ) while True: __UpperCamelCase = random.randrange(2 ** (key_size - 1) , 2 ** (key_size) ) if cryptoMath.gcd(snake_case , (p - 1) * (q - 1) ) == 1: break print('Calculating d that is mod inverse of e...' ) __UpperCamelCase = cryptoMath.find_mod_inverse(snake_case , (p - 1) * (q - 1) ) __UpperCamelCase = (n, e) __UpperCamelCase = (n, d) return (public_key, private_key) def A ( snake_case :str , snake_case :int ) -> None: if os.path.exists(f'{name}_pubkey.txt' ) or os.path.exists(f'{name}_privkey.txt' ): print('\nWARNING:' ) print( f'"{name}_pubkey.txt" or "{name}_privkey.txt" already exists. \n' 'Use a different name or delete these files and re-run this program.' ) sys.exit() __UpperCamelCase , __UpperCamelCase = generate_key(snake_case ) print(f'\nWriting public key to file {name}_pubkey.txt...' ) with open(f'{name}_pubkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{public_key[0]},{public_key[1]}' ) print(f'Writing private key to file {name}_privkey.txt...' ) with open(f'{name}_privkey.txt' , 'w' ) as out_file: out_file.write(f'{key_size},{private_key[0]},{private_key[1]}' ) if __name__ == "__main__": main()
316
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
1
"""simple docstring""" import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class __lowerCAmelCase ( unittest.TestCase ): def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = tempfile.mkdtemp() __UpperCamelCase = BlipImageProcessor() __UpperCamelCase = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __UpperCamelCase = BlipaProcessor(__UpperCAmelCase , __UpperCAmelCase ) processor.save_pretrained(self.tmpdirname ) def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).tokenizer def UpperCAmelCase ( self , **__UpperCAmelCase ): '''simple docstring''' return AutoProcessor.from_pretrained(self.tmpdirname , **__UpperCAmelCase ).image_processor def UpperCAmelCase ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __UpperCamelCase = [Image.fromarray(np.moveaxis(__UpperCAmelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __UpperCamelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __UpperCamelCase = self.get_image_processor(do_normalize=__UpperCAmelCase , padding_value=1.0 ) __UpperCamelCase = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=__UpperCAmelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , __UpperCAmelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = image_processor(__UpperCAmelCase , return_tensors='np' ) __UpperCamelCase = processor(images=__UpperCAmelCase , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = processor(text=__UpperCAmelCase ) __UpperCamelCase = tokenizer(__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(__UpperCAmelCase ): processor() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __UpperCamelCase = processor.batch_decode(__UpperCAmelCase ) __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.get_image_processor() __UpperCamelCase = self.get_tokenizer() __UpperCamelCase = BlipaProcessor(tokenizer=__UpperCAmelCase , image_processor=__UpperCAmelCase ) __UpperCamelCase = 'lower newer' __UpperCamelCase = self.prepare_image_inputs() __UpperCamelCase = processor(text=__UpperCAmelCase , images=__UpperCAmelCase ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
316
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope='''session''' ) def _a ( ) -> int: a = 10 a = datasets.Features( { '''tokens''': datasets.Sequence(datasets.Value('''string''' ) ), '''labels''': datasets.Sequence(datasets.ClassLabel(names=['''negative''', '''positive'''] ) ), '''answers''': datasets.Sequence( { '''text''': datasets.Value('''string''' ), '''answer_start''': datasets.Value('''int32''' ), } ), '''id''': datasets.Value('''int64''' ), } ) a = datasets.Dataset.from_dict( { '''tokens''': [['''foo'''] * 5] * n, '''labels''': [[1] * 5] * n, '''answers''': [{'''answer_start''': [97], '''text''': ['''1976''']}] * 10, '''id''': list(range(a ) ), } , features=a , ) return dataset @pytest.fixture(scope='''session''' ) def _a ( a :Optional[Any] , a :Tuple ) -> str: a = str(tmp_path_factory.mktemp('''data''' ) / '''file.arrow''' ) dataset.map(cache_file_name=a ) return filename # FILE_CONTENT + files UpperCAmelCase__ = "\\n Text data.\n Second line of data." @pytest.fixture(scope='''session''' ) def _a ( a :int ) -> Tuple: a = tmp_path_factory.mktemp('''data''' ) / '''file.txt''' a = FILE_CONTENT with open(a , '''w''' ) as f: f.write(a ) return filename @pytest.fixture(scope='''session''' ) def _a ( a :Dict ) -> List[str]: import bza a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.bz2''' a = bytes(a , '''utf-8''' ) with bza.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Tuple ) -> str: import gzip a = str(tmp_path_factory.mktemp('''data''' ) / '''file.txt.gz''' ) a = bytes(a , '''utf-8''' ) with gzip.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :str ) -> Tuple: if datasets.config.LZ4_AVAILABLE: import lza.frame a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.lz4''' a = bytes(a , '''utf-8''' ) with lza.frame.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[str] , a :Any ) -> Dict: if datasets.config.PY7ZR_AVAILABLE: import pyazr a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.7z''' with pyazr.SevenZipFile(a , '''w''' ) as archive: archive.write(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] , a :Dict ) -> Tuple: import tarfile a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.tar''' with tarfile.TarFile(a , '''w''' ) as f: f.add(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> str: import lzma a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.xz''' a = bytes(a , '''utf-8''' ) with lzma.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] , a :Union[str, Any] ) -> Tuple: import zipfile a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] ) -> Any: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd a = tmp_path_factory.mktemp('''data''' ) / '''file.txt.zst''' a = bytes(a , '''utf-8''' ) with zstd.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :str ) -> Union[str, Any]: a = tmp_path_factory.mktemp('''data''' ) / '''file.xml''' a = textwrap.dedent( '''\ <?xml version="1.0" encoding="UTF-8" ?> <tmx version="1.4"> <header segtype="sentence" srclang="ca" /> <body> <tu> <tuv xml:lang="ca"><seg>Contingut 1</seg></tuv> <tuv xml:lang="en"><seg>Content 1</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 2</seg></tuv> <tuv xml:lang="en"><seg>Content 2</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 3</seg></tuv> <tuv xml:lang="en"><seg>Content 3</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 4</seg></tuv> <tuv xml:lang="en"><seg>Content 4</seg></tuv> </tu> <tu> <tuv xml:lang="ca"><seg>Contingut 5</seg></tuv> <tuv xml:lang="en"><seg>Content 5</seg></tuv> </tu> </body> </tmx>''' ) with open(a , '''w''' ) as f: f.write(a ) return filename UpperCAmelCase__ = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] UpperCAmelCase__ = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] UpperCAmelCase__ = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } UpperCAmelCase__ = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] UpperCAmelCase__ = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope='''session''' ) def _a ( ) -> Tuple: return DATA_DICT_OF_LISTS @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> Optional[Any]: a = datasets.Dataset.from_dict(a ) a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.arrow''' ) dataset.map(cache_file_name=a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Tuple ) -> Optional[Any]: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.sqlite''' ) with contextlib.closing(sqlitea.connect(a ) ) as con: a = con.cursor() cur.execute('''CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)''' ) for item in DATA: cur.execute('''INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)''' , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> Union[str, Any]: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.csv''' ) with open(a , '''w''' , newline='''''' ) as f: a = csv.DictWriter(a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> str: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.csv''' ) with open(a , '''w''' , newline='''''' ) as f: a = csv.DictWriter(a , fieldnames=['''col_1''', '''col_2''', '''col_3'''] ) writer.writeheader() for item in DATA: writer.writerow(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Optional[int] , a :Union[str, Any] ) -> List[Any]: import bza a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.bz2''' with open(a , '''rb''' ) as f: a = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(a , '''wb''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Dict , a :Optional[Any] , a :Optional[int] ) -> int: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(a ) ) f.write(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] , a :List[str] , a :List[str] ) -> Tuple: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.csv.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(csv_path.replace('''.csv''' , '''.CSV''' ) ) ) f.write(a , arcname=os.path.basename(csva_path.replace('''.csv''' , '''.CSV''' ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any , a :Union[str, Any] , a :str ) -> List[Any]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.csv.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any ) -> Any: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.parquet''' ) a = pa.schema( { '''col_1''': pa.string(), '''col_2''': pa.intaa(), '''col_3''': pa.floataa(), } ) with open(a , '''wb''' ) as f: a = pq.ParquetWriter(a , schema=a ) a = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(a ) )] for k in DATA[0]} , schema=a ) writer.write_table(a ) writer.close() return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] ) -> Any: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) a = {'''data''': DATA} with open(a , '''w''' ) as f: json.dump(a , a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Optional[Any] ) -> List[Any]: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.json''' ) a = {'''data''': DATA_DICT_OF_LISTS} with open(a , '''w''' ) as f: json.dump(a , a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] ) -> int: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl''' ) with open(a , '''w''' ) as f: for item in DATA: f.write(json.dumps(a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Optional[int] ) -> Optional[Any]: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.jsonl''' ) with open(a , '''w''' ) as f: for item in DATA: f.write(json.dumps(a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any ) -> Dict: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_312.jsonl''' ) with open(a , '''w''' ) as f: for item in DATA_312: f.write(json.dumps(a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any ) -> List[str]: a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset-str.jsonl''' ) with open(a , '''w''' ) as f: for item in DATA_STR: f.write(json.dumps(a ) + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] , a :int ) -> str: import gzip a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt.gz''' ) with open(a , '''rb''' ) as orig_file: with gzip.open(a , '''wb''' ) as zipped_file: zipped_file.writelines(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any , a :Union[str, Any] ) -> List[Any]: import gzip a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.gz''' ) with open(a , '''rb''' ) as orig_file: with gzip.open(a , '''wb''' ) as zipped_file: zipped_file.writelines(a ) return path @pytest.fixture(scope='''session''' ) def _a ( a :int , a :Optional[Any] , a :List[Any] ) -> Union[str, Any]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(a ) ) f.write(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any , a :Dict , a :str , a :Optional[Any] ) -> str: a = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.join('''nested''' , os.path.basename(a ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[str] , a :Optional[int] , a :Tuple ) -> int: a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.jsonl.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Optional[int] , a :int , a :Optional[Any] ) -> int: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.jsonl.tar''' with tarfile.TarFile(a , '''w''' ) as f: f.add(a , arcname=os.path.basename(a ) ) f.add(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[str] , a :List[str] , a :str , a :Tuple ) -> Union[str, Any]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset_nested.jsonl.tar''' with tarfile.TarFile(a , '''w''' ) as f: f.add(a , arcname=os.path.join('''nested''' , os.path.basename(a ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[Any] ) -> Tuple: a = ['''0''', '''1''', '''2''', '''3'''] a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset.txt''' ) with open(a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any ) -> List[Any]: a = ['''0''', '''1''', '''2''', '''3'''] a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset2.txt''' ) with open(a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> List[str]: a = ['''0''', '''1''', '''2''', '''3'''] a = tmp_path_factory.mktemp('''data''' ) / '''dataset.abc''' with open(a , '''w''' ) as f: for item in data: f.write(item + '''\n''' ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Optional[Any] , a :List[str] , a :int ) -> List[Any]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.text.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(a ) ) f.write(a , arcname=os.path.basename(a ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :List[str] , a :int , a :Dict ) -> int: a = tmp_path_factory.mktemp('''data''' ) / '''dataset_with_dir.text.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) f.write(a , arcname=os.path.join('''main_dir''' , os.path.basename(a ) ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Any , a :Tuple , a :List[str] ) -> Optional[Any]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.ext.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename('''unsupported.ext''' ) ) f.write(a , arcname=os.path.basename('''unsupported_2.ext''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Union[str, Any] ) -> Dict: a = '''\n'''.join(['''First''', '''Second\u2029with Unicode new line''', '''Third'''] ) a = str(tmp_path_factory.mktemp('''data''' ) / '''dataset_with_unicode_new_lines.txt''' ) with open(a , '''w''' , encoding='''utf-8''' ) as f: f.write(a ) return path @pytest.fixture(scope='''session''' ) def _a ( ) -> str: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_image_rgb.jpg''' ) @pytest.fixture(scope='''session''' ) def _a ( ) -> Dict: return os.path.join('''tests''' , '''features''' , '''data''' , '''test_audio_44100.wav''' ) @pytest.fixture(scope='''session''' ) def _a ( a :int , a :int ) -> Optional[int]: a = tmp_path_factory.mktemp('''data''' ) / '''dataset.img.zip''' with zipfile.ZipFile(a , '''w''' ) as f: f.write(a , arcname=os.path.basename(a ) ) f.write(a , arcname=os.path.basename(a ).replace('''.jpg''' , '''2.jpg''' ) ) return path @pytest.fixture(scope='''session''' ) def _a ( a :Dict ) -> Dict: a = tmp_path_factory.mktemp('''data_dir''' ) (data_dir / "subdir").mkdir() with open(data_dir / '''subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden file with open(data_dir / '''subdir''' / '''.test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / '''.subdir''' / '''train.txt''' , '''w''' ) as f: f.write('''foo\n''' * 10 ) with open(data_dir / '''.subdir''' / '''test.txt''' , '''w''' ) as f: f.write('''bar\n''' * 10 ) return data_dir
0
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
'''simple docstring''' import argparse import io import requests import torch from omegaconf import OmegaConf from diffusers import AutoencoderKL from diffusers.pipelines.stable_diffusion.convert_from_ckpt import ( assign_to_checkpoint, conv_attn_to_linear, create_vae_diffusers_config, renew_vae_attention_paths, renew_vae_resnet_paths, ) def lowerCAmelCase_ ( snake_case_ : List[Any] , snake_case_ : int ) -> Optional[int]: '''simple docstring''' UpperCAmelCase_ = checkpoint UpperCAmelCase_ = {} UpperCAmelCase_ = vae_state_dict["encoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["encoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_in.bias"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.conv_out.bias"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.weight"] UpperCAmelCase_ = vae_state_dict["decoder.norm_out.bias"] UpperCAmelCase_ = vae_state_dict["quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["quant_conv.bias"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.weight"] UpperCAmelCase_ = vae_state_dict["post_quant_conv.bias"] # Retrieves the keys for the encoder down blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "encoder.down" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""down.{layer_id}""" in key] for layer_id in range(snake_case_ ) } # Retrieves the keys for the decoder up blocks only UpperCAmelCase_ = len({".".join(layer.split("." )[:3] ) for layer in vae_state_dict if "decoder.up" in layer} ) UpperCAmelCase_ = { layer_id: [key for key in vae_state_dict if f"""up.{layer_id}""" in key] for layer_id in range(snake_case_ ) } for i in range(snake_case_ ): UpperCAmelCase_ = [key for key in down_blocks[i] if f"""down.{i}""" in key and f"""down.{i}.downsample""" not in key] if f"""encoder.down.{i}.downsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.weight""" ) UpperCAmelCase_ = vae_state_dict.pop( f"""encoder.down.{i}.downsample.conv.bias""" ) UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""down.{i}.block""", "new": f"""down_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""encoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "encoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) for i in range(snake_case_ ): UpperCAmelCase_ = num_up_blocks - 1 - i UpperCAmelCase_ = [ key for key in up_blocks[block_id] if f"""up.{block_id}""" in key and f"""up.{block_id}.upsample""" not in key ] if f"""decoder.up.{block_id}.upsample.conv.weight""" in vae_state_dict: UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.weight""" ] UpperCAmelCase_ = vae_state_dict[ f"""decoder.up.{block_id}.upsample.conv.bias""" ] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""up.{block_id}.block""", "new": f"""up_blocks.{i}.resnets"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.block" in key] UpperCAmelCase_ = 2 for i in range(1 , num_mid_res_blocks + 1 ): UpperCAmelCase_ = [key for key in mid_resnets if f"""decoder.mid.block_{i}""" in key] UpperCAmelCase_ = renew_vae_resnet_paths(snake_case_ ) UpperCAmelCase_ = {"old": f"""mid.block_{i}""", "new": f"""mid_block.resnets.{i - 1}"""} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) UpperCAmelCase_ = [key for key in vae_state_dict if "decoder.mid.attn" in key] UpperCAmelCase_ = renew_vae_attention_paths(snake_case_ ) UpperCAmelCase_ = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} assign_to_checkpoint(snake_case_ , snake_case_ , snake_case_ , additional_replacements=[meta_path] , config=snake_case_ ) conv_attn_to_linear(snake_case_ ) return new_checkpoint def lowerCAmelCase_ ( snake_case_ : str , snake_case_ : str , ) -> Dict: '''simple docstring''' UpperCAmelCase_ = requests.get( " https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" ) UpperCAmelCase_ = io.BytesIO(r.content ) UpperCAmelCase_ = OmegaConf.load(snake_case_ ) UpperCAmelCase_ = 5_12 UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" if checkpoint_path.endswith("safetensors" ): from safetensors import safe_open UpperCAmelCase_ = {} with safe_open(snake_case_ , framework="pt" , device="cpu" ) as f: for key in f.keys(): UpperCAmelCase_ = f.get_tensor(snake_case_ ) else: UpperCAmelCase_ = torch.load(snake_case_ , map_location=snake_case_ )["state_dict"] # Convert the VAE model. UpperCAmelCase_ = create_vae_diffusers_config(snake_case_ , image_size=snake_case_ ) UpperCAmelCase_ = custom_convert_ldm_vae_checkpoint(snake_case_ , snake_case_ ) UpperCAmelCase_ = AutoencoderKL(**snake_case_ ) vae.load_state_dict(snake_case_ ) vae.save_pretrained(snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE_: Optional[int] =argparse.ArgumentParser() parser.add_argument('--vae_pt_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the VAE.pt to convert.') SCREAMING_SNAKE_CASE_: str =parser.parse_args() vae_pt_to_vae_diffuser(args.vae_pt_path, args.dump_path)
1
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _SCREAMING_SNAKE_CASE (A ) -> Tuple: """simple docstring""" lowercase__ = SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = 4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: lowercase__ = 4 lowercase__ = 48 lowercase__ = '''pixelshuffle_aux''' elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = [6, 6, 6, 6] lowercase__ = 60 lowercase__ = [6, 6, 6, 6] lowercase__ = '''pixelshuffledirect''' elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = 4 lowercase__ = '''nearest+conv''' elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: lowercase__ = 1 lowercase__ = 1 lowercase__ = 126 lowercase__ = 7 lowercase__ = 255.0 lowercase__ = '''''' return config def _SCREAMING_SNAKE_CASE (A , A ) -> Dict: """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: lowercase__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: lowercase__ = name.replace('''patch_embed.norm''' , '''embeddings.patch_embeddings.layernorm''' ) if "layers" in name: lowercase__ = name.replace('''layers''' , '''encoder.stages''' ) if "residual_group.blocks" in name: lowercase__ = name.replace('''residual_group.blocks''' , '''layers''' ) if "attn.proj" in name: lowercase__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if "q_bias" in name: lowercase__ = name.replace('''q_bias''' , '''query.bias''' ) if "k_bias" in name: lowercase__ = name.replace('''k_bias''' , '''key.bias''' ) if "v_bias" in name: lowercase__ = name.replace('''v_bias''' , '''value.bias''' ) if "cpb_mlp" in name: lowercase__ = name.replace('''cpb_mlp''' , '''continuous_position_bias_mlp''' ) if "patch_embed.proj" in name: lowercase__ = name.replace('''patch_embed.proj''' , '''patch_embed.projection''' ) if name == "norm.weight": lowercase__ = '''layernorm.weight''' if name == "norm.bias": lowercase__ = '''layernorm.bias''' if "conv_first" in name: lowercase__ = name.replace('''conv_first''' , '''first_convolution''' ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: lowercase__ = name.replace('''conv_last''' , '''final_convolution''' ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: lowercase__ = name.replace('''conv_before_upsample.0''' , '''conv_before_upsample''' ) if "upsample.0" in name: lowercase__ = name.replace('''upsample.0''' , '''upsample.convolution_0''' ) if "upsample.2" in name: lowercase__ = name.replace('''upsample.2''' , '''upsample.convolution_1''' ) lowercase__ = '''upsample.''' + name elif config.upsampler == "pixelshuffledirect": lowercase__ = name.replace('''upsample.0.weight''' , '''upsample.conv.weight''' ) lowercase__ = name.replace('''upsample.0.bias''' , '''upsample.conv.bias''' ) else: pass else: lowercase__ = '''swin2sr.''' + name return name def _SCREAMING_SNAKE_CASE (A , A ) -> Dict: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase__ = orig_state_dict.pop(A ) if "qkv" in key: lowercase__ = key.split('''.''' ) lowercase__ = int(key_split[1] ) lowercase__ = int(key_split[4] ) lowercase__ = config.embed_dim if "weight" in key: lowercase__ = val[:dim, :] lowercase__ = val[dim : dim * 2, :] lowercase__ = val[-dim:, :] else: lowercase__ = val[:dim] lowercase__ = val[dim : dim * 2] lowercase__ = val[-dim:] pass else: lowercase__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE (A , A , A ) -> Tuple: """simple docstring""" lowercase__ = get_config(A ) lowercase__ = SwinaSRForImageSuperResolution(A ) model.eval() lowercase__ = torch.hub.load_state_dict_from_url(A , map_location='''cpu''' ) lowercase__ = convert_state_dict(A , A ) lowercase__ ,lowercase__ = model.load_state_dict(A , strict=A ) if len(A ) > 0: raise ValueError('''Missing keys when converting: {}'''.format(A ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f"Unexpected key {key} in state_dict" ) # verify values lowercase__ = '''https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true''' lowercase__ = Image.open(requests.get(A , stream=A ).raw ).convert('''RGB''' ) lowercase__ = SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values lowercase__ = 126 if '''Jpeg''' in checkpoint_url else 256 lowercase__ = Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ), ] ) lowercase__ = transforms(A ).unsqueeze(0 ) if config.num_channels == 1: lowercase__ = pixel_values[:, 0, :, :].unsqueeze(1 ) lowercase__ = model(A ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 512, 512] ) lowercase__ = torch.tensor( [[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1_024, 1_024] ) lowercase__ = torch.tensor( [[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here lowercase__ = torch.Size([1, 3, 1_024, 1_024] ) lowercase__ = torch.tensor( [[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: lowercase__ = torch.Size([1, 3, 512, 512] ) lowercase__ = torch.tensor( [[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: lowercase__ = torch.Size([1, 3, 1_024, 1_024] ) lowercase__ = torch.tensor( [[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] ) assert ( outputs.reconstruction.shape == expected_shape ), f"Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}" assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , A , atol=1E-3 ) print('''Looks ok!''' ) lowercase__ = { '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''': ( '''swin2SR-classical-sr-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth''': ( '''swin2SR-classical-sr-x4-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth''': ( '''swin2SR-compressed-sr-x4-48''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth''': ( '''swin2SR-lightweight-x2-64''' ), '''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth''': ( '''swin2SR-realworld-sr-x4-64-bsrgan-psnr''' ), } lowercase__ = url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(A ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(A ) if push_to_hub: model.push_to_hub(f"caidas/{model_name}" ) processor.push_to_hub(f"caidas/{model_name}" ) if __name__ == "__main__": lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth', type=str, help='URL of the original Swin2SR checkpoint you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument('--push_to_hub', action='store_true', help='Whether to push the converted model to the hub.') lowerCamelCase : Dict = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
2
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowercase : Optional[int] = { 'configuration_graphormer': ['GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GraphormerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase : List[str] = [ 'GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'GraphormerForGraphClassification', 'GraphormerModel', 'GraphormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_graphormer import GRAPHORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, GraphormerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_graphormer import ( GRAPHORMER_PRETRAINED_MODEL_ARCHIVE_LIST, GraphormerForGraphClassification, GraphormerModel, GraphormerPreTrainedModel, ) else: import sys lowercase : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
3
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
'''simple docstring''' import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast __snake_case =datasets.utils.logging.get_logger(__name__) @dataclass class UpperCAmelCase_ ( datasets.BuilderConfig ): lowerCamelCase : int = 10_000 lowerCamelCase : Optional[List[str]] = None lowerCamelCase : Optional[datasets.Features] = None class UpperCAmelCase_ ( datasets.ArrowBasedBuilder ): lowerCamelCase : List[str] = ParquetConfig def __UpperCAmelCase ( self : List[Any] ) -> Optional[int]: return datasets.DatasetInfo(features=self.config.features ) def __UpperCAmelCase ( self : Optional[int] , UpperCAmelCase__ : Union[str, Any] ) -> Tuple: if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) lowerCAmelCase = dl_manager.download_and_extract(self.config.data_files ) if isinstance(UpperCAmelCase__ , (str, list, tuple) ): lowerCAmelCase = data_files if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] lowerCAmelCase = [] for split_name, files in data_files.items(): if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): lowerCAmelCase = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive lowerCAmelCase = [dl_manager.iter_files(UpperCAmelCase__ ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(UpperCAmelCase__ ): with open(UpperCAmelCase__ , 'rb' ) as f: lowerCAmelCase = datasets.Features.from_arrow_schema(pq.read_schema(UpperCAmelCase__ ) ) break splits.append(datasets.SplitGenerator(name=UpperCAmelCase__ , gen_kwargs={'files': files} ) ) return splits def __UpperCAmelCase ( self : str , UpperCAmelCase__ : pa.Table ) -> pa.Table: if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example lowerCAmelCase = table_cast(UpperCAmelCase__ , self.info.features.arrow_schema ) return pa_table def __UpperCAmelCase ( self : Dict , UpperCAmelCase__ : int ) -> Dict: lowerCAmelCase = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(UpperCAmelCase__ ) ): with open(UpperCAmelCase__ , 'rb' ) as f: lowerCAmelCase = pq.ParquetFile(UpperCAmelCase__ ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): lowerCAmelCase = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(UpperCAmelCase__ ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(UpperCAmelCase__ )}: {e}''' ) raise
4
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
UpperCAmelCase__ = 8.31_44_62 # Unit - J mol-1 K-1 def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or volume < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case ) -> float: """simple docstring""" if moles < 0 or kelvin < 0 or pressure < 0: raise ValueError('''Invalid inputs. Enter positive value.''' ) return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure if __name__ == "__main__": from doctest import testmod testmod()
5
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
import random def __lowerCAmelCase ( a__ ) -> bool: __a = num - 1 __a = 0 while s % 2 == 0: __a = s // 2 t += 1 for _ in range(5 ): __a = random.randrange(2 , num - 1 ) __a = pow(a__ , a__ , a__ ) if v != 1: __a = 0 while v != (num - 1): if i == t - 1: return False else: __a = i + 1 __a = (v**2) % num return True def __lowerCAmelCase ( a__ ) -> bool: if num < 2: return False __a = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(a__ ) def __lowerCAmelCase ( a__ = 1024 ) -> int: while True: __a = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(a__ ): return num if __name__ == "__main__": A : Any = generate_large_prime() print(('Prime number:', num)) print(('is_prime_low_num:', is_prime_low_num(num)))
6
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
import multiprocessing import os from typing import BinaryIO, Optional, Union import fsspec from .. import Dataset, Features, NamedSplit, config from ..formatting import query_table from ..packaged_modules.json.json import Json from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class A ( _UpperCAmelCase ): """simple docstring""" def __init__( self : str,lowercase_ : NestedDataStructureLike[PathLike],lowercase_ : Optional[NamedSplit] = None,lowercase_ : Optional[Features] = None,lowercase_ : str = None,lowercase_ : bool = False,lowercase_ : bool = False,lowercase_ : Optional[str] = None,lowercase_ : Optional[int] = None,**lowercase_ : int,)-> Any: '''simple docstring''' super().__init__( lowercase_,split=lowercase_,features=lowercase_,cache_dir=lowercase_,keep_in_memory=lowercase_,streaming=lowercase_,num_proc=lowercase_,**lowercase_,) A__ = field A__ = path_or_paths if isinstance(lowercase_,lowercase_ ) else {self.split: path_or_paths} A__ = Json( cache_dir=lowercase_,data_files=lowercase_,features=lowercase_,field=lowercase_,**lowercase_,) def snake_case__ ( self : Any )-> str: '''simple docstring''' if self.streaming: A__ = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: A__ = None A__ = None A__ = None A__ = None self.builder.download_and_prepare( download_config=lowercase_,download_mode=lowercase_,verification_mode=lowercase_,base_path=lowercase_,num_proc=self.num_proc,) A__ = self.builder.as_dataset( split=self.split,verification_mode=lowercase_,in_memory=self.keep_in_memory ) return dataset class A : """simple docstring""" def __init__( self : Tuple,lowercase_ : Dataset,lowercase_ : Union[PathLike, BinaryIO],lowercase_ : Optional[int] = None,lowercase_ : Optional[int] = None,**lowercase_ : Tuple,)-> Union[str, Any]: '''simple docstring''' if num_proc is not None and num_proc <= 0: raise ValueError(F'num_proc {num_proc} must be an integer > 0.' ) A__ = dataset A__ = path_or_buf A__ = batch_size if batch_size else config.DEFAULT_MAX_BATCH_SIZE A__ = num_proc A__ = 'utf-8' A__ = to_json_kwargs def snake_case__ ( self : List[Any] )-> int: '''simple docstring''' A__ = self.to_json_kwargs.pop('path_or_buf',lowercase_ ) A__ = self.to_json_kwargs.pop('orient','records' ) A__ = self.to_json_kwargs.pop('lines',True if orient == 'records' else False ) A__ = self.to_json_kwargs.pop('index',False if orient in ['split', 'table'] else True ) A__ = self.to_json_kwargs.pop('compression',lowercase_ ) if compression not in [None, "infer", "gzip", "bz2", "xz"]: raise NotImplementedError(F'`datasets` currently does not support {compression} compression' ) if isinstance(self.path_or_buf,(str, bytes, os.PathLike) ): with fsspec.open(self.path_or_buf,'wb',compression=lowercase_ ) as buffer: A__ = self._write(file_obj=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) else: if compression: raise NotImplementedError( F'The compression parameter is not supported when writing to a buffer, but compression={compression}' ' was passed. Please provide a local path instead.' ) A__ = self._write( file_obj=self.path_or_buf,orient=lowercase_,lines=lowercase_,index=lowercase_,**self.to_json_kwargs ) return written def snake_case__ ( self : List[Any],lowercase_ : int )-> Dict: '''simple docstring''' A__ , A__ , A__ , A__ , A__ = args A__ = query_table( table=self.dataset.data,key=slice(lowercase_,offset + self.batch_size ),indices=self.dataset._indices,) A__ = batch.to_pandas().to_json( path_or_buf=lowercase_,orient=lowercase_,lines=lowercase_,index=lowercase_,**lowercase_ ) if not json_str.endswith('\n' ): json_str += "\n" return json_str.encode(self.encoding ) def snake_case__ ( self : Any,lowercase_ : BinaryIO,lowercase_ : Optional[Any],lowercase_ : Optional[int],lowercase_ : Optional[Any],**lowercase_ : Optional[Any],)-> int: '''simple docstring''' A__ = 0 if self.num_proc is None or self.num_proc == 1: for offset in logging.tqdm( range(0,len(self.dataset ),self.batch_size ),unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): A__ = self._batch_json((offset, orient, lines, index, to_json_kwargs) ) written += file_obj.write(lowercase_ ) else: A__ , A__ = len(self.dataset ), self.batch_size with multiprocessing.Pool(self.num_proc ) as pool: for json_str in logging.tqdm( pool.imap( self._batch_json,[(offset, orient, lines, index, to_json_kwargs) for offset in range(0,lowercase_,lowercase_ )],),total=(num_rows // batch_size) + 1 if num_rows % batch_size else num_rows // batch_size,unit='ba',disable=not logging.is_progress_bar_enabled(),desc='Creating json from Arrow format',): written += file_obj.write(lowercase_ ) return written
7
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
from math import factorial def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ = 100 ): return sum(int(SCREAMING_SNAKE_CASE__ ) for x in str(factorial(SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": print(solution(int(input('''Enter the Number: ''').strip())))
8
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class _lowercase ( unittest.TestCase ): '''simple docstring''' def __magic_name__( self :str ) -> int: # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. __SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 2, 4], [1, 2, 3, 4]] __SCREAMING_SNAKE_CASE : Dict = DisjunctiveConstraint(lowerCAmelCase__ ) self.assertTrue(isinstance(dc.token_ids , lowerCAmelCase__ ) ) with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def __magic_name__( self :int ) -> Union[str, Any]: # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). __SCREAMING_SNAKE_CASE : Dict = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(lowerCAmelCase__ ): DisjunctiveConstraint(lowerCAmelCase__ ) # fails here def __magic_name__( self :Any ) -> Optional[int]: __SCREAMING_SNAKE_CASE : str = [[1, 2, 3], [1, 2, 4]] __SCREAMING_SNAKE_CASE : Optional[int] = DisjunctiveConstraint(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = dc.update(1 ) __SCREAMING_SNAKE_CASE : Tuple = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = dc.update(2 ) __SCREAMING_SNAKE_CASE : List[Any] = stepped is True and completed is False and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = dc.update(3 ) __SCREAMING_SNAKE_CASE : List[str] = stepped is True and completed is True and reset is False self.assertTrue(lowerCAmelCase__ ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def __magic_name__( self :List[Any] ) -> Optional[int]: __SCREAMING_SNAKE_CASE : Tuple = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
9
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
from __future__ import annotations def lowerCAmelCase_ ( __a ) -> int: """simple docstring""" lowerCamelCase__: int =len(__a ) // 2 # choose the middle 3 elements lowerCamelCase__: int =lst[m - 1 : m + 2] # if middle element is peak if three[1] > three[0] and three[1] > three[2]: return three[1] # if increasing, recurse on right elif three[0] < three[2]: if len(lst[:m] ) == 2: m -= 1 return peak(lst[m:] ) # decreasing else: if len(lst[:m] ) == 2: m += 1 return peak(lst[:m] ) if __name__ == "__main__": import doctest doctest.testmod()
10
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } lowerCAmelCase__ = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } lowerCAmelCase__ = '</w>' lowerCAmelCase__ = '@@ ' def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] ): _A : Optional[int] = set() _A : Optional[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A : List[Any] = char return pairs # Speech2Text2 has no max input length lowerCAmelCase__ = {'facebook/s2t-wav2vec2-large-en-de': 10_24} class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE = ["input_ids", "attention_mask"] def __init__( self , __lowerCamelCase , __lowerCamelCase="<s>" , __lowerCamelCase="<pad>" , __lowerCamelCase="</s>" , __lowerCamelCase="<unk>" , __lowerCamelCase=False , __lowerCamelCase=None , **__lowerCamelCase , ) -> Optional[Any]: super().__init__( unk_token=__lowerCamelCase , bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_lower_case=__lowerCamelCase , **__lowerCamelCase , ) _A : Dict = do_lower_case with open(__lowerCamelCase , encoding="utf-8") as vocab_handle: _A : Optional[int] = json.load(__lowerCamelCase) _A : Optional[Any] = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F"No merges files provided. {self.__class__.__name__} can only be used for decoding.") _A : Optional[Any] = None _A : Tuple = None else: with open(__lowerCamelCase , encoding="utf-8") as merges_handle: _A : Optional[int] = merges_handle.read().split("\n")[:-1] _A : Union[str, Any] = [tuple(merge.split()[:2]) for merge in merges] _A : Optional[int] = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase)))) _A : List[Any] = {} @property def _lowerCamelCase ( self) -> int: return len(self.decoder) def _lowerCamelCase ( self) -> Dict: return dict(self.encoder , **self.added_tokens_encoder) def _lowerCamelCase ( self , __lowerCamelCase) -> Dict: _A : Tuple = tuple(token[:-1]) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A : int = get_pairs(__lowerCamelCase) if not pairs: return token while True: _A : Any = min(__lowerCamelCase , key=lambda __lowerCamelCase: self.bpe_ranks.get(__lowerCamelCase , float("inf"))) if bigram not in self.bpe_ranks: break _A , _A : Optional[int] = bigram _A : int = [] _A : str = 0 while i < len(__lowerCamelCase): try: _A : str = word.index(__lowerCamelCase , __lowerCamelCase) except ValueError: new_word.extend(word[i:]) break else: new_word.extend(word[i:j]) _A : str = j if word[i] == first and i < len(__lowerCamelCase) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 _A : List[str] = tuple(__lowerCamelCase) _A : List[str] = new_word if len(__lowerCamelCase) == 1: break else: _A : List[Any] = get_pairs(__lowerCamelCase) _A : Tuple = " ".join(__lowerCamelCase) if word == "\n " + BPE_TOKEN_MERGES: _A : List[str] = "\n" + BPE_TOKEN_MERGES if word.endswith(__lowerCamelCase): _A : int = word.replace(__lowerCamelCase , "") _A : int = word.replace(" " , __lowerCamelCase) _A : Union[str, Any] = word return word def _lowerCamelCase ( self , __lowerCamelCase) -> Optional[Any]: if self.bpe_ranks is None: raise ValueError( "This tokenizer was instantiated without a `merges.txt` file, so" " that it can only be used for decoding, not for encoding." "Make sure to provide `merges.txt` file at instantiation to enable " "encoding.") if self.do_lower_case: _A : List[Any] = text.lower() _A : Optional[int] = text.split() _A : List[str] = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCamelCase).split(" "))) return split_tokens def _lowerCamelCase ( self , __lowerCamelCase) -> int: return self.encoder.get(__lowerCamelCase , self.encoder.get(self.unk_token)) def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : List[str] = self.decoder.get(__lowerCamelCase , self.unk_token) return result def _lowerCamelCase ( self , __lowerCamelCase) -> str: _A : str = " ".join(__lowerCamelCase) # make sure @@ tokens are concatenated _A : int = "".join(string.split(__lowerCamelCase)) return string def _lowerCamelCase ( self , __lowerCamelCase , __lowerCamelCase = None) -> Tuple[str]: if not os.path.isdir(__lowerCamelCase): logger.error(F"Vocabulary path ({save_directory}) should be a directory") return _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]) _A : Any = os.path.join( __lowerCamelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]) with open(__lowerCamelCase , "w" , encoding="utf-8") as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCamelCase , ensure_ascii=__lowerCamelCase) + "\n") _A : Union[str, Any] = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCamelCase , "w" , encoding="utf-8") as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCamelCase: kv[1]): if index != token_index: logger.warning( F"Saving vocabulary to {merges_file}: BPE merge indices are not consecutive." " Please check that the tokenizer is not corrupted!") _A : Optional[int] = token_index writer.write(" ".join(__lowerCamelCase) + "\n") index += 1 return (vocab_file, merges_file)
11
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available UpperCAmelCase_ = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = ['MLukeTokenizer'] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mluke import MLukeTokenizer else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
12
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
from __future__ import annotations import os from typing import Any import requests lowerCAmelCase : Tuple = """https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user lowerCAmelCase : Union[str, Any] = BASE_URL + """/user""" # https://github.com/settings/tokens lowerCAmelCase : Dict = os.environ.get("""USER_TOKEN""", """""") def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = { "Authorization": f"token {auth_token}", "Accept": "application/vnd.github.v3+json", } return requests.get(_UpperCAmelCase , headers=_UpperCAmelCase ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'''{key}: {value}''') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
13
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): import tensorflow as tf from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING from ..tf_utils import stable_softmax if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING _lowerCamelCase : List[str] = logging.get_logger(__name__) @add_end_docstrings(UpperCAmelCase__ ) class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Union[str, Any] , *UpperCAmelCase__ : Tuple , **UpperCAmelCase__ : Union[str, Any]) ->Optional[int]: '''simple docstring''' super().__init__(*UpperCAmelCase__ , **UpperCAmelCase__) requires_backends(self , '''vision''') self.check_model_type( TF_MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING if self.framework == '''tf''' else MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Dict=None) ->Union[str, Any]: '''simple docstring''' A__ = {} if top_k is not None: A__ = top_k return {}, {}, postprocess_params def __call__( self : int , UpperCAmelCase__ : Union[str, List[str], "Image.Image", List["Image.Image"]] , **UpperCAmelCase__ : Optional[int]) ->int: '''simple docstring''' return super().__call__(UpperCAmelCase__ , **UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : str) ->Union[str, Any]: '''simple docstring''' A__ = load_image(UpperCAmelCase__) A__ = self.image_processor(images=UpperCAmelCase__ , return_tensors=self.framework) return model_inputs def SCREAMING_SNAKE_CASE ( self : List[Any] , UpperCAmelCase__ : Tuple) ->int: '''simple docstring''' A__ = self.model(**UpperCAmelCase__) return model_outputs def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : int=5) ->List[str]: '''simple docstring''' if top_k > self.model.config.num_labels: A__ = self.model.config.num_labels if self.framework == "pt": A__ = model_outputs.logits.softmax(-1)[0] A__ , A__ = probs.topk(UpperCAmelCase__) elif self.framework == "tf": A__ = stable_softmax(model_outputs.logits , axis=-1)[0] A__ = tf.math.top_k(UpperCAmelCase__ , k=UpperCAmelCase__) A__ , A__ = topk.values.numpy(), topk.indices.numpy() else: raise ValueError(f"""Unsupported framework: {self.framework}""") A__ = scores.tolist() A__ = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(UpperCAmelCase__ , UpperCAmelCase__)]
14
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE :List[Any] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :int = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :Optional[int] = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE :List[Any] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys SCREAMING_SNAKE_CASE :Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
15
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) lowerCAmelCase_ = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = ['LayoutLMv2FeatureExtractor'] lowerCAmelCase_ = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
16
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
"""simple docstring""" # Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def _A ( UpperCamelCase_ : Tuple=None) -> Dict: '''simple docstring''' if subparsers is not None: __lowercase = subparsers.add_parser("env") else: __lowercase = argparse.ArgumentParser("Accelerate env command") parser.add_argument( "--config_file", default=UpperCamelCase_, help="The config file to use for the default values in the launching script.") if subparsers is not None: parser.set_defaults(func=UpperCamelCase_) return parser def _A ( UpperCamelCase_ : Union[str, Any]) -> Tuple: '''simple docstring''' __lowercase = torch.__version__ __lowercase = torch.cuda.is_available() __lowercase = is_xpu_available() __lowercase = is_npu_available() __lowercase = "Not found" # Get the default from the config file. if args.config_file is not None or os.path.isfile(UpperCamelCase_): __lowercase = load_config_from_file(args.config_file).to_dict() __lowercase = { "`Accelerate` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "Numpy version": np.__version__, "PyTorch version (GPU?)": F"""{pt_version} ({pt_cuda_available})""", "PyTorch XPU available": str(UpperCamelCase_), "PyTorch NPU available": str(UpperCamelCase_), "System RAM": F"""{psutil.virtual_memory().total / 1024 ** 3:.2f} GB""", } if pt_cuda_available: __lowercase = torch.cuda.get_device_name() print("\nCopy-and-paste the text below in your GitHub issue\n") print("\n".join([F"""- {prop}: {val}""" for prop, val in info.items()])) print("- `Accelerate` default config:" if args.config_file is None else "- `Accelerate` config passed:") __lowercase = ( "\n".join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()]) if isinstance(UpperCamelCase_, UpperCamelCase_) else F"""\t{accelerate_config}""" ) print(UpperCamelCase_) __lowercase = accelerate_config return info def _A ( ) -> int: '''simple docstring''' __lowercase = env_command_parser() __lowercase = parser.parse_args() env_command(UpperCamelCase_) return 0 if __name__ == "__main__": raise SystemExit(main())
17
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowerCamelCase : List[str] = logging.get_logger(__name__) __lowerCamelCase : Tuple = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} __lowerCamelCase : List[Any] = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } __lowerCamelCase : int = { '''allenai/longformer-base-4096''': 40_96, '''allenai/longformer-large-4096''': 40_96, '''allenai/longformer-large-4096-finetuned-triviaqa''': 40_96, '''allenai/longformer-base-4096-extra.pos.embd.only''': 40_96, '''allenai/longformer-large-4096-extra.pos.embd.only''': 40_96, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def _snake_case ( ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) SCREAMING_SNAKE_CASE_ : str = bs[:] SCREAMING_SNAKE_CASE_ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(lowerCAmelCase ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE_ : List[str] = [chr(lowerCAmelCase ) for n in cs] return dict(zip(lowerCAmelCase , lowerCAmelCase ) ) def _snake_case ( lowerCAmelCase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[str] = set() SCREAMING_SNAKE_CASE_ : Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE_ : List[str] = char return pairs class a__ ( A__ ): A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] def __init__( self : Union[str, Any],_A : List[Any],_A : Tuple,_A : str="replace",_A : Optional[int]="<s>",_A : Dict="</s>",_A : Any="</s>",_A : Optional[Any]="<s>",_A : Union[str, Any]="<unk>",_A : int="<pad>",_A : Dict="<mask>",_A : int=False,**_A : Dict,): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else bos_token SCREAMING_SNAKE_CASE_ : Optional[int] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else eos_token SCREAMING_SNAKE_CASE_ : str = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else sep_token SCREAMING_SNAKE_CASE_ : Union[str, Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else cls_token SCREAMING_SNAKE_CASE_ : List[str] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else unk_token SCREAMING_SNAKE_CASE_ : Optional[Any] = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE_ : Dict = AddedToken(_A,lstrip=_A,rstrip=_A ) if isinstance(_A,_A ) else mask_token super().__init__( errors=_A,bos_token=_A,eos_token=_A,unk_token=_A,sep_token=_A,cls_token=_A,pad_token=_A,mask_token=_A,add_prefix_space=_A,**_A,) with open(_A,encoding="utf-8" ) as vocab_handle: SCREAMING_SNAKE_CASE_ : Tuple = json.load(_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE_ : Any = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE_ : Optional[Any] = bytes_to_unicode() SCREAMING_SNAKE_CASE_ : str = {v: k for k, v in self.byte_encoder.items()} with open(_A,encoding="utf-8" ) as merges_handle: SCREAMING_SNAKE_CASE_ : int = merges_handle.read().split("\n" )[1:-1] SCREAMING_SNAKE_CASE_ : List[str] = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE_ : Optional[int] = dict(zip(_A,range(len(_A ) ) ) ) SCREAMING_SNAKE_CASE_ : Any = {} SCREAMING_SNAKE_CASE_ : List[str] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE_ : List[Any] = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def __UpperCamelCase ( self : List[str] ): """simple docstring""" return len(self.encoder ) def __UpperCamelCase ( self : Tuple ): """simple docstring""" return dict(self.encoder,**self.added_tokens_encoder ) def __UpperCamelCase ( self : Any,_A : int ): """simple docstring""" if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE_ : Union[str, Any] = tuple(_A ) SCREAMING_SNAKE_CASE_ : str = get_pairs(_A ) if not pairs: return token while True: SCREAMING_SNAKE_CASE_ : Tuple = min(_A,key=lambda _A : self.bpe_ranks.get(_A,float("inf" ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Tuple = bigram SCREAMING_SNAKE_CASE_ : int = [] SCREAMING_SNAKE_CASE_ : Dict = 0 while i < len(_A ): try: SCREAMING_SNAKE_CASE_ : Tuple = word.index(_A,_A ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE_ : str = j if word[i] == first and i < len(_A ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE_ : Dict = tuple(_A ) SCREAMING_SNAKE_CASE_ : List[str] = new_word if len(_A ) == 1: break else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_pairs(_A ) SCREAMING_SNAKE_CASE_ : List[str] = " ".join(_A ) SCREAMING_SNAKE_CASE_ : Any = word return word def __UpperCamelCase ( self : Dict,_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [] for token in re.findall(self.pat,_A ): SCREAMING_SNAKE_CASE_ : Any = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_A ).split(" " ) ) return bpe_tokens def __UpperCamelCase ( self : Optional[int],_A : str ): """simple docstring""" return self.encoder.get(_A,self.encoder.get(self.unk_token ) ) def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.decoder.get(_A ) def __UpperCamelCase ( self : List[str],_A : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = "".join(_A ) SCREAMING_SNAKE_CASE_ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8",errors=self.errors ) return text def __UpperCamelCase ( self : List[Any],_A : str,_A : Optional[str] = None ): """simple docstring""" if not os.path.isdir(_A ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Tuple = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) SCREAMING_SNAKE_CASE_ : Any = os.path.join( _A,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(_A,"w",encoding="utf-8" ) as f: f.write(json.dumps(self.encoder,indent=2,sort_keys=_A,ensure_ascii=_A ) + "\n" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 with open(_A,"w",encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items(),key=lambda _A : kv[1] ): if index != token_index: logger.warning( F'Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.' " Please check that the tokenizer is not corrupted!" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = token_index writer.write(" ".join(_A ) + "\n" ) index += 1 return vocab_file, merge_file def __UpperCamelCase ( self : Optional[Any],_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE_ : str = [self.cls_token_id] SCREAMING_SNAKE_CASE_ : Tuple = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCamelCase ( self : str,_A : List[int],_A : Optional[List[int]] = None,_A : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A,token_ids_a=_A,already_has_special_tokens=_A ) if token_ids_a is None: return [1] + ([0] * len(_A )) + [1] return [1] + ([0] * len(_A )) + [1, 1] + ([0] * len(_A )) + [1] def __UpperCamelCase ( self : Any,_A : List[int],_A : Optional[List[int]] = None ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self : Any,_A : Union[str, Any],_A : Any=False,**_A : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = kwargs.pop("add_prefix_space",self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_A ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE_ : str = " " + text return (text, kwargs)
18
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = TFXLMRobertaModel.from_pretrained("jplu/tf-xlm-roberta-base" ) lowerCamelCase_ = { "input_ids": tf.convert_to_tensor([[0, 2646, 10269, 83, 99942, 2]] , dtype=tf.intaa ), # "My dog is cute" "attention_mask": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , lowercase ) # compare the actual values for a slice. lowerCamelCase_ = tf.convert_to_tensor( [ [ [0.0_6_8_1_7_6_2, 0.1_0_8_9_4_4_5_1, 0.0_6_7_7_2_5_0_4], [-0.0_6_4_2_3_6_6_8, 0.0_2_3_6_6_6_1_5, 0.0_4_3_2_9_3_4_4], [-0.0_6_0_5_7_2_9_5, 0.0_9_9_7_4_1_3_5, -0.0_0_0_7_0_5_8_4], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
19
"""simple docstring""" def A ( snake_case :list[int] , snake_case :list[int] ) -> None: __UpperCamelCase = len(snake_case ) print('The following activities are selected:' ) # The first activity is always selected __UpperCamelCase = 0 print(snake_case , end=',' ) # Consider rest of the activities for j in range(snake_case ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case , end=',' ) __UpperCamelCase = j if __name__ == "__main__": import doctest doctest.testmod() UpperCamelCase : int = [1, 3, 0, 5, 8, 5] UpperCamelCase : str = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
316
0
import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase : Optional[Any] = logging.getLogger(__name__) @dataclass class __snake_case : _a : str= field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) _a : Optional[str]= field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) _a : bool= field(default=lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class __snake_case : _a : str= field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) _a : Optional[str]= field( default=lowerCAmelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) _a : int= field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _a : bool= field( default=lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def _snake_case( ) -> Dict: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowercase : Optional[int] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : Any = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f"Output directory ({training_args.output_dir}) already exists and is not empty. Use" """ --overwrite_output_dir to overcome.""" ) lowercase : List[str] = import_module("""tasks""" ) try: lowercase : List[Any] = getattr(SCREAMING_SNAKE_CASE__ , model_args.task_type ) lowercase : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( f"Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. " f"Available tasks classes are: {TokenClassificationTask.__subclasses__()}" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( """Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s""" , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , SCREAMING_SNAKE_CASE__ ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task lowercase : List[Any] = token_classification_task.get_labels(data_args.labels ) lowercase : Dict[int, str] = dict(enumerate(SCREAMING_SNAKE_CASE__ ) ) lowercase : Tuple = len(SCREAMING_SNAKE_CASE__ ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Optional[int] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=SCREAMING_SNAKE_CASE__ , idalabel=SCREAMING_SNAKE_CASE__ , labelaid={label: i for i, label in enumerate(SCREAMING_SNAKE_CASE__ )} , cache_dir=model_args.cache_dir , ) lowercase : Dict = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) lowercase : Optional[Any] = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=SCREAMING_SNAKE_CASE__ , cache_dir=model_args.cache_dir , ) # Get datasets lowercase : List[Any] = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) lowercase : Tuple = ( TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Tuple[List[int], List[int]]: lowercase : str = np.argmax(SCREAMING_SNAKE_CASE__ , axis=2 ) lowercase , lowercase : int = preds.shape lowercase : str = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] lowercase : Optional[Any] = [[] for _ in range(SCREAMING_SNAKE_CASE__ )] for i in range(SCREAMING_SNAKE_CASE__ ): for j in range(SCREAMING_SNAKE_CASE__ ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(SCREAMING_SNAKE_CASE__ ) -> Dict: lowercase , lowercase : List[str] = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "precision": precision_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "recall": recall_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), "f1": fa_score(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ), } # Data collator lowercase : str = DataCollatorWithPadding(SCREAMING_SNAKE_CASE__ , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer lowercase : Dict = Trainer( model=SCREAMING_SNAKE_CASE__ , args=SCREAMING_SNAKE_CASE__ , train_dataset=SCREAMING_SNAKE_CASE__ , eval_dataset=SCREAMING_SNAKE_CASE__ , compute_metrics=SCREAMING_SNAKE_CASE__ , data_collator=SCREAMING_SNAKE_CASE__ , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation lowercase : Any = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) lowercase : List[Any] = trainer.evaluate() lowercase : Optional[Any] = os.path.join(training_args.output_dir , """eval_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in result.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) results.update(SCREAMING_SNAKE_CASE__ ) # Predict if training_args.do_predict: lowercase : Any = TokenClassificationDataset( token_classification_task=SCREAMING_SNAKE_CASE__ , data_dir=data_args.data_dir , tokenizer=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) lowercase , lowercase , lowercase : List[str] = trainer.predict(SCREAMING_SNAKE_CASE__ ) lowercase , lowercase : List[Any] = align_predictions(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase : int = os.path.join(training_args.output_dir , """test_results.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: for key, value in metrics.items(): logger.info(""" %s = %s""" , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) writer.write("""%s = %s\n""" % (key, value) ) # Save predictions lowercase : List[Any] = os.path.join(training_args.output_dir , """test_predictions.txt""" ) if trainer.is_world_process_zero(): with open(SCREAMING_SNAKE_CASE__ , """w""" ) as writer: with open(os.path.join(data_args.data_dir , """test.txt""" ) , """r""" ) as f: token_classification_task.write_predictions_to_file(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return results def _snake_case( SCREAMING_SNAKE_CASE__ ) -> Tuple: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
20
"""simple docstring""" def A ( snake_case :int ) -> list: # bit count represents no. of bits in the gray code if bit_count < 0: raise ValueError('The given input must be positive' ) # get the generated string sequence __UpperCamelCase = gray_code_sequence_string(snake_case ) # # convert them to integers for i in range(len(snake_case ) ): __UpperCamelCase = int(sequence[i] , 2 ) return sequence def A ( snake_case :int ) -> list: # The approach is a recursive one # Base case achieved when either n = 0 or n=1 if bit_count == 0: return ["0"] if bit_count == 1: return ["0", "1"] __UpperCamelCase = 1 << bit_count # defines the length of the sequence # 1<< n is equivalent to 2^n # recursive answer will generate answer for n-1 bits __UpperCamelCase = gray_code_sequence_string(bit_count - 1 ) __UpperCamelCase = [] # append 0 to first half of the smaller sequence generated for i in range(seq_len // 2 ): __UpperCamelCase = '0' + smaller_sequence[i] sequence.append(snake_case ) # append 1 to second half ... start from the end of the list for i in reversed(range(seq_len // 2 ) ): __UpperCamelCase = '1' + smaller_sequence[i] sequence.append(snake_case ) return sequence if __name__ == "__main__": import doctest doctest.testmod()
316
0
import gc import random import unittest import numpy as np import torch from transformers import XLMRobertaTokenizer from diffusers import ( AltDiffusionImgaImgPipeline, AutoencoderKL, PNDMScheduler, UNetaDConditionModel, ) from diffusers.image_processor import VaeImageProcessor from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : Optional[Any] = 1 _lowercase : Any = 3 _lowercase : Tuple = (32, 32) _lowercase : Tuple = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(lowerCamelCase) return image @property def UpperCamelCase ( self) -> str: """simple docstring""" torch.manual_seed(0) _lowercase : Dict = UNetaDConditionModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=4, out_channels=4, down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D'), up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D'), cross_attention_dim=32, ) return model @property def UpperCamelCase ( self) -> List[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : str = AutoencoderKL( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'], up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'], latent_channels=4, ) return model @property def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" torch.manual_seed(0) _lowercase : Optional[int] = RobertaSeriesConfig( hidden_size=32, project_dim=32, intermediate_size=37, layer_norm_eps=1E-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=50_06, ) return RobertaSeriesModelWithTransformation(lowerCamelCase) @property def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" def extract(*lowerCamelCase, **lowerCamelCase): class _lowerCamelCase: def __init__( self) -> Optional[Any]: """simple docstring""" _lowercase : Optional[int] = torch.ones([0]) def UpperCamelCase ( self, lowerCamelCase) -> int: """simple docstring""" self.pixel_values.to(lowerCamelCase) return self return Out() return extract def UpperCamelCase ( self) -> Tuple: """simple docstring""" _lowercase : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Union[str, Any] = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : Optional[Any] = self.dummy_vae _lowercase : List[Any] = self.dummy_text_encoder _lowercase : Any = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Tuple = 77 _lowercase : int = self.dummy_image.to(lowerCamelCase) _lowercase : int = init_image / 2 + 0.5 # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[Any] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Optional[int] = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : Optional[Any] = 'A painting of a squirrel eating a burger' _lowercase : Dict = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Any = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, ) _lowercase : Optional[int] = output.images _lowercase : Optional[Any] = torch.Generator(device=lowerCamelCase).manual_seed(0) _lowercase : Optional[Any] = alt_pipe( [prompt], generator=lowerCamelCase, guidance_scale=6.0, num_inference_steps=2, output_type='np', image=lowerCamelCase, return_dict=lowerCamelCase, )[0] _lowercase : Optional[int] = image[0, -3:, -3:, -1] _lowercase : Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _lowercase : int = np.array([0.4_4_2_7, 0.3_7_3_1, 0.4_2_4_9, 0.4_9_4_1, 0.4_5_4_6, 0.4_1_4_8, 0.4_1_9_3, 0.4_6_6_6, 0.4_4_9_9]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5E-3 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5E-3 @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : List[Any] = self.dummy_cond_unet _lowercase : Tuple = PNDMScheduler(skip_prk_steps=lowerCamelCase) _lowercase : str = self.dummy_vae _lowercase : Optional[Any] = self.dummy_text_encoder _lowercase : Optional[Any] = XLMRobertaTokenizer.from_pretrained('hf-internal-testing/tiny-xlm-roberta') _lowercase : Optional[Any] = 77 _lowercase : str = self.dummy_image.to(lowerCamelCase) # put models in fp16 _lowercase : List[str] = unet.half() _lowercase : List[Any] = vae.half() _lowercase : Any = bert.half() # make sure here that pndm scheduler skips prk _lowercase : Union[str, Any] = AltDiffusionImgaImgPipeline( unet=lowerCamelCase, scheduler=lowerCamelCase, vae=lowerCamelCase, text_encoder=lowerCamelCase, tokenizer=lowerCamelCase, safety_checker=lowerCamelCase, feature_extractor=self.dummy_extractor, ) _lowercase : List[str] = VaeImageProcessor(vae_scale_factor=alt_pipe.vae_scale_factor, do_normalize=lowerCamelCase) _lowercase : Any = alt_pipe.to(lowerCamelCase) alt_pipe.set_progress_bar_config(disable=lowerCamelCase) _lowercase : int = 'A painting of a squirrel eating a burger' _lowercase : Optional[Any] = torch.manual_seed(0) _lowercase : Union[str, Any] = alt_pipe( [prompt], generator=lowerCamelCase, num_inference_steps=2, output_type='np', image=lowerCamelCase, ).images assert image.shape == (1, 32, 32, 3) @unittest.skipIf(torch_device != 'cuda', 'This test requires a GPU') def UpperCamelCase ( self) -> Optional[int]: """simple docstring""" _lowercase : int = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') # resize to resolution that is divisible by 8 but not 16 or 32 _lowercase : str = init_image.resize((7_60, 5_04)) _lowercase : Optional[int] = 'BAAI/AltDiffusion' _lowercase : str = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : List[str] = 'A fantasy landscape, trending on artstation' _lowercase : Any = torch.manual_seed(0) _lowercase : Dict = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : List[str] = output.images[0] _lowercase : Tuple = image[2_55:2_58, 3_83:3_86, -1] assert image.shape == (5_04, 7_60, 3) _lowercase : Optional[Any] = np.array([0.9_3_5_8, 0.9_3_9_7, 0.9_5_9_9, 0.9_9_0_1, 1.0_0_0_0, 1.0_0_0_0, 0.9_8_8_2, 1.0_0_0_0, 1.0_0_0_0]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 @slow @require_torch_gpu class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self) -> List[Any]: """simple docstring""" _lowercase : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/img2img/sketch-mountains-input.jpg') _lowercase : str = init_image.resize((7_68, 5_12)) _lowercase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy') _lowercase : str = 'BAAI/AltDiffusion' _lowercase : Optional[Any] = AltDiffusionImgaImgPipeline.from_pretrained( lowerCamelCase, safety_checker=lowerCamelCase, ) pipe.to(lowerCamelCase) pipe.set_progress_bar_config(disable=lowerCamelCase) pipe.enable_attention_slicing() _lowercase : int = 'A fantasy landscape, trending on artstation' _lowercase : List[Any] = torch.manual_seed(0) _lowercase : int = pipe( prompt=lowerCamelCase, image=lowerCamelCase, strength=0.7_5, guidance_scale=7.5, generator=lowerCamelCase, output_type='np', ) _lowercase : Union[str, Any] = output.images[0] assert image.shape == (5_12, 7_68, 3) # img2img is flaky across GPUs even in fp32, so using MAE here assert np.abs(expected_image - image).max() < 1E-2
21
"""simple docstring""" import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 100 __UpperCamelCase = batch_size __UpperCamelCase = image_size __UpperCamelCase = patch_size __UpperCamelCase = num_channels __UpperCamelCase = is_training __UpperCamelCase = use_labels __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = type_sequence_label_size __UpperCamelCase = initializer_range __UpperCamelCase = scope __UpperCamelCase = out_indices __UpperCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) __UpperCamelCase = (image_size // patch_size) ** 2 __UpperCamelCase = num_patches + 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) __UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def UpperCAmelCase ( self ): '''simple docstring''' return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.type_sequence_label_size __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __UpperCamelCase = 1 __UpperCamelCase = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) __UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowercase = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowercase = False lowercase = False lowercase = False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def UpperCAmelCase ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def UpperCAmelCase ( self ): '''simple docstring''' pass def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __UpperCamelCase = model_class(__UpperCAmelCase ) __UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __UpperCamelCase = [*signature.parameters.keys()] __UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.model_tester.is_training: return __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return __UpperCamelCase = False __UpperCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue __UpperCamelCase = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) __UpperCamelCase = model(**__UpperCAmelCase ).loss loss.backward() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: __UpperCamelCase = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def A ( ) -> int: __UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class __lowerCAmelCase ( unittest.TestCase ): @cached_property def UpperCAmelCase ( self ): '''simple docstring''' return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos __UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( __UpperCAmelCase ) __UpperCamelCase = self.default_image_processor __UpperCamelCase = prepare_img() __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) __UpperCamelCase = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits # verify the logits __UpperCamelCase = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) __UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: __UpperCamelCase = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: __UpperCamelCase = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) __UpperCamelCase = model.to(__UpperCAmelCase ) __UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) __UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) __UpperCamelCase = Image.open(ds[0]['file'] ) __UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): __UpperCamelCase = model(**__UpperCAmelCase ) __UpperCamelCase = outputs.logits.detach().cpu() __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) __UpperCamelCase = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) __UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) __UpperCamelCase = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
316
0
'''simple docstring''' import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __SCREAMING_SNAKE_CASE :Dict = '''src/transformers''' __SCREAMING_SNAKE_CASE :int = '''docs/source/en/tasks''' def UpperCAmelCase_ ( __lowercase : str , __lowercase : Union[str, Any] , __lowercase : int ) -> Optional[int]: '''simple docstring''' with open(__lowercase , "r" , encoding="utf-8" , newline="\n" ) as f: _UpperCAmelCase = f.readlines() # Find the start prompt. _UpperCAmelCase = 0 while not lines[start_index].startswith(__lowercase ): start_index += 1 start_index += 1 _UpperCAmelCase = start_index while not lines[end_index].startswith(__lowercase ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __SCREAMING_SNAKE_CASE :List[Any] = direct_transformers_import(TRANSFORMERS_PATH) __SCREAMING_SNAKE_CASE :Tuple = { '''asr.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, '''audio_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, '''language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, '''image_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, '''masked_language_modeling.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, '''multiple_choice.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, '''object_detection.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, '''question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, '''semantic_segmentation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, '''sequence_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, '''summarization.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''token_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, '''translation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, '''video_classification.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, '''document_question_answering.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, '''monocular_depth_estimation.md''': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __SCREAMING_SNAKE_CASE :Optional[int] = { '''summarization.md''': ('''nllb''',), '''translation.md''': ('''nllb''',), } def UpperCAmelCase_ ( __lowercase : Optional[Any] ) -> int: '''simple docstring''' _UpperCAmelCase = TASK_GUIDE_TO_MODELS[task_guide] _UpperCAmelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(__lowercase , set() ) _UpperCAmelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([f'[{name}](../model_doc/{code})' for code, name in model_names.items()] ) + "\n" def UpperCAmelCase_ ( __lowercase : Optional[int] , __lowercase : Any=False ) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = _find_text_in_file( filename=os.path.join(__lowercase , __lowercase ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) _UpperCAmelCase = get_model_list_for_task(__lowercase ) if current_list != new_list: if overwrite: with open(os.path.join(__lowercase , __lowercase ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( f'The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`' " to fix this." ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE :int = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') __SCREAMING_SNAKE_CASE :Any = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
22
"""simple docstring""" def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int: __UpperCamelCase = range(1 , snake_case ) __UpperCamelCase = range(1 , snake_case ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(f'''{solution(1_0, 2_2) = }''')
316
0
'''simple docstring''' import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def snake_case_ ( _lowerCAmelCase : Optional[Any] ) -> Any: UpperCAmelCase : Union[str, Any] = SwinConfig(image_size=192 ) if "base" in model_name: UpperCAmelCase : List[str] = 6 UpperCAmelCase : int = 128 UpperCAmelCase : str = (2, 2, 18, 2) UpperCAmelCase : List[Any] = (4, 8, 16, 32) elif "large" in model_name: UpperCAmelCase : List[str] = 12 UpperCAmelCase : List[str] = 192 UpperCAmelCase : List[str] = (2, 2, 18, 2) UpperCAmelCase : int = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) UpperCAmelCase : Union[str, Any] = window_size UpperCAmelCase : Union[str, Any] = embed_dim UpperCAmelCase : Union[str, Any] = depths UpperCAmelCase : Tuple = num_heads return config def snake_case_ ( _lowerCAmelCase : Tuple ) -> int: if "encoder.mask_token" in name: UpperCAmelCase : str = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: UpperCAmelCase : Union[str, Any] = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: UpperCAmelCase : Any = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: UpperCAmelCase : Tuple = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: UpperCAmelCase : Optional[int] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: UpperCAmelCase : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: UpperCAmelCase : Any = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: UpperCAmelCase : int = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: UpperCAmelCase : Union[str, Any] = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": UpperCAmelCase : List[Any] = '''layernorm.weight''' if name == "encoder.norm.bias": UpperCAmelCase : List[Any] = '''layernorm.bias''' if "decoder" in name: pass else: UpperCAmelCase : str = '''swin.''' + name return name def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Tuple ) -> Dict: for key in orig_state_dict.copy().keys(): UpperCAmelCase : List[str] = orig_state_dict.pop(_lowerCAmelCase ) if "attn_mask" in key: pass elif "qkv" in key: UpperCAmelCase : Optional[int] = key.split('''.''' ) UpperCAmelCase : Any = int(key_split[2] ) UpperCAmelCase : Tuple = int(key_split[4] ) UpperCAmelCase : Tuple = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: UpperCAmelCase : Optional[int] = val[:dim, :] UpperCAmelCase : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase : List[Any] = val[-dim:, :] else: UpperCAmelCase : List[Any] = val[ :dim ] UpperCAmelCase : List[Any] = val[ dim : dim * 2 ] UpperCAmelCase : List[Any] = val[ -dim: ] else: UpperCAmelCase : Any = val return orig_state_dict def snake_case_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict , _lowerCAmelCase : int ) -> int: UpperCAmelCase : int = torch.load(_lowerCAmelCase , map_location='''cpu''' )['''model'''] UpperCAmelCase : Dict = get_swin_config(_lowerCAmelCase ) UpperCAmelCase : Any = SwinForMaskedImageModeling(_lowerCAmelCase ) model.eval() UpperCAmelCase : str = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) UpperCAmelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' UpperCAmelCase : int = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) UpperCAmelCase : Any = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) UpperCAmelCase : int = image_processor(images=_lowerCAmelCase , return_tensors='''pt''' ) with torch.no_grad(): UpperCAmelCase : Dict = model(**_lowerCAmelCase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_lowerCAmelCase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: print(f"""Pushing model and image processor for {model_name} to hub""" ) model.push_to_hub(f"""microsoft/{model_name}""" ) image_processor.push_to_hub(f"""microsoft/{model_name}""" ) if __name__ == "__main__": UpperCamelCase__: List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="swin-base-simmim-window6-192", type=str, choices=["swin-base-simmim-window6-192", "swin-large-simmim-window12-192"], help="Name of the Swin SimMIM model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default="/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth", type=str, help="Path to the original PyTorch checkpoint (.pth file).", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase__: Tuple = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
23
"""simple docstring""" # this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.: # python ./utils/get_modified_files.py utils src tests examples # # it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered # since the output of this script is fed into Makefile commands it doesn't print a newline after the results import re import subprocess import sys UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8") UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split() UpperCamelCase : Tuple = "|".join(sys.argv[1:]) UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''') UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)] print(" ".join(relevant_modified_files), end="")
316
0
from __future__ import annotations snake_case_ = [-10, -5, 0, 5, 5.1, 11, 13, 21, 3, 4, -21, -10, -5, -1, 0] snake_case_ = [-5, 0, 5, 5.1, 11, 13, 21, -1, 4, -1, -10, -5, -1, 0, -1] def lowerCamelCase__ ( snake_case_ : list[float] ) -> list[float]: __snake_case = [] __snake_case = len(snake_case_ ) for i in range(snake_case_ ): __snake_case = -1 for j in range(i + 1 , snake_case_ ): if arr[i] < arr[j]: __snake_case = arr[j] break result.append(snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[float] ) -> list[float]: __snake_case = [] for i, outer in enumerate(snake_case_ ): __snake_case = -1 for inner in arr[i + 1 :]: if outer < inner: __snake_case = inner break result.append(snake_case_ ) return result def lowerCamelCase__ ( snake_case_ : list[float] ) -> list[float]: __snake_case = len(snake_case_ ) __snake_case = [] __snake_case = [-1] * arr_size for index in reversed(range(snake_case_ ) ): if stack: while stack[-1] <= arr[index]: stack.pop() if not stack: break if stack: __snake_case = stack[-1] stack.append(arr[index] ) return result if __name__ == "__main__": from doctest import testmod from timeit import timeit testmod() print(next_greatest_element_slow(arr)) print(next_greatest_element_fast(arr)) print(next_greatest_element(arr)) snake_case_ = ( 'from __main__ import arr, next_greatest_element_slow, ' 'next_greatest_element_fast, next_greatest_element' ) print( 'next_greatest_element_slow():', timeit('next_greatest_element_slow(arr)', setup=setup), ) print( 'next_greatest_element_fast():', timeit('next_greatest_element_fast(arr)', setup=setup), ) print( ' next_greatest_element():', timeit('next_greatest_element(arr)', setup=setup), )
24
"""simple docstring""" from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCamelCase : Any = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["pixel_values"] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ): '''simple docstring''' super().__init__(**__UpperCAmelCase ) __UpperCamelCase = do_rescale __UpperCamelCase = rescale_factor __UpperCamelCase = do_pad __UpperCamelCase = pad_size def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ): '''simple docstring''' return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase ) __UpperCamelCase = (old_height // size + 1) * size - old_height __UpperCamelCase = (old_width // size + 1) * size - old_width return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale __UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor __UpperCamelCase = do_pad if do_pad is not None else self.do_pad __UpperCamelCase = pad_size if pad_size is not None else self.pad_size __UpperCamelCase = make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) # All transformations expect numpy arrays. __UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images] if do_rescale: __UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_pad: __UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images] __UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] __UpperCamelCase = {'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
316
0
"""simple docstring""" from packaging import version from .import_utils import is_accelerate_available if is_accelerate_available(): import accelerate def lowercase_ ( _snake_case ): if not is_accelerate_available(): return method SCREAMING_SNAKE_CASE__ : Union[str, Any] = version.parse(accelerate.__version__ ).base_version if version.parse(_snake_case ) < version.parse("""0.17.0""" ): return method def wrapper(self ,*_snake_case ,**_snake_case ): if hasattr(self ,"""_hf_hook""" ) and hasattr(self._hf_hook ,"""pre_forward""" ): self._hf_hook.pre_forward(self ) return method(self ,*_snake_case ,**_snake_case ) return wrapper
25
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = 13 __UpperCamelCase = 7 __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 2 __UpperCamelCase = 99 __UpperCamelCase = 0 __UpperCamelCase = 32 __UpperCamelCase = 2 __UpperCamelCase = 4 __UpperCamelCase = 0.1 __UpperCamelCase = 0.1 __UpperCamelCase = 512 __UpperCamelCase = 16 __UpperCamelCase = 2 __UpperCamelCase = 0.0_2 __UpperCamelCase = 3 __UpperCamelCase = 4 __UpperCamelCase = 'last' __UpperCamelCase = True __UpperCamelCase = None __UpperCamelCase = 0 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) __UpperCamelCase = None if self.use_input_lengths: __UpperCamelCase = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __UpperCamelCase = None if self.use_token_type_ids: __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __UpperCamelCase = None __UpperCamelCase = None __UpperCamelCase = None if self.use_labels: __UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) __UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices ) __UpperCamelCase = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = [input_ids, input_mask] __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_labels __UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase ) __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.num_choices __UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) __UpperCamelCase = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } __UpperCamelCase = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) = config_and_inputs __UpperCamelCase = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'langs': token_type_ids, 'lengths': input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) lowercase = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) lowercase = False lowercase = False def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModelTester(self ) __UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 ) def UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase ) @slow def UpperCAmelCase ( self ): '''simple docstring''' for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): @slow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' ) __UpperCamelCase = tf.convert_to_tensor( [[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" __UpperCamelCase = model(__UpperCAmelCase )[0] __UpperCamelCase = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , __UpperCAmelCase ) # compare the actual values for a slice. __UpperCamelCase = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
316
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _snake_case = { "configuration_roberta_prelayernorm": [ "ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaPreLayerNormConfig", "RobertaPreLayerNormOnnxConfig", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaPreLayerNormForCausalLM", "RobertaPreLayerNormForMaskedLM", "RobertaPreLayerNormForMultipleChoice", "RobertaPreLayerNormForQuestionAnswering", "RobertaPreLayerNormForSequenceClassification", "RobertaPreLayerNormForTokenClassification", "RobertaPreLayerNormModel", "RobertaPreLayerNormPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaPreLayerNormForCausalLM", "TFRobertaPreLayerNormForMaskedLM", "TFRobertaPreLayerNormForMultipleChoice", "TFRobertaPreLayerNormForQuestionAnswering", "TFRobertaPreLayerNormForSequenceClassification", "TFRobertaPreLayerNormForTokenClassification", "TFRobertaPreLayerNormMainLayer", "TFRobertaPreLayerNormModel", "TFRobertaPreLayerNormPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "FlaxRobertaPreLayerNormForCausalLM", "FlaxRobertaPreLayerNormForMaskedLM", "FlaxRobertaPreLayerNormForMultipleChoice", "FlaxRobertaPreLayerNormForQuestionAnswering", "FlaxRobertaPreLayerNormForSequenceClassification", "FlaxRobertaPreLayerNormForTokenClassification", "FlaxRobertaPreLayerNormModel", "FlaxRobertaPreLayerNormPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
"""simple docstring""" import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str: __UpperCamelCase = s.rsplit(snake_case , snake_case ) return new.join(snake_case ) def A ( snake_case :List[Any] ) -> int: # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def A ( snake_case :str ) -> Union[str, Any]: __UpperCamelCase = {} __UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4'] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: __UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' ) if "res_path" in key: __UpperCamelCase = key.replace('res_path.' , 'res_path.path.' ) if key.endswith('.w' ): __UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 ) if key.endswith('.b' ): __UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 ) __UpperCamelCase = value.float() return upgrade @torch.no_grad() def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int: from dall_e import Encoder __UpperCamelCase = Encoder() if os.path.exists(snake_case ): __UpperCamelCase = torch.load(snake_case ) else: __UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case ) if isinstance(snake_case , snake_case ): __UpperCamelCase = ckpt.state_dict() encoder.load_state_dict(snake_case ) if config_path is not None: __UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case ) else: __UpperCamelCase = FlavaImageCodebookConfig() __UpperCamelCase = FlavaImageCodebook(snake_case ).eval() __UpperCamelCase = encoder.state_dict() __UpperCamelCase = upgrade_state_dict(snake_case ) hf_model.load_state_dict(snake_case ) __UpperCamelCase = hf_model.state_dict() __UpperCamelCase = count_parameters(snake_case ) __UpperCamelCase = count_parameters(snake_case ) assert torch.allclose(snake_case , snake_case , atol=1e-3 ) if save_checkpoint: hf_model.save_pretrained(snake_case ) else: return hf_state_dict if __name__ == "__main__": UpperCamelCase : Any = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") UpperCamelCase : int = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
316
0
'''simple docstring''' import re import string from collections import Counter import sacrebleu import sacremoses from packaging import version import datasets __lowercase : int = '\n@inproceedings{xu-etal-2016-optimizing,\n title = {Optimizing Statistical Machine Translation for Text Simplification},\n authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},\n journal = {Transactions of the Association for Computational Linguistics},\n volume = {4},\n year={2016},\n url = {https://www.aclweb.org/anthology/Q16-1029},\n pages = {401--415\n},\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' __lowercase : int = '\\nWIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU\nIt can be used to evaluate the quality of machine-generated texts.\n' __lowercase : int = '\nCalculates sari score (between 0 and 100) given a list of source and predicted\nsentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.\nArgs:\n sources: list of source sentences where each sentence should be a string.\n predictions: list of predicted sentences where each sentence should be a string.\n references: list of lists of reference sentences where each sentence should be a string.\nReturns:\n sari: sari score\n sacrebleu: sacrebleu score\n exact: exact score\n\nExamples:\n >>> sources=["About 95 species are currently accepted ."]\n >>> predictions=["About 95 you now get in ."]\n >>> references=[["About 95 species are currently known ."]]\n >>> wiki_split = datasets.load_metric("wiki_split")\n >>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)\n >>> print(results)\n {\'sari\': 21.805555555555557, \'sacrebleu\': 14.535768424205482, \'exact\': 0.0}\n' def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] ): def remove_articles(_SCREAMING_SNAKE_CASE : List[str] ): __a : Union[str, Any] = re.compile(r'\b(a|an|the)\b' , re.UNICODE ) return re.sub(_SCREAMING_SNAKE_CASE , ' ' , _SCREAMING_SNAKE_CASE ) def white_space_fix(_SCREAMING_SNAKE_CASE : Tuple ): return " ".join(text.split() ) def remove_punc(_SCREAMING_SNAKE_CASE : int ): __a : Optional[int] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_SCREAMING_SNAKE_CASE : Tuple ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_SCREAMING_SNAKE_CASE ) ) ) ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple ): return int(normalize_answer(_SCREAMING_SNAKE_CASE ) == normalize_answer(_SCREAMING_SNAKE_CASE ) ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Dict ): __a : Union[str, Any] = [any(compute_exact(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )] return (sum(_SCREAMING_SNAKE_CASE ) / len(_SCREAMING_SNAKE_CASE )) * 100 def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Optional[int] ): __a : str = [rgram for rgrams in rgramslist for rgram in rgrams] __a : Optional[int] = Counter(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = Counter(_SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = Counter() for sgram, scount in sgramcounter.items(): __a : int = scount * numref __a : Optional[int] = Counter(_SCREAMING_SNAKE_CASE ) __a : List[str] = Counter() for cgram, ccount in cgramcounter.items(): __a : Union[str, Any] = ccount * numref # KEEP __a : Any = sgramcounter_rep & cgramcounter_rep __a : Tuple = keepgramcounter_rep & rgramcounter __a : Any = sgramcounter_rep & rgramcounter __a : Optional[Any] = 0 __a : List[Any] = 0 for keepgram in keepgramcountergood_rep: keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram] # Fix an alleged bug [2] in the keep score computation. # keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram] keeptmpscorea += keepgramcountergood_rep[keepgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : List[Any] = 1 __a : List[Any] = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: __a : List[str] = keeptmpscorea / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: # Fix an alleged bug [2] in the keep score computation. # keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep) __a : Dict = keeptmpscorea / sum(keepgramcounterall_rep.values() ) __a : Optional[Any] = 0 if keepscore_precision > 0 or keepscore_recall > 0: __a : List[str] = 2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall) # DELETION __a : List[Any] = sgramcounter_rep - cgramcounter_rep __a : Optional[int] = delgramcounter_rep - rgramcounter __a : Union[str, Any] = sgramcounter_rep - rgramcounter __a : int = 0 __a : Tuple = 0 for delgram in delgramcountergood_rep: deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram] deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram] # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : List[str] = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: __a : Union[str, Any] = deltmpscorea / len(_SCREAMING_SNAKE_CASE ) # ADDITION __a : str = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) __a : int = set(_SCREAMING_SNAKE_CASE ) & set(_SCREAMING_SNAKE_CASE ) __a : Optional[int] = set(_SCREAMING_SNAKE_CASE ) - set(_SCREAMING_SNAKE_CASE ) __a : Optional[Any] = 0 for addgram in addgramcountergood: addtmpscore += 1 # Define 0/0=1 instead of 0 to give higher scores for predictions that match # a target exactly. __a : Tuple = 1 __a : Optional[Any] = 1 if len(_SCREAMING_SNAKE_CASE ) > 0: __a : str = addtmpscore / len(_SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: __a : List[Any] = addtmpscore / len(_SCREAMING_SNAKE_CASE ) __a : Tuple = 0 if addscore_precision > 0 or addscore_recall > 0: __a : Tuple = 2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall) return (keepscore, delscore_precision, addscore) def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : Union[str, Any] ): __a : Dict = len(_SCREAMING_SNAKE_CASE ) __a : int = ssent.split(' ' ) __a : List[str] = csent.split(' ' ) __a : Tuple = [] __a : Dict = [] __a : Dict = [] __a : Union[str, Any] = [] __a : Any = [] __a : Optional[int] = [] __a : Tuple = [] __a : Optional[Any] = [] __a : str = [] __a : Dict = [] for rsent in rsents: __a : Optional[Any] = rsent.split(' ' ) __a : Tuple = [] __a : str = [] __a : Any = [] ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: __a : Dict = ragrams[i] + ' ' + ragrams[i + 1] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: __a : Union[str, Any] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] ragrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: __a : Optional[int] = ragrams[i] + ' ' + ragrams[i + 1] + ' ' + ragrams[i + 2] + ' ' + ragrams[i + 3] ragrams.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) ragramslist.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: __a : Optional[int] = sagrams[i] + ' ' + sagrams[i + 1] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: __a : Any = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] sagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: __a : int = sagrams[i] + ' ' + sagrams[i + 1] + ' ' + sagrams[i + 2] + ' ' + sagrams[i + 3] sagrams.append(_SCREAMING_SNAKE_CASE ) for i in range(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ): if i < len(_SCREAMING_SNAKE_CASE ) - 1: __a : str = cagrams[i] + ' ' + cagrams[i + 1] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 2: __a : List[str] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] cagrams.append(_SCREAMING_SNAKE_CASE ) if i < len(_SCREAMING_SNAKE_CASE ) - 3: __a : Optional[Any] = cagrams[i] + ' ' + cagrams[i + 1] + ' ' + cagrams[i + 2] + ' ' + cagrams[i + 3] cagrams.append(_SCREAMING_SNAKE_CASE ) ((__a) , (__a) , (__a)) : int = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((__a) , (__a) , (__a)) : Tuple = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((__a) , (__a) , (__a)) : Any = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ((__a) , (__a) , (__a)) : Optional[int] = SARIngram(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) __a : Union[str, Any] = sum([keepascore, keepascore, keepascore, keepascore] ) / 4 __a : Dict = sum([delascore, delascore, delascore, delascore] ) / 4 __a : Union[str, Any] = sum([addascore, addascore, addascore, addascore] ) / 4 __a : Union[str, Any] = (avgkeepscore + avgdelscore + avgaddscore) / 3 return finalscore def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : bool = True , _SCREAMING_SNAKE_CASE : str = "13a" , _SCREAMING_SNAKE_CASE : bool = True ): # Normalization is requried for the ASSET dataset (one of the primary # datasets in sentence simplification) to allow using space # to split the sentence. Even though Wiki-Auto and TURK datasets, # do not require normalization, we do it for consistency. # Code adapted from the EASSE library [1] written by the authors of the ASSET dataset. # [1] https://github.com/feralvam/easse/blob/580bba7e1378fc8289c663f864e0487188fe8067/easse/utils/preprocessing.py#L7 if lowercase: __a : Any = sentence.lower() if tokenizer in ["13a", "intl"]: if version.parse(sacrebleu.__version__ ).major >= 2: __a : str = sacrebleu.metrics.bleu._get_tokenizer(_SCREAMING_SNAKE_CASE )()(_SCREAMING_SNAKE_CASE ) else: __a : str = sacrebleu.TOKENIZERS[tokenizer]()(_SCREAMING_SNAKE_CASE ) elif tokenizer == "moses": __a : Dict = sacremoses.MosesTokenizer().tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE , escape=_SCREAMING_SNAKE_CASE ) elif tokenizer == "penn": __a : List[Any] = sacremoses.MosesTokenizer().penn_tokenize(_SCREAMING_SNAKE_CASE , return_str=_SCREAMING_SNAKE_CASE ) else: __a : List[Any] = sentence if not return_str: __a : str = normalized_sent.split() return normalized_sent def lowerCamelCase (_SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[str] , _SCREAMING_SNAKE_CASE : List[Any] ): if not (len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE ) == len(_SCREAMING_SNAKE_CASE )): raise ValueError('Sources length must match predictions and references lengths.' ) __a : Dict = 0 for src, pred, refs in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): sari_score += SARIsent(normalize(_SCREAMING_SNAKE_CASE ) , normalize(_SCREAMING_SNAKE_CASE ) , [normalize(_SCREAMING_SNAKE_CASE ) for sent in refs] ) __a : Union[str, Any] = sari_score / len(_SCREAMING_SNAKE_CASE ) return 100 * sari_score def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Union[str, Any]="exp" , _SCREAMING_SNAKE_CASE : Tuple=None , _SCREAMING_SNAKE_CASE : List[str]=False , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : List[Any]=False , ): __a : Tuple = len(references[0] ) if any(len(_SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ): raise ValueError('Sacrebleu requires the same number of references for each prediction' ) __a : Dict = [[refs[i] for refs in references] for i in range(_SCREAMING_SNAKE_CASE )] __a : str = sacrebleu.corpus_bleu( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , smooth_method=_SCREAMING_SNAKE_CASE , smooth_value=_SCREAMING_SNAKE_CASE , force=_SCREAMING_SNAKE_CASE , lowercase=_SCREAMING_SNAKE_CASE , use_effective_order=_SCREAMING_SNAKE_CASE , ) return output.score @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __UpperCAmelCase ( self ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Sequence(datasets.Value('string' , id='sequence' ) , id='references' ), } ) , codebase_urls=[ 'https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py', 'https://github.com/cocoxu/simplification/blob/master/SARI.py', 'https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py', 'https://github.com/mjpost/sacreBLEU', ] , reference_urls=[ 'https://www.aclweb.org/anthology/Q16-1029.pdf', 'https://github.com/mjpost/sacreBLEU', 'https://en.wikipedia.org/wiki/BLEU', 'https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213', ] , ) def __UpperCAmelCase ( self , __a , __a , __a ): '''simple docstring''' __a : str = {} result.update({'sari': compute_sari(sources=__a , predictions=__a , references=__a )} ) result.update({'sacrebleu': compute_sacrebleu(predictions=__a , references=__a )} ) result.update({'exact': compute_em(predictions=__a , references=__a )} ) return result
27
"""simple docstring""" import logging from dataclasses import dataclass, field from pathlib import Path from typing import Optional, Union from .generation.configuration_utils import GenerationConfig from .training_args import TrainingArguments from .utils import add_start_docstrings UpperCamelCase : str = logging.getLogger(__name__) @dataclass @add_start_docstrings(TrainingArguments.__doc__ ) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `max_length` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": ( "The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default " "to the `num_beams` value of the model configuration." ) } , ) lowercase = field( default=__SCREAMING_SNAKE_CASE , metadata={ "help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction." } , ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = super().to_dict() for k, v in d.items(): if isinstance(__UpperCAmelCase , __UpperCAmelCase ): __UpperCamelCase = v.to_dict() return d
316
0
'''simple docstring''' # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = { 'en': 'Machine learning is great, isn\'t it?', 'ru': 'Машинное обучение - это здорово, не так ли?', 'de': 'Maschinelles Lernen ist großartig, nicht wahr?', } # BLUE scores as follows: # "pair": [fairseq, transformers] UpperCamelCase = { 'wmt16-en-de-dist-12-1': [28.3, 27.52], 'wmt16-en-de-dist-6-1': [27.4, 27.11], 'wmt16-en-de-12-1': [26.9, 25.75], } UpperCamelCase = F"""{src_lang}-{tgt_lang}""" UpperCamelCase = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=A__ , exist_ok=A__ ) UpperCamelCase = os.path.join(A__ , 'README.md' ) print(F"""Generating {path}""" ) with open(A__ , 'w' , encoding='utf-8' ) as f: f.write(A__ ) # make sure we are under the root of the project _lowerCamelCase : str = Path(__file__).resolve().parent.parent.parent _lowerCamelCase : Tuple = repo_dir / "model_cards" for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCamelCase : Any = model_cards_dir / "allenai" / model_name write_model_card(model_card_dir, src_lang="en", tgt_lang="de", model_name=model_name)
28
"""simple docstring""" from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar UpperCamelCase : List[str] = TypeVar("KEY") UpperCamelCase : List[str] = TypeVar("VAL") @dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE ) class __lowerCAmelCase ( Generic[KEY, VAL] ): lowercase = 42 lowercase = 42 class __lowerCAmelCase ( _Item ): def __init__( self ): '''simple docstring''' super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __bool__( self ): '''simple docstring''' return False UpperCamelCase : Any = _DeletedItem() class __lowerCAmelCase ( MutableMapping[KEY, VAL] ): def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ): '''simple docstring''' __UpperCamelCase = initial_block_size __UpperCamelCase = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 __UpperCamelCase = capacity_factor __UpperCamelCase = 0 def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return hash(__UpperCAmelCase ) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return (ind + 1) % len(self._buckets ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets[ind] if not stored: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) self._len += 1 return True elif stored.key == key: __UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase ) return True else: return False def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = len(self._buckets ) * self._capacity_factor return len(self ) >= int(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False __UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._buckets __UpperCamelCase = [None] * new_size __UpperCamelCase = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self._get_bucket_index(__UpperCAmelCase ) for _ in range(len(self._buckets ) ): yield ind __UpperCamelCase = self._get_next_ind(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): break def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if self._is_full(): self._size_up() self._add_item(__UpperCAmelCase , __UpperCAmelCase ) def __delitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: raise KeyError(__UpperCAmelCase ) if item is _deleted: continue if item.key == key: __UpperCamelCase = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self , __UpperCAmelCase ): '''simple docstring''' for ind in self._iterate_buckets(__UpperCAmelCase ): __UpperCamelCase = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(__UpperCAmelCase ) def __len__( self ): '''simple docstring''' return self._len def __iter__( self ): '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self ): '''simple docstring''' __UpperCamelCase = ' ,'.join( F'{item.key}: {item.val}' for item in self._buckets if item ) return F'HashMap({val_string})'
316
0
import math def lowercase__ ( __snake_case : int ): '''simple docstring''' assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False UpperCAmelCase_ : int = range(3 , int(math.sqrt(__snake_case ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def lowercase__ ( __snake_case : Dict , __snake_case : Tuple=1 , **__snake_case : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ : Tuple = factor * value UpperCAmelCase_ : List[Any] = value while not is_prime(__snake_case ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **__snake_case ) return value
29
"""simple docstring""" def A ( snake_case :int , snake_case :int ) -> bool: return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
316
0
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple=0.01 , SCREAMING_SNAKE_CASE_ : int=1_0_0_0 ) -> Tuple: lowercase_ = p_stop lowercase_ = max_length def __iter__( self : List[Any] ) -> Dict: lowercase_ = 0 lowercase_ = False while not stop and count < self.max_length: yield count count += 1 lowercase_ = random.random() < self.p_stop class lowercase__( unittest.TestCase ): """simple docstring""" def _lowercase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : Dict=True ) -> List[str]: lowercase_ = [ BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 ) ] lowercase_ = [list(SCREAMING_SNAKE_CASE_ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(SCREAMING_SNAKE_CASE_ ) for shard in batch_sampler_shards] , [len(SCREAMING_SNAKE_CASE_ ) for e in expected] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> Optional[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> List[str]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Dict ) -> List[Any]: # Check the shards when the dataset is a round multiple of total batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : int ) -> Optional[int]: # Check the shards when the dataset is a round multiple of batch size. lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) # Expected shouldn't change self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size. lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) # Check the shards when the dataset is very small. lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[[0, 1]], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) lowercase_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = [[], []] self.check_batch_sampler_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : Tuple ) -> str: lowercase_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] lowercase_ = [BatchSamplerShard(SCREAMING_SNAKE_CASE_ , 2 , SCREAMING_SNAKE_CASE_ , even_batches=SCREAMING_SNAKE_CASE_ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def _lowercase ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : List[str]=2 , SCREAMING_SNAKE_CASE_ : List[str]=False ) -> Any: random.seed(SCREAMING_SNAKE_CASE_ ) lowercase_ = list(SCREAMING_SNAKE_CASE_ ) lowercase_ = [ IterableDatasetShard( SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , drop_last=SCREAMING_SNAKE_CASE_ , num_processes=SCREAMING_SNAKE_CASE_ , process_index=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ , ) for i in range(SCREAMING_SNAKE_CASE_ ) ] lowercase_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(SCREAMING_SNAKE_CASE_ ) iterable_dataset_lists.append(list(SCREAMING_SNAKE_CASE_ ) ) lowercase_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size lowercase_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(len(SCREAMING_SNAKE_CASE_ ) % shard_batch_size == 0 ) lowercase_ = [] for idx in range(0 , len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(SCREAMING_SNAKE_CASE_ ) < len(SCREAMING_SNAKE_CASE_ ): reference += reference self.assertListEqual(SCREAMING_SNAKE_CASE_ , reference[: len(SCREAMING_SNAKE_CASE_ )] ) def _lowercase ( self : Any ) -> Union[str, Any]: lowercase_ = 4_2 lowercase_ = RandomIterableDataset() self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) # Edge case with a very small dataset lowercase_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) self.check_iterable_dataset_shards(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ , split_batches=SCREAMING_SNAKE_CASE_ ) def _lowercase ( self : List[str] ) -> List[Any]: lowercase_ = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=SCREAMING_SNAKE_CASE_ ) lowercase_ = SkipBatchSampler(SCREAMING_SNAKE_CASE_ , 2 ) self.assertListEqual(list(SCREAMING_SNAKE_CASE_ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Any: lowercase_ = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = DataLoader(list(range(1_6 ) ) , batch_size=4 ) lowercase_ = skip_first_batches(SCREAMING_SNAKE_CASE_ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def _lowercase ( self : Any ) -> Optional[int]: lowercase_ = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def _lowercase ( self : Any ) -> Any: Accelerator() lowercase_ = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(SCREAMING_SNAKE_CASE_ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
30
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = 42 lowercase = 42 def __init__( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' super().__init__() self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase ) @torch.no_grad() def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ): '''simple docstring''' __UpperCamelCase = self.unet.config.sample_size __UpperCamelCase = (batch_size, 3, img_size, img_size) __UpperCamelCase = self.unet __UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma __UpperCamelCase = sample.to(self.device ) self.scheduler.set_timesteps(__UpperCAmelCase ) self.scheduler.set_sigmas(__UpperCAmelCase ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample # prediction step __UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample __UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean __UpperCamelCase = sample_mean.clamp(0 , 1 ) __UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (sample,) return ImagePipelineOutput(images=__UpperCAmelCase )
316
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class lowerCamelCase_ (snake_case__ ): '''simple docstring''' __UpperCamelCase: torch.FloatTensor class lowerCamelCase_ (snake_case__ , snake_case__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] , A : int = 3 , A : int = 3 , A : Tuple[str] = ("DownEncoderBlock2D",) , A : Tuple[str] = ("UpDecoderBlock2D",) , A : Tuple[int] = (64,) , A : int = 1 , A : str = "silu" , A : int = 3 , A : int = 32 , A : int = 256 , A : int = 32 , A : Optional[int] = None , A : float = 0.18_215 , A : str = "group" , ): super().__init__() # pass init params to Encoder _UpperCAmelCase : Any = Encoder( in_channels=A , out_channels=A , down_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , double_z=A , ) _UpperCAmelCase : Dict = vq_embed_dim if vq_embed_dim is not None else latent_channels _UpperCAmelCase : Tuple = nn.Convad(A , A , 1 ) _UpperCAmelCase : Union[str, Any] = VectorQuantizer(A , A , beta=0.25 , remap=A , sane_index_shape=A ) _UpperCAmelCase : str = nn.Convad(A , A , 1 ) # pass init params to Decoder _UpperCAmelCase : List[Any] = Decoder( in_channels=A , out_channels=A , up_block_types=A , block_out_channels=A , layers_per_block=A , act_fn=A , norm_num_groups=A , norm_type=A , ) @apply_forward_hook def _A ( self : List[str] , A : torch.FloatTensor , A : bool = True ): _UpperCAmelCase : List[Any] = self.encoder(A ) _UpperCAmelCase : List[Any] = self.quant_conv(A ) if not return_dict: return (h,) return VQEncoderOutput(latents=A ) @apply_forward_hook def _A ( self : Optional[Any] , A : torch.FloatTensor , A : bool = False , A : bool = True ): # also go through quantization layer if not force_not_quantize: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Dict = self.quantize(A ) else: _UpperCAmelCase : Tuple = h _UpperCAmelCase : Dict = self.post_quant_conv(A ) _UpperCAmelCase : Tuple = self.decoder(A , quant if self.config.norm_type == "spatial" else None ) if not return_dict: return (dec,) return DecoderOutput(sample=A ) def _A ( self : Union[str, Any] , A : torch.FloatTensor , A : bool = True ): _UpperCAmelCase : str = sample _UpperCAmelCase : Optional[Any] = self.encode(A ).latents _UpperCAmelCase : List[Any] = self.decode(A ).sample if not return_dict: return (dec,) return DecoderOutput(sample=A )
31
"""simple docstring""" def A ( snake_case :list[int] , snake_case :int ) -> bool: __UpperCamelCase = len(snake_case ) __UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )] # for each arr value, a sum of zero(0) can be formed by not taking any element # hence True/1 for i in range(arr_len + 1 ): __UpperCamelCase = True # sum is not zero and set is empty then false for i in range(1 , required_sum + 1 ): __UpperCamelCase = False for i in range(1 , arr_len + 1 ): for j in range(1 , required_sum + 1 ): if arr[i - 1] > j: __UpperCamelCase = subset[i - 1][j] if arr[i - 1] <= j: __UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]] return subset[arr_len][required_sum] if __name__ == "__main__": import doctest doctest.testmod()
316
0
from math import factorial def SCREAMING_SNAKE_CASE_ ( __A : int = 20 ) -> int: """simple docstring""" a_ : str = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... a_ : Dict = n // 2 return int(factorial(__A ) / (factorial(__A ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(20)) else: try: UpperCAmelCase_ : int = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
32
"""simple docstring""" import argparse import logging import os from pathlib import Path from typing import Any, Dict import pytorch_lightning as pl from pytorch_lightning.utilities import rank_zero_info from transformers import ( AdamW, AutoConfig, AutoModel, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelForTokenClassification, AutoModelWithLMHead, AutoTokenizer, PretrainedConfig, PreTrainedTokenizer, ) from transformers.optimization import ( Adafactor, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.utils.versions import require_version UpperCamelCase : Union[str, Any] = logging.getLogger(__name__) require_version("pytorch_lightning>=1.0.4") UpperCamelCase : int = { "base": AutoModel, "sequence-classification": AutoModelForSequenceClassification, "question-answering": AutoModelForQuestionAnswering, "pretraining": AutoModelForPreTraining, "token-classification": AutoModelForTokenClassification, "language-modeling": AutoModelWithLMHead, "summarization": AutoModelForSeqaSeqLM, "translation": AutoModelForSeqaSeqLM, } # update this and the import above to support new schedulers from transformers.optimization UpperCamelCase : Optional[Any] = { "linear": get_linear_schedule_with_warmup, "cosine": get_cosine_schedule_with_warmup, "cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup, "polynomial": get_polynomial_decay_schedule_with_warmup, # '': get_constant_schedule, # not supported for now # '': get_constant_schedule_with_warmup, # not supported for now } UpperCamelCase : str = sorted(arg_to_scheduler.keys()) UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}" class __lowerCAmelCase ( pl.LightningModule ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ): '''simple docstring''' super().__init__() # TODO: move to self.save_hyperparameters() # self.save_hyperparameters() # can also expand arguments into trainer signature for easier reading self.save_hyperparameters(__UpperCAmelCase ) __UpperCamelCase = 0 __UpperCamelCase = Path(self.hparams.output_dir ) __UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None if config is None: __UpperCamelCase = AutoConfig.from_pretrained( self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , ) else: __UpperCamelCase = config __UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ): assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute' setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) ) if tokenizer is None: __UpperCamelCase = AutoTokenizer.from_pretrained( self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = tokenizer __UpperCamelCase = MODEL_MODES[mode] if model is None: __UpperCamelCase = self.model_type.from_pretrained( self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , ) else: __UpperCamelCase = model def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler] __UpperCamelCase = get_schedule_func( self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() ) __UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1} return scheduler def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.model __UpperCamelCase = ['bias', 'LayerNorm.weight'] __UpperCamelCase = [ { 'params': [ p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay ) ], # check this named paramters 'weight_decay': self.hparams.weight_decay, }, { 'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )], 'weight_decay': 0.0, }, ] if self.hparams.adafactor: __UpperCamelCase = Adafactor( __UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase ) else: __UpperCamelCase = AdamW( __UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon ) __UpperCamelCase = optimizer __UpperCamelCase = self.get_lr_scheduler() return [optimizer], [scheduler] def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' return self.validation_step(__UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return self.validation_end(__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores __UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' if stage == "test": __UpperCamelCase = len(self.test_dataloader().dataset ) else: __UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase ) __UpperCamelCase = len(self.train_dataloader().dataset ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ): '''simple docstring''' raise NotImplementedError('You must implement this for your task' ) def UpperCAmelCase ( self ): '''simple docstring''' return self.train_loader def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' return os.path.join( self.hparams.data_dir , 'cached_{}_{}_{}'.format( __UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , ) @pl.utilities.rank_zero_only def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = self.output_dir.joinpath('best_tfmr' ) __UpperCamelCase = self.step_count self.model.save_pretrained(__UpperCAmelCase ) self.tokenizer.save_pretrained(__UpperCAmelCase ) @staticmethod def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' parser.add_argument( '--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , ) parser.add_argument( '--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' ) parser.add_argument( '--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , ) parser.add_argument( '--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , ) parser.add_argument( '--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , ) parser.add_argument( '--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , ) parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' ) parser.add_argument( '--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , ) parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' ) parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' ) parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' ) parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase ) parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase ) parser.add_argument('--adafactor' , action='store_true' ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' if ( trainer.is_global_zero and trainer.global_rank == 0 ): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed. pl_module.model.rag.retriever.init_retrieval() # better to use hook functions. class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' for name, param in pl_module.model.rag.named_parameters(): if param.grad is None: print(__UpperCAmelCase ) class __lowerCAmelCase ( pl.Callback ): def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = trainer.lr_schedulers[0]['scheduler'] __UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )} pl_module.logger.log_metrics(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Validation results *****' ) __UpperCamelCase = trainer.callback_metrics # Log results for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' rank_zero_info('***** Test results *****' ) __UpperCamelCase = trainer.callback_metrics # Log and save results to file __UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' ) with open(__UpperCAmelCase , 'w' ) as writer: for key in sorted(__UpperCAmelCase ): if key not in ["log", "progress_bar"]: rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) ) def A ( snake_case :Any , snake_case :int ) -> None: # To allow all pl args uncomment the following line # parser = pl.Trainer.add_argparse_args(parser) parser.add_argument( '--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=snake_case , default='O2' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case ) parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' ) parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' ) parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' ) parser.add_argument( '--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , ) parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' ) parser.add_argument( '--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , ) def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]: pl.seed_everything(args.seed ) # init model __UpperCamelCase = Path(model.hparams.output_dir ) odir.mkdir(exist_ok=snake_case ) # add custom checkpoints if checkpoint_callback is None: __UpperCamelCase = pl.callbacks.ModelCheckpoint( filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 ) if early_stopping_callback: extra_callbacks.append(snake_case ) if logging_callback is None: __UpperCamelCase = LoggingCallback() __UpperCamelCase = {} if args.fpaa: __UpperCamelCase = 1_6 if args.gpus > 1: __UpperCamelCase = 'auto' __UpperCamelCase = 'ddp' __UpperCamelCase = args.accumulate_grad_batches __UpperCamelCase = None __UpperCamelCase = 'auto' __UpperCamelCase = pl.Trainer.from_argparse_args( snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , ) if args.do_train: trainer.fit(snake_case ) else: print('RAG modeling tests with new set functions successfuly executed!' ) return trainer
316
0
"""simple docstring""" from __future__ import annotations def lowercase ( __snake_case : int ): lowercase_ : Tuple = [True] * limit lowercase_ : List[str] = False lowercase_ : Tuple = False lowercase_ : List[str] = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): lowercase_ : Any = i * 2 while index < limit: lowercase_ : Dict = False lowercase_ : Union[str, Any] = index + i lowercase_ : Optional[int] = [2] for i in range(3 , __snake_case , 2 ): if is_prime[i]: primes.append(__snake_case ) return primes def lowercase ( __snake_case : int = 1_0_0_0_0_0_0 ): lowercase_ : List[str] = prime_sieve(__snake_case ) lowercase_ : List[Any] = 0 lowercase_ : List[str] = 0 for i in range(len(__snake_case ) ): for j in range(i + length , len(__snake_case ) ): lowercase_ : Tuple = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: lowercase_ : str = j - i lowercase_ : Any = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
33
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation UpperCamelCase : Any = logging.get_logger(__name__) UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase : Dict = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } UpperCamelCase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = VOCAB_FILES_NAMES lowercase = PRETRAINED_VOCAB_FILES_MAP lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase = ["input_ids", "attention_mask"] lowercase = GPTaTokenizer def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ): '''simple docstring''' super().__init__( __UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase ) __UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space: __UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) ) __UpperCamelCase = add_prefix_space __UpperCamelCase = pre_tok_class(**__UpperCAmelCase ) __UpperCamelCase = add_prefix_space def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase ) assert self.add_prefix_space or not is_split_into_words, ( F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): '''simple docstring''' __UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase ) return tuple(__UpperCAmelCase ) def UpperCAmelCase ( self , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] ) if len(__UpperCAmelCase ) > self.model_max_length: __UpperCamelCase = input_ids[-self.model_max_length :] return input_ids
316
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XGLMTokenizer, XGLMTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _a ( __a , unittest.TestCase ): __a : int = XGLMTokenizer __a : Any = XGLMTokenizerFast __a : Any = True __a : Tuple = True def A ( self : Optional[int] ): '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XGLMTokenizer(lowercase , keep_accents=lowercase ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Any ): '''simple docstring''' UpperCAmelCase = '''<pad>''' UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase ) , lowercase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase ) , lowercase ) def A ( self : str ): '''simple docstring''' UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(len(lowercase ) , 1_008 ) def A ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1_008 ) def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = XGLMTokenizer(lowercase , keep_accents=lowercase ) UpperCAmelCase = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCAmelCase = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(lowercase ) self.assertListEqual( lowercase , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(lowercase ) self.assertListEqual( lowercase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def A ( self : Any ): '''simple docstring''' return XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' ) def A ( self : str ): '''simple docstring''' with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowercase , f.name ) UpperCAmelCase = XGLMTokenizer(f.name , keep_accents=lowercase ) UpperCAmelCase = pickle.dumps(lowercase ) pickle.loads(lowercase ) def A ( self : List[str] ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = '''I was born in 92000, and this is falsé.''' UpperCAmelCase = tokenizer.tokenize(lowercase ) UpperCAmelCase = rust_tokenizer.tokenize(lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = tokenizer.encode(lowercase , add_special_tokens=lowercase ) UpperCAmelCase = rust_tokenizer.encode(lowercase , add_special_tokens=lowercase ) self.assertListEqual(lowercase , lowercase ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(lowercase ) UpperCAmelCase = rust_tokenizer.encode(lowercase ) self.assertListEqual(lowercase , lowercase ) @slow def A ( self : List[Any] ): '''simple docstring''' UpperCAmelCase = '''Hello World!''' UpperCAmelCase = [2, 31_227, 4_447, 35] self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def A ( self : int ): '''simple docstring''' UpperCAmelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to unk, such as saoneuhaoesuth''' ) # fmt: off UpperCAmelCase = [2, 1_018, 67, 11, 1_988, 2_617, 5_631, 278, 11, 3_407, 48, 71_630, 28_085, 4, 3_234, 157, 13, 6, 5, 6, 4, 3_526, 768, 15, 659, 57, 298, 3_983, 864, 129, 21, 6, 5, 13_675, 377, 652, 7_580, 10_341, 155, 2_817, 422, 1_666, 7, 1_674, 53, 113, 202_277, 17_892, 33, 60, 87, 4, 3_234, 157, 61, 2_667, 52_376, 19, 88, 23, 735] # fmt: on self.assertListEqual(lowercase , self.big_tokenizer.encode(lowercase ) ) @slow def A ( self : List[str] ): '''simple docstring''' UpperCAmelCase = { '''input_ids''': [[2, 108_825, 1_163, 15, 88_010, 473, 15_898, 157, 13_672, 1_857, 312, 8, 238_021, 1_163, 53, 13_672, 1_857, 312, 8, 53_283, 182_396, 8, 18_566, 16, 36_733, 4_101, 8, 230, 244_017, 122_553, 7, 15, 132_597, 4, 293, 12_511, 7_610, 4, 3_414, 132_597, 9, 4, 32_361, 362, 4, 734, 28_512, 32_569, 18, 4, 32_361, 26_096, 14_982, 73, 18_715, 21_433, 235_261, 15, 492, 12_427, 16, 53, 18_715, 21_433, 65_454, 15, 23_659, 563, 16, 278, 597, 2_843, 595, 7_931, 182_396, 64_186, 22, 886, 595, 132_981, 53, 25_540, 3_449, 43_982, 39_901, 5_951, 878, 330, 4, 27_694, 80_269, 312, 53, 6_517, 11_780, 611, 20_408, 5], [2, 6, 132_597, 67, 42_897, 33, 592, 8, 163_729, 25_540, 361, 136_997, 109_514, 173_230, 7, 501, 60, 102_913, 196, 5_631, 235, 63_243, 473, 6, 231_757, 74, 5_277, 7_905, 53, 3_095, 37_317, 22, 454, 183_874, 5], [2, 268, 31_298, 46_530, 6, 132_935, 43_831, 7, 597, 32, 24, 3_688, 9_865, 5]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] } # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase , model_name='''facebook/xglm-564M''' , padding=lowercase , )
34
"""simple docstring""" import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str: output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , ) else: export( snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , ) @torch.no_grad() def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]: __UpperCamelCase = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __UpperCamelCase = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: __UpperCamelCase = 'cpu' __UpperCamelCase = Path(snake_case ) # VAE DECODER __UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' ) __UpperCamelCase = vae_decoder.config.latent_channels # forward only through the decoder part __UpperCamelCase = vae_decoder.decode onnx_export( snake_case , model_args=( torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=snake_case , ) del vae_decoder if __name__ == "__main__": UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") UpperCamelCase : List[Any] = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
316
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() __a = logging.get_logger(__name__) def __snake_case( _lowerCAmelCase , _lowerCAmelCase=False ) -> str: snake_case__ : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"deit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"deit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"deit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"deit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"deit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"deit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"deit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"deit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"deit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"deit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" snake_case__ : List[Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=False ) -> Union[str, Any]: for i in range(config.num_hidden_layers ): if base_model: snake_case__ : Tuple = """""" else: snake_case__ : Dict = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case__ : Optional[Any] = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case__ : Tuple = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Any = in_proj_weight[ : config.hidden_size, : ] snake_case__ : Optional[int] = in_proj_bias[: config.hidden_size] snake_case__ : Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case__ : str = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case__ : List[str] = in_proj_weight[ -config.hidden_size :, : ] snake_case__ : Tuple = in_proj_bias[-config.hidden_size :] def __snake_case( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: snake_case__ : str = dct.pop(_lowerCAmelCase ) snake_case__ : Tuple = val def __snake_case( ) -> Tuple: snake_case__ : Union[str, Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case__ : Optional[int] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def __snake_case( _lowerCAmelCase , _lowerCAmelCase ) -> str: snake_case__ : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads snake_case__ : Union[str, Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ : int = 1_000 snake_case__ : Any = """huggingface/label-files""" snake_case__ : Optional[Any] = """imagenet-1k-id2label.json""" snake_case__ : Tuple = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case__ : List[Any] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case__ : List[Any] = idalabel snake_case__ : List[str] = {v: k for k, v in idalabel.items()} snake_case__ : Tuple = int(deit_name[-6:-4] ) snake_case__ : Optional[Any] = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): snake_case__ : Tuple = 192 snake_case__ : Union[str, Any] = 768 snake_case__ : Tuple = 12 snake_case__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): snake_case__ : str = 384 snake_case__ : Any = 1_536 snake_case__ : str = 12 snake_case__ : int = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): snake_case__ : Union[str, Any] = 1_024 snake_case__ : Any = 4_096 snake_case__ : List[Any] = 24 snake_case__ : Tuple = 16 # load original model from timm snake_case__ : List[Any] = timm.create_model(_lowerCAmelCase , pretrained=_lowerCAmelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case__ : Optional[Any] = timm_model.state_dict() snake_case__ : Optional[int] = create_rename_keys(_lowerCAmelCase , _lowerCAmelCase ) for src, dest in rename_keys: rename_key(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) read_in_q_k_v(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # load HuggingFace model snake_case__ : Optional[Any] = DeiTForImageClassificationWithTeacher(_lowerCAmelCase ).eval() model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by DeiTImageProcessor snake_case__ : List[Any] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 snake_case__ : Optional[Any] = DeiTImageProcessor(size=_lowerCAmelCase , crop_size=config.image_size ) snake_case__ : str = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case__ : Optional[Any] = encoding["""pixel_values"""] snake_case__ : Tuple = model(_lowerCAmelCase ) snake_case__ : Optional[int] = timm_model(_lowerCAmelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCAmelCase , outputs.logits , atol=1e-3 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(f"Saving model {deit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": __a = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __a = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
35
"""simple docstring""" from __future__ import annotations import string from itertools import cycle, product from pathlib import Path UpperCamelCase : str = ( string.ascii_letters + string.digits + string.punctuation + string.whitespace ) UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase] UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS} UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"] def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None: __UpperCamelCase = "" __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ): __UpperCamelCase = cipherchar ^ keychar if decodedchar not in VALID_INTS: return None decoded += chr(snake_case ) return decoded def A ( snake_case :list[int] ) -> list[str]: __UpperCamelCase = [] for key in product(snake_case , repeat=3 ): __UpperCamelCase = try_key(snake_case , snake_case ) if encoded is not None: possibles.append(snake_case ) return possibles def A ( snake_case :list[str] , snake_case :str ) -> list[str]: return [possible for possible in possibles if common_word in possible.lower()] def A ( snake_case :str = "p059_cipher.txt" ) -> int: __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' ) __UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )] __UpperCamelCase = filter_valid_chars(snake_case ) for common_word in COMMON_WORDS: __UpperCamelCase = filter_common_word(snake_case , snake_case ) if len(snake_case ) == 1: break __UpperCamelCase = possibles[0] return sum(ord(snake_case ) for char in decoded_text ) if __name__ == "__main__": print(f'''{solution() = }''')
316
0
import os import time import warnings from dataclasses import dataclass, field from enum import Enum from typing import List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import logging from ..processors.glue import glue_convert_examples_to_features, glue_output_modes, glue_processors from ..processors.utils import InputFeatures _snake_case = logging.get_logger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field(metadata={'help': 'The name of the task to train on: ' + ', '.join(glue_processors.keys())}) lowerCamelCase__ = field( metadata={'help': 'The input data dir. Should contain the .tsv files (or other data files) for the task.'}) lowerCamelCase__ = field( default=128 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached training and evaluation sets'}) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.task_name.lower() class UpperCAmelCase_ ( a): lowerCamelCase__ = 'train' lowerCamelCase__ = 'dev' lowerCamelCase__ = 'test' class UpperCAmelCase_ ( a): lowerCamelCase__ = 42 lowerCamelCase__ = 42 lowerCamelCase__ = 42 def __init__( self, __a, __a, __a = None, __a = Split.train, __a = None, ): '''simple docstring''' warnings.warn( "This dataset will be removed from the library soon, preprocessing should be handled with the 🤗 Datasets " "library. You can have a look at this example script for pointers: " "https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py", __a, ) _lowerCAmelCase : List[Any] = args _lowerCAmelCase : List[str] = glue_processors[args.task_name]() _lowerCAmelCase : List[str] = glue_output_modes[args.task_name] if isinstance(__a, __a): try: _lowerCAmelCase : List[Any] = Split[mode] except KeyError: raise KeyError("mode is not a valid split name") # Load data features from cache or dataset file _lowerCAmelCase : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir, f"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{args.task_name}", ) _lowerCAmelCase : Optional[int] = self.processor.get_labels() if args.task_name in ["mnli", "mnli-mm"] and tokenizer.__class__.__name__ in ( "RobertaTokenizer", "RobertaTokenizerFast", "XLMRobertaTokenizer", "BartTokenizer", "BartTokenizerFast", ): # HACK(label indices are swapped in RoBERTa pretrained model) _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = label_list[2], label_list[1] _lowerCAmelCase : Optional[int] = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : Any = cached_features_file + ".lock" with FileLock(__a): if os.path.exists(__a) and not args.overwrite_cache: _lowerCAmelCase : int = time.time() _lowerCAmelCase : int = torch.load(__a) logger.info( f"Loading features from cached file {cached_features_file} [took %.3f s]", time.time() - start) else: logger.info(f"Creating features from dataset file at {args.data_dir}") if mode == Split.dev: _lowerCAmelCase : str = self.processor.get_dev_examples(args.data_dir) elif mode == Split.test: _lowerCAmelCase : Dict = self.processor.get_test_examples(args.data_dir) else: _lowerCAmelCase : str = self.processor.get_train_examples(args.data_dir) if limit_length is not None: _lowerCAmelCase : Optional[Any] = examples[:limit_length] _lowerCAmelCase : Any = glue_convert_examples_to_features( __a, __a, max_length=args.max_seq_length, label_list=__a, output_mode=self.output_mode, ) _lowerCAmelCase : Dict = time.time() torch.save(self.features, __a) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( f"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]") def __len__( self): '''simple docstring''' return len(self.features) def __getitem__( self, __a): '''simple docstring''' return self.features[i] def snake_case__ ( self): '''simple docstring''' return self.label_list
36
"""simple docstring""" UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.60_93_44, "knot": 1.8_52, } UpperCamelCase : dict[str, float] = { "km/h": 1.0, "m/s": 0.2_77_77_77_78, "mph": 0.6_21_37_11_92, "knot": 0.5_39_95_68_03, } def A ( snake_case :float , snake_case :str , snake_case :str ) -> float: if unit_to not in speed_chart or unit_from not in speed_chart_inverse: __UpperCamelCase = ( f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n' f'Valid values are: {", ".join(snake_case )}' ) raise ValueError(snake_case ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
316
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase ): """simple docstring""" if num < 0: return False lowerCAmelCase__ : int = num lowerCAmelCase__ : int = 0 while num > 0: lowerCAmelCase__ : Union[str, Any] = rev_num * 10 + (num % 10) num //= 10 return num_copy == rev_num if __name__ == "__main__": import doctest doctest.testmod()
37
"""simple docstring""" import random import unittest import torch from diffusers import IFInpaintingSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = IFInpaintingSuperResolutionPipeline lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"} lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} ) lowercase = PipelineTesterMixin.required_optional_params - {"latents"} def UpperCAmelCase ( self ): '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ): '''simple docstring''' if str(__UpperCAmelCase ).startswith('mps' ): __UpperCamelCase = torch.manual_seed(__UpperCAmelCase ) else: __UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase ) __UpperCamelCase = { 'prompt': 'A painting of a squirrel eating a burger', 'image': image, 'original_image': original_image, 'mask_image': mask_image, 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' ) def UpperCAmelCase ( self ): '''simple docstring''' super().test_save_load_floataa(expected_max_diff=1E-1 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 ) def UpperCAmelCase ( self ): '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self ): '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1E-2 , )
316
0
from __future__ import annotations import pandas as pd def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> list[int]: """simple docstring""" UpperCamelCase :List[str] = [0] * no_of_processes UpperCamelCase :str = [0] * no_of_processes # Copy the burst time into remaining_time[] for i in range(__magic_name__ ): UpperCamelCase :Optional[int] = burst_time[i] UpperCamelCase :str = 0 UpperCamelCase :Tuple = 0 UpperCamelCase :Union[str, Any] = 9_9999_9999 UpperCamelCase :Optional[Any] = 0 UpperCamelCase :Optional[int] = False # Process until all processes are completed while complete != no_of_processes: for j in range(__magic_name__ ): if arrival_time[j] <= increment_time and remaining_time[j] > 0: if remaining_time[j] < minm: UpperCamelCase :Dict = remaining_time[j] UpperCamelCase :Optional[Any] = j UpperCamelCase :List[str] = True if not check: increment_time += 1 continue remaining_time[short] -= 1 UpperCamelCase :List[str] = remaining_time[short] if minm == 0: UpperCamelCase :Any = 9_9999_9999 if remaining_time[short] == 0: complete += 1 UpperCamelCase :Dict = False # Find finish time of current process UpperCamelCase :Dict = increment_time + 1 # Calculate waiting time UpperCamelCase :Union[str, Any] = finish_time - arrival_time[short] UpperCamelCase :Optional[Any] = finar - burst_time[short] if waiting_time[short] < 0: UpperCamelCase :Optional[Any] = 0 # Increment time increment_time += 1 return waiting_time def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : int , __magic_name__ : list[int] ) -> list[int]: """simple docstring""" UpperCamelCase :Optional[Any] = [0] * no_of_processes for i in range(__magic_name__ ): UpperCamelCase :List[str] = burst_time[i] + waiting_time[i] return turn_around_time def SCREAMING_SNAKE_CASE_ ( __magic_name__ : list[int] , __magic_name__ : list[int] , __magic_name__ : int ) -> None: """simple docstring""" UpperCamelCase :int = 0 UpperCamelCase :str = 0 for i in range(__magic_name__ ): UpperCamelCase :List[Any] = total_waiting_time + waiting_time[i] UpperCamelCase :str = total_turn_around_time + turn_around_time[i] print(f"""Average waiting time = {total_waiting_time / no_of_processes:.5f}""" ) print("""Average turn around time =""" , total_turn_around_time / no_of_processes ) if __name__ == "__main__": print('''Enter how many process you want to analyze''') UpperCAmelCase_ : Any = int(input()) UpperCAmelCase_ : Optional[int] = [0] * no_of_processes UpperCAmelCase_ : Any = [0] * no_of_processes UpperCAmelCase_ : Any = list(range(1, no_of_processes + 1)) for i in range(no_of_processes): print('''Enter the arrival time and burst time for process:--''' + str(i + 1)) UpperCAmelCase_ , UpperCAmelCase_ : Dict = map(int, input().split()) UpperCAmelCase_ : List[str] = calculate_waitingtime(arrival_time, burst_time, no_of_processes) UpperCAmelCase_ : Tuple = burst_time UpperCAmelCase_ : List[str] = no_of_processes UpperCAmelCase_ : Union[str, Any] = waiting_time UpperCAmelCase_ : Union[str, Any] = calculate_turnaroundtime(bt, n, wt) calculate_average_times(waiting_time, turn_around_time, no_of_processes) UpperCAmelCase_ : Tuple = pd.DataFrame( list(zip(processes, burst_time, arrival_time, waiting_time, turn_around_time)), columns=[ '''Process''', '''BurstTime''', '''ArrivalTime''', '''WaitingTime''', '''TurnAroundTime''', ], ) # Printing the dataFrame pd.set_option('''display.max_rows''', fcfs.shape[0] + 1) print(fcfs)
38
"""simple docstring""" def A ( snake_case :int ) -> int: __UpperCamelCase = [1] __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0 __UpperCamelCase = ugly_nums[ia] * 2 __UpperCamelCase = ugly_nums[ia] * 3 __UpperCamelCase = ugly_nums[ia] * 5 for _ in range(1 , snake_case ): __UpperCamelCase = min(snake_case , snake_case , snake_case ) ugly_nums.append(snake_case ) if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 2 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 3 if next_num == next_a: ia += 1 __UpperCamelCase = ugly_nums[ia] * 5 return ugly_nums[-1] if __name__ == "__main__": from doctest import testmod testmod(verbose=True) print(f'''{ugly_numbers(2_0_0) = }''')
316
0
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __A ( __lowerCAmelCase )-> List[Tuple[int, ...]]: """simple docstring""" _UpperCAmelCase = [] if isinstance(__lowerCAmelCase , __lowerCAmelCase ): for v in tree.values(): shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(__lowerCAmelCase ) ) elif isinstance(__lowerCAmelCase , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError('Not supported' ) return shapes @torch.jit.ignore def __A ( __lowerCAmelCase , __lowerCAmelCase )-> Tuple[int, ...]: """simple docstring""" _UpperCAmelCase = [] for d in reversed(__lowerCAmelCase ): idx.append(flat_idx % d ) _UpperCAmelCase = flat_idx // d return tuple(reversed(__lowerCAmelCase ) ) @torch.jit.ignore def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = None , )-> List[Tuple[slice, ...]]: """simple docstring""" def reduce_edge_list(__lowerCAmelCase ) -> None: _UpperCAmelCase = True for i in range(len(__lowerCAmelCase ) ): _UpperCAmelCase = -1 * (i + 1) l[reversed_idx] &= tally _UpperCAmelCase = l[reversed_idx] if start_edges is None: _UpperCAmelCase = [s == 0 for s in start] reduce_edge_list(__lowerCAmelCase ) if end_edges is None: _UpperCAmelCase = [e == (d - 1) for e, d in zip(__lowerCAmelCase , __lowerCAmelCase )] reduce_edge_list(__lowerCAmelCase ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(__lowerCAmelCase ) == 0: return [()] elif len(__lowerCAmelCase ) == 1: return [(slice(start[0] , end[0] + 1 ),)] _UpperCAmelCase = [] _UpperCAmelCase = [] # Dimensions common to start and end can be selected directly for s, e in zip(__lowerCAmelCase , __lowerCAmelCase ): if s == e: path_list.append(slice(__lowerCAmelCase , s + 1 ) ) else: break _UpperCAmelCase = tuple(__lowerCAmelCase ) _UpperCAmelCase = len(__lowerCAmelCase ) # start == end, and we're done if divergence_idx == len(__lowerCAmelCase ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = start[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None _UpperCAmelCase = end[divergence_idx] return tuple( path + (slice(__lowerCAmelCase , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) _UpperCAmelCase = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase )-> torch.Tensor: """simple docstring""" _UpperCAmelCase = t.shape[:no_batch_dims] _UpperCAmelCase = list(_flat_idx_to_idx(__lowerCAmelCase , __lowerCAmelCase ) ) # _get_minimal_slice_set is inclusive _UpperCAmelCase = list(_flat_idx_to_idx(flat_end - 1 , __lowerCAmelCase ) ) # Get an ordered list of slices to perform _UpperCAmelCase = _get_minimal_slice_set( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , ) _UpperCAmelCase = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __A ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = False , )-> Any: """simple docstring""" if not (len(__lowerCAmelCase ) > 0): raise ValueError('Must provide at least one input' ) _UpperCAmelCase = [shape[:no_batch_dims] for shape in _fetch_dims(__lowerCAmelCase )] _UpperCAmelCase = tuple([max(__lowerCAmelCase ) for s in zip(*__lowerCAmelCase )] ) def _prep_inputs(__lowerCAmelCase ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) _UpperCAmelCase = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: _UpperCAmelCase = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t _UpperCAmelCase = tensor_tree_map(_prep_inputs , __lowerCAmelCase ) _UpperCAmelCase = None if _out is not None: _UpperCAmelCase = tensor_tree_map(lambda __lowerCAmelCase : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) _UpperCAmelCase = 1 for d in orig_batch_dims: flat_batch_dim *= d _UpperCAmelCase = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(__lowerCAmelCase ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t _UpperCAmelCase = 0 _UpperCAmelCase = prepped_outputs for _ in range(__lowerCAmelCase ): # Chunk the input if not low_mem: _UpperCAmelCase = _select_chunk else: _UpperCAmelCase = partial( _chunk_slice , flat_start=__lowerCAmelCase , flat_end=min(__lowerCAmelCase , i + chunk_size ) , no_batch_dims=len(__lowerCAmelCase ) , ) _UpperCAmelCase = tensor_tree_map(__lowerCAmelCase , __lowerCAmelCase ) # Run the layer on the chunk _UpperCAmelCase = layer(**__lowerCAmelCase ) # Allocate space for the output if out is None: _UpperCAmelCase = tensor_tree_map(lambda __lowerCAmelCase : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , __lowerCAmelCase ) # Put the chunk in its pre-allocated space if isinstance(__lowerCAmelCase , __lowerCAmelCase ): def assign(__lowerCAmelCase , __lowerCAmelCase ) -> None: for k, v in da.items(): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): assign(__lowerCAmelCase , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: _UpperCAmelCase = da[k] assign(__lowerCAmelCase , __lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ): for xa, xa in zip(__lowerCAmelCase , __lowerCAmelCase ): if _add_into_out: xa[i : i + chunk_size] += xa else: _UpperCAmelCase = xa elif isinstance(__lowerCAmelCase , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: _UpperCAmelCase = output_chunk else: raise ValueError('Not supported' ) i += chunk_size _UpperCAmelCase = tensor_tree_map(lambda __lowerCAmelCase : t.view(orig_batch_dims + t.shape[1:] ) , __lowerCAmelCase ) return out class __lowerCamelCase : """simple docstring""" def __init__( self , UpperCAmelCase = 512 , ): """simple docstring""" _UpperCAmelCase = max_chunk_size _UpperCAmelCase = None _UpperCAmelCase = None def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" logging.info('Tuning chunk size...' ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size _UpperCAmelCase = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] _UpperCAmelCase = [c for c in candidates if c > min_chunk_size] _UpperCAmelCase = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(UpperCAmelCase ) -> bool: try: with torch.no_grad(): fn(*UpperCAmelCase , chunk_size=UpperCAmelCase ) return True except RuntimeError: return False _UpperCAmelCase = 0 _UpperCAmelCase = len(UpperCAmelCase ) - 1 while i > min_viable_chunk_size_index: _UpperCAmelCase = test_chunk_size(candidates[i] ) if not viable: _UpperCAmelCase = (min_viable_chunk_size_index + i) // 2 else: _UpperCAmelCase = i _UpperCAmelCase = (i + len(UpperCAmelCase ) - 1) // 2 return candidates[min_viable_chunk_size_index] def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCAmelCase = True for aa, aa in zip(UpperCAmelCase , UpperCAmelCase ): assert type(UpperCAmelCase ) == type(UpperCAmelCase ) if isinstance(UpperCAmelCase , (list, tuple) ): consistent &= self._compare_arg_caches(UpperCAmelCase , UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase : x[0] )] _UpperCAmelCase = [v for _, v in sorted(aa.items() , key=lambda UpperCAmelCase : x[0] )] consistent &= self._compare_arg_caches(UpperCAmelCase , UpperCAmelCase ) else: consistent &= aa == aa return consistent def UpperCamelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): """simple docstring""" _UpperCAmelCase = True _UpperCAmelCase = tree_map(lambda UpperCAmelCase : a.shape if isinstance(UpperCAmelCase , torch.Tensor ) else a , UpperCAmelCase , UpperCAmelCase ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(UpperCAmelCase ) _UpperCAmelCase = self._compare_arg_caches(self.cached_arg_data , UpperCAmelCase ) else: # Otherwise, we can reuse the precomputed value _UpperCAmelCase = False if not consistent: _UpperCAmelCase = self._determine_favorable_chunk_size( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ) _UpperCAmelCase = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
39
"""simple docstring""" import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): lowercase = ["image_processor", "tokenizer"] lowercase = "OwlViTImageProcessor" lowercase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , __UpperCAmelCase , ) __UpperCamelCase = kwargs.pop('feature_extractor' ) __UpperCamelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(__UpperCAmelCase , __UpperCAmelCase ) def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ): '''simple docstring''' if text is None and query_images is None and images is None: raise ValueError( 'You have to specify at least one text or query image or image. All three cannot be none.' ) if text is not None: if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )): __UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )] elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ): __UpperCamelCase = [] # Maximum number of queries across batch __UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(__UpperCAmelCase ) != max_num_queries: __UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase )) __UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) encodings.append(__UpperCAmelCase ) else: raise TypeError('Input text should be a string, a list of strings or a nested list of strings' ) if return_tensors == "np": __UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp __UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch __UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 ) __UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf __UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 ) __UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 ) else: raise ValueError('Target return tensor type could not be returned' ) __UpperCamelCase = BatchEncoding() __UpperCamelCase = input_ids __UpperCamelCase = attention_mask if query_images is not None: __UpperCamelCase = BatchEncoding() __UpperCamelCase = self.image_processor( __UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values __UpperCamelCase = query_pixel_values if images is not None: __UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ) if text is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif query_images is not None and images is not None: __UpperCamelCase = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase ) def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ): '''simple docstring''' return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase ) @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , ) return self.image_processor_class @property def UpperCAmelCase ( self ): '''simple docstring''' warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , ) return self.image_processor
316
0
"""simple docstring""" def lowercase ( A_ , A_ )-> float: '''simple docstring''' if digit_amount > 0: return round(number - int(A_ ) , A_ ) return number - int(A_ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.3_45, 1)) print(decimal_isolate(35.3_45, 2)) print(decimal_isolate(35.3_45, 3)) print(decimal_isolate(-14.7_89, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.1_23, 1)) print(decimal_isolate(-14.1_23, 2)) print(decimal_isolate(-14.1_23, 3))
40
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class __lowerCAmelCase : def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ): '''simple docstring''' __UpperCamelCase = parent __UpperCamelCase = batch_size __UpperCamelCase = seq_length __UpperCamelCase = is_training __UpperCamelCase = use_input_mask __UpperCamelCase = use_token_type_ids __UpperCamelCase = use_labels __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = rotary_dim __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_act __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = None __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 __UpperCamelCase = vocab_size - 1 def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase = None if self.use_input_mask: __UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCamelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = self.prepare_config_and_inputs() __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs __UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): '''simple docstring''' __UpperCamelCase = 20 __UpperCamelCase = model_class_name(__UpperCAmelCase ) __UpperCamelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) __UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase ) __UpperCamelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) __UpperCamelCase = model( input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) __UpperCamelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , ) __UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase ) __UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = FlaxGPTJModelTester(self ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) __UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase ) __UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = False __UpperCamelCase = model.config.eos_token_id __UpperCamelCase = jax.jit(model.generate ) __UpperCamelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences __UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase ) __UpperCamelCase = [ 'Hello this is a long string of text.\n\nI\'m trying to get the text of the', 'Hey, I\'m a little late to the party. I\'m going to', ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase ) __UpperCamelCase = fx_state with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase ) __UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCAmelCase ( self ): '''simple docstring''' __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs __UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class __UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning __UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase ) __UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval() __UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa ) __UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params ) __UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape __UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(__UpperCAmelCase ): __UpperCamelCase = 0 __UpperCamelCase = 1 __UpperCamelCase = 0 __UpperCamelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): __UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple() __UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple() self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(__UpperCAmelCase ) __UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase ) with torch.no_grad(): __UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple() self.assertEqual( len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCAmelCase ( self ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) __UpperCamelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(__UpperCAmelCase )
316
0