code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
def a__ ( SCREAMING_SNAKE_CASE : int = 5_0 ):
'''simple docstring'''
lowerCAmelCase : List[Any] = [1] * (length + 1)
for row_length in range(3 , length + 1 ):
for block_length in range(3 , row_length + 1 ):
for block_start in range(row_length - block_length ):
ways_number[row_length] += ways_number[
row_length - block_start - block_length - 1
]
ways_number[row_length] += 1
return ways_number[length]
if __name__ == "__main__":
print(F"{solution() = }")
| 108 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
class snake_case__(__lowerCAmelCase ):
"""simple docstring"""
lowercase_ = '''timm_backbone'''
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : int=3 , SCREAMING_SNAKE_CASE : str=True , SCREAMING_SNAKE_CASE : Optional[Any]=True , SCREAMING_SNAKE_CASE : List[Any]=None , **SCREAMING_SNAKE_CASE : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
lowercase__ : str = backbone
lowercase__ : Optional[int] = num_channels
lowercase__ : Tuple = features_only
lowercase__ : str = use_pretrained_backbone
lowercase__ : Tuple = True
lowercase__ : Union[str, Any] = out_indices if out_indices is not None else (-1,)
| 130 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
import os
from bleurt import score # From: git+https://github.com/google-research/bleurt.git
import datasets
__lowerCamelCase : Dict = datasets.logging.get_logger(__name__)
__lowerCamelCase : List[Any] = """\
@inproceedings{bleurt,
title={BLEURT: Learning Robust Metrics for Text Generation},
author={Thibault Sellam and Dipanjan Das and Ankur P. Parikh},
booktitle={ACL},
year={2020},
url={https://arxiv.org/abs/2004.04696}
}
"""
__lowerCamelCase : Dict = """\
BLEURT a learnt evaluation metric for Natural Language Generation. It is built using multiple phases of transfer learning starting from a pretrained BERT model (Devlin et al. 2018)
and then employing another pre-training phrase using synthetic data. Finally it is trained on WMT human annotations. You may run BLEURT out-of-the-box or fine-tune
it for your specific application (the latter is expected to perform better).
See the project\'s README at https://github.com/google-research/bleurt#readme for more information.
"""
__lowerCamelCase : Optional[Any] = """
BLEURT score.
Args:
`predictions` (list of str): prediction/candidate sentences
`references` (list of str): reference sentences
`checkpoint` BLEURT checkpoint. Will default to BLEURT-tiny if None.
Returns:
\'scores\': List of scores.
Examples:
>>> predictions = [\"hello there\", \"general kenobi\"]
>>> references = [\"hello there\", \"general kenobi\"]
>>> bleurt = datasets.load_metric(\"bleurt\")
>>> results = bleurt.compute(predictions=predictions, references=references)
>>> print([round(v, 2) for v in results[\"scores\"]])
[1.03, 1.04]
"""
__lowerCamelCase : int = {
"""bleurt-tiny-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-128.zip""",
"""bleurt-tiny-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-tiny-512.zip""",
"""bleurt-base-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-128.zip""",
"""bleurt-base-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-base-512.zip""",
"""bleurt-large-128""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-128.zip""",
"""bleurt-large-512""": """https://storage.googleapis.com/bleurt-oss/bleurt-large-512.zip""",
"""BLEURT-20-D3""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D3.zip""",
"""BLEURT-20-D6""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D6.zip""",
"""BLEURT-20-D12""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20-D12.zip""",
"""BLEURT-20""": """https://storage.googleapis.com/bleurt-oss-21/BLEURT-20.zip""",
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class A__ ( datasets.Metric ):
def __UpperCamelCase( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage="https://github.com/google-research/bleurt" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Value("string" , id="sequence" ),
} ) , codebase_urls=["https://github.com/google-research/bleurt"] , reference_urls=["https://github.com/google-research/bleurt", "https://arxiv.org/abs/2004.04696"] , )
def __UpperCamelCase( self , A_ ):
'''simple docstring'''
if self.config_name == "default":
logger.warning(
"Using default BLEURT-Base checkpoint for sequence maximum length 128. "
"You can use a bigger model for better results with e.g.: datasets.load_metric(\'bleurt\', \'bleurt-large-512\')." )
UpperCamelCase : Any = "bleurt-base-128"
if self.config_name.lower() in CHECKPOINT_URLS:
UpperCamelCase : Optional[int] = self.config_name.lower()
elif self.config_name.upper() in CHECKPOINT_URLS:
UpperCamelCase : Tuple = self.config_name.upper()
else:
raise KeyError(
F"""{self.config_name} model not found. You should supply the name of a model checkpoint for bleurt in {CHECKPOINT_URLS.keys()}""" )
# download the model checkpoint specified by self.config_name and set up the scorer
UpperCamelCase : Union[str, Any] = dl_manager.download_and_extract(CHECKPOINT_URLS[checkpoint_name] )
UpperCamelCase : List[Any] = score.BleurtScorer(os.path.join(_UpperCAmelCase , _UpperCAmelCase ) )
def __UpperCamelCase( self , A_ , A_ ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = self.scorer.score(references=_UpperCAmelCase , candidates=_UpperCAmelCase )
return {"scores": scores}
| 52 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
import absl # noqa: F401 # Here to have a nice missing dependency error message early on
import nltk # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import six # noqa: F401 # Here to have a nice missing dependency error message early on
from rouge_score import rouge_scorer, scoring
import datasets
UpperCamelCase_ = '\\n@inproceedings{lin-2004-rouge,\n title = "{ROUGE}: A Package for Automatic Evaluation of Summaries",\n author = "Lin, Chin-Yew",\n booktitle = "Text Summarization Branches Out",\n month = jul,\n year = "2004",\n address = "Barcelona, Spain",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W04-1013",\n pages = "74--81",\n}\n'
UpperCamelCase_ = '\\nROUGE, or Recall-Oriented Understudy for Gisting Evaluation, is a set of metrics and a software package used for\nevaluating automatic summarization and machine translation software in natural language processing.\nThe metrics compare an automatically produced summary or translation against a reference or a set of references (human-produced) summary or translation.\n\nNote that ROUGE is case insensitive, meaning that upper case letters are treated the same way as lower case letters.\n\nThis metrics is a wrapper around Google Research reimplementation of ROUGE:\nhttps://github.com/google-research/google-research/tree/master/rouge\n'
UpperCamelCase_ = '\nCalculates average rouge scores for a list of hypotheses and references\nArgs:\n predictions: list of predictions to score. Each prediction\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\n rouge_types: A list of rouge types to calculate.\n Valid names:\n `"rouge{n}"` (e.g. `"rouge1"`, `"rouge2"`) where: {n} is the n-gram based scoring,\n `"rougeL"`: Longest common subsequence based scoring.\n `"rougeLSum"`: rougeLsum splits text using `"\n"`.\n See details in https://github.com/huggingface/datasets/issues/617\n use_stemmer: Bool indicating whether Porter stemmer should be used to strip word suffixes.\n use_aggregator: Return aggregates if this is set to True\nReturns:\n rouge1: rouge_1 (precision, recall, f1),\n rouge2: rouge_2 (precision, recall, f1),\n rougeL: rouge_l (precision, recall, f1),\n rougeLsum: rouge_lsum (precision, recall, f1)\nExamples:\n\n >>> rouge = datasets.load_metric(\'rouge\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> results = rouge.compute(predictions=predictions, references=references)\n >>> print(list(results.keys()))\n [\'rouge1\', \'rouge2\', \'rougeL\', \'rougeLsum\']\n >>> print(results["rouge1"])\n AggregateScore(low=Score(precision=1.0, recall=1.0, fmeasure=1.0), mid=Score(precision=1.0, recall=1.0, fmeasure=1.0), high=Score(precision=1.0, recall=1.0, fmeasure=1.0))\n >>> print(results["rouge1"].mid.fmeasure)\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class snake_case ( datasets.Metric ):
def UpperCAmelCase__ ( self) ->List[str]:
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence"),
"references": datasets.Value("string" , id="sequence"),
}) , codebase_urls=["https://github.com/google-research/google-research/tree/master/rouge"] , reference_urls=[
"https://en.wikipedia.org/wiki/ROUGE_(metric)",
"https://github.com/google-research/google-research/tree/master/rouge",
] , )
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=False) ->Union[str, Any]:
if rouge_types is None:
a_ = ["rouge1", "rouge2", "rougeL", "rougeLsum"]
a_ = rouge_scorer.RougeScorer(rouge_types=_UpperCAmelCase , use_stemmer=_UpperCAmelCase)
if use_aggregator:
a_ = scoring.BootstrapAggregator()
else:
a_ = []
for ref, pred in zip(_UpperCAmelCase , _UpperCAmelCase):
a_ = scorer.score(_UpperCAmelCase , _UpperCAmelCase)
if use_aggregator:
aggregator.add_scores(_UpperCAmelCase)
else:
scores.append(_UpperCAmelCase)
if use_aggregator:
a_ = aggregator.aggregate()
else:
a_ = {}
for key in scores[0]:
a_ = [score[key] for score in scores]
return result
| 243 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
_snake_case = logging.get_logger(__name__)
_snake_case = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
_snake_case = {
"tokenizer_file": {
"EleutherAI/gpt-neox-20b": "https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/tokenizer.json",
},
}
_snake_case = {
"gpt-neox-20b": 2048,
}
class lowercase ( __lowerCAmelCase ):
_a = VOCAB_FILES_NAMES
_a = PRETRAINED_VOCAB_FILES_MAP
_a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_a = ['''input_ids''', '''attention_mask''']
def __init__( self , _a=None , _a=None , _a=None , _a="<|endoftext|>" , _a="<|endoftext|>" , _a="<|endoftext|>" , _a=False , **_a , ) -> List[str]:
super().__init__(
_UpperCAmelCase , _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , unk_token=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , add_prefix_space=_UpperCAmelCase , **_UpperCAmelCase , )
_A : Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get("""add_prefix_space""" , _UpperCAmelCase ) != add_prefix_space:
_A : List[Any] = getattr(_UpperCAmelCase , pre_tok_state.pop("""type""" ) )
_A : Optional[int] = add_prefix_space
_A : Dict = pre_tok_class(**_UpperCAmelCase )
_A : Union[str, Any] = add_prefix_space
def a__ ( self , _a , _a = None ) -> Tuple:
_A : List[str] = self._tokenizer.model.save(_UpperCAmelCase , name=_UpperCAmelCase )
return tuple(_UpperCAmelCase )
def a__ ( self , _a ) -> Tuple:
_A : Tuple = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [self.eos_token_id] )
if len(_UpperCAmelCase ) > self.model_max_length:
_A : str = input_ids[-self.model_max_length :]
return input_ids
| 26 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device
if is_torch_available():
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
@require_torch
@require_sentencepiece
@require_tokenizers
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
@slow
def SCREAMING_SNAKE_CASE__( self ) -> List[Any]:
"""simple docstring"""
a__ : Optional[Any] = AutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" , return_dict=_UpperCAmelCase ).to(_UpperCAmelCase )
a__ : Dict = AutoTokenizer.from_pretrained("""google/mt5-small""" )
a__ : Any = tokenizer("""Hello there""" , return_tensors="""pt""" ).input_ids
a__ : str = tokenizer("""Hi I am""" , return_tensors="""pt""" ).input_ids
a__ : Optional[Any] = model(input_ids.to(_UpperCAmelCase ) , labels=labels.to(_UpperCAmelCase ) ).loss
a__ : Optional[int] = -(labels.shape[-1] * loss.item())
a__ : str = -8_4.9_1_2_7
self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
| 170 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
'''simple docstring'''
UpperCAmelCase = [
'''Audio''',
'''Array2D''',
'''Array3D''',
'''Array4D''',
'''Array5D''',
'''ClassLabel''',
'''Features''',
'''Sequence''',
'''Value''',
'''Image''',
'''Translation''',
'''TranslationVariableLanguages''',
]
from .audio import Audio
from .features import ArrayaD, ArrayaD, ArrayaD, ArrayaD, ClassLabel, Features, Sequence, Value
from .image import Image
from .translation import Translation, TranslationVariableLanguages
| 141 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
from __future__ import annotations
import unittest
from transformers import AutoTokenizer, MBartConfig, is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFMBartForConditionalGeneration, TFMBartModel
@require_tf
class _A :
_UpperCamelCase : int = MBartConfig
_UpperCamelCase : Any = {}
_UpperCamelCase : Tuple = '''gelu'''
def __init__( self : Optional[Any] , _A : str , _A : List[Any]=13 , _A : List[str]=7 , _A : Optional[Any]=True , _A : Tuple=False , _A : int=99 , _A : Union[str, Any]=32 , _A : Dict=2 , _A : List[str]=4 , _A : Union[str, Any]=37 , _A : str=0.1 , _A : Any=0.1 , _A : List[str]=20 , _A : Any=2 , _A : Optional[int]=1 , _A : Any=0 , ) -> List[str]:
"""simple docstring"""
lowercase : str = parent
lowercase : Any = batch_size
lowercase : Optional[Any] = seq_length
lowercase : List[Any] = is_training
lowercase : Any = use_labels
lowercase : str = vocab_size
lowercase : Any = hidden_size
lowercase : List[Any] = num_hidden_layers
lowercase : int = num_attention_heads
lowercase : List[Any] = intermediate_size
lowercase : Dict = hidden_dropout_prob
lowercase : List[Any] = attention_probs_dropout_prob
lowercase : Optional[int] = max_position_embeddings
lowercase : List[str] = eos_token_id
lowercase : Optional[int] = pad_token_id
lowercase : Any = bos_token_id
def __a ( self : Tuple ) -> int:
"""simple docstring"""
lowercase : int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
lowercase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
lowercase : Optional[Any] = tf.concat([input_ids, eos_tensor] , axis=1 )
lowercase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
lowercase : Optional[int] = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
lowercase : Union[str, Any] = prepare_mbart_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
return config, inputs_dict
def __a ( self : Optional[int] , _A : Optional[Any] , _A : int ) -> Tuple:
"""simple docstring"""
lowercase : Optional[Any] = TFMBartModel(config=_UpperCAmelCase ).get_decoder()
lowercase : List[str] = inputs_dict['''input_ids''']
lowercase : Dict = input_ids[:1, :]
lowercase : List[str] = inputs_dict['''attention_mask'''][:1, :]
lowercase : int = inputs_dict['''head_mask''']
lowercase : List[Any] = 1
# first forward pass
lowercase : Tuple = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , head_mask=_UpperCAmelCase , use_cache=_UpperCAmelCase )
lowercase , lowercase : Optional[Any] = outputs.to_tuple()
lowercase : Optional[Any] = past_key_values[1]
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__=None , ) -> Tuple:
'''simple docstring'''
if attention_mask is None:
lowercase : Tuple = tf.cast(tf.math.not_equal(_snake_case , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
lowercase : Optional[Any] = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
lowercase : Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
lowercase : Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
lowercase : List[Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class _A ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
_UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration, TFMBartModel) if is_tf_available() else ()
_UpperCamelCase : Union[str, Any] = (TFMBartForConditionalGeneration,) if is_tf_available() else ()
_UpperCamelCase : Tuple = (
{
'''conversational''': TFMBartForConditionalGeneration,
'''feature-extraction''': TFMBartModel,
'''summarization''': TFMBartForConditionalGeneration,
'''text2text-generation''': TFMBartForConditionalGeneration,
'''translation''': TFMBartForConditionalGeneration,
}
if is_tf_available()
else {}
)
_UpperCamelCase : Optional[int] = True
_UpperCamelCase : Union[str, Any] = False
_UpperCamelCase : Union[str, Any] = False
def __a ( self : Tuple , _A : List[str] , _A : Union[str, Any] , _A : Optional[Any] , _A : Optional[int] , _A : Union[str, Any] ) -> int:
"""simple docstring"""
if pipeline_test_casse_name != "FeatureExtractionPipelineTests":
# Exception encountered when calling layer '...'
return True
return False
def __a ( self : str ) -> List[str]:
"""simple docstring"""
lowercase : Tuple = TFMBartModelTester(self )
lowercase : Optional[int] = ConfigTester(self , config_class=_UpperCAmelCase )
def __a ( self : List[str] ) -> str:
"""simple docstring"""
self.config_tester.run_common_tests()
def __a ( self : Dict ) -> List[str]:
"""simple docstring"""
lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*_UpperCAmelCase )
@require_sentencepiece
@require_tokenizers
@require_tf
class _A ( unittest.TestCase ):
_UpperCamelCase : Optional[int] = [
''' UN Chief Says There Is No Military Solution in Syria''',
]
_UpperCamelCase : str = [
'''Şeful ONU declară că nu există o soluţie militară în Siria''',
]
_UpperCamelCase : Dict = '''facebook/mbart-large-en-ro'''
@cached_property
def __a ( self : List[str] ) -> Tuple:
"""simple docstring"""
return AutoTokenizer.from_pretrained(self.model_name )
@cached_property
def __a ( self : List[str] ) -> str:
"""simple docstring"""
lowercase : Union[str, Any] = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
def __a ( self : Union[str, Any] , **_A : Any ) -> Tuple:
"""simple docstring"""
lowercase : Union[str, Any] = self.translate_src_text(**_UpperCAmelCase )
self.assertListEqual(self.expected_text , _UpperCAmelCase )
def __a ( self : Union[str, Any] , **_A : List[Any] ) -> Dict:
"""simple docstring"""
lowercase : List[Any] = self.tokenizer(self.src_text , **_UpperCAmelCase , return_tensors='''tf''' )
lowercase : Optional[Any] = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 )
lowercase : Dict = self.tokenizer.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )
return generated_words
@slow
def __a ( self : Any ) -> Dict:
"""simple docstring"""
self._assert_generated_batch_equal_expected()
| 308 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
UpperCAmelCase : List[str] = "\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n"
UpperCAmelCase : str = [{"type": "code", "content": INSTALL_CONTENT}]
UpperCAmelCase : Any = {
"{processor_class}": "FakeProcessorClass",
"{model_class}": "FakeModelClass",
"{object_class}": "FakeObjectClass",
}
| 252 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
import json
import os
import shutil
import tempfile
import unittest
import numpy as np
from transformers import BertTokenizerFast
from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer
from transformers.testing_utils import require_tokenizers, require_vision
from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor
@require_tokenizers
@require_vision
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
def SCREAMING_SNAKE_CASE_ (self : Any) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =tempfile.mkdtemp()
# fmt: off
lowerCamelCase__: Optional[int] =["[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest"]
# fmt: on
lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"])
with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
lowerCamelCase__: Optional[int] ={
"do_resize": True,
"size": {"height": 18, "width": 18},
"do_normalize": True,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5],
}
lowerCamelCase__: Optional[int] =os.path.join(self.tmpdirname , _UpperCAmelCase)
with open(self.image_processor_file , "w" , encoding="utf-8") as fp:
json.dump(_UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : List[str]) ->Tuple:
'''simple docstring'''
return BertTokenizer.from_pretrained(self.tmpdirname , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , **UpperCAmelCase_ : Tuple) ->str:
'''simple docstring'''
return ViTImageProcessor.from_pretrained(self.tmpdirname , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: List[Any] =[np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta)]
lowerCamelCase__: str =[Image.fromarray(np.moveaxis(_UpperCAmelCase , 0 , -1)) for x in image_inputs]
return image_inputs
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Any =self.get_tokenizer()
lowerCamelCase__: Optional[Any] =self.get_image_processor()
lowerCamelCase__: Dict =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
processor.save_pretrained(self.tmpdirname)
lowerCamelCase__: str =VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab())
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast))
self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Dict =VisionTextDualEncoderProcessor(
tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor())
processor.save_pretrained(self.tmpdirname)
lowerCamelCase__: Optional[int] =self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)")
lowerCamelCase__: Dict =self.get_image_processor(do_normalize=_UpperCAmelCase , padding_value=1.0)
lowerCamelCase__: Any =VisionTextDualEncoderProcessor.from_pretrained(
self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=_UpperCAmelCase , padding_value=1.0)
self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab())
self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast))
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string())
self.assertIsInstance(processor.image_processor , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =self.get_image_processor()
lowerCamelCase__: List[str] =self.get_tokenizer()
lowerCamelCase__: int =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
lowerCamelCase__: Union[str, Any] =self.prepare_image_inputs()
lowerCamelCase__: str =image_processor(_UpperCAmelCase , return_tensors="np")
lowerCamelCase__: List[str] =processor(images=_UpperCAmelCase , return_tensors="np")
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2)
def SCREAMING_SNAKE_CASE_ (self : str) ->int:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =self.get_image_processor()
lowerCamelCase__: List[Any] =self.get_tokenizer()
lowerCamelCase__: str =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
lowerCamelCase__: Optional[Any] ="lower newer"
lowerCamelCase__: List[str] =processor(text=_UpperCAmelCase)
lowerCamelCase__: List[str] =tokenizer(_UpperCAmelCase)
for key in encoded_tok.keys():
self.assertListEqual(encoded_tok[key] , encoded_processor[key])
def SCREAMING_SNAKE_CASE_ (self : Tuple) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: str =self.get_image_processor()
lowerCamelCase__: List[str] =self.get_tokenizer()
lowerCamelCase__: Optional[Any] =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
lowerCamelCase__: str ="lower newer"
lowerCamelCase__: int =self.prepare_image_inputs()
lowerCamelCase__: int =processor(text=_UpperCAmelCase , images=_UpperCAmelCase)
self.assertListEqual(list(inputs.keys()) , ["input_ids", "token_type_ids", "attention_mask", "pixel_values"])
# test if it raises when no input is passed
with self.assertRaises(_UpperCAmelCase):
processor()
def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Dict:
'''simple docstring'''
lowerCamelCase__: Dict =self.get_image_processor()
lowerCamelCase__: Any =self.get_tokenizer()
lowerCamelCase__: List[Any] =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
lowerCamelCase__: int =[[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]]
lowerCamelCase__: Optional[int] =processor.batch_decode(_UpperCAmelCase)
lowerCamelCase__: Dict =tokenizer.batch_decode(_UpperCAmelCase)
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : Dict) ->str:
'''simple docstring'''
lowerCamelCase__: str =self.get_image_processor()
lowerCamelCase__: Optional[int] =self.get_tokenizer()
lowerCamelCase__: Dict =VisionTextDualEncoderProcessor(tokenizer=_UpperCAmelCase , image_processor=_UpperCAmelCase)
lowerCamelCase__: str ="lower newer"
lowerCamelCase__: Optional[Any] =self.prepare_image_inputs()
lowerCamelCase__: List[str] =processor(text=_UpperCAmelCase , images=_UpperCAmelCase)
self.assertListEqual(list(inputs.keys()) , processor.model_input_names)
| 10 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import List
import timm
import torch
import torch.nn as nn
from huggingface_hub import hf_hub_download
from torch import Tensor
from transformers import AutoImageProcessor, ResNetConfig, ResNetForImageClassification
from transformers.utils import logging
logging.set_verbosity_info()
__UpperCamelCase : List[Any] = logging.get_logger()
@dataclass
class __magic_name__ :
A: nn.Module
A: List[nn.Module] = field(default_factory=__lowerCAmelCase)
A: list = field(default_factory=__lowerCAmelCase)
def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tensor , lowerCamelCase__ : Tensor ) -> Any:
'''simple docstring'''
UpperCamelCase__ : str = len(list(m.modules() ) ) == 1 or isinstance(_UpperCAmelCase , nn.Convad ) or isinstance(_UpperCAmelCase , nn.BatchNormad )
if has_not_submodules:
self.traced.append(_UpperCAmelCase )
def __call__( self : List[str] , lowerCamelCase__ : Tensor ) -> str:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(_UpperCAmelCase )
[x.remove() for x in self.handles]
return self
@property
def UpperCAmelCase__ ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
return list(filter(lambda lowerCamelCase__ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class __magic_name__ :
A: nn.Module
A: nn.Module
A: int = 0
A: List = field(default_factory=__lowerCAmelCase)
A: List = field(default_factory=__lowerCAmelCase)
def __call__( self : List[str] , lowerCamelCase__ : Tensor ) -> Tuple:
'''simple docstring'''
UpperCamelCase__ : List[Any] = Tracker(self.dest )(_UpperCAmelCase ).parametrized
UpperCamelCase__ : Optional[Any] = Tracker(self.src )(_UpperCAmelCase ).parametrized
UpperCamelCase__ : Any = list(filter(lambda lowerCamelCase__ : type(_UpperCAmelCase ) not in self.src_skip , _UpperCAmelCase ) )
UpperCamelCase__ : List[str] = list(filter(lambda lowerCamelCase__ : type(_UpperCAmelCase ) not in self.dest_skip , _UpperCAmelCase ) )
if len(_UpperCAmelCase ) != len(_UpperCAmelCase ):
raise Exception(
F"Numbers of operations are different. Source module has {len(_UpperCAmelCase )} operations while"
F" destination module has {len(_UpperCAmelCase )}." )
for dest_m, src_m in zip(_UpperCAmelCase , _UpperCAmelCase ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(F"Transfered from={src_m} to={dest_m}" )
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : ResNetConfig , SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : bool = True ):
"""simple docstring"""
print(F"Converting {name}..." )
with torch.no_grad():
UpperCamelCase__ : str = timm.create_model(_snake_case , pretrained=_snake_case ).eval()
UpperCamelCase__ : List[Any] = ResNetForImageClassification(_snake_case ).eval()
UpperCamelCase__ : Dict = ModuleTransfer(src=_snake_case , dest=_snake_case )
UpperCamelCase__ : Any = torch.randn((1, 3, 224, 224) )
module_transfer(_snake_case )
assert torch.allclose(from_model(_snake_case ) , our_model(_snake_case ).logits ), "The model logits don't match the original one."
UpperCamelCase__ : str = F"resnet{'-'.join(name.split('resnet' ) )}"
print(_snake_case )
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add model''' , use_temp_dir=_snake_case , )
# we can use the convnext one
UpperCamelCase__ : int = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' )
image_processor.push_to_hub(
repo_path_or_name=save_directory / checkpoint_name , commit_message='''Add image processor''' , use_temp_dir=_snake_case , )
print(F"Pushed {checkpoint_name}" )
def _a ( SCREAMING_SNAKE_CASE : Path , SCREAMING_SNAKE_CASE : str = None , SCREAMING_SNAKE_CASE : bool = True ):
"""simple docstring"""
UpperCamelCase__ : List[str] = '''imagenet-1k-id2label.json'''
UpperCamelCase__ : Optional[int] = 1000
UpperCamelCase__ : List[str] = (1, num_labels)
UpperCamelCase__ : Union[str, Any] = '''huggingface/label-files'''
UpperCamelCase__ : List[str] = num_labels
UpperCamelCase__ : Dict = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type='''dataset''' ) , '''r''' ) )
UpperCamelCase__ : Optional[Any] = {int(_snake_case ): v for k, v in idalabel.items()}
UpperCamelCase__ : Union[str, Any] = idalabel
UpperCamelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()}
UpperCamelCase__ : Any = partial(_snake_case , num_labels=_snake_case , idalabel=_snake_case , labelaid=_snake_case )
UpperCamelCase__ : List[Any] = {
'''resnet18''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet26''': ImageNetPreTrainedConfig(
depths=[2, 2, 2, 2] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet34''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[64, 128, 256, 512] , layer_type='''basic''' ),
'''resnet50''': ImageNetPreTrainedConfig(
depths=[3, 4, 6, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet101''': ImageNetPreTrainedConfig(
depths=[3, 4, 23, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
'''resnet152''': ImageNetPreTrainedConfig(
depths=[3, 8, 36, 3] , hidden_sizes=[256, 512, 1024, 2048] , layer_type='''bottleneck''' ),
}
if model_name:
convert_weight_and_push(_snake_case , names_to_config[model_name] , _snake_case , _snake_case )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(_snake_case , _snake_case , _snake_case , _snake_case )
return config, expected_shape
if __name__ == "__main__":
__UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default=None,
type=str,
help=(
"The name of the model you wish to convert, it must be one of the supported resnet* architecture,"
" currently: resnet18,26,34,50,101,152. If `None`, all of them will the converted."
),
)
parser.add_argument(
"--pytorch_dump_folder_path",
default=None,
type=Path,
required=True,
help="Path to the output PyTorch model directory.",
)
parser.add_argument(
"--push_to_hub",
default=True,
type=bool,
required=False,
help="If True, push model and image processor to the hub.",
)
__UpperCamelCase : Union[str, Any] = parser.parse_args()
__UpperCamelCase : str = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 146 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 0 |
"""simple docstring"""
def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
while b:
lowerCAmelCase , lowerCAmelCase : List[Any] = b, a % b
return a
def a__ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : int ):
'''simple docstring'''
return a if b == 0 else euclidean_gcd_recursive(_snake_case , a % b )
def a__ ( ):
'''simple docstring'''
print(f"""euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}""" )
print(f"""euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}""" )
print(f"""euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}""" )
print(f"""euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}""" )
print(f"""euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}""" )
print(f"""euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}""" )
print(f"""euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}""" )
print(f"""euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}""" )
print(f"""euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}""" )
if __name__ == "__main__":
main()
| 108 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 0 |
lowerCAmelCase__ = {
'''A''': ['''B''', '''C''', '''E'''],
'''B''': ['''A''', '''D''', '''E'''],
'''C''': ['''A''', '''F''', '''G'''],
'''D''': ['''B'''],
'''E''': ['''A''', '''B''', '''D'''],
'''F''': ['''C'''],
'''G''': ['''C'''],
}
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : List[Any] = set()
# keep track of all the paths to be checked
lowercase__ : Dict = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
lowercase__ : str = queue.pop(0 )
# get the last node from the path
lowercase__ : Any = path[-1]
if node not in explored:
lowercase__ : Any = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
lowercase__ : Dict = list(_snake_case )
new_path.append(_snake_case )
queue.append(_snake_case )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(_snake_case )
# in case there's no path between the 2 nodes
return []
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
lowercase__ : Any = [start]
lowercase__ : Tuple = set(_snake_case )
# Keep tab on distances from `start` node.
lowercase__ : Any = {start: 0, target: -1}
while queue:
lowercase__ : str = queue.pop(0 )
if node == target:
lowercase__ : List[Any] = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(_snake_case )
queue.append(_snake_case )
lowercase__ : Any = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, '''G''', '''D''')) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, '''G''', '''D''')) # returns 4
| 130 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 0 |
def A_ ( _lowerCAmelCase ) -> int:
UpperCamelCase : Union[str, Any] = [[0 for _ in range(_snake_case )] for _ in range(m + 1 )]
for i in range(m + 1 ):
UpperCamelCase : Optional[Any] = 1
for n in range(m + 1 ):
for k in range(1 , _snake_case ):
memo[n][k] += memo[n][k - 1]
if n - k > 0:
memo[n][k] += memo[n - k - 1][k]
return memo[m][m - 1]
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
try:
__lowerCamelCase : Any = int(input("""Enter a number: """).strip())
print(partition(n))
except ValueError:
print("""Please enter a number.""")
else:
try:
__lowerCamelCase : Optional[Any] = int(sys.argv[1])
print(partition(n))
except ValueError:
print("""Please pass a number.""")
| 52 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
import requests
from bsa import BeautifulSoup
def UpperCamelCase ( UpperCAmelCase = "https://www.worldometers.info/coronavirus" ) ->dict:
"""simple docstring"""
a_ = BeautifulSoup(requests.get(_snake_case ).text , "html.parser" )
a_ = soup.findAll("h1" )
a_ = soup.findAll("div" , {"class": "maincounter-number"} )
keys += soup.findAll("span" , {"class": "panel-title"} )
values += soup.findAll("div" , {"class": "number-table-main"} )
return {key.text.strip(): value.text.strip() for key, value in zip(_snake_case , _snake_case )}
if __name__ == "__main__":
print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n')
for key, value in world_covidaa_stats().items():
print(F"""{key}\n{value}\n""")
| 243 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 0 |
import functools
from typing import Any
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
if not isinstance(_snake_case,_snake_case ) or len(_snake_case ) == 0:
raise ValueError("""the string should be not empty string""" )
if not isinstance(_snake_case,_snake_case ) or not all(
isinstance(_snake_case,_snake_case ) and len(_snake_case ) > 0 for item in words ):
raise ValueError("""the words should be a list of non-empty strings""" )
# Build trie
_A : int = {}
_A : List[Any] = """WORD_KEEPER"""
for word in words:
_A : int = trie
for c in word:
if c not in trie_node:
_A : str = {}
_A : int = trie_node[c]
_A : List[str] = True
_A : Union[str, Any] = len(_snake_case )
# Dynamic programming method
@functools.cache
def is_breakable(snake_case_ ) -> bool:
if index == len_string:
return True
_A : Optional[Any] = trie
for i in range(_snake_case,_snake_case ):
_A : str = trie_node.get(string[i],_snake_case )
if trie_node is None:
return False
if trie_node.get(_snake_case,_snake_case ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
from tempfile import TemporaryDirectory
from unittest import TestCase
from unittest.mock import MagicMock, patch
from transformers import AutoModel, TFAutoModel
from transformers.onnx import FeaturesManager
from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch
@require_torch
@require_tf
class snake_case__ (__lowerCAmelCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self ) -> Dict:
"""simple docstring"""
a__ : str = SMALL_MODEL_IDENTIFIER
a__ : int = """pt"""
a__ : List[str] = """tf"""
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> Tuple:
"""simple docstring"""
a__ : Union[str, Any] = AutoModel.from_pretrained(self.test_model )
model_pt.save_pretrained(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self , __lowercase ) -> int:
"""simple docstring"""
a__ : Tuple = TFAutoModel.from_pretrained(self.test_model , from_pt=_UpperCAmelCase )
model_tf.save_pretrained(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self ) -> Optional[int]:
"""simple docstring"""
a__ : List[str] = """mock_framework"""
# Framework provided - return whatever the user provides
a__ : List[Any] = FeaturesManager.determine_framework(self.test_model , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# Local checkpoint and framework provided - return provided framework
# PyTorch checkpoint
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase )
a__ : Dict = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase )
a__ : Optional[int] = FeaturesManager.determine_framework(_UpperCAmelCase , _UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
with TemporaryDirectory() as local_pt_ckpt:
self._setup_pt_ckpt(_UpperCAmelCase )
a__ : Any = FeaturesManager.determine_framework(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# TensorFlow checkpoint
with TemporaryDirectory() as local_tf_ckpt:
self._setup_tf_ckpt(_UpperCAmelCase )
a__ : Union[str, Any] = FeaturesManager.determine_framework(_UpperCAmelCase )
self.assertEqual(_UpperCAmelCase , self.framework_tf )
# Invalid local checkpoint
with TemporaryDirectory() as local_invalid_ckpt:
with self.assertRaises(_UpperCAmelCase ):
a__ : int = FeaturesManager.determine_framework(_UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
a__ : int = MagicMock(return_value=_UpperCAmelCase )
with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ):
a__ : Dict = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# PyTorch not in environment -> use TensorFlow
a__ : Any = MagicMock(return_value=_UpperCAmelCase )
with patch("""transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ):
a__ : Optional[Any] = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_tf )
# Both in environment -> use PyTorch
a__ : str = MagicMock(return_value=_UpperCAmelCase )
a__ : Optional[int] = MagicMock(return_value=_UpperCAmelCase )
with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch(
"""transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ):
a__ : Any = FeaturesManager.determine_framework(self.test_model )
self.assertEqual(_UpperCAmelCase , self.framework_pt )
# Both not in environment -> raise error
a__ : Any = MagicMock(return_value=_UpperCAmelCase )
a__ : Tuple = MagicMock(return_value=_UpperCAmelCase )
with patch("""transformers.onnx.features.is_tf_available""" , _UpperCAmelCase ), patch(
"""transformers.onnx.features.is_torch_available""" , _UpperCAmelCase ):
with self.assertRaises(_UpperCAmelCase ):
a__ : Tuple = FeaturesManager.determine_framework(self.test_model )
| 170 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 0 |
'''simple docstring'''
import torch
import torch.nn as nn
from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel
from ...utils import logging
UpperCAmelCase = logging.get_logger(__name__)
def __UpperCamelCase ( lowercase__ : Dict, lowercase__ : int ):
'''simple docstring'''
__lowercase =nn.functional.normalize(_snake_case )
__lowercase =nn.functional.normalize(_snake_case )
return torch.mm(_snake_case, normalized_text_embeds.t() )
class lowerCAmelCase ( __lowerCAmelCase ):
lowerCAmelCase_ = CLIPConfig
lowerCAmelCase_ = ['''CLIPEncoderLayer''']
def __init__( self : Optional[int] , __lowercase : CLIPConfig ):
"""simple docstring"""
super().__init__(_UpperCAmelCase )
__lowercase =CLIPVisionModel(config.vision_config )
__lowercase =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=_UpperCAmelCase )
__lowercase =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
__lowercase =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=_UpperCAmelCase )
__lowercase =nn.Parameter(torch.ones(17 ) , requires_grad=_UpperCAmelCase )
__lowercase =nn.Parameter(torch.ones(3 ) , requires_grad=_UpperCAmelCase )
@torch.no_grad()
def snake_case ( self : Optional[int] , __lowercase : Tuple , __lowercase : List[Any] ):
"""simple docstring"""
__lowercase =self.vision_model(_UpperCAmelCase )[1] # pooled_output
__lowercase =self.visual_projection(_UpperCAmelCase )
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
__lowercase =cosine_distance(_UpperCAmelCase , self.special_care_embeds ).cpu().float().numpy()
__lowercase =cosine_distance(_UpperCAmelCase , self.concept_embeds ).cpu().float().numpy()
__lowercase =[]
__lowercase =image_embeds.shape[0]
for i in range(_UpperCAmelCase ):
__lowercase ={'special_scores': {}, 'special_care': [], 'concept_scores': {}, 'bad_concepts': []}
# increase this value to create a stronger `nfsw` filter
# at the cost of increasing the possibility of filtering benign images
__lowercase =0.0
for concept_idx in range(len(special_cos_dist[0] ) ):
__lowercase =special_cos_dist[i][concept_idx]
__lowercase =self.special_care_embeds_weights[concept_idx].item()
__lowercase =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["special_scores"][concept_idx] > 0:
result_img["special_care"].append({concept_idx, result_img['special_scores'][concept_idx]} )
__lowercase =0.0_1
for concept_idx in range(len(cos_dist[0] ) ):
__lowercase =cos_dist[i][concept_idx]
__lowercase =self.concept_embeds_weights[concept_idx].item()
__lowercase =round(concept_cos - concept_threshold + adjustment , 3 )
if result_img["concept_scores"][concept_idx] > 0:
result_img["bad_concepts"].append(_UpperCAmelCase )
result.append(_UpperCAmelCase )
__lowercase =[len(res['bad_concepts'] ) > 0 for res in result]
return images, has_nsfw_concepts
@torch.no_grad()
def snake_case ( self : Optional[Any] , __lowercase : torch.FloatTensor , __lowercase : torch.FloatTensor ):
"""simple docstring"""
__lowercase =self.vision_model(_UpperCAmelCase )[1] # pooled_output
__lowercase =self.visual_projection(_UpperCAmelCase )
__lowercase =cosine_distance(_UpperCAmelCase , self.special_care_embeds )
__lowercase =cosine_distance(_UpperCAmelCase , self.concept_embeds )
# increase this value to create a stronger `nsfw` filter
# at the cost of increasing the possibility of filtering benign images
__lowercase =0.0
__lowercase =special_cos_dist - self.special_care_embeds_weights + adjustment
# special_scores = special_scores.round(decimals=3)
__lowercase =torch.any(special_scores > 0 , dim=1 )
__lowercase =special_care * 0.0_1
__lowercase =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] )
__lowercase =(cos_dist - self.concept_embeds_weights) + special_adjustment
# concept_scores = concept_scores.round(decimals=3)
__lowercase =torch.any(concept_scores > 0 , dim=1 )
return images, has_nsfw_concepts
| 141 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
self.resolver.convert_models(['heb-eng'] )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 315 | 0 |
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
lowerCAmelCase_ = logging.getLogger()
def snake_case( ) -> Optional[Any]:
'''simple docstring'''
lowercase : Optional[Any] = argparse.ArgumentParser()
parser.add_argument('''-f''' )
lowercase : Dict = parser.parse_args()
return args.f
class _A ( __lowerCAmelCase ):
def __a ( self : List[Any] ) -> Optional[int]:
"""simple docstring"""
lowercase : List[Any] = logging.StreamHandler(sys.stdout )
logger.addHandler(_UpperCAmelCase )
def __a ( self : str , _A : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
lowercase : List[str] = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , '''run_glue_deebert.py''' )
with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ):
lowercase : Optional[Any] = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_UpperCAmelCase , 0.666 )
@slow
@require_torch_non_multi_gpu
def __a ( self : Optional[Any] ) -> List[Any]:
"""simple docstring"""
lowercase : List[str] = '''\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '''.split()
self.run_and_check(_UpperCAmelCase )
lowercase : Tuple = '''\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '''.split()
self.run_and_check(_UpperCAmelCase )
lowercase : List[str] = '''\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '''.split()
self.run_and_check(_UpperCAmelCase )
| 308 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 315 | 0 |
import argparse
import re
import numpy as np
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
SamConfig,
SamImageProcessor,
SamModel,
SamProcessor,
SamVisionConfig,
)
UpperCAmelCase : Optional[int] = {
"iou_prediction_head.layers.0": "iou_prediction_head.proj_in",
"iou_prediction_head.layers.1": "iou_prediction_head.layers.0",
"iou_prediction_head.layers.2": "iou_prediction_head.proj_out",
"mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1",
"mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm",
"mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2",
"mask_downscaling.0": "mask_embed.conv1",
"mask_downscaling.1": "mask_embed.layer_norm1",
"mask_downscaling.3": "mask_embed.conv2",
"mask_downscaling.4": "mask_embed.layer_norm2",
"mask_downscaling.6": "mask_embed.conv3",
"point_embeddings": "point_embed",
"pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding",
"image_encoder": "vision_encoder",
"neck.0": "neck.conv1",
"neck.1": "neck.layer_norm1",
"neck.2": "neck.conv2",
"neck.3": "neck.layer_norm2",
"patch_embed.proj": "patch_embed.projection",
".norm": ".layer_norm",
"blocks": "layers",
}
def __lowerCamelCase ( lowerCamelCase__ : Any ):
'''simple docstring'''
lowerCamelCase = {}
state_dict.pop("""pixel_mean""" , _snake_case )
state_dict.pop("""pixel_std""" , _snake_case )
lowerCamelCase = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*"""
for key, value in state_dict.items():
for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
if key_to_modify in key:
lowerCamelCase = key.replace(_snake_case , _snake_case )
if re.match(_snake_case , _snake_case ):
lowerCamelCase = int(re.match(_snake_case , _snake_case ).group(2 ) )
if layer_nb == 0:
lowerCamelCase = key.replace("""layers.0""" , """proj_in""" )
elif layer_nb == 1:
lowerCamelCase = key.replace("""layers.1""" , """layers.0""" )
elif layer_nb == 2:
lowerCamelCase = key.replace("""layers.2""" , """proj_out""" )
lowerCamelCase = value
lowerCamelCase = model_state_dict[
"""prompt_encoder.shared_embedding.positional_embedding"""
]
return model_state_dict
def __lowerCamelCase ( lowerCamelCase__ : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : List[str] , lowerCamelCase__ : str="ybelkada/segment-anything" ):
'''simple docstring'''
lowerCamelCase = hf_hub_download(_snake_case , f'checkpoints/{model_name}.pth' )
if "sam_vit_b" in model_name:
lowerCamelCase = SamConfig()
elif "sam_vit_l" in model_name:
lowerCamelCase = SamVisionConfig(
hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , )
lowerCamelCase = SamConfig(
vision_config=_snake_case , )
elif "sam_vit_h" in model_name:
lowerCamelCase = SamVisionConfig(
hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , )
lowerCamelCase = SamConfig(
vision_config=_snake_case , )
lowerCamelCase = torch.load(_snake_case , map_location="""cpu""" )
lowerCamelCase = replace_keys(_snake_case )
lowerCamelCase = SamImageProcessor()
lowerCamelCase = SamProcessor(image_processor=_snake_case )
lowerCamelCase = SamModel(_snake_case )
hf_model.load_state_dict(_snake_case )
lowerCamelCase = hf_model.to("""cuda""" )
lowerCamelCase = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png"""
lowerCamelCase = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ).convert("""RGB""" )
lowerCamelCase = [[[400, 650]]]
lowerCamelCase = [[1]]
lowerCamelCase = processor(images=np.array(_snake_case ) , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
lowerCamelCase = hf_model(**_snake_case )
lowerCamelCase = output.iou_scores.squeeze()
if model_name == "sam_vit_h_4b8939":
assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8
lowerCamelCase = processor(
images=np.array(_snake_case ) , input_points=_snake_case , input_labels=_snake_case , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
lowerCamelCase = hf_model(**_snake_case )
lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4
lowerCamelCase = ((75, 275, 1725, 850),)
lowerCamelCase = processor(images=np.array(_snake_case ) , input_boxes=_snake_case , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
lowerCamelCase = hf_model(**_snake_case )
lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4
# Test with 2 points and 1 image.
lowerCamelCase = [[[400, 650], [800, 650]]]
lowerCamelCase = [[1, 1]]
lowerCamelCase = processor(
images=np.array(_snake_case ) , input_points=_snake_case , input_labels=_snake_case , return_tensors="""pt""" ).to("""cuda""" )
with torch.no_grad():
lowerCamelCase = hf_model(**_snake_case )
lowerCamelCase = output.iou_scores.squeeze()
assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2
if __name__ == "__main__":
UpperCAmelCase : List[Any] = argparse.ArgumentParser()
UpperCAmelCase : int = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"]
parser.add_argument(
"--model_name",
default="sam_vit_h_4b8939",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument(
"--push_to_hub",
action="store_true",
help="Whether to push the model and processor to the hub after converting",
)
parser.add_argument(
"--model_hub_id",
default="ybelkada/segment-anything",
choices=choices,
type=str,
help="Path to hf config.json of model to convert",
)
UpperCAmelCase : int = parser.parse_args()
convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
| 252 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]:
'''simple docstring'''
_A , _A = position
_A = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A = []
for position in positions:
_A , _A = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_snake_case )
return permissible_positions
def _snake_case ( _snake_case : list[list[int]] ) -> bool:
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool:
'''simple docstring'''
if is_complete(_snake_case ):
return True
for position in get_valid_pos(_snake_case , len(_snake_case ) ):
_A , _A = position
if board[y][x] == 0:
_A = curr + 1
if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ):
return True
_A = 0
return False
def _snake_case ( _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
for i in range(_snake_case ):
for j in range(_snake_case ):
_A = 1
if open_knight_tour_helper(_snake_case , (i, j) , 1 ):
return board
_A = 0
_A = F'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
import math
from typing import Dict, Iterable, List, Optional, Tuple, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
get_image_size,
is_torch_available,
is_torch_tensor,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, is_vision_available, logging
if is_torch_available():
import torch
if is_vision_available():
import PIL
__A = logging.get_logger(__name__)
def lowerCAmelCase_ ( __a , __a , __a , __a ) -> Tuple[int, int]:
"""simple docstring"""
def constraint_to_multiple_of(__a , __a , __a=0 , __a=None ):
lowerCamelCase__: str =round(val / multiple ) * multiple
if max_val is not None and x > max_val:
lowerCamelCase__: Dict =math.floor(val / multiple ) * multiple
if x < min_val:
lowerCamelCase__: Optional[Any] =math.ceil(val / multiple ) * multiple
return x
lowerCamelCase__: str =(output_size, output_size) if isinstance(_snake_case , _snake_case ) else output_size
lowerCamelCase__ , lowerCamelCase__: Optional[Any] =get_image_size(_snake_case )
lowerCamelCase__ , lowerCamelCase__: Tuple =output_size
# determine new height and width
lowerCamelCase__: List[Any] =output_height / input_height
lowerCamelCase__: Optional[int] =output_width / input_width
if keep_aspect_ratio:
# scale as little as possible
if abs(1 - scale_width ) < abs(1 - scale_height ):
# fit width
lowerCamelCase__: List[Any] =scale_width
else:
# fit height
lowerCamelCase__: List[Any] =scale_height
lowerCamelCase__: List[str] =constraint_to_multiple_of(scale_height * input_height , multiple=_snake_case )
lowerCamelCase__: Dict =constraint_to_multiple_of(scale_width * input_width , multiple=_snake_case )
return (new_height, new_width)
class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ):
'''simple docstring'''
lowercase_ = ['''pixel_values''']
def __init__(self : str , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Dict[str, int] = None , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BILINEAR , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Union[int, float] = 1 / 255 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , **UpperCAmelCase_ : Union[str, Any] , ) ->int:
'''simple docstring'''
super().__init__(**_UpperCAmelCase)
lowerCamelCase__: int =size if size is not None else {"height": 384, "width": 384}
lowerCamelCase__: Optional[Any] =get_size_dict(_UpperCAmelCase)
lowerCamelCase__: List[Any] =do_resize
lowerCamelCase__: Union[str, Any] =size
lowerCamelCase__: Any =keep_aspect_ratio
lowerCamelCase__: List[Any] =ensure_multiple_of
lowerCamelCase__: Optional[Any] =resample
lowerCamelCase__: Optional[int] =do_rescale
lowerCamelCase__: Optional[int] =rescale_factor
lowerCamelCase__: Tuple =do_normalize
lowerCamelCase__: Any =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
lowerCamelCase__: int =image_std if image_std is not None else IMAGENET_STANDARD_STD
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Dict[str, int] , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : PILImageResampling = PILImageResampling.BICUBIC , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[Any] , ) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Dict =get_size_dict(_UpperCAmelCase)
if "height" not in size or "width" not in size:
raise ValueError(F"""The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}""")
lowerCamelCase__: int =get_resize_output_image_size(
_UpperCAmelCase , output_size=(size["height"], size["width"]) , keep_aspect_ratio=_UpperCAmelCase , multiple=_UpperCAmelCase , )
return resize(_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[int, float] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : Any , ) ->str:
'''simple docstring'''
return rescale(_UpperCAmelCase , scale=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : np.ndarray , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Union[float, List[float]] , UpperCAmelCase_ : Optional[Union[str, ChannelDimension]] = None , **UpperCAmelCase_ : List[str] , ) ->Union[str, Any]:
'''simple docstring'''
return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , data_format=_UpperCAmelCase , **_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : ImageInput , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : int = None , UpperCAmelCase_ : PILImageResampling = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : float = None , UpperCAmelCase_ : bool = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[float, List[float]]] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : ChannelDimension = ChannelDimension.FIRST , **UpperCAmelCase_ : Any , ) ->Dict:
'''simple docstring'''
lowerCamelCase__: Optional[int] =do_resize if do_resize is not None else self.do_resize
lowerCamelCase__: int =size if size is not None else self.size
lowerCamelCase__: Tuple =get_size_dict(_UpperCAmelCase)
lowerCamelCase__: List[Any] =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio
lowerCamelCase__: Optional[Any] =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of
lowerCamelCase__: str =resample if resample is not None else self.resample
lowerCamelCase__: Optional[int] =do_rescale if do_rescale is not None else self.do_rescale
lowerCamelCase__: List[str] =rescale_factor if rescale_factor is not None else self.rescale_factor
lowerCamelCase__: List[Any] =do_normalize if do_normalize is not None else self.do_normalize
lowerCamelCase__: Union[str, Any] =image_mean if image_mean is not None else self.image_mean
lowerCamelCase__: List[Any] =image_std if image_std is not None else self.image_std
lowerCamelCase__: int =make_list_of_images(_UpperCAmelCase)
if not valid_images(_UpperCAmelCase):
raise ValueError(
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
"torch.Tensor, tf.Tensor or jax.ndarray.")
if do_resize and size is None or resample is None:
raise ValueError("Size and resample must be specified if do_resize is True.")
if do_rescale and rescale_factor is None:
raise ValueError("Rescale factor must be specified if do_rescale is True.")
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("Image mean and std must be specified if do_normalize is True.")
# All transformations expect numpy arrays.
lowerCamelCase__: Optional[int] =[to_numpy_array(_UpperCAmelCase) for image in images]
if do_resize:
lowerCamelCase__: Tuple =[self.resize(image=_UpperCAmelCase , size=_UpperCAmelCase , resample=_UpperCAmelCase) for image in images]
if do_rescale:
lowerCamelCase__: List[Any] =[self.rescale(image=_UpperCAmelCase , scale=_UpperCAmelCase) for image in images]
if do_normalize:
lowerCamelCase__: Dict =[self.normalize(image=_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase) for image in images]
lowerCamelCase__: Optional[int] =[to_channel_dimension_format(_UpperCAmelCase , _UpperCAmelCase) for image in images]
lowerCamelCase__: Optional[int] ={"pixel_values": images}
return BatchFeature(data=_UpperCAmelCase , tensor_type=_UpperCAmelCase)
def SCREAMING_SNAKE_CASE_ (self : List[Any] , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : List[Tuple] = None) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =outputs.logits
# Resize logits and compute semantic segmentation maps
if target_sizes is not None:
if len(_UpperCAmelCase) != len(_UpperCAmelCase):
raise ValueError(
"Make sure that you pass in as many target sizes as the batch dimension of the logits")
if is_torch_tensor(_UpperCAmelCase):
lowerCamelCase__: str =target_sizes.numpy()
lowerCamelCase__: int =[]
for idx in range(len(_UpperCAmelCase)):
lowerCamelCase__: List[Any] =torch.nn.functional.interpolate(
logits[idx].unsqueeze(dim=0) , size=target_sizes[idx] , mode="bilinear" , align_corners=_UpperCAmelCase)
lowerCamelCase__: Tuple =resized_logits[0].argmax(dim=0)
semantic_segmentation.append(_UpperCAmelCase)
else:
lowerCamelCase__: Union[str, Any] =logits.argmax(dim=1)
lowerCamelCase__: str =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0])]
return semantic_segmentation
| 10 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 0 |
import glob
import os
import random
from string import ascii_lowercase, digits
import cva
__UpperCamelCase : str = ""
__UpperCamelCase : List[str] = ""
__UpperCamelCase : Union[str, Any] = ""
__UpperCamelCase : Optional[Any] = 1 # (0 is vertical, 1 is horizontal)
def _a ( ):
"""simple docstring"""
UpperCamelCase__ , UpperCamelCase__ : Optional[Any] = get_dataset(_snake_case , _snake_case )
print('''Processing...''' )
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ : int = update_image_and_anno(_snake_case , _snake_case , _snake_case )
for index, image in enumerate(_snake_case ):
# Get random string code: '7b7ad245cdff75241935e4dd860f3bad'
UpperCamelCase__ : Tuple = random_chars(32 )
UpperCamelCase__ : List[str] = paths[index].split(os.sep )[-1].rsplit('''.''' , 1 )[0]
UpperCamelCase__ : Optional[int] = F"{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}"
cva.imwrite(F"/{file_root}.jpg" , _snake_case , [cva.IMWRITE_JPEG_QUALITY, 85] )
print(F"Success {index+1}/{len(_snake_case )} with {file_name}" )
UpperCamelCase__ : Union[str, Any] = []
for anno in new_annos[index]:
UpperCamelCase__ : Dict = F"{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}"
annos_list.append(_snake_case )
with open(F"/{file_root}.txt" , '''w''' ) as outfile:
outfile.write('''\n'''.join(line for line in annos_list ) )
def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
UpperCamelCase__ : Optional[int] = []
UpperCamelCase__ : int = []
for label_file in glob.glob(os.path.join(_snake_case , '''*.txt''' ) ):
UpperCamelCase__ : List[Any] = label_file.split(os.sep )[-1].rsplit('''.''' , 1 )[0]
with open(_snake_case ) as in_file:
UpperCamelCase__ : str = in_file.readlines()
UpperCamelCase__ : Optional[int] = os.path.join(_snake_case , F"{label_name}.jpg" )
UpperCamelCase__ : int = []
for obj_list in obj_lists:
UpperCamelCase__ : Union[str, Any] = obj_list.rstrip('''\n''' ).split(''' ''' )
boxes.append(
[
int(obj[0] ),
float(obj[1] ),
float(obj[2] ),
float(obj[3] ),
float(obj[4] ),
] )
if not boxes:
continue
img_paths.append(_snake_case )
labels.append(_snake_case )
return img_paths, labels
def _a ( SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : list , SCREAMING_SNAKE_CASE : int = 1 ):
"""simple docstring"""
UpperCamelCase__ : int = []
UpperCamelCase__ : str = []
UpperCamelCase__ : Dict = []
for idx in range(len(_snake_case ) ):
UpperCamelCase__ : Any = []
UpperCamelCase__ : Any = img_list[idx]
path_list.append(_snake_case )
UpperCamelCase__ : Any = anno_list[idx]
UpperCamelCase__ : Optional[Any] = cva.imread(_snake_case )
if flip_type == 1:
UpperCamelCase__ : Optional[Any] = cva.flip(_snake_case , _snake_case )
for bbox in img_annos:
UpperCamelCase__ : List[Any] = 1 - bbox[1]
new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] )
elif flip_type == 0:
UpperCamelCase__ : Any = cva.flip(_snake_case , _snake_case )
for bbox in img_annos:
UpperCamelCase__ : str = 1 - bbox[2]
new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] )
new_annos_lists.append(_snake_case )
new_imgs_list.append(_snake_case )
return new_imgs_list, new_annos_lists, path_list
def _a ( SCREAMING_SNAKE_CASE : int = 32 ):
"""simple docstring"""
assert number_char > 1, "The number of character should greater than 1"
UpperCamelCase__ : str = ascii_lowercase + digits
return "".join(random.choice(_snake_case ) for _ in range(_snake_case ) )
if __name__ == "__main__":
main()
print("DONE ✅")
| 146 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
import json
import os
import subprocess
import unittest
from ast import literal_eval
import pytest
from parameterized import parameterized, parameterized_class
from . import is_sagemaker_available
if is_sagemaker_available():
from sagemaker import Session, TrainingJobAnalytics
from sagemaker.huggingface import HuggingFace
@pytest.mark.skipif(
literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , )
@pytest.mark.usefixtures("sm_env" )
@parameterized_class(
[
{
"framework": "pytorch",
"script": "run_glue_model_parallelism.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
{
"framework": "pytorch",
"script": "run_glue.py",
"model_name_or_path": "roberta-large",
"instance_type": "ml.p3dn.24xlarge",
"results": {"train_runtime": 16_00, "eval_accuracy": 0.3, "eval_loss": 1.2},
},
] )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def lowercase__ ( self ):
"""simple docstring"""
if self.framework == "pytorch":
subprocess.run(
f"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding="utf-8" , check=_UpperCAmelCase , )
assert hasattr(self , "env" )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Any = {
"enabled": True,
"processes_per_host": 8,
}
lowerCAmelCase : Any = {
"enabled": True,
"parameters": {
"microbatches": 4,
"placement_strategy": "spread",
"pipeline": "interleaved",
"optimize": "speed",
"partitions": 4,
"ddp": True,
},
}
lowerCAmelCase : Optional[int] = {"smdistributed": {"modelparallel": smp_options}, "mpi": mpi_options}
lowerCAmelCase : str = "trainer" if self.script == "run_glue.py" else "smtrainer"
# creates estimator
return HuggingFace(
entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"""{self.env.base_job_name}-{instance_count}-smp-{name_extension}""" , instance_count=_UpperCAmelCase , instance_type=self.instance_type , debugger_hook_config=_UpperCAmelCase , hyperparameters={
**self.env.hyperparameters,
"model_name_or_path": self.model_name_or_path,
"max_steps": 500,
} , metric_definitions=self.env.metric_definitions , distribution=_UpperCAmelCase , py_version="py36" , )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
TrainingJobAnalytics(_UpperCAmelCase ).export_csv(f"""{self.env.test_path}/{job_name}_metrics.csv""" )
@parameterized.expand([(1,)] )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Optional[Any] = self.create_estimator(_UpperCAmelCase )
# run training
estimator.fit()
# result dataframe
lowerCAmelCase : Optional[Any] = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe()
# extract kpis
lowerCAmelCase : int = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] )
lowerCAmelCase : List[str] = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] )
# get train time from SageMaker job, this includes starting, preprocessing, stopping
lowerCAmelCase : Union[str, Any] = (
Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999_999 )
)
# assert kpis
assert train_runtime <= self.results["train_runtime"]
assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy )
assert all(t <= self.results["eval_loss"] for t in eval_loss )
# dump tests result into json file to share in PR
with open(f"""{estimator.latest_training_job.name}.json""" , "w" ) as outfile:
json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _UpperCAmelCase )
| 108 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
import pytest
import requests
from datasets.utils.file_utils import http_head
from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline
@pytest.mark.integration
def __lowerCamelCase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ):
with pytest.raises(_snake_case ):
requests.request("GET" , "https://huggingface.co" )
with pytest.raises(requests.exceptions.ConnectTimeout ):
requests.request("GET" , "https://huggingface.co" , timeout=1.0 )
@pytest.mark.integration
def __lowerCamelCase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.CONNECTION_FAILS ):
with pytest.raises(requests.exceptions.ConnectionError ):
requests.request("GET" , "https://huggingface.co" )
def __lowerCamelCase ( ):
"""simple docstring"""
with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ):
with pytest.raises(_snake_case ):
http_head("https://huggingface.co" )
| 130 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
__lowerCamelCase : List[str] = TypeVar("""T""")
class A__ ( Generic[T] ):
def __init__( self , A_ ):
'''simple docstring'''
UpperCamelCase : List[str] = data
UpperCamelCase : Tuple = None
def __str__( self ):
'''simple docstring'''
return F"""{self.data}"""
class A__ ( Generic[T] ):
def __init__( self ):
'''simple docstring'''
UpperCamelCase : int = None
def __iter__( self ):
'''simple docstring'''
UpperCamelCase : List[Any] = self.top
while node:
yield node.data
UpperCamelCase : Tuple = node.next
def __str__( self ):
'''simple docstring'''
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self ):
'''simple docstring'''
return len(tuple(iter(self ) ) )
def __UpperCamelCase( self ):
'''simple docstring'''
return self.top is None
def __UpperCamelCase( self , A_ ):
'''simple docstring'''
UpperCamelCase : List[str] = Node(_UpperCAmelCase )
if not self.is_empty():
UpperCamelCase : Union[str, Any] = self.top
UpperCamelCase : Optional[Any] = node
def __UpperCamelCase( self ):
'''simple docstring'''
if self.is_empty():
raise IndexError("pop from empty stack" )
assert isinstance(self.top , _UpperCAmelCase )
UpperCamelCase : List[Any] = self.top
UpperCamelCase : int = self.top.next
return pop_node.data
def __UpperCamelCase( self ):
'''simple docstring'''
if self.is_empty():
raise IndexError("peek from empty stack" )
assert self.top is not None
return self.top.data
def __UpperCamelCase( self ):
'''simple docstring'''
UpperCamelCase : int = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 52 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCamelCase_ = logging.get_logger(__name__)
UpperCamelCase_ = {'vocab_file': 'sentencepiece.model'}
UpperCamelCase_ = {
'vocab_file': {
'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model',
},
}
UpperCamelCase_ = {
'google/rembert': 256,
}
class snake_case ( __lowerCAmelCase ):
a_ : Optional[Any] = VOCAB_FILES_NAMES
a_ : int = PRETRAINED_VOCAB_FILES_MAP
a_ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[UNK]" , __UpperCAmelCase="[SEP]" , __UpperCAmelCase="[PAD]" , __UpperCAmelCase="[CLS]" , __UpperCAmelCase="[MASK]" , **__UpperCAmelCase , ) ->Union[str, Any]:
super().__init__(
do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , )
a_ = do_lower_case
a_ = remove_space
a_ = keep_accents
a_ = vocab_file
a_ = spm.SentencePieceProcessor()
self.sp_model.Load(_UpperCAmelCase)
@property
def UpperCAmelCase__ ( self) ->Union[str, Any]:
return len(self.sp_model)
def UpperCAmelCase__ ( self) ->Optional[int]:
a_ = {self.convert_ids_to_tokens(_UpperCAmelCase): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def __getstate__( self) ->Any:
a_ = self.__dict__.copy()
a_ = None
return state
def __setstate__( self , __UpperCAmelCase) ->int:
a_ = d
a_ = spm.SentencePieceProcessor()
self.sp_model.Load(self.vocab_file)
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=False) ->Optional[int]:
a_ = self.sp_model.EncodeAsPieces(_UpperCAmelCase)
return pieces
def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Tuple:
return self.sp_model.PieceToId(_UpperCAmelCase)
def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[Any]:
return self.sp_model.IdToPiece(_UpperCAmelCase)
def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Optional[Any]:
a_ = self.sp_model.decode_pieces(_UpperCAmelCase)
return out_string
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->List[Any]:
a_ = [self.sep_token_id]
a_ = [self.cls_token_id]
if token_ids_a is None:
return cls + token_ids_a + sep
return cls + token_ids_a + sep + token_ids_a + sep
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False) ->str:
if already_has_special_tokens:
if token_ids_a is not None:
raise ValueError(
"You should not supply a second sequence if the provided sequence of "
"ids is already formatted with special tokens for the model.")
return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a]
if token_ids_a is not None:
return [1] + ([0] * len(_UpperCAmelCase)) + [1] + ([0] * len(_UpperCAmelCase)) + [1]
return [1] + ([0] * len(_UpperCAmelCase)) + [1]
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->Any:
a_ = [self.sep_token_id]
a_ = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep) * [0]
return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1]
def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = None) ->str:
if not os.path.isdir(_UpperCAmelCase):
logger.error("Vocabulary path ({}) should be a directory".format(_UpperCAmelCase))
return
a_ = os.path.join(
_UpperCAmelCase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(_UpperCAmelCase):
copyfile(self.vocab_file , _UpperCAmelCase)
return (out_vocab_file,)
| 243 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
import os
import time
import numpy as np
import onnxruntime as ort
_snake_case = "1"
_snake_case = "0"
_snake_case = "1"
_snake_case = ort.SessionOptions()
_snake_case = ort.GraphOptimizationLevel.ORT_DISABLE_ALL
print("Create inference session...")
_snake_case = ["TensorrtExecutionProvider", "CUDAExecutionProvider"]
_snake_case = ort.InferenceSession("model.onnx", sess_options=sess_opt, providers=execution_provider)
_snake_case = ort.RunOptions()
_snake_case = 128
_snake_case = 1
_snake_case = np.ones((batch, sequence), dtype=np.intaa)
_snake_case = np.ones((batch, sequence), dtype=np.intaa)
_snake_case = np.ones((batch, sequence), dtype=np.intaa)
print("Warm up phase...")
sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Start inference...")
_snake_case = time.time()
_snake_case = 2000
_snake_case = {}
for iter in range(max_iters):
_snake_case = sess.run(
None,
{
sess.get_inputs()[0].name: input_ids,
sess.get_inputs()[1].name: attention_mask,
sess.get_inputs()[2].name: token_type_ids,
},
run_options=run_opt,
)
print("Average Inference Time = {:.3f} ms".format((time.time() - start_time) * 1000 / max_iters))
| 26 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
from __future__ import annotations
from itertools import permutations
from random import randint
from timeit import repeat
def lowerCAmelCase_ ( ) -> tuple[list[int], int]:
"""simple docstring"""
a__ : str = [randint(-1000 , 1000) for i in range(10)]
a__ : Union[str, Any] = randint(-5000 , 5000)
return (arr, r)
_lowercase : Any =make_dataset()
def lowerCAmelCase_ ( _lowercase : list[int] , _lowercase : int) -> tuple[int, ...]:
"""simple docstring"""
for triplet in permutations(_snake_case , 3):
if sum(_snake_case) == target:
return tuple(sorted(_snake_case))
return (0, 0, 0)
def lowerCAmelCase_ ( _lowercase : list[int] , _lowercase : int) -> tuple[int, int, int]:
"""simple docstring"""
arr.sort()
a__ : str = len(_snake_case)
for i in range(n - 1):
a__ , a__ : Union[str, Any] = i + 1, n - 1
while left < right:
if arr[i] + arr[left] + arr[right] == target:
return (arr[i], arr[left], arr[right])
elif arr[i] + arr[left] + arr[right] < target:
left += 1
elif arr[i] + arr[left] + arr[right] > target:
right -= 1
return (0, 0, 0)
def lowerCAmelCase_ ( ) -> tuple[float, float]:
"""simple docstring"""
a__ : List[str] = """\nfrom __main__ import dataset, triplet_sum1, triplet_sum2\n"""
a__ : int = """\ntriplet_sum1(*dataset)\n"""
a__ : List[str] = """\ntriplet_sum2(*dataset)\n"""
a__ : Tuple = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=1_0000)
a__ : Tuple = repeat(setup=_snake_case , stmt=_snake_case , repeat=5 , number=1_0000)
return (min(_snake_case), min(_snake_case))
if __name__ == "__main__":
from doctest import testmod
testmod()
_lowercase : Dict =solution_times()
print(f'The time for naive implementation is {times[0]}.')
print(f'The time for optimized implementation is {times[1]}.')
| 170 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
'''simple docstring'''
import math
class lowerCAmelCase :
def snake_case ( self : Union[str, Any] , __lowercase : list[list[float]] , __lowercase : list[int] ):
"""simple docstring"""
__lowercase =0.0
__lowercase =0.0
for i in range(len(_UpperCAmelCase ) ):
da += math.pow((sample[i] - weights[0][i]) , 2 )
da += math.pow((sample[i] - weights[1][i]) , 2 )
return 0 if da > da else 1
return 0
def snake_case ( self : str , __lowercase : list[list[int | float]] , __lowercase : list[int] , __lowercase : int , __lowercase : float ):
"""simple docstring"""
for i in range(len(_UpperCAmelCase ) ):
weights[j][i] += alpha * (sample[i] - weights[j][i])
return weights
def __UpperCamelCase ( ):
'''simple docstring'''
__lowercase =[[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]]
# weight initialization ( n, C )
__lowercase =[[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]]
# training
__lowercase =SelfOrganizingMap()
__lowercase =3
__lowercase =0.5
for _ in range(_snake_case ):
for j in range(len(_snake_case ) ):
# training sample
__lowercase =training_samples[j]
# Compute the winning vector
__lowercase =self_organizing_map.get_winner(_snake_case, _snake_case )
# Update the winning vector
__lowercase =self_organizing_map.update(_snake_case, _snake_case, _snake_case, _snake_case )
# classify test sample
__lowercase =[0, 0, 0, 1]
__lowercase =self_organizing_map.get_winner(_snake_case, _snake_case )
# results
print(F'''Clusters that the test sample belongs to : {winner}''' )
print(F'''Weights that have been trained : {weights}''' )
# running the main() function
if __name__ == "__main__":
main()
| 141 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
import itertools
import os
import re
lowerCAmelCase_ = re.compile(R'([A-Z]+)([A-Z][a-z])')
lowerCAmelCase_ = re.compile(R'([a-z\d])([A-Z])')
lowerCAmelCase_ = re.compile(R'(?<!_)_(?!_)')
lowerCAmelCase_ = re.compile(R'(_{2,})')
lowerCAmelCase_ = R'^\w+(\.\w+)*$'
lowerCAmelCase_ = R'<>:/\|?*'
def snake_case( __magic_name__ ) -> Dict:
'''simple docstring'''
lowercase : Optional[Any] = _uppercase_uppercase_re.sub(r'''\1_\2''' , _snake_case )
lowercase : int = _lowercase_uppercase_re.sub(r'''\1_\2''' , _snake_case )
return name.lower()
def snake_case( __magic_name__ ) -> Dict:
'''simple docstring'''
lowercase : str = _single_underscore_re.split(_snake_case )
lowercase : str = [_multiple_underscores_re.split(_snake_case ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(_snake_case ) if n != '''''' )
def snake_case( __magic_name__ ) -> int:
'''simple docstring'''
if os.path.basename(_snake_case ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
return camelcase_to_snakecase(_snake_case )
def snake_case( __magic_name__ , __magic_name__ ) -> Dict:
'''simple docstring'''
if os.path.basename(_snake_case ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
if not re.match(_split_re , _snake_case ):
raise ValueError(F"""Split name should match \'{_split_re}\'\' but got \'{split}\'.""" )
return F"""{filename_prefix_for_name(_snake_case )}-{split}"""
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None ) -> Optional[Any]:
'''simple docstring'''
lowercase : Any = filename_prefix_for_split(_snake_case , _snake_case )
if filetype_suffix:
prefix += F""".{filetype_suffix}"""
lowercase : str = os.path.join(_snake_case , _snake_case )
return F"""{filepath}*"""
def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=None , __magic_name__=None ) -> List[Any]:
'''simple docstring'''
lowercase : Optional[Any] = filename_prefix_for_split(_snake_case , _snake_case )
lowercase : List[str] = os.path.join(_snake_case , _snake_case )
if shard_lengths:
lowercase : str = len(_snake_case )
lowercase : List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(_snake_case )]
if filetype_suffix:
lowercase : Tuple = [filename + F""".{filetype_suffix}""" for filename in filenames]
return filenames
else:
lowercase : Any = prefix
if filetype_suffix:
filename += F""".{filetype_suffix}"""
return [filename]
| 308 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
import argparse
import datetime
import json
import time
import warnings
from logging import getLogger
from pathlib import Path
from typing import Dict, List
import torch
from tqdm import tqdm
from transformers import AutoModelForSeqaSeqLM, AutoTokenizer
from utils import calculate_bleu, calculate_rouge, chunks, parse_numeric_n_bool_cl_kwargs, use_task_specific_params
UpperCAmelCase : List[str] = getLogger(__name__)
UpperCAmelCase : List[str] = "cuda" if torch.cuda.is_available() else "cpu"
def __lowerCamelCase ( lowerCamelCase__ : List[str] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int = 8 , lowerCamelCase__ : str = DEFAULT_DEVICE , lowerCamelCase__ : int=False , lowerCamelCase__ : List[str]="summarization" , lowerCamelCase__ : List[str]=None , **lowerCamelCase__ : str , ):
'''simple docstring'''
lowerCamelCase = Path(_snake_case ).open("""w""" , encoding="""utf-8""" )
lowerCamelCase = str(_snake_case )
lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).to(_snake_case )
if fpaa:
lowerCamelCase = model.half()
lowerCamelCase = AutoTokenizer.from_pretrained(_snake_case )
logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type.
lowerCamelCase = time.time()
# update config with task specific params
use_task_specific_params(_snake_case , _snake_case )
if prefix is None:
lowerCamelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """"""
for examples_chunk in tqdm(list(chunks(_snake_case , _snake_case ) ) ):
lowerCamelCase = [prefix + text for text in examples_chunk]
lowerCamelCase = tokenizer(_snake_case , return_tensors="""pt""" , truncation=_snake_case , padding="""longest""" ).to(_snake_case )
lowerCamelCase = model.generate(
input_ids=batch.input_ids , attention_mask=batch.attention_mask , **_snake_case , )
lowerCamelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case )
for hypothesis in dec:
fout.write(hypothesis + """\n""" )
fout.flush()
fout.close()
lowerCamelCase = int(time.time() - start_time ) # seconds
lowerCamelCase = len(_snake_case )
return {"n_obs": n_obs, "runtime": runtime, "seconds_per_sample": round(runtime / n_obs , 4 )}
def __lowerCamelCase ( ):
'''simple docstring'''
return datetime.datetime.now().strftime("""%Y-%m-%d %H:%M:%S""" )
def __lowerCamelCase ( lowerCamelCase__ : List[Any]=True ):
'''simple docstring'''
lowerCamelCase = argparse.ArgumentParser()
parser.add_argument("""model_name""" , type=_snake_case , help="""like facebook/bart-large-cnn,t5-base, etc.""" )
parser.add_argument("""input_path""" , type=_snake_case , help="""like cnn_dm/test.source""" )
parser.add_argument("""save_path""" , type=_snake_case , help="""where to save summaries""" )
parser.add_argument("""--reference_path""" , type=_snake_case , required=_snake_case , help="""like cnn_dm/test.target""" )
parser.add_argument("""--score_path""" , type=_snake_case , required=_snake_case , default="""metrics.json""" , help="""where to save metrics""" )
parser.add_argument("""--device""" , type=_snake_case , required=_snake_case , default=_snake_case , help="""cuda, cuda:1, cpu etc.""" )
parser.add_argument(
"""--prefix""" , type=_snake_case , required=_snake_case , default=_snake_case , help="""will be added to the begininng of src examples""" )
parser.add_argument("""--task""" , type=_snake_case , default="""summarization""" , help="""used for task_specific_params + metrics""" )
parser.add_argument("""--bs""" , type=_snake_case , default=8 , required=_snake_case , help="""batch size""" )
parser.add_argument(
"""--n_obs""" , type=_snake_case , default=-1 , required=_snake_case , help="""How many observations. Defaults to all.""" )
parser.add_argument("""--fp16""" , action="""store_true""" )
parser.add_argument("""--dump-args""" , action="""store_true""" , help="""print the custom hparams with the results""" )
parser.add_argument(
"""--info""" , nargs="""?""" , type=_snake_case , const=datetime_now() , help=(
"""use in conjunction w/ --dump-args to print with the results whatever other info you\'d like, e.g."""
""" lang=en-ru. If no value is passed, the current datetime string will be used."""
) , )
# Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate
lowerCamelCase , lowerCamelCase = parser.parse_known_args()
lowerCamelCase = parse_numeric_n_bool_cl_kwargs(_snake_case )
if parsed_args and verbose:
print(f'parsed the following generate kwargs: {parsed_args}' )
lowerCamelCase = [""" """ + x.rstrip() if """t5""" in args.model_name else x.rstrip() for x in open(args.input_path ).readlines()]
if args.n_obs > 0:
lowerCamelCase = examples[: args.n_obs]
Path(args.save_path ).parent.mkdir(exist_ok=_snake_case )
if args.reference_path is None and Path(args.score_path ).exists():
warnings.warn(f'score_path {args.score_path} will be overwritten unless you type ctrl-c.' )
if args.device == "cpu" and args.fpaa:
# this mix leads to RuntimeError: "threshold_cpu" not implemented for 'Half'
raise ValueError("""Can\'t mix --fp16 and --device cpu""" )
lowerCamelCase = generate_summaries_or_translations(
_snake_case , args.save_path , args.model_name , batch_size=args.bs , device=args.device , fpaa=args.fpaa , task=args.task , prefix=args.prefix , **_snake_case , )
if args.reference_path is None:
return {}
# Compute scores
lowerCamelCase = calculate_bleu if """translation""" in args.task else calculate_rouge
lowerCamelCase = [x.rstrip() for x in open(args.save_path ).readlines()]
lowerCamelCase = [x.rstrip() for x in open(args.reference_path ).readlines()][: len(_snake_case )]
lowerCamelCase = score_fn(_snake_case , _snake_case )
scores.update(_snake_case )
if args.dump_args:
scores.update(_snake_case )
if args.info:
lowerCamelCase = args.info
if verbose:
print(_snake_case )
if args.score_path is not None:
json.dump(_snake_case , open(args.score_path , """w""" ) )
return scores
if __name__ == "__main__":
# Usage for MT:
# python run_eval.py MODEL_NAME $DATA_DIR/test.source $save_dir/test_translations.txt --reference_path $DATA_DIR/test.target --score_path $save_dir/test_bleu.json --task translation $@
run_generate(verbose=True)
| 252 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
import numpy
class _SCREAMING_SNAKE_CASE :
'''simple docstring'''
def __init__(self : Dict , UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : numpy.ndarray) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
lowerCamelCase__: List[Any] =numpy.random.rand(
self.input_array.shape[1] , 4)
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
lowerCamelCase__: Union[str, Any] =numpy.random.rand(
4 , 3)
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
lowerCamelCase__: List[str] =numpy.random.rand(3 , 1)
# Real output values provided.
lowerCamelCase__: Dict =output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
lowerCamelCase__: Union[str, Any] =numpy.zeros(output_array.shape)
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Any =sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights))
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
lowerCamelCase__: Optional[Any] =sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
lowerCamelCase__: Tuple =sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return self.layer_between_second_hidden_layer_and_output
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->str:
'''simple docstring'''
lowerCamelCase__: List[str] =numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , )
lowerCamelCase__: Dict =numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , )
lowerCamelCase__: Dict =numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : numpy.ndarray , UpperCAmelCase_ : int , UpperCAmelCase_ : bool) ->List[Any]:
'''simple docstring'''
for iteration in range(1 , iterations + 1):
lowerCamelCase__: Union[str, Any] =self.feedforward()
self.back_propagation()
if give_loss:
lowerCamelCase__: str =numpy.mean(numpy.square(output - self.feedforward()))
print(F"""Iteration {iteration} Loss: {loss}""")
def SCREAMING_SNAKE_CASE_ (self : Optional[int] , UpperCAmelCase_ : numpy.ndarray) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =input_arr
lowerCamelCase__: Any =sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights))
lowerCamelCase__: str =sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ))
lowerCamelCase__: Dict =sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ))
return int(self.layer_between_second_hidden_layer_and_output > 0.6)
def lowerCAmelCase_ ( __a ) -> numpy.ndarray:
"""simple docstring"""
return 1 / (1 + numpy.exp(-value ))
def lowerCAmelCase_ ( __a ) -> numpy.ndarray:
"""simple docstring"""
return (value) * (1 - (value))
def lowerCAmelCase_ ( ) -> int:
"""simple docstring"""
lowerCamelCase__: Dict =numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
lowerCamelCase__: Union[str, Any] =numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
lowerCamelCase__: int =TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 10 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
import warnings
from typing import List, Optional, Tuple, Union
import numpy as np
import PIL
import torch
from ...models import UNetaDModel
from ...schedulers import RePaintScheduler
from ...utils import PIL_INTERPOLATION, logging, randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
__UpperCamelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name
def _a ( SCREAMING_SNAKE_CASE : Union[List, PIL.Image.Image, torch.Tensor] ):
"""simple docstring"""
warnings.warn(
'''The preprocess method is deprecated and will be removed in a future version. Please'''
''' use VaeImageProcessor.preprocess instead''' , _snake_case , )
if isinstance(_snake_case , torch.Tensor ):
return image
elif isinstance(_snake_case , PIL.Image.Image ):
UpperCamelCase__ : Optional[int] = [image]
if isinstance(image[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ : List[str] = image[0].size
UpperCamelCase__ , UpperCamelCase__ : Union[str, Any] = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8
UpperCamelCase__ : str = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image]
UpperCamelCase__ : List[Any] = np.concatenate(_snake_case , axis=0 )
UpperCamelCase__ : str = np.array(_snake_case ).astype(np.floataa ) / 255.0
UpperCamelCase__ : Dict = image.transpose(0 , 3 , 1 , 2 )
UpperCamelCase__ : int = 2.0 * image - 1.0
UpperCamelCase__ : Union[str, Any] = torch.from_numpy(_snake_case )
elif isinstance(image[0] , torch.Tensor ):
UpperCamelCase__ : Union[str, Any] = torch.cat(_snake_case , dim=0 )
return image
def _a ( SCREAMING_SNAKE_CASE : Union[List, PIL.Image.Image, torch.Tensor] ):
"""simple docstring"""
if isinstance(_snake_case , torch.Tensor ):
return mask
elif isinstance(_snake_case , PIL.Image.Image ):
UpperCamelCase__ : int = [mask]
if isinstance(mask[0] , PIL.Image.Image ):
UpperCamelCase__ , UpperCamelCase__ : str = mask[0].size
UpperCamelCase__ , UpperCamelCase__ : List[Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32
UpperCamelCase__ : List[str] = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask]
UpperCamelCase__ : Any = np.concatenate(_snake_case , axis=0 )
UpperCamelCase__ : Tuple = mask.astype(np.floataa ) / 255.0
UpperCamelCase__ : List[Any] = 0
UpperCamelCase__ : str = 1
UpperCamelCase__ : Optional[Any] = torch.from_numpy(_snake_case )
elif isinstance(mask[0] , torch.Tensor ):
UpperCamelCase__ : List[Any] = torch.cat(_snake_case , dim=0 )
return mask
class __magic_name__ ( __lowerCAmelCase):
A: UNetaDModel
A: RePaintScheduler
def __init__( self : Optional[int] , lowerCamelCase__ : str , lowerCamelCase__ : Dict ) -> Any:
'''simple docstring'''
super().__init__()
self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : List[Any] , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] , lowerCamelCase__ : Union[torch.Tensor, PIL.Image.Image] , lowerCamelCase__ : int = 250 , lowerCamelCase__ : float = 0.0 , lowerCamelCase__ : int = 10 , lowerCamelCase__ : int = 10 , lowerCamelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase__ : Optional[str] = "pil" , lowerCamelCase__ : bool = True , ) -> List[str]:
'''simple docstring'''
UpperCamelCase__ : Tuple = image
UpperCamelCase__ : Dict = _preprocess_image(_UpperCAmelCase )
UpperCamelCase__ : Dict = original_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ : Tuple = _preprocess_mask(_UpperCAmelCase )
UpperCamelCase__ : Tuple = mask_image.to(device=self.device , dtype=self.unet.dtype )
UpperCamelCase__ : Dict = original_image.shape[0]
# sample gaussian noise to begin the loop
if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) != batch_size:
raise ValueError(
F"You have passed a list of generators of length {len(_UpperCAmelCase )}, but requested an effective batch"
F" size of {batch_size}. Make sure the batch size matches the length of the generators." )
UpperCamelCase__ : Dict = original_image.shape
UpperCamelCase__ : List[Any] = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , self.device )
UpperCamelCase__ : Dict = eta
UpperCamelCase__ : List[str] = self.scheduler.timesteps[0] + 1
UpperCamelCase__ : Dict = generator[0] if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else generator
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
if t < t_last:
# predict the noise residual
UpperCamelCase__ : Union[str, Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute previous image: x_t -> x_t-1
UpperCamelCase__ : List[Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample
else:
# compute the reverse: x_t-1 -> x_t
UpperCamelCase__ : str = self.scheduler.undo_step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
UpperCamelCase__ : Optional[Any] = t
UpperCamelCase__ : Tuple = (image / 2 + 0.5).clamp(0 , 1 )
UpperCamelCase__ : int = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
UpperCamelCase__ : Any = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 146 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 0 |
"""simple docstring"""
from __future__ import annotations
import math
from collections import Counter
from string import ascii_lowercase
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
lowerCAmelCase , lowerCAmelCase : str = analyze_text(_snake_case )
lowerCAmelCase : Optional[Any] = list(" " + ascii_lowercase )
# what is our total sum of probabilities.
lowerCAmelCase : Any = sum(single_char_strings.values() )
# one length string
lowerCAmelCase : List[str] = 0
# for each alpha we go in our dict and if it is in it we calculate entropy
for ch in my_alphas:
if ch in single_char_strings:
lowerCAmelCase : Tuple = single_char_strings[ch]
lowerCAmelCase : Tuple = my_str / all_sum
my_fir_sum += prob * math.loga(_snake_case ) # entropy formula.
# print entropy
print(f"""{round(-1 * my_fir_sum ):.1f}""" )
# two len string
lowerCAmelCase : Optional[int] = sum(two_char_strings.values() )
lowerCAmelCase : int = 0
# for each alpha (two in size) calculate entropy.
for cha in my_alphas:
for cha in my_alphas:
lowerCAmelCase : Dict = cha + cha
if sequence in two_char_strings:
lowerCAmelCase : List[Any] = two_char_strings[sequence]
lowerCAmelCase : List[str] = int(_snake_case ) / all_sum
my_sec_sum += prob * math.loga(_snake_case )
# print second entropy
print(f"""{round(-1 * my_sec_sum ):.1f}""" )
# print the difference between them
print(f"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" )
def a__ ( SCREAMING_SNAKE_CASE : str ):
'''simple docstring'''
lowerCAmelCase : Optional[Any] = Counter() # type: ignore
lowerCAmelCase : List[Any] = Counter() # type: ignore
single_char_strings[text[-1]] += 1
# first case when we have space at start.
two_char_strings[" " + text[0]] += 1
for i in range(0 , len(_snake_case ) - 1 ):
single_char_strings[text[i]] += 1
two_char_strings[text[i : i + 2]] += 1
return single_char_strings, two_char_strings
def a__ ( ):
'''simple docstring'''
import doctest
doctest.testmod()
# text = (
# "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark "
# "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest "
# "jointure saw horrible. He private he on be imagine suppose. Fertile "
# "beloved evident through no service elderly is. Blind there if every no so "
# "at. Own neglected you preferred way sincerity delivered his attempted. To "
# "of message cottage windows do besides against uncivil. Delightful "
# "unreserved impossible few estimating men favourable see entreaties. She "
# "propriety immediate was improving. He or entrance humoured likewise "
# "moderate. Much nor game son say feel. Fat make met can must form into "
# "gate. Me we offending prevailed discovery. "
# )
# calculate_prob(text)
if __name__ == "__main__":
main()
| 108 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 0 |
import unicodedata
from dataclasses import dataclass
from typing import Optional, Union
import numpy as np
from transformers.data.data_collator import DataCollatorMixin
from transformers.file_utils import PaddingStrategy
from transformers.tokenization_utils_base import PreTrainedTokenizerBase
def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
if isinstance(_snake_case , _snake_case ):
lowercase__ : str = np.full((len(_snake_case ), sequence_length, 2) , _snake_case )
else:
lowercase__ : Any = np.full((len(_snake_case ), sequence_length) , _snake_case )
for i, tensor in enumerate(_snake_case ):
if padding_side == "right":
if isinstance(_snake_case , _snake_case ):
lowercase__ : Any = tensor[:sequence_length]
else:
lowercase__ : Tuple = tensor[:sequence_length]
else:
if isinstance(_snake_case , _snake_case ):
lowercase__ : int = tensor[:sequence_length]
else:
lowercase__ : Any = tensor[:sequence_length]
return out_tensor.tolist()
def __lowerCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
lowercase__ : Any = ord(_snake_case )
if (cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126):
return True
lowercase__ : List[str] = unicodedata.category(_snake_case )
if cat.startswith("P" ):
return True
return False
@dataclass
class snake_case__(__lowerCAmelCase ):
"""simple docstring"""
lowercase_ = 42
lowercase_ = True
lowercase_ = None
lowercase_ = None
lowercase_ = -1_0_0
lowercase_ = "pt"
def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : List[Any] ):
import torch
lowercase__ : str = "label" if "label" in features[0].keys() else "labels"
lowercase__ : Optional[int] = [feature[label_name] for feature in features] if label_name in features[0].keys() else None
lowercase__ : Union[str, Any] = self.tokenizer.pad(
_UpperCAmelCase , padding=self.padding , max_length=self.max_length , pad_to_multiple_of=self.pad_to_multiple_of , return_tensors="pt" if labels is None else None , )
if labels is None:
return batch
lowercase__ : Optional[int] = torch.tensor(batch["entity_ids"] ).shape[1]
lowercase__ : str = self.tokenizer.padding_side
if padding_side == "right":
lowercase__ : Tuple = [
list(_UpperCAmelCase ) + [self.label_pad_token_id] * (sequence_length - len(_UpperCAmelCase )) for label in labels
]
else:
lowercase__ : str = [
[self.label_pad_token_id] * (sequence_length - len(_UpperCAmelCase )) + list(_UpperCAmelCase ) for label in labels
]
lowercase__ : List[str] = [feature["ner_tags"] for feature in features]
lowercase__ : Any = padding_tensor(_UpperCAmelCase , -1 , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ : str = [feature["original_entity_spans"] for feature in features]
lowercase__ : Any = padding_tensor(_UpperCAmelCase , (-1, -1) , _UpperCAmelCase , _UpperCAmelCase )
lowercase__ : Dict = {k: torch.tensor(_UpperCAmelCase , dtype=torch.intaa ) for k, v in batch.items()}
return batch
| 130 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 0 |
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
__lowerCamelCase : Optional[int] = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
__lowerCamelCase : Any = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
__lowerCamelCase : Optional[int] = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1000))
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[str, float]:
UpperCamelCase : str = len([g for position, g in enumerate(_snake_case ) if g == main_target[position]] )
return (item, float(_snake_case ))
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> tuple[str, str]:
UpperCamelCase : str = random.randint(0 , len(_snake_case ) - 1 )
UpperCamelCase : Union[str, Any] = parent_a[:random_slice] + parent_a[random_slice:]
UpperCamelCase : Tuple = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str:
UpperCamelCase : Optional[Any] = list(_snake_case )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
UpperCamelCase : int = random.choice(_snake_case )
return "".join(_snake_case )
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) -> list[str]:
UpperCamelCase : Any = []
# Generate more children proportionally to the fitness score.
UpperCamelCase : Optional[Any] = int(parent_a[1] * 100 ) + 1
UpperCamelCase : List[str] = 10 if child_n >= 10 else child_n
for _ in range(_snake_case ):
UpperCamelCase : Union[str, Any] = population_score[random.randint(0 , _snake_case )][0]
UpperCamelCase , UpperCamelCase : int = crossover(parent_a[0] , _snake_case )
# Append new string to the population list.
pop.append(mutate(_snake_case , _snake_case ) )
pop.append(mutate(_snake_case , _snake_case ) )
return pop
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = True ) -> tuple[int, int, str]:
if N_POPULATION < N_SELECTED:
UpperCamelCase : Dict = F"""{N_POPULATION} must be bigger than {N_SELECTED}"""
raise ValueError(_snake_case )
# Verify that the target contains no genes besides the ones inside genes variable.
UpperCamelCase : Optional[Any] = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
UpperCamelCase : List[Any] = F"""{not_in_genes_list} is not in genes list, evolution cannot converge"""
raise ValueError(_snake_case )
# Generate random starting population.
UpperCamelCase : List[str] = []
for _ in range(_snake_case ):
population.append("".join([random.choice(_snake_case ) for i in range(len(_snake_case ) )] ) )
# Just some logs to know what the algorithms is doing.
UpperCamelCase , UpperCamelCase : Optional[Any] = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_snake_case )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
UpperCamelCase : Optional[Any] = [evaluate(_snake_case , _snake_case ) for item in population]
# Check if there is a matching evolution.
UpperCamelCase : Dict = sorted(_snake_case , key=lambda _lowerCAmelCase : x[1] , reverse=_snake_case )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F"""\nGeneration: {generation}"""
F"""\nTotal Population:{total_population}"""
F"""\nBest score: {population_score[0][1]}"""
F"""\nBest string: {population_score[0][0]}""" )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
UpperCamelCase : Optional[Any] = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_snake_case )
# Normalize population score to be between 0 and 1.
UpperCamelCase : Dict = [
(item, score / len(_snake_case )) for item, score in population_score
]
# This is selection
for i in range(_snake_case ):
population.extend(select(population_score[int(_snake_case )] , _snake_case , _snake_case ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_snake_case ) > N_POPULATION:
break
if __name__ == "__main__":
__lowerCamelCase : List[Any] = (
"""This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!"""
)
__lowerCamelCase : List[Any] = list(
""" ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm"""
"""nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\"""
)
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = basic(target_str, genes_list)
print(
f"""\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}"""
)
| 52 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
def UpperCamelCase ( UpperCAmelCase = 1_000 ) ->int:
"""simple docstring"""
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 243 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 0 |
from collections.abc import Sequence
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
return sum(c * (x**i) for i, c in enumerate(_snake_case ) )
def lowerCAmelCase_ ( snake_case_,snake_case_ ):
_A : Any = 0.0
for coeff in reversed(_snake_case ):
_A : Any = result * x + coeff
return result
if __name__ == "__main__":
_snake_case = (0.0, 0.0, 5.0, 9.3, 7.0)
_snake_case = 10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 26 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
import os
import sys
import unittest
_lowercase : str =os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import get_test_info # noqa: E402
from get_test_info import ( # noqa: E402
get_model_to_test_mapping,
get_model_to_tester_mapping,
get_test_to_tester_mapping,
)
_lowercase : Tuple =os.path.join("tests", "models", "bert", "test_modeling_bert.py")
_lowercase : Tuple =os.path.join("tests", "models", "blip", "test_modeling_blip.py")
class snake_case__ (unittest.TestCase ):
"""simple docstring"""
def SCREAMING_SNAKE_CASE__( self ) -> str:
"""simple docstring"""
a__ : str = get_test_to_tester_mapping(_UpperCAmelCase )
a__ : Dict = get_test_to_tester_mapping(_UpperCAmelCase )
a__ : List[str] = {"""BertModelTest""": """BertModelTester"""}
a__ : Union[str, Any] = {
"""BlipModelTest""": """BlipModelTester""",
"""BlipTextImageModelTest""": """BlipTextImageModelsModelTester""",
"""BlipTextModelTest""": """BlipTextModelTester""",
"""BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""",
"""BlipVQAModelTest""": """BlipVQAModelTester""",
"""BlipVisionModelTest""": """BlipVisionModelTester""",
}
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self ) -> Dict:
"""simple docstring"""
a__ : Optional[int] = get_model_to_test_mapping(_UpperCAmelCase )
a__ : List[Any] = get_model_to_test_mapping(_UpperCAmelCase )
a__ : Optional[Any] = {
"""BertForMaskedLM""": ["""BertModelTest"""],
"""BertForMultipleChoice""": ["""BertModelTest"""],
"""BertForNextSentencePrediction""": ["""BertModelTest"""],
"""BertForPreTraining""": ["""BertModelTest"""],
"""BertForQuestionAnswering""": ["""BertModelTest"""],
"""BertForSequenceClassification""": ["""BertModelTest"""],
"""BertForTokenClassification""": ["""BertModelTest"""],
"""BertLMHeadModel""": ["""BertModelTest"""],
"""BertModel""": ["""BertModelTest"""],
}
a__ : List[str] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTest"""],
"""BlipModel""": ["""BlipModelTest"""],
"""BlipTextModel""": ["""BlipTextModelTest"""],
"""BlipVisionModel""": ["""BlipVisionModelTest"""],
}
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE__( self ) -> Tuple:
"""simple docstring"""
a__ : List[str] = get_model_to_tester_mapping(_UpperCAmelCase )
a__ : List[Any] = get_model_to_tester_mapping(_UpperCAmelCase )
a__ : Any = {
"""BertForMaskedLM""": ["""BertModelTester"""],
"""BertForMultipleChoice""": ["""BertModelTester"""],
"""BertForNextSentencePrediction""": ["""BertModelTester"""],
"""BertForPreTraining""": ["""BertModelTester"""],
"""BertForQuestionAnswering""": ["""BertModelTester"""],
"""BertForSequenceClassification""": ["""BertModelTester"""],
"""BertForTokenClassification""": ["""BertModelTester"""],
"""BertLMHeadModel""": ["""BertModelTester"""],
"""BertModel""": ["""BertModelTester"""],
}
a__ : List[Any] = {
"""BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""],
"""BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""],
"""BlipForQuestionAnswering""": ["""BlipVQAModelTester"""],
"""BlipModel""": ["""BlipModelTester"""],
"""BlipTextModel""": ["""BlipTextModelTester"""],
"""BlipVisionModel""": ["""BlipVisionModelTester"""],
}
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
self.assertEqual(get_test_info.to_json(_UpperCAmelCase ) , _UpperCAmelCase )
| 170 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
from math import ceil, sqrt
def A ( snake_case :int = 1_0_0_0_0_0_0 ) -> int:
__UpperCamelCase = 0
for outer_width in range(3 , (limit // 4) + 2 ):
if outer_width**2 > limit:
__UpperCamelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 )
else:
__UpperCamelCase = 1
if (outer_width - hole_width_lower_bound) % 2:
hole_width_lower_bound += 1
answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1
return answer
if __name__ == "__main__":
print(f'''{solution() = }''')
| 316 |
"""simple docstring"""
def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int:
__UpperCamelCase = range(1 , snake_case )
__UpperCamelCase = range(1 , snake_case )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 316 | 1 |
"""simple docstring"""
import torch
from transformers import AutoModel
class __lowerCAmelCase ( torch.nn.Module ):
def __init__( self , __UpperCAmelCase="sayef/fsner-bert-base-uncased" ):
'''simple docstring'''
super(__UpperCAmelCase , self ).__init__()
__UpperCamelCase = AutoModel.from_pretrained(__UpperCAmelCase , return_dict=__UpperCAmelCase )
__UpperCamelCase = torch.nn.CosineSimilarity(3 , 1E-08 )
__UpperCamelCase = torch.nn.Softmax(dim=1 )
def UpperCAmelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
return self.bert(**__UpperCAmelCase ).last_hidden_state
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return token_embeddings.sum(2 , keepdim=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=1 ):
'''simple docstring'''
return self.softmax(T * self.cos(__UpperCAmelCase , __UpperCAmelCase ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = W_supports['sizes'].tolist()
__UpperCamelCase = W_supports['start_token_id'].item()
__UpperCamelCase = W_supports['end_token_id'].item()
del W_supports["sizes"]
del W_supports["start_token_id"]
del W_supports["end_token_id"]
__UpperCamelCase = self.BERT(**__UpperCAmelCase )
__UpperCamelCase = self.BERT(**__UpperCAmelCase )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = W_supports['input_ids'] == start_token_id
__UpperCamelCase = W_supports['input_ids'] == end_token_id
for i, size in enumerate(__UpperCAmelCase ):
if i == 0:
__UpperCamelCase = 0
else:
__UpperCamelCase = support_sizes[i - 1]
__UpperCamelCase = S[s : s + size][start_token_masks[s : s + size]]
__UpperCamelCase = S[s : s + size][end_token_masks[s : s + size]]
__UpperCamelCase = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 )
__UpperCamelCase = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 )
if p_starts is not None:
__UpperCamelCase = torch.vstack((p_starts, p_start) )
__UpperCamelCase = torch.vstack((p_ends, p_end) )
else:
__UpperCamelCase = p_start
__UpperCamelCase = p_end
return p_starts, p_ends
| 316 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
UpperCamelCase : Tuple = "|".join(sys.argv[1:])
UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 316 | 1 |
"""simple docstring"""
import functools
from typing import Any
def A ( snake_case :str , snake_case :list[str] ) -> bool:
# Validation
if not isinstance(snake_case , snake_case ) or len(snake_case ) == 0:
raise ValueError('the string should be not empty string' )
if not isinstance(snake_case , snake_case ) or not all(
isinstance(snake_case , snake_case ) and len(snake_case ) > 0 for item in words ):
raise ValueError('the words should be a list of non-empty strings' )
# Build trie
__UpperCamelCase = {}
__UpperCamelCase = 'WORD_KEEPER'
for word in words:
__UpperCamelCase = trie
for c in word:
if c not in trie_node:
__UpperCamelCase = {}
__UpperCamelCase = trie_node[c]
__UpperCamelCase = True
__UpperCamelCase = len(snake_case )
# Dynamic programming method
@functools.cache
def is_breakable(snake_case :int ) -> bool:
if index == len_string:
return True
__UpperCamelCase = trie
for i in range(snake_case , snake_case ):
__UpperCamelCase = trie_node.get(string[i] , snake_case )
if trie_node is None:
return False
if trie_node.get(snake_case , snake_case ) and is_breakable(i + 1 ):
return True
return False
return is_breakable(0 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCamelCase : Any = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_pad
__UpperCamelCase = pad_size
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ):
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase )
__UpperCamelCase = (old_height // size + 1) * size - old_height
__UpperCamelCase = (old_width // size + 1) * size - old_width
return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_pad if do_pad is not None else self.do_pad
__UpperCamelCase = pad_size if pad_size is not None else self.pad_size
__UpperCamelCase = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_pad:
__UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import enum
import warnings
from ..tokenization_utils import TruncationStrategy
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_tf_available():
import tensorflow as tf
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
UpperCamelCase : Optional[int] = logging.get_logger(__name__)
class __lowerCAmelCase ( enum.Enum ):
lowercase = 0
lowercase = 1
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "generated"
def __init__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
super().__init__(*__UpperCAmelCase , **__UpperCAmelCase )
self.check_model_type(
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
if self.framework == 'tf'
else MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING )
def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = {}
if truncation is not None:
__UpperCamelCase = truncation
__UpperCamelCase = generate_kwargs
__UpperCamelCase = {}
if return_tensors is not None and return_type is None:
__UpperCamelCase = ReturnType.TENSORS if return_tensors else ReturnType.TEXT
if return_type is not None:
__UpperCamelCase = return_type
if clean_up_tokenization_spaces is not None:
__UpperCamelCase = clean_up_tokenization_spaces
if stop_sequence is not None:
__UpperCamelCase = self.tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase )
if len(__UpperCAmelCase ) > 1:
warnings.warn(
'Stopping on a multiple token sequence is not yet supported on transformers. The first token of'
' the stop sequence will be used as the stop sequence string in the interim.' )
__UpperCamelCase = stop_sequence_ids[0]
return preprocess_params, forward_params, postprocess_params
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return True
def UpperCAmelCase ( self , *__UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.model.config.prefix if self.model.config.prefix is not None else ''
if isinstance(args[0] , __UpperCAmelCase ):
if self.tokenizer.pad_token_id is None:
raise ValueError('Please make sure that the tokenizer has a pad_token_id when using a batch input' )
__UpperCamelCase = ([prefix + arg for arg in args[0]],)
__UpperCamelCase = True
elif isinstance(args[0] , __UpperCAmelCase ):
__UpperCamelCase = (prefix + args[0],)
__UpperCamelCase = False
else:
raise ValueError(
F' `args[0]`: {args[0]} have the wrong format. The should be either of type `str` or type `list`' )
__UpperCamelCase = self.tokenizer(*__UpperCAmelCase , padding=__UpperCAmelCase , truncation=__UpperCAmelCase , return_tensors=self.framework )
# This is produced by tokenizers but is an invalid generate kwargs
if "token_type_ids" in inputs:
del inputs["token_type_ids"]
return inputs
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
if (
isinstance(args[0] , __UpperCAmelCase )
and all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for el in args[0] )
and all(len(__UpperCAmelCase ) == 1 for res in result )
):
return [res[0] for res in result]
return result
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._parse_and_tokenize(__UpperCAmelCase , truncation=__UpperCAmelCase , **__UpperCAmelCase )
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
if self.framework == "pt":
__UpperCamelCase , __UpperCamelCase = model_inputs['input_ids'].shape
elif self.framework == "tf":
__UpperCamelCase , __UpperCamelCase = tf.shape(model_inputs['input_ids'] ).numpy()
__UpperCamelCase = generate_kwargs.get('min_length' , self.model.config.min_length )
__UpperCamelCase = generate_kwargs.get('max_length' , self.model.config.max_length )
self.check_inputs(__UpperCAmelCase , generate_kwargs['min_length'] , generate_kwargs['max_length'] )
__UpperCamelCase = self.model.generate(**__UpperCAmelCase , **__UpperCAmelCase )
__UpperCamelCase = output_ids.shape[0]
if self.framework == "pt":
__UpperCamelCase = output_ids.reshape(__UpperCAmelCase , out_b // in_b , *output_ids.shape[1:] )
elif self.framework == "tf":
__UpperCamelCase = tf.reshape(__UpperCAmelCase , (in_b, out_b // in_b, *output_ids.shape[1:]) )
return {"output_ids": output_ids}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=ReturnType.TEXT , __UpperCAmelCase=False ):
'''simple docstring'''
__UpperCamelCase = []
for output_ids in model_outputs["output_ids"][0]:
if return_type == ReturnType.TENSORS:
__UpperCamelCase = {F'{self.return_name}_token_ids': output_ids}
elif return_type == ReturnType.TEXT:
__UpperCamelCase = {
F'{self.return_name}_text': self.tokenizer.decode(
__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase , clean_up_tokenization_spaces=__UpperCAmelCase , )
}
records.append(__UpperCAmelCase )
return records
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "summary"
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if max_length < min_length:
logger.warning(F'Your min_length={min_length} must be inferior than your max_length={max_length}.' )
if input_length < max_length:
logger.warning(
F'Your max_length is set to {max_length}, but your input_length is only {input_length}. Since this is '
'a summarization task, where outputs shorter than the input are typically wanted, you might '
F'consider decreasing max_length manually, e.g. summarizer(\'...\', max_length={input_length//2})' )
@add_end_docstrings(__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "translation"
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if input_length > 0.9 * max_length:
logger.warning(
F'Your input_length: {input_length} is bigger than 0.9 * max_length: {max_length}. You might consider '
'increasing your max_length manually, e.g. translator(\'...\', max_length=400)' )
return True
def UpperCAmelCase ( self , *__UpperCAmelCase , __UpperCAmelCase=TruncationStrategy.DO_NOT_TRUNCATE , __UpperCAmelCase=None , __UpperCAmelCase=None ):
'''simple docstring'''
if getattr(self.tokenizer , '_build_translation_inputs' , __UpperCAmelCase ):
return self.tokenizer._build_translation_inputs(
*__UpperCAmelCase , return_tensors=self.framework , truncation=__UpperCAmelCase , src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase )
else:
return super()._parse_and_tokenize(*__UpperCAmelCase , truncation=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = super()._sanitize_parameters(**__UpperCAmelCase )
if src_lang is not None:
__UpperCamelCase = src_lang
if tgt_lang is not None:
__UpperCamelCase = tgt_lang
if src_lang is None and tgt_lang is None:
# Backward compatibility, direct arguments use is preferred.
__UpperCamelCase = kwargs.get('task' , self.task )
__UpperCamelCase = task.split('_' )
if task and len(__UpperCAmelCase ) == 4:
# translation, XX, to YY
__UpperCamelCase = items[1]
__UpperCamelCase = items[3]
return preprocess_params, forward_params, postprocess_params
def __call__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return super().__call__(*__UpperCAmelCase , **__UpperCAmelCase )
| 316 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 13
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = 2
__UpperCamelCase = 99
__UpperCamelCase = 0
__UpperCamelCase = 32
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 512
__UpperCamelCase = 16
__UpperCamelCase = 2
__UpperCamelCase = 0.0_2
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = 'last'
__UpperCamelCase = True
__UpperCamelCase = None
__UpperCamelCase = 0
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__UpperCamelCase = None
if self.use_input_lengths:
__UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'langs': token_type_ids,
'lengths': input_lengths,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' )
__UpperCamelCase = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__UpperCamelCase = model(__UpperCAmelCase )[0]
__UpperCamelCase = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __UpperCAmelCase )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[
[
[-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8],
[-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9],
[-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 316 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = (UniPCMultistepScheduler,)
lowercase = (("num_inference_steps", 25),)
def UpperCAmelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = {
'num_train_timesteps': 1000,
'beta_start': 0.0_0_0_1,
'beta_end': 0.0_2,
'beta_schedule': 'linear',
'solver_order': 2,
'solver_type': 'bh2',
}
config.update(**__UpperCAmelCase )
return config
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
__UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
__UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase )
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
__UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCamelCase , __UpperCamelCase = sample, sample
for t in range(__UpperCAmelCase , time_step + scheduler.config.solver_order + 1 ):
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
__UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
__UpperCamelCase = dummy_past_residuals[: new_scheduler.config.solver_order]
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self , __UpperCAmelCase=None , **__UpperCAmelCase ):
'''simple docstring'''
if scheduler is None:
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = 10
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
return sample
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__UpperCAmelCase , 'set_timesteps' ):
scheduler.set_timesteps(__UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , 'set_timesteps' ):
__UpperCamelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
__UpperCamelCase = dummy_past_residuals[: scheduler.config.solver_order]
__UpperCamelCase = scheduler.timesteps[5]
__UpperCamelCase = scheduler.timesteps[6]
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UniPCMultistepScheduler(**self.get_scheduler_config() )
__UpperCamelCase = self.full_loop(scheduler=__UpperCAmelCase )
__UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
__UpperCamelCase = DPMSolverSinglestepScheduler.from_config(scheduler.config )
__UpperCamelCase = DEISMultistepScheduler.from_config(scheduler.config )
__UpperCamelCase = DPMSolverMultistepScheduler.from_config(scheduler.config )
__UpperCamelCase = UniPCMultistepScheduler.from_config(scheduler.config )
__UpperCamelCase = self.full_loop(scheduler=__UpperCAmelCase )
__UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
for timesteps in [25, 50, 100, 999, 1000]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.check_over_configs(thresholding=__UpperCAmelCase )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=__UpperCAmelCase , prediction_type=__UpperCAmelCase , sample_max_value=__UpperCAmelCase , solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , )
def UpperCAmelCase ( self ):
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , )
__UpperCamelCase = self.full_loop(
solver_order=__UpperCAmelCase , solver_type=__UpperCAmelCase , prediction_type=__UpperCAmelCase , )
assert not torch.isnan(__UpperCAmelCase ).any(), "Samples have nan numbers"
def UpperCAmelCase ( self ):
'''simple docstring'''
self.check_over_configs(lower_order_final=__UpperCAmelCase )
self.check_over_configs(lower_order_final=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1000]:
self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=0 )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.full_loop()
__UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.full_loop(prediction_type='v_prediction' )
__UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(thresholding=__UpperCAmelCase , dynamic_thresholding_ratio=0 )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = 10
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter.half()
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
assert sample.dtype == torch.floataa
def UpperCAmelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 316 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str:
__UpperCamelCase = s.rsplit(snake_case , snake_case )
return new.join(snake_case )
def A ( snake_case :List[Any] ) -> int:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def A ( snake_case :str ) -> Union[str, Any]:
__UpperCamelCase = {}
__UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
__UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
__UpperCamelCase = key.replace('res_path.' , 'res_path.path.' )
if key.endswith('.w' ):
__UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 )
if key.endswith('.b' ):
__UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 )
__UpperCamelCase = value.float()
return upgrade
@torch.no_grad()
def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int:
from dall_e import Encoder
__UpperCamelCase = Encoder()
if os.path.exists(snake_case ):
__UpperCamelCase = torch.load(snake_case )
else:
__UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = ckpt.state_dict()
encoder.load_state_dict(snake_case )
if config_path is not None:
__UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case )
else:
__UpperCamelCase = FlavaImageCodebookConfig()
__UpperCamelCase = FlavaImageCodebook(snake_case ).eval()
__UpperCamelCase = encoder.state_dict()
__UpperCamelCase = upgrade_state_dict(snake_case )
hf_model.load_state_dict(snake_case )
__UpperCamelCase = hf_model.state_dict()
__UpperCamelCase = count_parameters(snake_case )
__UpperCamelCase = count_parameters(snake_case )
assert torch.allclose(snake_case , snake_case , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(snake_case )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCamelCase : int = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 316 | 1 |
"""simple docstring"""
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = len(__UpperCAmelCase )
__UpperCamelCase = [0] * len_array
if len_array > 0:
__UpperCamelCase = array[0]
for i in range(1 , __UpperCAmelCase ):
__UpperCamelCase = self.prefix_sum[i - 1] + array[i]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if start == 0:
return self.prefix_sum[end]
return self.prefix_sum[end] - self.prefix_sum[start - 1]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = {0}
for sum_item in self.prefix_sum:
if sum_item - target_sum in sums:
return True
sums.add(__UpperCAmelCase )
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
UpperCamelCase : str = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."
} , )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = v.to_dict()
return d
| 316 | 1 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : List[Any] = logging.get_logger(__name__)
def A ( snake_case :List[Any] , snake_case :int , snake_case :Dict , snake_case :Optional[Any] ) -> Tuple:
__UpperCamelCase = original_name.split('.' )[0]
__UpperCamelCase = key.split('.' )
__UpperCamelCase = int(key_list[key_list.index(snake_case ) - 2] )
__UpperCamelCase = int(key_list[key_list.index(snake_case ) - 1] )
__UpperCamelCase = orig_block_num - offset
__UpperCamelCase = key.replace(f'{orig_block_num}.{layer_num}.{original_name}' , f'block.{new_block_num}.{layer_num}.{new_name}' )
return key
def A ( snake_case :Optional[int] ) -> List[Any]:
__UpperCamelCase = OrderedDict()
__UpperCamelCase , __UpperCamelCase = 0, 0
for key, value in state_dict.items():
if key.startswith('network' ):
__UpperCamelCase = key.replace('network' , 'poolformer.encoder' )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith('bias' ) and "patch_embed" not in key:
patch_emb_offset += 1
__UpperCamelCase = key[: key.find('proj' )]
__UpperCamelCase = key.replace(snake_case , f'patch_embeddings.{total_embed_found}.' )
__UpperCamelCase = key.replace('proj' , 'projection' )
if key.endswith('bias' ):
total_embed_found += 1
if "patch_embeddings" in key:
__UpperCamelCase = 'poolformer.encoder.' + key
if "mlp.fc1" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'mlp.fc1' , 'output.conv1' )
if "mlp.fc2" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'mlp.fc2' , 'output.conv2' )
if "norm1" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'norm1' , 'before_norm' )
if "norm2" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'norm2' , 'after_norm' )
if "layer_scale_1" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'layer_scale_1' , 'layer_scale_1' )
if "layer_scale_2" in key:
__UpperCamelCase = replace_key_with_offset(snake_case , snake_case , 'layer_scale_2' , 'layer_scale_2' )
if "head" in key:
__UpperCamelCase = key.replace('head' , 'classifier' )
__UpperCamelCase = value
return new_state_dict
def A ( ) -> str:
__UpperCamelCase = 'http://images.cocodataset.org/val2017/000000039769.jpg'
__UpperCamelCase = Image.open(requests.get(snake_case , stream=snake_case ).raw )
return image
@torch.no_grad()
def A ( snake_case :int , snake_case :str , snake_case :str ) -> int:
__UpperCamelCase = PoolFormerConfig()
# set attributes based on model_name
__UpperCamelCase = 'huggingface/label-files'
__UpperCamelCase = model_name[-3:]
__UpperCamelCase = 1_0_0_0
__UpperCamelCase = 'imagenet-1k-id2label.json'
__UpperCamelCase = (1, 1_0_0_0)
# set config attributes
__UpperCamelCase = json.load(open(hf_hub_download(snake_case , snake_case , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(snake_case ): v for k, v in idalabel.items()}
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
__UpperCamelCase = [2, 2, 6, 2]
__UpperCamelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__UpperCamelCase = 4.0
__UpperCamelCase = 0.9
elif size == "s24":
__UpperCamelCase = [4, 4, 1_2, 4]
__UpperCamelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__UpperCamelCase = 4.0
__UpperCamelCase = 0.9
elif size == "s36":
__UpperCamelCase = [6, 6, 1_8, 6]
__UpperCamelCase = [6_4, 1_2_8, 3_2_0, 5_1_2]
__UpperCamelCase = 4.0
__UpperCamelCase = 1e-6
__UpperCamelCase = 0.9
elif size == "m36":
__UpperCamelCase = [6, 6, 1_8, 6]
__UpperCamelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
__UpperCamelCase = 4.0
__UpperCamelCase = 1e-6
__UpperCamelCase = 0.95
elif size == "m48":
__UpperCamelCase = [8, 8, 2_4, 8]
__UpperCamelCase = [9_6, 1_9_2, 3_8_4, 7_6_8]
__UpperCamelCase = 4.0
__UpperCamelCase = 1e-6
__UpperCamelCase = 0.95
else:
raise ValueError(f'Size {size} not supported' )
# load image processor
__UpperCamelCase = PoolFormerImageProcessor(crop_pct=snake_case )
# Prepare image
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=snake_case , return_tensors='pt' ).pixel_values
logger.info(f'Converting model {model_name}...' )
# load original state dict
__UpperCamelCase = torch.load(snake_case , map_location=torch.device('cpu' ) )
# rename keys
__UpperCamelCase = rename_keys(snake_case )
# create HuggingFace model and load state dict
__UpperCamelCase = PoolFormerForImageClassification(snake_case )
model.load_state_dict(snake_case )
model.eval()
# Define image processor
__UpperCamelCase = PoolFormerImageProcessor(crop_pct=snake_case )
__UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' ).pixel_values
# forward pass
__UpperCamelCase = model(snake_case )
__UpperCamelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
__UpperCamelCase = torch.tensor([-0.3_045, -0.6_758, -0.4_869] )
elif size == "s24":
__UpperCamelCase = torch.tensor([0.4_402, -0.1_374, -0.8_045] )
elif size == "s36":
__UpperCamelCase = torch.tensor([-0.6_080, -0.5_133, -0.5_898] )
elif size == "m36":
__UpperCamelCase = torch.tensor([0.3_952, 0.2_263, -1.2_668] )
elif size == "m48":
__UpperCamelCase = torch.tensor([0.1_167, -0.0_656, -0.3_423] )
else:
raise ValueError(f'Size {size} not supported' )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , snake_case , atol=1e-2 )
# finally, save model and image processor
logger.info(f'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' )
Path(snake_case ).mkdir(exist_ok=snake_case )
model.save_pretrained(snake_case )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(snake_case )
if __name__ == "__main__":
UpperCamelCase : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="poolformer_s12",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
UpperCamelCase : Tuple = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 316 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
UpperCamelCase : List[str] = TypeVar("KEY")
UpperCamelCase : List[str] = TypeVar("VAL")
@dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( Generic[KEY, VAL] ):
lowercase = 42
lowercase = 42
class __lowerCAmelCase ( _Item ):
def __init__( self ):
'''simple docstring'''
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __bool__( self ):
'''simple docstring'''
return False
UpperCamelCase : Any = _DeletedItem()
class __lowerCAmelCase ( MutableMapping[KEY, VAL] ):
def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ):
'''simple docstring'''
__UpperCamelCase = initial_block_size
__UpperCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__UpperCamelCase = capacity_factor
__UpperCamelCase = 0
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return hash(__UpperCAmelCase ) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return (ind + 1) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets[ind]
if not stored:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
return True
else:
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
if len(self._buckets ) <= self._initial_block_size:
return False
__UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets
__UpperCamelCase = [None] * new_size
__UpperCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) * 2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) // 2 )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._get_bucket_index(__UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
__UpperCamelCase = self._get_next_ind(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
break
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(__UpperCAmelCase , __UpperCAmelCase )
def __delitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
raise KeyError(__UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
__UpperCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCAmelCase )
def __len__( self ):
'''simple docstring'''
return self._len
def __iter__( self ):
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self ):
'''simple docstring'''
__UpperCamelCase = ' ,'.join(
F'{item.key}: {item.val}' for item in self._buckets if item )
return F'HashMap({val_string})'
| 316 | 1 |
"""simple docstring"""
import argparse
import pathlib
import fairseq
import torch
from fairseq.models.roberta import RobertaModel as FairseqRobertaModel
from fairseq.modules import TransformerSentenceEncoderLayer
from packaging import version
from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification
from transformers.models.bert.modeling_bert import (
BertIntermediate,
BertLayer,
BertOutput,
BertSelfAttention,
BertSelfOutput,
)
from transformers.models.roberta.modeling_roberta import RobertaAttention
from transformers.utils import logging
if version.parse(fairseq.__version__) < version.parse("1.0.0a"):
raise Exception("requires fairseq >= 1.0.0a")
logging.set_verbosity_info()
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = "Hello world! cécé herlolip"
def A ( snake_case :str , snake_case :str , snake_case :bool ) -> Any:
__UpperCamelCase = FairseqRobertaModel.from_pretrained(snake_case )
roberta.eval() # disable dropout
__UpperCamelCase = roberta.model.encoder.sentence_encoder
__UpperCamelCase = XLMRobertaConfig(
vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_1_4 , type_vocab_size=1 , layer_norm_eps=1e-5 , )
if classification_head:
__UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight.shape[0]
print('Our RoBERTa config:' , snake_case )
__UpperCamelCase = XLMRobertaXLForSequenceClassification(snake_case ) if classification_head else XLMRobertaXLForMaskedLM(snake_case )
model.eval()
# Now let's copy all the weights.
# Embeddings
__UpperCamelCase = roberta_sent_encoder.embed_tokens.weight
__UpperCamelCase = roberta_sent_encoder.embed_positions.weight
__UpperCamelCase = torch.zeros_like(
model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them.
__UpperCamelCase = roberta_sent_encoder.layer_norm.weight
__UpperCamelCase = roberta_sent_encoder.layer_norm.bias
for i in range(config.num_hidden_layers ):
# Encoder: start of layer
__UpperCamelCase = model.roberta.encoder.layer[i]
__UpperCamelCase = roberta_sent_encoder.layers[i]
__UpperCamelCase = layer.attention
__UpperCamelCase = roberta_layer.self_attn_layer_norm.weight
__UpperCamelCase = roberta_layer.self_attn_layer_norm.bias
# self attention
__UpperCamelCase = layer.attention.self
assert (
roberta_layer.self_attn.k_proj.weight.data.shape
== roberta_layer.self_attn.q_proj.weight.data.shape
== roberta_layer.self_attn.v_proj.weight.data.shape
== torch.Size((config.hidden_size, config.hidden_size) )
)
__UpperCamelCase = roberta_layer.self_attn.q_proj.weight
__UpperCamelCase = roberta_layer.self_attn.q_proj.bias
__UpperCamelCase = roberta_layer.self_attn.k_proj.weight
__UpperCamelCase = roberta_layer.self_attn.k_proj.bias
__UpperCamelCase = roberta_layer.self_attn.v_proj.weight
__UpperCamelCase = roberta_layer.self_attn.v_proj.bias
# self-attention output
__UpperCamelCase = layer.attention.output
assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape
__UpperCamelCase = roberta_layer.self_attn.out_proj.weight
__UpperCamelCase = roberta_layer.self_attn.out_proj.bias
# this one is final layer norm
__UpperCamelCase = roberta_layer.final_layer_norm.weight
__UpperCamelCase = roberta_layer.final_layer_norm.bias
# intermediate
__UpperCamelCase = layer.intermediate
assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape
__UpperCamelCase = roberta_layer.fca.weight
__UpperCamelCase = roberta_layer.fca.bias
# output
__UpperCamelCase = layer.output
assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape
__UpperCamelCase = roberta_layer.fca.weight
__UpperCamelCase = roberta_layer.fca.bias
# end of layer
if classification_head:
__UpperCamelCase = roberta.model.classification_heads['mnli'].dense.weight
__UpperCamelCase = roberta.model.classification_heads['mnli'].dense.bias
__UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.weight
__UpperCamelCase = roberta.model.classification_heads['mnli'].out_proj.bias
else:
# LM Head
__UpperCamelCase = roberta.model.encoder.lm_head.dense.weight
__UpperCamelCase = roberta.model.encoder.lm_head.dense.bias
__UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.weight
__UpperCamelCase = roberta.model.encoder.lm_head.layer_norm.bias
__UpperCamelCase = roberta.model.encoder.lm_head.weight
__UpperCamelCase = roberta.model.encoder.lm_head.bias
# Let's check that we get the same results.
__UpperCamelCase = roberta.encode(snake_case ).unsqueeze(0 ) # batch of size 1
__UpperCamelCase = model(snake_case )[0]
if classification_head:
__UpperCamelCase = roberta.model.classification_heads['mnli'](roberta.extract_features(snake_case ) )
else:
__UpperCamelCase = roberta.model(snake_case )[0]
print(our_output.shape , their_output.shape )
__UpperCamelCase = torch.max(torch.abs(our_output - their_output ) ).item()
print(f'max_absolute_diff = {max_absolute_diff}' ) # ~ 1e-7
__UpperCamelCase = torch.allclose(snake_case , snake_case , atol=1e-3 )
print('Do both models output the same tensors?' , '🔥' if success else '💩' )
if not success:
raise Exception('Something went wRoNg' )
pathlib.Path(snake_case ).mkdir(parents=snake_case , exist_ok=snake_case )
print(f'Saving model to {pytorch_dump_folder_path}' )
model.save_pretrained(snake_case )
if __name__ == "__main__":
UpperCamelCase : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--roberta_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
parser.add_argument(
"--classification_head", action="store_true", help="Whether to convert a final classification head."
)
UpperCamelCase : str = parser.parse_args()
convert_xlm_roberta_xl_checkpoint_to_pytorch(
args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head
)
| 316 |
"""simple docstring"""
def A ( snake_case :int , snake_case :int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : Optional[Any] = {
"alibaba-damo/mgp-str-base": "https://huggingface.co/alibaba-damo/mgp-str-base/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "mgp-str"
def __init__( self , __UpperCAmelCase=[32, 128] , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=27 , __UpperCAmelCase=38 , __UpperCAmelCase=5_0257 , __UpperCAmelCase=3_0522 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=0.0_2 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = max_token_length
__UpperCamelCase = num_character_labels
__UpperCamelCase = num_bpe_labels
__UpperCamelCase = num_wordpiece_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = mlp_ratio
__UpperCamelCase = distilled
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = drop_rate
__UpperCamelCase = qkv_bias
__UpperCamelCase = attn_drop_rate
__UpperCamelCase = drop_path_rate
__UpperCamelCase = output_aa_attentions
__UpperCamelCase = initializer_range
| 316 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = 42
lowercase = 42
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.unet.config.sample_size
__UpperCamelCase = (batch_size, 3, img_size, img_size)
__UpperCamelCase = self.unet
__UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma
__UpperCamelCase = sample.to(self.device )
self.scheduler.set_timesteps(__UpperCAmelCase )
self.scheduler.set_sigmas(__UpperCAmelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
# prediction step
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean
__UpperCamelCase = sample_mean.clamp(0 , 1 )
__UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import numpy as np
def A ( snake_case :np.array ) -> np.array:
return (2 / (1 + np.exp(-2 * vector ))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :int ) -> bool:
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :int ) -> bool:
if num < 0:
return False
__UpperCamelCase = num
__UpperCamelCase = 0
while num > 0:
__UpperCamelCase = rev_num * 1_0 + (num % 1_0)
num //= 1_0
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCamelCase : int = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCamelCase : Optional[Any] = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCamelCase : str = sorted(arg_to_scheduler.keys())
UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class __lowerCAmelCase ( pl.LightningModule ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
__UpperCamelCase = 0
__UpperCamelCase = Path(self.hparams.output_dir )
__UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCamelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
__UpperCamelCase = config
__UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
__UpperCamelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = tokenizer
__UpperCamelCase = MODEL_MODES[mode]
if model is None:
__UpperCamelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = model
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCamelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model
__UpperCamelCase = ['bias', 'LayerNorm.weight']
__UpperCamelCase = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__UpperCamelCase = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
__UpperCamelCase = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__UpperCamelCase = optimizer
__UpperCamelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_end(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if stage == "test":
__UpperCamelCase = len(self.test_dataloader().dataset )
else:
__UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
__UpperCamelCase = len(self.train_dataloader().dataset )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ):
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.train_loader
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.output_dir.joinpath('best_tfmr' )
__UpperCamelCase = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
parser.add_argument(
'--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase )
parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--adafactor' , action='store_true' )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = trainer.lr_schedulers[0]['scheduler']
__UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Test results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log and save results to file
__UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(__UpperCAmelCase , 'w' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def A ( snake_case :Any , snake_case :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=snake_case , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]:
pl.seed_everything(args.seed )
# init model
__UpperCamelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=snake_case )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCamelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(snake_case )
if logging_callback is None:
__UpperCamelCase = LoggingCallback()
__UpperCamelCase = {}
if args.fpaa:
__UpperCamelCase = 1_6
if args.gpus > 1:
__UpperCamelCase = 'auto'
__UpperCamelCase = 'ddp'
__UpperCamelCase = args.accumulate_grad_batches
__UpperCamelCase = None
__UpperCamelCase = 'auto'
__UpperCamelCase = pl.Trainer.from_argparse_args(
snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , )
if args.do_train:
trainer.fit(snake_case )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 316 | 1 |
"""simple docstring"""
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : Dict = logging.get_logger(__name__)
UpperCamelCase : int = "▁"
UpperCamelCase : List[Any] = {"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"}
UpperCamelCase : Dict = {
"vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model",
},
"monolingual_vocab_file": {
"vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt",
},
}
UpperCamelCase : List[Any] = {"vinai/bartpho-syllable": 1_0_2_4}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["input_ids", "attention_mask"]
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<s>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<mask>" , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = AddedToken(__UpperCAmelCase , lstrip=__UpperCAmelCase , rstrip=__UpperCAmelCase ) if isinstance(__UpperCAmelCase , __UpperCAmelCase ) else mask_token
__UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , cls_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , mask_token=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCAmelCase , )
__UpperCamelCase = vocab_file
__UpperCamelCase = monolingual_vocab_file
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(__UpperCAmelCase ) )
# Load the reduced vocab
# Keep order of special tokens for backward compatibility
__UpperCamelCase = {}
__UpperCamelCase = 0
for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]:
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
__UpperCamelCase = cnt
cnt += 1
with open(__UpperCAmelCase , 'r' , encoding='utf-8' ) as f:
for line in f.readlines():
__UpperCamelCase = line.strip().split()[0]
__UpperCamelCase = len(self.fairseq_tokens_to_ids )
if str(__UpperCAmelCase ) not in self.fairseq_tokens_to_ids:
__UpperCamelCase = len(self.fairseq_tokens_to_ids )
__UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
def __getstate__( self ):
'''simple docstring'''
__UpperCamelCase = self.__dict__.copy()
__UpperCamelCase = None
__UpperCamelCase = self.sp_model.serialized_model_proto()
return state
def __setstate__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__UpperCamelCase = {}
__UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.LoadFromSerializedProto(self.sp_model_proto )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
__UpperCamelCase = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
if token_ids_a is None:
return [1] + ([0] * len(__UpperCAmelCase )) + [1]
return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = [self.sep_token_id]
__UpperCamelCase = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return len(self.fairseq_ids_to_tokens )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
else:
return self.unk_token_id
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.fairseq_ids_to_tokens[index]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = ''.join(__UpperCAmelCase ).replace(__UpperCAmelCase , ' ' ).strip()
return out_string
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if not os.path.isdir(__UpperCAmelCase ):
logger.error(F'Vocabulary path ({save_directory}) should be a directory' )
return
__UpperCamelCase = os.path.join(
__UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] )
__UpperCamelCase = os.path.join(
__UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , )
if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.vocab_file ):
with open(__UpperCAmelCase , 'wb' ) as fi:
__UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath(
__UpperCAmelCase ) and os.path.isfile(self.monolingual_vocab_file ):
copyfile(self.monolingual_vocab_file , __UpperCAmelCase )
elif not os.path.isfile(self.monolingual_vocab_file ):
with open(__UpperCAmelCase , 'w' , encoding='utf-8' ) as fp:
for token in self.fairseq_tokens_to_ids:
if token not in self.all_special_tokens:
fp.write(F'{str(__UpperCAmelCase )} \n' )
return out_vocab_file, out_monolingual_vocab_file
| 316 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase : Dict = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
UpperCamelCase : Dict = {
"gpt2": 1_0_2_4,
"gpt2-medium": 1_0_2_4,
"gpt2-large": 1_0_2_4,
"gpt2-xl": 1_0_2_4,
"distilgpt2": 1_0_2_4,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["input_ids", "attention_mask"]
lowercase = GPTaTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase )
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space:
__UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**__UpperCAmelCase )
__UpperCamelCase = add_prefix_space
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
__UpperCamelCase = input_ids[-self.model_max_length :]
return input_ids
| 316 | 1 |
"""simple docstring"""
import argparse
import json
from tqdm import tqdm
def A ( ) -> List[str]:
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--src_path' , type=snake_case , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , )
parser.add_argument(
'--evaluation_set' , type=snake_case , help='where to store parsed evaluation_set file' , )
parser.add_argument(
'--gold_data_path' , type=snake_case , help='where to store parsed gold_data_path file' , )
__UpperCamelCase = parser.parse_args()
with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open(
args.gold_data_path , 'w' ) as gold_file:
__UpperCamelCase = json.load(snake_case )
for dpr_record in tqdm(snake_case ):
__UpperCamelCase = dpr_record['question']
__UpperCamelCase = [context['title'] for context in dpr_record['positive_ctxs']]
eval_file.write(question + '\n' )
gold_file.write('\t'.join(snake_case ) + '\n' )
if __name__ == "__main__":
main()
| 316 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str:
output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , )
else:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , )
@torch.no_grad()
def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]:
__UpperCamelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__UpperCamelCase = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
__UpperCamelCase = 'cpu'
__UpperCamelCase = Path(snake_case )
# VAE DECODER
__UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' )
__UpperCamelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
__UpperCamelCase = vae_decoder.decode
onnx_export(
snake_case , model_args=(
torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=snake_case , )
del vae_decoder
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=1_4,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
UpperCamelCase : List[Any] = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 316 | 1 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from torch.backends.cuda import sdp_kernel
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
from diffusers.utils import randn_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu
from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
enable_full_determinism()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = ConsistencyModelPipeline
lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS
lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS
# Override required_optional_params to remove num_images_per_prompt
lowercase = frozenset(
[
"num_inference_steps",
"generator",
"latents",
"output_type",
"return_dict",
"callback",
"callback_steps",
] )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained(
'diffusers/consistency-models-test' , subfolder='test_unet' , )
return unet
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained(
'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , )
return unet
def UpperCAmelCase ( self , __UpperCAmelCase=False ):
'''simple docstring'''
if class_cond:
__UpperCamelCase = self.dummy_cond_unet
else:
__UpperCamelCase = self.dummy_uncond_unet
# Default to CM multistep sampler
__UpperCamelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__UpperCamelCase = {
'unet': unet,
'scheduler': scheduler,
}
return components
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCamelCase = {
'batch_size': 1,
'num_inference_steps': None,
'timesteps': [22, 0],
'generator': generator,
'output_type': 'np',
}
return inputs
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = ConsistencyModelPipeline(**__UpperCAmelCase )
__UpperCamelCase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 32, 32, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components(class_cond=__UpperCAmelCase )
__UpperCamelCase = ConsistencyModelPipeline(**__UpperCAmelCase )
__UpperCamelCase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCamelCase = 0
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 32, 32, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = ConsistencyModelPipeline(**__UpperCAmelCase )
__UpperCamelCase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCamelCase = 1
__UpperCamelCase = None
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 32, 32, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components(class_cond=__UpperCAmelCase )
__UpperCamelCase = ConsistencyModelPipeline(**__UpperCAmelCase )
__UpperCamelCase = pipe.to(__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_dummy_inputs(__UpperCAmelCase )
__UpperCamelCase = 1
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 32, 32, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@slow
@require_torch_gpu
class __lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self ):
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def UpperCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64) ):
'''simple docstring'''
__UpperCamelCase = torch.manual_seed(__UpperCAmelCase )
__UpperCamelCase = {
'num_inference_steps': None,
'timesteps': [22, 0],
'class_labels': 0,
'generator': generator,
'output_type': 'np',
}
if get_fixed_latents:
__UpperCamelCase = self.get_fixed_latents(seed=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase , shape=__UpperCAmelCase )
__UpperCamelCase = latents
return inputs
def UpperCAmelCase ( self , __UpperCAmelCase=0 , __UpperCAmelCase="cpu" , __UpperCAmelCase=torch.floataa , __UpperCAmelCase=(1, 3, 64, 64) ):
'''simple docstring'''
if type(__UpperCAmelCase ) == str:
__UpperCamelCase = torch.device(__UpperCAmelCase )
__UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase , device=__UpperCAmelCase , dtype=__UpperCAmelCase )
return latents
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
__UpperCamelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__UpperCamelCase = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pipe.to(torch_device=__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_inputs()
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
__UpperCamelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__UpperCamelCase = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pipe.to(torch_device=__UpperCAmelCase )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_inputs()
__UpperCamelCase = 1
__UpperCamelCase = None
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2
@require_torch_a
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
__UpperCamelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__UpperCamelCase = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase )
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ):
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
@require_torch_a
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' )
__UpperCamelCase = CMStochasticIterativeScheduler(
num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , )
__UpperCamelCase = ConsistencyModelPipeline(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
pipe.to(torch_device=__UpperCAmelCase , torch_dtype=torch.floataa )
pipe.set_progress_bar_config(disable=__UpperCAmelCase )
__UpperCamelCase = self.get_inputs(get_fixed_latents=__UpperCAmelCase , device=__UpperCAmelCase )
__UpperCamelCase = 1
__UpperCamelCase = None
# Ensure usage of flash attention in torch 2.0
with sdp_kernel(enable_flash=__UpperCAmelCase , enable_math=__UpperCAmelCase , enable_mem_efficient=__UpperCAmelCase ):
__UpperCamelCase = pipe(**__UpperCAmelCase ).images
assert image.shape == (1, 64, 64, 3)
__UpperCamelCase = image[0, -3:, -3:, -1]
__UpperCamelCase = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
| 316 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None:
__UpperCamelCase = ""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ):
__UpperCamelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case )
return decoded
def A ( snake_case :list[int] ) -> list[str]:
__UpperCamelCase = []
for key in product(snake_case , repeat=3 ):
__UpperCamelCase = try_key(snake_case , snake_case )
if encoded is not None:
possibles.append(snake_case )
return possibles
def A ( snake_case :list[str] , snake_case :str ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def A ( snake_case :str = "p059_cipher.txt" ) -> int:
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' )
__UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )]
__UpperCamelCase = filter_valid_chars(snake_case )
for common_word in COMMON_WORDS:
__UpperCamelCase = filter_common_word(snake_case , snake_case )
if len(snake_case ) == 1:
break
__UpperCamelCase = possibles[0]
return sum(ord(snake_case ) for char in decoded_text )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {
# See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "megatron-bert"
def __init__( self , __UpperCAmelCase=2_9056 , __UpperCAmelCase=1024 , __UpperCAmelCase=24 , __UpperCAmelCase=16 , __UpperCAmelCase=4096 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase="absolute" , __UpperCAmelCase=True , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = hidden_act
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = initializer_range
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = use_cache
| 316 |
"""simple docstring"""
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.60_93_44,
"knot": 1.8_52,
}
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.2_77_77_77_78,
"mph": 0.6_21_37_11_92,
"knot": 0.5_39_95_68_03,
}
def A ( snake_case :float , snake_case :str , snake_case :str ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__UpperCamelCase = (
f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
f'Valid values are: {", ".join(snake_case )}'
)
raise ValueError(snake_case )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : List[str] = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
"tanreinama/GPTSAN-2.8B-spout_is_uniform": (
"https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json"
),
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "gptsan-japanese"
lowercase = [
"past_key_values",
]
lowercase = {
"hidden_size": "d_model",
"num_attention_heads": "num_heads",
"num_hidden_layers": "num_layers",
}
def __init__( self , __UpperCAmelCase=3_6000 , __UpperCAmelCase=1280 , __UpperCAmelCase=1024 , __UpperCAmelCase=8192 , __UpperCAmelCase=4096 , __UpperCAmelCase=128 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=16 , __UpperCAmelCase=16 , __UpperCAmelCase=128 , __UpperCAmelCase=0.0 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=False , __UpperCAmelCase=0.0 , __UpperCAmelCase="float32" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0.0_0_2 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3_5998 , __UpperCAmelCase=3_5995 , __UpperCAmelCase=3_5999 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = d_model
__UpperCamelCase = d_ff
__UpperCamelCase = d_ext
__UpperCamelCase = d_spout
__UpperCamelCase = num_switch_layers
__UpperCamelCase = num_ext_layers
__UpperCamelCase = num_switch_layers + num_ext_layers
__UpperCamelCase = num_heads
__UpperCamelCase = num_experts
__UpperCamelCase = expert_capacity
__UpperCamelCase = dropout_rate
__UpperCamelCase = layer_norm_epsilon
__UpperCamelCase = router_bias
__UpperCamelCase = router_jitter_noise
__UpperCamelCase = router_dtype
__UpperCamelCase = router_ignore_padding_tokens
__UpperCamelCase = output_hidden_states
__UpperCamelCase = output_attentions
__UpperCamelCase = initializer_factor
__UpperCamelCase = output_router_logits
__UpperCamelCase = use_cache
super().__init__(
separator_token_id=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
| 316 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = IFInpaintingSuperResolutionPipeline
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
lowercase = PipelineTesterMixin.required_optional_params - {"latents"}
def UpperCAmelCase ( self ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 316 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_torch_available,
)
UpperCamelCase : int = {
"configuration_swiftformer": [
"SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"SwiftFormerConfig",
"SwiftFormerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : List[Any] = [
"SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"SwiftFormerForImageClassification",
"SwiftFormerModel",
"SwiftFormerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_swiftformer import (
SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
SwiftFormerConfig,
SwiftFormerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_swiftformer import (
SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
SwiftFormerForImageClassification,
SwiftFormerModel,
SwiftFormerPreTrainedModel,
)
else:
import sys
UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 316 |
"""simple docstring"""
def A ( snake_case :int ) -> int:
__UpperCamelCase = [1]
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0
__UpperCamelCase = ugly_nums[ia] * 2
__UpperCamelCase = ugly_nums[ia] * 3
__UpperCamelCase = ugly_nums[ia] * 5
for _ in range(1 , snake_case ):
__UpperCamelCase = min(snake_case , snake_case , snake_case )
ugly_nums.append(snake_case )
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f'''{ugly_numbers(2_0_0) = }''')
| 316 | 1 |
"""simple docstring"""
from __future__ import annotations
import copy
import inspect
import unittest
import numpy as np
from transformers import is_tf_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_MODEL_FOR_MULTIPLE_CHOICE_MAPPING,
TF_MODEL_FOR_QUESTION_ANSWERING_MAPPING,
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING,
TF_MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING,
LayoutLMvaConfig,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
TFLayoutLMvaModel,
)
if is_vision_available():
from PIL import Image
from transformers import LayoutLMvaImageProcessor
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=2 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=36 , __UpperCAmelCase=2 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=6 , __UpperCAmelCase=6 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , __UpperCAmelCase=1000 , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = num_channels
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = coordinate_size
__UpperCamelCase = shape_size
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
__UpperCamelCase = range_bbox
# LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token)
__UpperCamelCase = text_seq_length
__UpperCamelCase = (image_size // patch_size) ** 2 + 1
__UpperCamelCase = self.text_seq_length + self.image_seq_length
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox )
__UpperCamelCase = bbox.numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__UpperCamelCase = bbox[i, j, 3]
__UpperCamelCase = bbox[i, j, 1]
__UpperCamelCase = tmp_coordinate
if bbox[i, j, 2] < bbox[i, j, 0]:
__UpperCamelCase = bbox[i, j, 2]
__UpperCamelCase = bbox[i, j, 0]
__UpperCamelCase = tmp_coordinate
__UpperCamelCase = tf.constant(__UpperCAmelCase )
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] )
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size )
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels )
__UpperCamelCase = LayoutLMvaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , )
return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = TFLayoutLMvaModel(config=__UpperCAmelCase )
# text + image
__UpperCamelCase = model(__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase )
__UpperCamelCase = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , training=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
# text only
__UpperCamelCase = model(__UpperCAmelCase , training=__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) )
# image only
__UpperCamelCase = model({'pixel_values': pixel_values} , training=__UpperCAmelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFLayoutLMvaForSequenceClassification(config=__UpperCAmelCase )
__UpperCamelCase = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFLayoutLMvaForTokenClassification(config=__UpperCAmelCase )
__UpperCamelCase = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , labels=__UpperCAmelCase , training=__UpperCAmelCase , )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = 2
__UpperCamelCase = TFLayoutLMvaForQuestionAnswering(config=__UpperCAmelCase )
__UpperCamelCase = model(
__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , start_positions=__UpperCAmelCase , end_positions=__UpperCAmelCase , training=__UpperCAmelCase , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
((__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase) , (__UpperCamelCase)) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'bbox': bbox,
'pixel_values': pixel_values,
'token_type_ids': token_type_ids,
'attention_mask': input_mask,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(
TFLayoutLMvaModel,
TFLayoutLMvaForQuestionAnswering,
TFLayoutLMvaForSequenceClassification,
TFLayoutLMvaForTokenClassification,
)
if is_tf_available()
else ()
)
lowercase = (
{"document-question-answering": TFLayoutLMvaForQuestionAnswering, "feature-extraction": TFLayoutLMvaModel}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return True
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False ):
'''simple docstring'''
__UpperCamelCase = copy.deepcopy(__UpperCAmelCase )
if model_class in get_values(__UpperCAmelCase ):
__UpperCamelCase = {
k: tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.model_tester.num_choices) + (1,) * (v.ndim - 1) )
if isinstance(__UpperCAmelCase , tf.Tensor ) and v.ndim > 0
else v
for k, v in inputs_dict.items()
}
if return_labels:
if model_class in get_values(__UpperCAmelCase ):
__UpperCamelCase = tf.ones(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__UpperCAmelCase ):
__UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
__UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__UpperCAmelCase ):
__UpperCamelCase = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
elif model_class in get_values(__UpperCAmelCase ):
__UpperCamelCase = tf.zeros(
(self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=tf.intaa )
return inputs_dict
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFLayoutLMvaModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
if getattr(__UpperCAmelCase , 'hf_compute_loss' , __UpperCAmelCase ):
# The number of elements in the loss should be the same as the number of elements in the label
__UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = prepared_for_class[
sorted(prepared_for_class.keys() - inputs_dict.keys() , reverse=__UpperCAmelCase )[0]
]
__UpperCamelCase = added_label.shape.as_list()[:1]
# Test that model correctly compute the loss with kwargs
__UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = prepared_for_class.pop('input_ids' )
__UpperCamelCase = model(__UpperCAmelCase , **__UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss when we mask some positions
__UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = prepared_for_class.pop('input_ids' )
if "labels" in prepared_for_class:
__UpperCamelCase = prepared_for_class['labels'].numpy()
if len(labels.shape ) > 1 and labels.shape[1] != 1:
__UpperCamelCase = -100
__UpperCamelCase = tf.convert_to_tensor(__UpperCAmelCase )
__UpperCamelCase = model(__UpperCAmelCase , **__UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
self.assertTrue(not np.any(np.isnan(loss.numpy() ) ) )
# Test that model correctly compute the loss with a dict
__UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(__UpperCAmelCase )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
# Test that model correctly compute the loss with a tuple
__UpperCamelCase = self._prepare_for_class(inputs_dict.copy() , __UpperCAmelCase , return_labels=__UpperCAmelCase )
# Get keys that were added with the _prepare_for_class function
__UpperCamelCase = prepared_for_class.keys() - inputs_dict.keys()
__UpperCamelCase = inspect.signature(model.call ).parameters
__UpperCamelCase = list(signature.keys() )
# Create a dictionary holding the location of the tensors in the tuple
__UpperCamelCase = {0: 'input_ids'}
for label_key in label_keys:
__UpperCamelCase = signature_names.index(__UpperCAmelCase )
__UpperCamelCase = label_key
__UpperCamelCase = sorted(tuple_index_mapping.items() )
# Initialize a list with their default values, update the values and convert to a tuple
__UpperCamelCase = []
for name in signature_names:
if name != "kwargs":
list_input.append(signature[name].default )
for index, value in sorted_tuple_index_mapping:
__UpperCamelCase = prepared_for_class[value]
__UpperCamelCase = tuple(__UpperCAmelCase )
# Send to model
__UpperCamelCase = model(tuple_input[:-1] )[0]
self.assertTrue(loss.shape.as_list() == expected_loss_size or loss.shape.as_list() == [1] )
def UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCamelCase = type
self.model_tester.create_and_check_model(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFLayoutLMvaModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def A ( ) -> List[str]:
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_tf
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self ):
'''simple docstring'''
return LayoutLMvaImageProcessor(apply_ocr=__UpperCAmelCase ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFLayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='tf' ).pixel_values
__UpperCamelCase = tf.constant([[1, 2]] )
__UpperCamelCase = tf.expand_dims(tf.constant([[1, 2, 3, 4], [5, 6, 7, 8]] ) , axis=0 )
# forward pass
__UpperCamelCase = model(input_ids=__UpperCAmelCase , bbox=__UpperCAmelCase , pixel_values=__UpperCAmelCase , training=__UpperCAmelCase )
# verify the logits
__UpperCamelCase = (1, 199, 768)
self.assertEqual(outputs.last_hidden_state.shape , __UpperCAmelCase )
__UpperCamelCase = tf.constant(
[[-0.0_5_2_9, 0.3_6_1_8, 0.1_6_3_2], [-0.1_5_8_7, -0.1_6_6_7, -0.0_4_0_0], [-0.1_5_5_7, -0.1_6_7_1, -0.0_5_0_5]] )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
| 316 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["image_processor", "tokenizer"]
lowercase = "OwlViTImageProcessor"
lowercase = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , __UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )):
__UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )]
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCAmelCase ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase ))
__UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
encodings.append(__UpperCAmelCase )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , )
return self.image_processor
| 316 | 1 |
"""simple docstring"""
import warnings
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast
from ...onnx.utils import compute_effective_axis_dimension
from ...utils import TensorType, is_torch_available, logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : List[Any] = {
"facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json",
# See all BART models at https://huggingface.co/models?filter=bart
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "bart"
lowercase = ["past_key_values"]
lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=3 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = d_model
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = classifier_dropout
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
num_labels=__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
# ensure backward compatibility for BART CNN models
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __UpperCAmelCase ):
__UpperCamelCase = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCamelCase = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__UpperCamelCase = {0: 'batch'}
__UpperCamelCase = {0: 'batch', 1: 'past_decoder_sequence + sequence'}
else:
__UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'}
__UpperCamelCase = {0: 'batch', 1: 'decoder_sequence'}
if self.use_past:
self.fill_with_past_key_values_(__UpperCAmelCase , direction='inputs' )
elif self.task == "causal-lm":
# TODO: figure this case out.
__UpperCamelCase = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
] )
if self.use_past:
__UpperCamelCase , __UpperCamelCase = self.num_layers
for i in range(__UpperCAmelCase ):
__UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'}
__UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'}
else:
__UpperCamelCase = OrderedDict(
[
('input_ids', {0: 'batch', 1: 'encoder_sequence'}),
('attention_mask', {0: 'batch', 1: 'encoder_sequence'}),
('decoder_input_ids', {0: 'batch', 1: 'decoder_sequence'}),
('decoder_attention_mask', {0: 'batch', 1: 'decoder_sequence'}),
] )
return common_inputs
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCamelCase = super().outputs
else:
__UpperCamelCase = super(__UpperCAmelCase , self ).outputs
if self.use_past:
__UpperCamelCase , __UpperCamelCase = self.num_layers
for i in range(__UpperCAmelCase ):
__UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'}
__UpperCamelCase = {0: 'batch', 2: 'past_sequence + sequence'}
return common_outputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ):
'''simple docstring'''
__UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
# Generate decoder inputs
__UpperCamelCase = seq_length if not self.use_past else 1
__UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()}
__UpperCamelCase = dict(**__UpperCAmelCase , **__UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs['input_ids'].shape
__UpperCamelCase = common_inputs['decoder_input_ids'].shape[1]
__UpperCamelCase , __UpperCamelCase = self.num_attention_heads
__UpperCamelCase = (
batch,
num_encoder_attention_heads,
encoder_seq_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__UpperCamelCase = decoder_seq_length + 3
__UpperCamelCase = (
batch,
num_decoder_attention_heads,
decoder_past_length,
self._config.hidden_size // num_decoder_attention_heads,
)
__UpperCamelCase = torch.cat(
[common_inputs['decoder_attention_mask'], torch.ones(__UpperCAmelCase , __UpperCAmelCase )] , dim=1 )
__UpperCamelCase = []
# If the number of encoder and decoder layers are present in the model configuration, both are considered
__UpperCamelCase , __UpperCamelCase = self.num_layers
__UpperCamelCase = min(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = max(__UpperCAmelCase , __UpperCAmelCase ) - min_num_layers
__UpperCamelCase = 'encoder' if num_encoder_layers > num_decoder_layers else 'decoder'
for _ in range(__UpperCAmelCase ):
common_inputs["past_key_values"].append(
(
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
torch.zeros(__UpperCAmelCase ),
) )
# TODO: test this.
__UpperCamelCase = encoder_shape if remaining_side_name == 'encoder' else decoder_shape
for _ in range(__UpperCAmelCase , __UpperCAmelCase ):
common_inputs["past_key_values"].append((torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) )
return common_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ):
'''simple docstring'''
__UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
if self.use_past:
if not is_torch_available():
raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' )
else:
import torch
__UpperCamelCase , __UpperCamelCase = common_inputs['input_ids'].shape
# Not using the same length for past_key_values
__UpperCamelCase = seqlen + 2
__UpperCamelCase , __UpperCamelCase = self.num_layers
__UpperCamelCase , __UpperCamelCase = self.num_attention_heads
__UpperCamelCase = (
batch,
num_encoder_attention_heads,
past_key_values_length,
self._config.hidden_size // num_encoder_attention_heads,
)
__UpperCamelCase = common_inputs['attention_mask'].dtype
__UpperCamelCase = torch.cat(
[common_inputs['attention_mask'], torch.ones(__UpperCAmelCase , __UpperCAmelCase , dtype=__UpperCAmelCase )] , dim=1 )
__UpperCamelCase = [
(torch.zeros(__UpperCAmelCase ), torch.zeros(__UpperCAmelCase )) for _ in range(__UpperCAmelCase )
]
return common_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ):
'''simple docstring'''
__UpperCamelCase = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 )
# If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX
__UpperCamelCase = tokenizer.num_special_tokens_to_add(__UpperCAmelCase )
__UpperCamelCase = compute_effective_axis_dimension(
__UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCAmelCase )
# Generate dummy inputs according to compute batch and sequence
__UpperCamelCase = [' '.join([tokenizer.unk_token] ) * seq_length] * batch_size
__UpperCamelCase = dict(tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase ) )
return common_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = -1 , __UpperCAmelCase = -1 , __UpperCAmelCase = False , __UpperCAmelCase = None , ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCamelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
elif self.task == "causal-lm":
__UpperCamelCase = self._generate_dummy_inputs_for_causal_lm(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
else:
__UpperCamelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering(
__UpperCAmelCase , batch_size=__UpperCAmelCase , seq_length=__UpperCAmelCase , is_pair=__UpperCAmelCase , framework=__UpperCAmelCase )
return common_inputs
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if self.task in ["default", "seq2seq-lm"]:
__UpperCamelCase = super()._flatten_past_key_values_(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
else:
__UpperCamelCase = super(__UpperCAmelCase , self )._flatten_past_key_values_(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
| 316 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = rotary_dim
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = vocab_size - 1
__UpperCamelCase = vocab_size - 1
__UpperCamelCase = vocab_size - 1
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = 20
__UpperCamelCase = model_class_name(__UpperCAmelCase )
__UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase )
__UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCamelCase = model(
input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__UpperCamelCase = model(
input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = 20
__UpperCamelCase = model_class_name(__UpperCAmelCase )
__UpperCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCamelCase = model(
input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__UpperCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
@require_flax
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = FlaxGPTJModelTester(self )
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@tooslow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )
__UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__UpperCamelCase = False
__UpperCamelCase = model.config.eos_token_id
__UpperCamelCase = jax.jit(model.generate )
__UpperCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
__UpperCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@is_pt_flax_cross_test
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape
__UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval()
__UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa )
__UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase )
__UpperCamelCase = fx_state
with torch.no_grad():
__UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple()
__UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__UpperCAmelCase )
__UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase )
__UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(
len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval()
__UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa )
__UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params )
__UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape
__UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = 0
__UpperCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple()
__UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__UpperCAmelCase )
__UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase )
with torch.no_grad():
__UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(
len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 13
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = 2
__UpperCamelCase = 99
__UpperCamelCase = 0
__UpperCamelCase = 32
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 512
__UpperCamelCase = 16
__UpperCamelCase = 2
__UpperCamelCase = 0.0_2
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = 'last'
__UpperCamelCase = True
__UpperCamelCase = None
__UpperCamelCase = 0
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__UpperCamelCase = None
if self.use_input_lengths:
__UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'langs': token_type_ids,
'lengths': input_lengths,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' )
__UpperCamelCase = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__UpperCamelCase = model(__UpperCAmelCase )[0]
__UpperCamelCase = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __UpperCAmelCase )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[
[
[-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8],
[-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9],
[-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 316 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :list[int] ) -> None:
__UpperCamelCase = len(snake_case )
print('The following activities are selected:' )
# The first activity is always selected
__UpperCamelCase = 0
print(snake_case , end=',' )
# Consider rest of the activities
for j in range(snake_case ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case , end=',' )
__UpperCamelCase = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : int = [1, 3, 0, 5, 8, 5]
UpperCamelCase : str = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 316 | 1 |
"""simple docstring"""
# Lint as: python3
import os
import re
import urllib.parse
from pathlib import Path
from typing import Callable, List, Optional, Union
from zipfile import ZipFile
from ..utils.file_utils import cached_path, hf_github_url
from ..utils.logging import get_logger
from ..utils.version import Version
UpperCamelCase : Optional[Any] = get_logger(__name__)
class __lowerCAmelCase :
lowercase = "dummy_data"
lowercase = "datasets"
lowercase = False
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = None , ):
'''simple docstring'''
__UpperCamelCase = 0
__UpperCamelCase = dataset_name
__UpperCamelCase = cache_dir
__UpperCamelCase = use_local_dummy_data
__UpperCamelCase = config
# download_callbacks take a single url as input
__UpperCamelCase = download_callbacks or []
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
# to the dummy_data zip file root
__UpperCamelCase = load_existing_dummy_data
# TODO(PVP, QL) might need to make this more general
__UpperCamelCase = str(__UpperCAmelCase )
# to be downloaded
__UpperCamelCase = None
__UpperCamelCase = None
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self._dummy_file is None:
__UpperCamelCase = self.download_dummy_data()
return self._dummy_file
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.config is not None:
# structure is dummy / config_name / version_name
return os.path.join('dummy' , self.config.name , self.version_name )
# structure is dummy / version_name
return os.path.join('dummy' , self.version_name )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return os.path.join(self.dummy_data_folder , 'dummy_data.zip' )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = (
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
)
__UpperCamelCase = cached_path(
__UpperCAmelCase , cache_dir=self.cache_dir , extract_compressed_file=__UpperCAmelCase , force_extract=__UpperCAmelCase )
return os.path.join(__UpperCAmelCase , self.dummy_file_name )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if self._bucket_url is None:
__UpperCamelCase = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , '/' ) )
return self._bucket_url
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
if os.path.isdir(self.dummy_file ):
return self.dummy_file
# else cut off path to file -> example `xsum`.
return "/".join(self.dummy_file.replace(os.sep , '/' ).split('/' )[:-1] )
def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase ):
'''simple docstring'''
if self.load_existing_dummy_data:
# dummy data is downloaded and tested
__UpperCamelCase = self.dummy_file
else:
# dummy data cannot be downloaded and only the path to dummy file is returned
__UpperCamelCase = self.dummy_file_name
# special case when data_url is a dict
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
return self.create_dummy_data_dict(__UpperCAmelCase , __UpperCAmelCase )
elif isinstance(__UpperCAmelCase , (list, tuple) ):
return self.create_dummy_data_list(__UpperCAmelCase , __UpperCAmelCase )
else:
return self.create_dummy_data_single(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase ):
'''simple docstring'''
return self.download_and_extract(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return self.download_and_extract(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return path
def UpperCAmelCase ( self ):
'''simple docstring'''
return {}
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = {}
for key, single_urls in data_url.items():
for download_callback in self.download_callbacks:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
for single_url in single_urls:
download_callback(__UpperCAmelCase )
else:
__UpperCamelCase = single_urls
download_callback(__UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = [os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) ) for x in single_urls]
else:
__UpperCamelCase = single_urls
__UpperCamelCase = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(Path(__UpperCAmelCase ).name ) )
__UpperCamelCase = value
# make sure that values are unique
if all(isinstance(__UpperCAmelCase , __UpperCAmelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len(
dummy_data_dict.values() ):
# append key to value to make its name unique
__UpperCamelCase = {key: value + key for key, value in dummy_data_dict.items()}
return dummy_data_dict
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
__UpperCamelCase = all(bool(re.findall('[0-9]{3,}-of-[0-9]{3,}' , __UpperCAmelCase ) ) for url in data_url )
__UpperCamelCase = all(
url.startswith('https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed' ) for url in data_url )
if data_url and (is_tf_records or is_pubmed_records):
__UpperCamelCase = [data_url[0]] * len(__UpperCAmelCase )
for single_url in data_url:
for download_callback in self.download_callbacks:
download_callback(__UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__UpperCamelCase = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(single_url.split('/' )[-1] ) )
dummy_data_list.append(__UpperCAmelCase )
return dummy_data_list
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for download_callback in self.download_callbacks:
download_callback(__UpperCAmelCase )
# we force the name of each key to be the last file / folder name of the url path
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
__UpperCamelCase = os.path.join(__UpperCAmelCase , urllib.parse.quote_plus(data_url.split('/' )[-1] ) )
if os.path.exists(__UpperCAmelCase ) or not self.load_existing_dummy_data:
return value
else:
# Backward compatibility, maybe deprecate at one point.
# For many datasets with single url calls to dl_manager.download_and_extract,
# the dummy_data.zip file is actually the zipped downloaded file
# while now we expected the dummy_data.zip file to be a directory containing
# the downloaded file.
return path_to_dummy_data
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
def _iter_archive_members(__UpperCAmelCase ):
# this preserves the order of the members inside the ZIP archive
__UpperCamelCase = Path(self.dummy_file ).parent
__UpperCamelCase = path.relative_to(__UpperCAmelCase )
with ZipFile(self.local_path_to_dummy_data ) as zip_file:
__UpperCamelCase = zip_file.namelist()
for member in members:
if member.startswith(relative_path.as_posix() ):
yield dummy_parent_path.joinpath(__UpperCAmelCase )
__UpperCamelCase = Path(__UpperCAmelCase )
__UpperCamelCase = _iter_archive_members(__UpperCAmelCase ) if self.use_local_dummy_data else path.rglob('*' )
for file_path in file_paths:
if file_path.is_file() and not file_path.name.startswith(('.', '__') ):
yield file_path.relative_to(__UpperCAmelCase ).as_posix(), file_path.open('rb' )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if not isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = [paths]
for path in paths:
if os.path.isfile(__UpperCAmelCase ):
if os.path.basename(__UpperCAmelCase ).startswith(('.', '__') ):
return
yield path
else:
for dirpath, dirnames, filenames in os.walk(__UpperCAmelCase ):
if os.path.basename(__UpperCAmelCase ).startswith(('.', '__') ):
continue
dirnames.sort()
for filename in sorted(__UpperCAmelCase ):
if filename.startswith(('.', '__') ):
continue
yield os.path.join(__UpperCAmelCase , __UpperCAmelCase )
| 316 |
"""simple docstring"""
def A ( snake_case :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('The given input must be positive' )
# get the generated string sequence
__UpperCamelCase = gray_code_sequence_string(snake_case )
#
# convert them to integers
for i in range(len(snake_case ) ):
__UpperCamelCase = int(sequence[i] , 2 )
return sequence
def A ( snake_case :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__UpperCamelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__UpperCamelCase = gray_code_sequence_string(bit_count - 1 )
__UpperCamelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__UpperCamelCase = '0' + smaller_sequence[i]
sequence.append(snake_case )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__UpperCamelCase = '1' + smaller_sequence[i]
sequence.append(snake_case )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :Optional[Any] ) -> List[Any]:
if not head:
return True
# split the list to two parts
__UpperCamelCase , __UpperCamelCase = head.next, head
while fast and fast.next:
__UpperCamelCase = fast.next.next
__UpperCamelCase = slow.next
__UpperCamelCase = slow.next
__UpperCamelCase = None # Don't forget here! But forget still works!
# reverse the second part
__UpperCamelCase = None
while second:
__UpperCamelCase = second.next
__UpperCamelCase = node
__UpperCamelCase = second
__UpperCamelCase = nxt
# compare two parts
# second part has the same or one less node
while node:
if node.val != head.val:
return False
__UpperCamelCase = node.next
__UpperCamelCase = head.next
return True
def A ( snake_case :int ) -> Tuple:
if not head or not head.next:
return True
# 1. Get the midpoint (slow)
__UpperCamelCase = __UpperCamelCase = __UpperCamelCase = head
while fast and fast.next:
__UpperCamelCase , __UpperCamelCase = fast.next.next, slow.next
# 2. Push the second half into the stack
__UpperCamelCase = [slow.val]
while slow.next:
__UpperCamelCase = slow.next
stack.append(slow.val )
# 3. Comparison
while stack:
if stack.pop() != cur.val:
return False
__UpperCamelCase = cur.next
return True
def A ( snake_case :Optional[int] ) -> List[str]:
if not head or not head.next:
return True
__UpperCamelCase = {}
__UpperCamelCase = 0
while head:
if head.val in d:
d[head.val].append(snake_case )
else:
__UpperCamelCase = [pos]
__UpperCamelCase = head.next
pos += 1
__UpperCamelCase = pos - 1
__UpperCamelCase = 0
for v in d.values():
if len(snake_case ) % 2 != 0:
middle += 1
else:
__UpperCamelCase = 0
for i in range(0 , len(snake_case ) ):
if v[i] + v[len(snake_case ) - 1 - step] != checksum:
return False
step += 1
if middle > 1:
return False
return True
| 316 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 100
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = scope
__UpperCamelCase = out_indices
__UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCamelCase = (image_size // patch_size) ** 2
__UpperCamelCase = num_patches + 1
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase ( self ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = BeitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.type_sequence_label_size
__UpperCamelCase = BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCamelCase = 1
__UpperCamelCase = BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
__UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]:
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
__UpperCamelCase = False
__UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCAmelCase )
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def A ( ) -> int:
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase )
# prepare bool_masked_pos
__UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor(
[[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
__UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 2_1841) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
__UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__UpperCamelCase = model.to(__UpperCAmelCase )
__UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase )
__UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__UpperCamelCase = Image.open(ds[0]['file'] )
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
__UpperCamelCase = torch.tensor(
[
[[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]],
[[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]],
[[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]],
] , device=__UpperCAmelCase , )
else:
__UpperCamelCase = torch.tensor(
[
[[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]],
[[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]],
[[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__UpperCamelCase = model.to(__UpperCAmelCase )
__UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase )
__UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__UpperCamelCase = Image.open(ds[0]['file'] )
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits.detach().cpu()
__UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] )
__UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
__UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
__UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :int ) -> bool:
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int:
__UpperCamelCase = range(1 , snake_case )
__UpperCamelCase = range(1 , snake_case )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :list , snake_case :list , snake_case :int ) -> int:
if len(snake_case ) != len(snake_case ):
raise ValueError('The length of profit and weight must be same.' )
if max_weight <= 0:
raise ValueError('max_weight must greater than zero.' )
if any(p < 0 for p in profit ):
raise ValueError('Profit can not be negative.' )
if any(w < 0 for w in weight ):
raise ValueError('Weight can not be negative.' )
# List created to store profit gained for the 1kg in case of each weight
# respectively. Calculate and append profit/weight for each element.
__UpperCamelCase = [p / w for p, w in zip(snake_case , snake_case )]
# Creating a copy of the list and sorting profit/weight in ascending order
__UpperCamelCase = sorted(snake_case )
# declaring useful variables
__UpperCamelCase = len(snake_case )
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
# loop till the total weight do not reach max limit e.g. 15 kg and till i<length
while limit <= max_weight and i < length:
# flag value for encountered greatest element in sorted_profit_by_weight
__UpperCamelCase = sorted_profit_by_weight[length - i - 1]
__UpperCamelCase = profit_by_weight.index(snake_case )
__UpperCamelCase = -1
# check if the weight encountered is less than the total weight
# encountered before.
if max_weight - limit >= weight[index]:
limit += weight[index]
# Adding profit gained for the given weight 1 ===
# weight[index]/weight[index]
gain += 1 * profit[index]
else:
# Since the weight encountered is greater than limit, therefore take the
# required number of remaining kgs and calculate profit for it.
# weight remaining / weight[index]
gain += (max_weight - limit) / weight[index] * profit[index]
break
i += 1
return gain
if __name__ == "__main__":
print(
"Input profits, weights, and then max_weight (all positive ints) separated by "
"spaces."
)
UpperCamelCase : str = [int(x) for x in input("Input profits separated by spaces: ").split()]
UpperCamelCase : str = [int(x) for x in input("Input weights separated by spaces: ").split()]
UpperCamelCase : str = int(input("Max weight allowed: "))
# Function Call
calc_profit(profit, weight, max_weight)
| 316 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
UpperCamelCase : Tuple = "|".join(sys.argv[1:])
UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :list[int] ) -> int:
if not numbers:
return 0
if not isinstance(snake_case , (list, tuple) ) or not all(
isinstance(snake_case , snake_case ) for number in numbers ):
raise ValueError('numbers must be an iterable of integers' )
__UpperCamelCase = __UpperCamelCase = __UpperCamelCase = numbers[0]
for i in range(1 , len(snake_case ) ):
# update the maximum and minimum subarray products
__UpperCamelCase = numbers[i]
if number < 0:
__UpperCamelCase , __UpperCamelCase = min_till_now, max_till_now
__UpperCamelCase = max(snake_case , max_till_now * number )
__UpperCamelCase = min(snake_case , min_till_now * number )
# update the maximum product found till now
__UpperCamelCase = max(snake_case , snake_case )
return max_prod
| 316 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCamelCase : Any = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_pad
__UpperCamelCase = pad_size
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ):
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase )
__UpperCamelCase = (old_height // size + 1) * size - old_height
__UpperCamelCase = (old_width // size + 1) * size - old_width
return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_pad if do_pad is not None else self.do_pad
__UpperCamelCase = pad_size if pad_size is not None else self.pad_size
__UpperCamelCase = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_pad:
__UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
UpperCamelCase : Dict = {
"uw-madison/mra-base-512-4": "https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "mra"
def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase="absolute" , __UpperCAmelCase=4 , __UpperCAmelCase="full" , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = initializer_range
__UpperCamelCase = type_vocab_size
__UpperCamelCase = layer_norm_eps
__UpperCamelCase = position_embedding_type
__UpperCamelCase = block_per_row
__UpperCamelCase = approx_mode
__UpperCamelCase = initial_prior_first_n_blocks
__UpperCamelCase = initial_prior_diagonal_n_blocks
| 316 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 13
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = 2
__UpperCamelCase = 99
__UpperCamelCase = 0
__UpperCamelCase = 32
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 512
__UpperCamelCase = 16
__UpperCamelCase = 2
__UpperCamelCase = 0.0_2
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = 'last'
__UpperCamelCase = True
__UpperCamelCase = None
__UpperCamelCase = 0
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__UpperCamelCase = None
if self.use_input_lengths:
__UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'langs': token_type_ids,
'lengths': input_lengths,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' )
__UpperCamelCase = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__UpperCamelCase = model(__UpperCAmelCase )[0]
__UpperCamelCase = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __UpperCAmelCase )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[
[
[-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8],
[-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9],
[-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 316 | 1 |
"""simple docstring"""
import os
import posixpath
import uuid
from dataclasses import dataclass
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
import numpy as np
import pyarrow as pa
import datasets
from datasets.arrow_writer import ArrowWriter, ParquetWriter
from datasets.config import MAX_SHARD_SIZE
from datasets.filesystems import (
is_remote_filesystem,
rename,
)
from datasets.iterable_dataset import _BaseExamplesIterable
from datasets.utils.py_utils import convert_file_size_to_int
UpperCamelCase : Dict = datasets.utils.logging.get_logger(__name__)
if TYPE_CHECKING:
import pyspark
@dataclass
class __lowerCAmelCase ( datasets.BuilderConfig ):
lowercase = None
def A ( snake_case :"pyspark.sql.DataFrame" , snake_case :List[int] , ) -> int:
import pyspark
def generate_fn():
__UpperCamelCase = df.select('*' , pyspark.sql.functions.spark_partition_id().alias('part_id' ) )
for partition_id in partition_order:
__UpperCamelCase = df_with_partition_id.select('*' ).where(f'part_id = {partition_id}' ).drop('part_id' )
__UpperCamelCase = partition_df.collect()
__UpperCamelCase = 0
for row in rows:
yield f'{partition_id}_{row_id}', row.asDict()
row_id += 1
return generate_fn
class __lowerCAmelCase ( _BaseExamplesIterable ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , ):
'''simple docstring'''
__UpperCamelCase = df
__UpperCamelCase = partition_order or range(self.df.rdd.getNumPartitions() )
__UpperCamelCase = _generate_iterable_examples(self.df , self.partition_order )
def __iter__( self ):
'''simple docstring'''
yield from self.generate_examples_fn()
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = list(range(self.df.rdd.getNumPartitions() ) )
generator.shuffle(__UpperCAmelCase )
return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.split_shard_indices_by_worker(__UpperCAmelCase , __UpperCAmelCase )
return SparkExamplesIterable(self.df , partition_order=__UpperCAmelCase )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return len(self.partition_order )
class __lowerCAmelCase ( datasets.DatasetBuilder ):
lowercase = SparkConfig
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
import pyspark
__UpperCamelCase = pyspark.sql.SparkSession.builder.getOrCreate()
__UpperCamelCase = df
__UpperCamelCase = working_dir
super().__init__(
cache_dir=__UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **__UpperCAmelCase , )
def UpperCAmelCase ( self ):
'''simple docstring'''
def create_cache_and_write_probe(__UpperCAmelCase ):
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
# already exist.
os.makedirs(self._cache_dir , exist_ok=__UpperCAmelCase )
__UpperCamelCase = os.path.join(self._cache_dir , 'fs_test' + uuid.uuida().hex )
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
# change the file contents.
open(__UpperCAmelCase , 'a' )
return [probe_file]
if self._spark.conf.get('spark.master' , '' ).startswith('local' ):
return
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
# accessible to the driver.
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
if self._cache_dir:
__UpperCamelCase = (
self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(__UpperCAmelCase ).collect()
)
if os.path.isfile(probe[0] ):
return
raise ValueError(
'When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir' )
def UpperCAmelCase ( self ):
'''simple docstring'''
return datasets.DatasetInfo(features=self.config.features )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return [datasets.SplitGenerator(name=datasets.Split.TRAIN )]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
import pyspark
def get_arrow_batch_size(__UpperCAmelCase ):
for batch in it:
yield pa.RecordBatch.from_pydict({'batch_bytes': [batch.nbytes]} )
__UpperCamelCase = self.df.count()
__UpperCamelCase = df_num_rows if df_num_rows <= 100 else 100
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
__UpperCamelCase = (
self.df.limit(__UpperCAmelCase )
.repartition(1 )
.mapInArrow(__UpperCAmelCase , 'batch_bytes: long' )
.agg(pyspark.sql.functions.sum('batch_bytes' ).alias('sample_bytes' ) )
.collect()[0]
.sample_bytes
/ sample_num_rows
)
__UpperCamelCase = approx_bytes_per_row * df_num_rows
if approx_total_size > max_shard_size:
# Make sure there is at least one row per partition.
__UpperCamelCase = min(__UpperCAmelCase , int(approx_total_size / max_shard_size ) )
__UpperCamelCase = self.df.repartition(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
import pyspark
__UpperCamelCase = ParquetWriter if file_format == 'parquet' else ArrowWriter
__UpperCamelCase = os.path.join(self._working_dir , os.path.basename(__UpperCAmelCase ) ) if self._working_dir else fpath
__UpperCamelCase = file_format == 'parquet'
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
# pickling the SparkContext.
__UpperCamelCase = self.config.features
__UpperCamelCase = self._writer_batch_size
__UpperCamelCase = self._fs.storage_options
def write_arrow(__UpperCAmelCase ):
# Within the same SparkContext, no two task attempts will share the same attempt ID.
__UpperCamelCase = pyspark.TaskContext().taskAttemptId()
__UpperCamelCase = next(__UpperCAmelCase , __UpperCAmelCase )
if first_batch is None:
# Some partitions might not receive any data.
return pa.RecordBatch.from_arrays(
[[task_id], [0], [0]] , names=['task_id', 'num_examples', 'num_bytes'] , )
__UpperCamelCase = 0
__UpperCamelCase = writer_class(
features=__UpperCAmelCase , path=working_fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , )
__UpperCamelCase = pa.Table.from_batches([first_batch] )
writer.write_table(__UpperCAmelCase )
for batch in it:
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
__UpperCamelCase , __UpperCamelCase = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
shard_id += 1
__UpperCamelCase = writer_class(
features=writer._features , path=working_fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , writer_batch_size=__UpperCAmelCase , storage_options=__UpperCAmelCase , embed_local_files=__UpperCAmelCase , )
__UpperCamelCase = pa.Table.from_batches([batch] )
writer.write_table(__UpperCAmelCase )
if writer._num_bytes > 0:
__UpperCamelCase , __UpperCamelCase = writer.finalize()
writer.close()
yield pa.RecordBatch.from_arrays(
[[task_id], [num_examples], [num_bytes]] , names=['task_id', 'num_examples', 'num_bytes'] , )
if working_fpath != fpath:
for file in os.listdir(os.path.dirname(__UpperCAmelCase ) ):
__UpperCamelCase = os.path.join(os.path.dirname(__UpperCAmelCase ) , os.path.basename(__UpperCAmelCase ) )
shutil.move(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = (
self.df.mapInArrow(__UpperCAmelCase , 'task_id: long, num_examples: long, num_bytes: long' )
.groupBy('task_id' )
.agg(
pyspark.sql.functions.sum('num_examples' ).alias('total_num_examples' ) , pyspark.sql.functions.sum('num_bytes' ).alias('total_num_bytes' ) , pyspark.sql.functions.count('num_bytes' ).alias('num_shards' ) , pyspark.sql.functions.collect_list('num_examples' ).alias('shard_lengths' ) , )
.collect()
)
for row in stats:
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "arrow" , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ):
'''simple docstring'''
self._validate_cache_dir()
__UpperCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE )
self._repartition_df_if_needed(__UpperCAmelCase )
__UpperCamelCase = not is_remote_filesystem(self._fs )
__UpperCamelCase = os.path.join if is_local else posixpath.join
__UpperCamelCase = '-TTTTT-SSSSS-of-NNNNN'
__UpperCamelCase = F'{self.name}-{split_generator.name}{SUFFIX}.{file_format}'
__UpperCamelCase = path_join(self._output_dir , __UpperCAmelCase )
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = []
__UpperCamelCase = []
for task_id, content in self._prepare_split_single(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = content
if num_bytes > 0:
total_num_examples += num_examples
total_num_bytes += num_bytes
total_shards += num_shards
task_id_and_num_shards.append((task_id, num_shards) )
all_shard_lengths.extend(__UpperCAmelCase )
__UpperCamelCase = total_num_examples
__UpperCamelCase = total_num_bytes
# should rename everything at the end
logger.debug(F'Renaming {total_shards} shards.' )
if total_shards > 1:
__UpperCamelCase = all_shard_lengths
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
# pickling error due to pickling the SparkContext.
__UpperCamelCase = self._fs
# use the -SSSSS-of-NNNNN pattern
def _rename_shard(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
rename(
__UpperCAmelCase , fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , fpath.replace('TTTTT-SSSSS' , F'{global_shard_id:05d}' ).replace('NNNNN' , F'{total_shards:05d}' ) , )
__UpperCamelCase = []
__UpperCamelCase = 0
for i in range(len(__UpperCAmelCase ) ):
__UpperCamelCase , __UpperCamelCase = task_id_and_num_shards[i]
for shard_id in range(__UpperCAmelCase ):
args.append([task_id, shard_id, global_shard_id] )
global_shard_id += 1
self._spark.sparkContext.parallelize(__UpperCAmelCase , len(__UpperCAmelCase ) ).map(lambda __UpperCAmelCase : _rename_shard(*__UpperCAmelCase ) ).collect()
else:
# don't use any pattern
__UpperCamelCase = 0
__UpperCamelCase = task_id_and_num_shards[0][0]
self._rename(
fpath.replace('SSSSS' , F'{shard_id:05d}' ).replace('TTTTT' , F'{task_id:05d}' ) , fpath.replace(__UpperCAmelCase , '' ) , )
def UpperCAmelCase ( self , __UpperCAmelCase , ):
'''simple docstring'''
return SparkExamplesIterable(self.df )
| 316 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str:
__UpperCamelCase = s.rsplit(snake_case , snake_case )
return new.join(snake_case )
def A ( snake_case :List[Any] ) -> int:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def A ( snake_case :str ) -> Union[str, Any]:
__UpperCamelCase = {}
__UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
__UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
__UpperCamelCase = key.replace('res_path.' , 'res_path.path.' )
if key.endswith('.w' ):
__UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 )
if key.endswith('.b' ):
__UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 )
__UpperCamelCase = value.float()
return upgrade
@torch.no_grad()
def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int:
from dall_e import Encoder
__UpperCamelCase = Encoder()
if os.path.exists(snake_case ):
__UpperCamelCase = torch.load(snake_case )
else:
__UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = ckpt.state_dict()
encoder.load_state_dict(snake_case )
if config_path is not None:
__UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case )
else:
__UpperCamelCase = FlavaImageCodebookConfig()
__UpperCamelCase = FlavaImageCodebook(snake_case ).eval()
__UpperCamelCase = encoder.state_dict()
__UpperCamelCase = upgrade_state_dict(snake_case )
hf_model.load_state_dict(snake_case )
__UpperCamelCase = hf_model.state_dict()
__UpperCamelCase = count_parameters(snake_case )
__UpperCamelCase = count_parameters(snake_case )
assert torch.allclose(snake_case , snake_case , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(snake_case )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCamelCase : int = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 316 | 1 |
"""simple docstring"""
import inspect
import unittest
from transformers import DPTConfig
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel
from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=2 , __UpperCAmelCase=32 , __UpperCAmelCase=16 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=[0, 1, 2, 3] , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=[1, 384, 24, 24] , __UpperCAmelCase=True , __UpperCAmelCase=None , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = backbone_out_indices
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = backbone_featmap_shape
__UpperCamelCase = scope
__UpperCamelCase = is_hybrid
# sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token)
__UpperCamelCase = (image_size // patch_size) ** 2
__UpperCamelCase = num_patches + 1
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
'hidden_sizes': [96, 192, 384, 768],
'num_groups': 2,
}
return DPTConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCAmelCase , backbone_featmap_shape=self.backbone_featmap_shape , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = DPTModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DPTForDepthEstimation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = DPTForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else ()
lowercase = (
{
"depth-estimation": DPTForDepthEstimation,
"feature-extraction": DPTModel,
"image-segmentation": DPTForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = DPTModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='DPT does not use inputs_embeds' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
__UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_depth_estimation(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = True
if model_class in get_values(__UpperCAmelCase ):
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class in self.all_model_classes:
if model_class.__name__ == "DPTForDepthEstimation":
continue
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = False
__UpperCamelCase = True
if model_class in get_values(__UpperCAmelCase ) or not model_class.supports_gradient_checkpointing:
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(config=__UpperCAmelCase )
# Skip the check for the backbone
__UpperCamelCase = []
for name, module in model.named_modules():
if module.__class__.__name__ == "DPTViTHybridEmbeddings":
__UpperCamelCase = [F'{name}.{key}' for key in module.state_dict().keys()]
break
for name, param in model.named_parameters():
if param.requires_grad:
if name in backbone_params:
continue
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]:
__UpperCamelCase = DPTModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 'add'
with self.assertRaises(__UpperCAmelCase ):
__UpperCamelCase = DPTForDepthEstimation(__UpperCAmelCase )
def A ( ) -> List[Any]:
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
@slow
class __lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = DPTImageProcessor.from_pretrained('Intel/dpt-hybrid-midas' )
__UpperCamelCase = DPTForDepthEstimation.from_pretrained('Intel/dpt-hybrid-midas' ).to(__UpperCAmelCase )
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.predicted_depth
# verify the predicted depth
__UpperCamelCase = torch.Size((1, 384, 384) )
self.assertEqual(predicted_depth.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor(
[[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCAmelCase , atol=1E-4 ) )
| 316 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
UpperCamelCase : str = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."
} , )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = v.to_dict()
return d
| 316 | 1 |
"""simple docstring"""
import argparse
from argparse import Namespace
import torch
from torch import nn
from transformers import XGLMConfig, XGLMForCausalLM
def A ( snake_case :List[Any] ) -> Tuple:
__UpperCamelCase = [
'decoder.version',
'decoder.output_projection.weight',
'_float_tensor',
'decoder.embed_positions._float_tensor',
]
for k in ignore_keys:
state_dict.pop(snake_case , snake_case )
def A ( snake_case :Any ) -> Optional[int]:
__UpperCamelCase , __UpperCamelCase = emb.weight.shape
__UpperCamelCase = nn.Linear(snake_case , snake_case , bias=snake_case )
__UpperCamelCase = emb.weight.data
return lin_layer
def A ( snake_case :Tuple ) -> Tuple:
__UpperCamelCase = torch.load(snake_case , map_location='cpu' )
__UpperCamelCase = Namespace(**checkpoint['cfg']['model'] )
__UpperCamelCase = checkpoint['model']
remove_ignore_keys_(snake_case )
__UpperCamelCase = state_dict['decoder.embed_tokens.weight'].shape[0]
__UpperCamelCase = {key.replace('decoder' , 'model' ): val for key, val in state_dict.items()}
__UpperCamelCase = XGLMConfig(
vocab_size=snake_case , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='gelu' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , )
__UpperCamelCase = XGLMForCausalLM(snake_case )
__UpperCamelCase = model.load_state_dict(snake_case , strict=snake_case )
print(snake_case )
__UpperCamelCase = make_linear_from_emb(model.model.embed_tokens )
return model
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument("fairseq_path", type=str, help="path to a model.pt on local filesystem.")
parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
UpperCamelCase : str = parser.parse_args()
UpperCamelCase : int = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path)
model.save_pretrained(args.pytorch_dump_folder_path)
| 316 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
UpperCamelCase : List[str] = TypeVar("KEY")
UpperCamelCase : List[str] = TypeVar("VAL")
@dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( Generic[KEY, VAL] ):
lowercase = 42
lowercase = 42
class __lowerCAmelCase ( _Item ):
def __init__( self ):
'''simple docstring'''
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __bool__( self ):
'''simple docstring'''
return False
UpperCamelCase : Any = _DeletedItem()
class __lowerCAmelCase ( MutableMapping[KEY, VAL] ):
def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ):
'''simple docstring'''
__UpperCamelCase = initial_block_size
__UpperCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__UpperCamelCase = capacity_factor
__UpperCamelCase = 0
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return hash(__UpperCAmelCase ) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return (ind + 1) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets[ind]
if not stored:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
return True
else:
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
if len(self._buckets ) <= self._initial_block_size:
return False
__UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets
__UpperCamelCase = [None] * new_size
__UpperCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) * 2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) // 2 )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._get_bucket_index(__UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
__UpperCamelCase = self._get_next_ind(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
break
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(__UpperCAmelCase , __UpperCAmelCase )
def __delitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
raise KeyError(__UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
__UpperCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCAmelCase )
def __len__( self ):
'''simple docstring'''
return self._len
def __iter__( self ):
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self ):
'''simple docstring'''
__UpperCamelCase = ' ,'.join(
F'{item.key}: {item.val}' for item in self._buckets if item )
return F'HashMap({val_string})'
| 316 | 1 |
"""simple docstring"""
UpperCamelCase : List[str] = 9.8_06_65
def A ( snake_case :float , snake_case :float , snake_case :float = g ) -> float:
if fluid_density <= 0:
raise ValueError('Impossible fluid density' )
if volume < 0:
raise ValueError('Impossible Object volume' )
if gravity <= 0:
raise ValueError('Impossible Gravity' )
return fluid_density * gravity * volume
if __name__ == "__main__":
import doctest
# run doctest
doctest.testmod()
| 316 |
"""simple docstring"""
def A ( snake_case :int , snake_case :int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
UpperCamelCase : Any = {
0: "0",
1: "1",
2: "2",
3: "3",
4: "4",
5: "5",
6: "6",
7: "7",
8: "8",
9: "9",
1_0: "a",
1_1: "b",
1_2: "c",
1_3: "d",
1_4: "e",
1_5: "f",
}
def A ( snake_case :float ) -> str:
assert type(snake_case ) in (int, float) and decimal == int(snake_case )
__UpperCamelCase = int(snake_case )
__UpperCamelCase = ''
__UpperCamelCase = False
if decimal < 0:
__UpperCamelCase = True
decimal *= -1
while decimal > 0:
__UpperCamelCase , __UpperCamelCase = divmod(snake_case , 1_6 )
__UpperCamelCase = values[remainder] + hexadecimal
__UpperCamelCase = '0x' + hexadecimal
if negative:
__UpperCamelCase = '-' + hexadecimal
return hexadecimal
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = 42
lowercase = 42
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.unet.config.sample_size
__UpperCamelCase = (batch_size, 3, img_size, img_size)
__UpperCamelCase = self.unet
__UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma
__UpperCamelCase = sample.to(self.device )
self.scheduler.set_timesteps(__UpperCAmelCase )
self.scheduler.set_sigmas(__UpperCAmelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
# prediction step
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean
__UpperCamelCase = sample_mean.clamp(0 , 1 )
__UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import qiskit
def A ( snake_case :int = 2 ) -> qiskit.result.counts.Counts:
__UpperCamelCase = qubits
# Using Aer's simulator
__UpperCamelCase = qiskit.Aer.get_backend('aer_simulator' )
# Creating a Quantum Circuit acting on the q register
__UpperCamelCase = qiskit.QuantumCircuit(snake_case , snake_case )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , snake_case ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , snake_case )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(snake_case ) ) , list(range(snake_case ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
__UpperCamelCase = qiskit.execute(snake_case , snake_case , shots=1_0_0_0 )
return job.result().get_counts(snake_case )
if __name__ == "__main__":
print(f'''Total count for various states are: {quantum_entanglement(3)}''')
| 316 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :int ) -> bool:
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase : Tuple = logging.get_logger(__name__)
UpperCamelCase : Tuple = "▁"
UpperCamelCase : List[Any] = {
"vocab_file": "vocab.json",
"spm_file": "sentencepiece.bpe.model",
"tokenizer_config_file": "tokenizer_config.json",
}
UpperCamelCase : Optional[Any] = {
"vocab_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json",
},
"spm_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model",
},
"tokenizer_config_file": {
"facebook/m2m100_418M": "https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json",
"facebook/m2m100_1.2B": "https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json",
},
}
UpperCamelCase : Union[str, Any] = {
"facebook/m2m100_418M": 1_0_2_4,
}
# fmt: off
UpperCamelCase : Dict = {
"m2m100": ["af", "am", "ar", "ast", "az", "ba", "be", "bg", "bn", "br", "bs", "ca", "ceb", "cs", "cy", "da", "de", "el", "en", "es", "et", "fa", "ff", "fi", "fr", "fy", "ga", "gd", "gl", "gu", "ha", "he", "hi", "hr", "ht", "hu", "hy", "id", "ig", "ilo", "is", "it", "ja", "jv", "ka", "kk", "km", "kn", "ko", "lb", "lg", "ln", "lo", "lt", "lv", "mg", "mk", "ml", "mn", "mr", "ms", "my", "ne", "nl", "no", "ns", "oc", "or", "pa", "pl", "ps", "pt", "ro", "ru", "sd", "si", "sk", "sl", "so", "sq", "sr", "ss", "su", "sv", "sw", "ta", "th", "tl", "tn", "tr", "uk", "ur", "uz", "vi", "wo", "xh", "yi", "yo", "zh", "zu"],
"wmt21": ["en", "ha", "is", "ja", "cs", "ru", "zh", "de"]
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = ["input_ids", "attention_mask"]
lowercase = []
lowercase = []
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="</s>" , __UpperCAmelCase="<pad>" , __UpperCAmelCase="<unk>" , __UpperCAmelCase="m2m100" , __UpperCAmelCase = None , __UpperCAmelCase=8 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
__UpperCamelCase = language_codes
__UpperCamelCase = FAIRSEQ_LANGUAGE_CODES[language_codes]
__UpperCamelCase = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code}
__UpperCamelCase = kwargs.get('additional_special_tokens' , [] )
kwargs["additional_special_tokens"] += [
self.get_lang_token(__UpperCAmelCase )
for lang_code in fairseq_language_code
if self.get_lang_token(__UpperCAmelCase ) not in kwargs["additional_special_tokens"]
]
super().__init__(
src_lang=__UpperCAmelCase , tgt_lang=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , sep_token=__UpperCAmelCase , unk_token=__UpperCAmelCase , pad_token=__UpperCAmelCase , language_codes=__UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = vocab_file
__UpperCamelCase = load_json(__UpperCAmelCase )
__UpperCamelCase = {v: k for k, v in self.encoder.items()}
__UpperCamelCase = spm_file
__UpperCamelCase = load_spm(__UpperCAmelCase , self.sp_model_kwargs )
__UpperCamelCase = len(self.encoder )
__UpperCamelCase = {
self.get_lang_token(__UpperCAmelCase ): self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase )
}
__UpperCamelCase = {lang_code: self.encoder_size + i for i, lang_code in enumerate(__UpperCAmelCase )}
__UpperCamelCase = {v: k for k, v in self.lang_token_to_id.items()}
__UpperCamelCase = src_lang if src_lang is not None else 'en'
__UpperCamelCase = tgt_lang
__UpperCamelCase = self.get_lang_id(self._src_lang )
self.set_src_lang_special_tokens(self._src_lang )
__UpperCamelCase = num_madeup_words
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return len(self.encoder ) + len(self.lang_token_to_id )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return self._src_lang
@src_lang.setter
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = new_src_lang
self.set_src_lang_special_tokens(self._src_lang )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.sp_model.encode(__UpperCAmelCase , out_type=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if token in self.lang_token_to_id:
return self.lang_token_to_id[token]
return self.encoder.get(__UpperCAmelCase , self.encoder[self.unk_token] )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if index in self.id_to_lang_token:
return self.id_to_lang_token[index]
return self.decoder.get(__UpperCAmelCase , self.unk_token )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
__UpperCamelCase = ''
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
out_string += self.sp_model.decode(__UpperCAmelCase ) + token
__UpperCamelCase = []
else:
current_sub_tokens.append(__UpperCAmelCase )
out_string += self.sp_model.decode(__UpperCAmelCase )
return out_string.strip()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = False ):
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__UpperCAmelCase , token_ids_a=__UpperCAmelCase , already_has_special_tokens=__UpperCAmelCase )
__UpperCamelCase = [1] * len(self.prefix_tokens )
__UpperCamelCase = [1] * len(self.suffix_tokens )
if token_ids_a is None:
return prefix_ones + ([0] * len(__UpperCAmelCase )) + suffix_ones
return prefix_ones + ([0] * len(__UpperCAmelCase )) + ([0] * len(__UpperCAmelCase )) + suffix_ones
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + self.suffix_tokens
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = {self.convert_ids_to_tokens(__UpperCAmelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self ):
'''simple docstring'''
__UpperCamelCase = self.__dict__.copy()
__UpperCamelCase = None
return state
def __setstate__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = d
# for backward compatibility
if not hasattr(self , 'sp_model_kwargs' ):
__UpperCamelCase = {}
__UpperCamelCase = load_spm(self.spm_file , self.sp_model_kwargs )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = Path(__UpperCAmelCase )
if not save_dir.is_dir():
raise OSError(F'{save_directory} should be a directory' )
__UpperCamelCase = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file']
)
__UpperCamelCase = save_dir / (
(filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file']
)
save_json(self.encoder , __UpperCAmelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(__UpperCAmelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __UpperCAmelCase )
elif not os.path.isfile(self.spm_file ):
with open(__UpperCAmelCase , 'wb' ) as fi:
__UpperCamelCase = self.sp_model.serialized_model_proto()
fi.write(__UpperCAmelCase )
return (str(__UpperCAmelCase ), str(__UpperCAmelCase ))
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "en" , __UpperCAmelCase = None , __UpperCAmelCase = "ro" , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = src_lang
__UpperCamelCase = tgt_lang
self.set_src_lang_special_tokens(self.src_lang )
return super().prepare_seqaseq_batch(__UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
if src_lang is None or tgt_lang is None:
raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' )
__UpperCamelCase = src_lang
__UpperCamelCase = self(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , **__UpperCAmelCase )
__UpperCamelCase = self.get_lang_id(__UpperCAmelCase )
__UpperCamelCase = tgt_lang_id
return inputs
def UpperCAmelCase ( self ):
'''simple docstring'''
self.set_src_lang_special_tokens(self.src_lang )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.set_tgt_lang_special_tokens(self.tgt_lang )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.get_lang_token(__UpperCAmelCase )
__UpperCamelCase = self.lang_token_to_id[lang_token]
__UpperCamelCase = [self.cur_lang_id]
__UpperCamelCase = [self.eos_token_id]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.get_lang_token(__UpperCAmelCase )
__UpperCamelCase = self.lang_token_to_id[lang_token]
__UpperCamelCase = [self.cur_lang_id]
__UpperCamelCase = [self.eos_token_id]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.lang_code_to_token[lang]
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.get_lang_token(__UpperCAmelCase )
return self.lang_token_to_id[lang_token]
def A ( snake_case :str , snake_case :Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
__UpperCamelCase = sentencepiece.SentencePieceProcessor(**snake_case )
spm.Load(str(snake_case ) )
return spm
def A ( snake_case :str ) -> Union[Dict, List]:
with open(snake_case , 'r' ) as f:
return json.load(snake_case )
def A ( snake_case :Union[str, Any] , snake_case :str ) -> None:
with open(snake_case , 'w' ) as f:
json.dump(snake_case , snake_case , indent=2 )
| 316 |
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCamelCase : int = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCamelCase : Optional[Any] = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCamelCase : str = sorted(arg_to_scheduler.keys())
UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class __lowerCAmelCase ( pl.LightningModule ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
__UpperCamelCase = 0
__UpperCamelCase = Path(self.hparams.output_dir )
__UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCamelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
__UpperCamelCase = config
__UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
__UpperCamelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = tokenizer
__UpperCamelCase = MODEL_MODES[mode]
if model is None:
__UpperCamelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = model
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCamelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model
__UpperCamelCase = ['bias', 'LayerNorm.weight']
__UpperCamelCase = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__UpperCamelCase = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
__UpperCamelCase = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__UpperCamelCase = optimizer
__UpperCamelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_end(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if stage == "test":
__UpperCamelCase = len(self.test_dataloader().dataset )
else:
__UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
__UpperCamelCase = len(self.train_dataloader().dataset )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ):
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.train_loader
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.output_dir.joinpath('best_tfmr' )
__UpperCamelCase = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
parser.add_argument(
'--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase )
parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--adafactor' , action='store_true' )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = trainer.lr_schedulers[0]['scheduler']
__UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Test results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log and save results to file
__UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(__UpperCAmelCase , 'w' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def A ( snake_case :Any , snake_case :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=snake_case , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]:
pl.seed_everything(args.seed )
# init model
__UpperCamelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=snake_case )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCamelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(snake_case )
if logging_callback is None:
__UpperCamelCase = LoggingCallback()
__UpperCamelCase = {}
if args.fpaa:
__UpperCamelCase = 1_6
if args.gpus > 1:
__UpperCamelCase = 'auto'
__UpperCamelCase = 'ddp'
__UpperCamelCase = args.accumulate_grad_batches
__UpperCamelCase = None
__UpperCamelCase = 'auto'
__UpperCamelCase = pl.Trainer.from_argparse_args(
snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , )
if args.do_train:
trainer.fit(snake_case )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 316 | 1 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase : int = {
"configuration_xmod": [
"XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP",
"XmodConfig",
"XmodOnnxConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Union[str, Any] = [
"XMOD_PRETRAINED_MODEL_ARCHIVE_LIST",
"XmodForCausalLM",
"XmodForMaskedLM",
"XmodForMultipleChoice",
"XmodForQuestionAnswering",
"XmodForSequenceClassification",
"XmodForTokenClassification",
"XmodModel",
"XmodPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xmod import (
XMOD_PRETRAINED_MODEL_ARCHIVE_LIST,
XmodForCausalLM,
XmodForMaskedLM,
XmodForMultipleChoice,
XmodForQuestionAnswering,
XmodForSequenceClassification,
XmodForTokenClassification,
XmodModel,
XmodPreTrainedModel,
)
else:
import sys
UpperCamelCase : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 316 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase : Dict = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
UpperCamelCase : Dict = {
"gpt2": 1_0_2_4,
"gpt2-medium": 1_0_2_4,
"gpt2-large": 1_0_2_4,
"gpt2-xl": 1_0_2_4,
"distilgpt2": 1_0_2_4,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["input_ids", "attention_mask"]
lowercase = GPTaTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase )
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space:
__UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**__UpperCAmelCase )
__UpperCamelCase = add_prefix_space
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
__UpperCamelCase = input_ids[-self.model_max_length :]
return input_ids
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Dict = {
"google/pegasus-large": "https://huggingface.co/google/pegasus-large/resolve/main/config.json",
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "pegasus"
lowercase = ["past_key_values"]
lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , __UpperCAmelCase=5_0265 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=1 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = d_model
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.encoder_attention_heads
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.d_model
| 316 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str:
output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , )
else:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , )
@torch.no_grad()
def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]:
__UpperCamelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__UpperCamelCase = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
__UpperCamelCase = 'cpu'
__UpperCamelCase = Path(snake_case )
# VAE DECODER
__UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' )
__UpperCamelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
__UpperCamelCase = vae_decoder.decode
onnx_export(
snake_case , model_args=(
torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=snake_case , )
del vae_decoder
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=1_4,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
UpperCamelCase : List[Any] = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 316 | 1 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
UpperCamelCase : Tuple = "|".join(sys.argv[1:])
UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 316 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None:
__UpperCamelCase = ""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ):
__UpperCamelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case )
return decoded
def A ( snake_case :list[int] ) -> list[str]:
__UpperCamelCase = []
for key in product(snake_case , repeat=3 ):
__UpperCamelCase = try_key(snake_case , snake_case )
if encoded is not None:
possibles.append(snake_case )
return possibles
def A ( snake_case :list[str] , snake_case :str ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def A ( snake_case :str = "p059_cipher.txt" ) -> int:
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' )
__UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )]
__UpperCamelCase = filter_valid_chars(snake_case )
for common_word in COMMON_WORDS:
__UpperCamelCase = filter_common_word(snake_case , snake_case )
if len(snake_case ) == 1:
break
__UpperCamelCase = possibles[0]
return sum(ord(snake_case ) for char in decoded_text )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 316 | 1 |
"""simple docstring"""
import os
from typing import Optional
import fsspec
from fsspec.archive import AbstractArchiveFileSystem
from fsspec.utils import DEFAULT_BLOCK_SIZE
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ""
lowercase = (
None # protocol passed in prefix to the url. ex: "gzip", for gzip://file.txt::http://foo.bar/file.txt.gz
)
lowercase = None # compression type in fsspec. ex: "gzip"
lowercase = None # extension of the filename to strip. ex: "".gz" to get file.txt from file.txt.gz
def __init__( self , __UpperCAmelCase = "" , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase ):
'''simple docstring'''
super().__init__(self , **__UpperCAmelCase )
# always open as "rb" since fsspec can then use the TextIOWrapper to make it work for "r" mode
__UpperCamelCase = fsspec.open(
__UpperCAmelCase , mode='rb' , protocol=__UpperCAmelCase , compression=self.compression , client_kwargs={
'requote_redirect_url': False, # see https://github.com/huggingface/datasets/pull/5459
'trust_env': True, # Enable reading proxy env variables.
**(target_options or {}).pop('client_kwargs' , {} ), # To avoid issues if it was already passed.
} , **(target_options or {}) , )
__UpperCamelCase = os.path.basename(self.file.path.split('::' )[0] )
__UpperCamelCase = (
self.compressed_name[: self.compressed_name.rindex('.' )]
if '.' in self.compressed_name
else self.compressed_name
)
__UpperCamelCase = None
@classmethod
def UpperCAmelCase ( cls , __UpperCAmelCase ):
'''simple docstring'''
return super()._strip_protocol(__UpperCAmelCase ).lstrip('/' )
def UpperCAmelCase ( self ):
'''simple docstring'''
if self.dir_cache is None:
__UpperCamelCase = {**self.file.fs.info(self.file.path ), 'name': self.uncompressed_name}
__UpperCamelCase = {f['name']: f}
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.file.open().read()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self._strip_protocol(__UpperCAmelCase )
if mode != "rb":
raise ValueError(F'Tried to read with mode {mode} on file {self.file.path} opened with mode \'rb\'' )
return self.file.open()
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "bz2"
lowercase = "bz2"
lowercase = ".bz2"
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "gzip"
lowercase = "gzip"
lowercase = ".gz"
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "lz4"
lowercase = "lz4"
lowercase = ".lz4"
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "xz"
lowercase = "xz"
lowercase = ".xz"
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "zstd"
lowercase = "zstd"
lowercase = ".zst"
def __init__( self , __UpperCAmelCase , __UpperCAmelCase = "rb" , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = DEFAULT_BLOCK_SIZE , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
fo=__UpperCAmelCase , mode=__UpperCAmelCase , target_protocol=__UpperCAmelCase , target_options=__UpperCAmelCase , block_size=__UpperCAmelCase , **__UpperCAmelCase , )
# We need to wrap the zstd decompressor to avoid this error in fsspec==2021.7.0 and zstandard==0.15.2:
#
# File "/Users/user/.virtualenvs/hf-datasets/lib/python3.7/site-packages/fsspec/core.py", line 145, in open
# out.close = close
# AttributeError: 'zstd.ZstdDecompressionReader' object attribute 'close' is read-only
#
# see https://github.com/intake/filesystem_spec/issues/725
__UpperCamelCase = self.file.__enter__
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = file_
def __enter__( self ):
'''simple docstring'''
self._file.__enter__()
return self
def __exit__( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
self._file.__exit__(*__UpperCAmelCase , **__UpperCAmelCase )
def __iter__( self ):
'''simple docstring'''
return iter(self._file )
def UpperCAmelCase ( self ):
'''simple docstring'''
return next(self._file )
def __getattr__( self , __UpperCAmelCase ):
'''simple docstring'''
return getattr(self._file , __UpperCAmelCase )
def fixed_enter(*__UpperCAmelCase , **__UpperCAmelCase ):
return WrappedFile(_enter(*__UpperCAmelCase , **__UpperCAmelCase ) )
__UpperCamelCase = fixed_enter
| 316 |
"""simple docstring"""
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.60_93_44,
"knot": 1.8_52,
}
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.2_77_77_77_78,
"mph": 0.6_21_37_11_92,
"knot": 0.5_39_95_68_03,
}
def A ( snake_case :float , snake_case :str , snake_case :str ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__UpperCamelCase = (
f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
f'Valid values are: {", ".join(snake_case )}'
)
raise ValueError(snake_case )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
import logging
import os
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
from filelock import FileLock
from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available
UpperCamelCase : Dict = logging.getLogger(__name__)
@dataclass
class __lowerCAmelCase :
lowercase = 42
lowercase = 42
lowercase = 42
@dataclass
class __lowerCAmelCase :
lowercase = 42
lowercase = 42
lowercase = None
lowercase = None
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "train"
lowercase = "dev"
lowercase = "test"
class __lowerCAmelCase :
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
raise NotImplementedError
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase ):
'''simple docstring'''
raise NotImplementedError
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=False , __UpperCAmelCase="[CLS]" , __UpperCAmelCase=1 , __UpperCAmelCase="[SEP]" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=0 , __UpperCAmelCase=0 , __UpperCAmelCase=-100 , __UpperCAmelCase=0 , __UpperCAmelCase=True , ):
'''simple docstring'''
__UpperCamelCase = {label: i for i, label in enumerate(__UpperCAmelCase )}
__UpperCamelCase = []
for ex_index, example in enumerate(__UpperCAmelCase ):
if ex_index % 1_0000 == 0:
logger.info('Writing example %d of %d' , __UpperCAmelCase , len(__UpperCAmelCase ) )
__UpperCamelCase = []
__UpperCamelCase = []
for word, label in zip(example.words , example.labels ):
__UpperCamelCase = tokenizer.tokenize(__UpperCAmelCase )
# bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space.
if len(__UpperCAmelCase ) > 0:
tokens.extend(__UpperCAmelCase )
# Use the real label id for the first token of the word, and padding ids for the remaining tokens
label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(__UpperCAmelCase ) - 1) )
# Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa.
__UpperCamelCase = tokenizer.num_special_tokens_to_add()
if len(__UpperCAmelCase ) > max_seq_length - special_tokens_count:
__UpperCamelCase = tokens[: (max_seq_length - special_tokens_count)]
__UpperCamelCase = label_ids[: (max_seq_length - special_tokens_count)]
# The convention in BERT is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens += [sep_token]
label_ids += [pad_token_label_id]
if sep_token_extra:
# roberta uses an extra separator b/w pairs of sentences
tokens += [sep_token]
label_ids += [pad_token_label_id]
__UpperCamelCase = [sequence_a_segment_id] * len(__UpperCAmelCase )
if cls_token_at_end:
tokens += [cls_token]
label_ids += [pad_token_label_id]
segment_ids += [cls_token_segment_id]
else:
__UpperCamelCase = [cls_token] + tokens
__UpperCamelCase = [pad_token_label_id] + label_ids
__UpperCamelCase = [cls_token_segment_id] + segment_ids
__UpperCamelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
# The mask has 1 for real tokens and 0 for padding tokens. Only real
# tokens are attended to.
__UpperCamelCase = [1 if mask_padding_with_zero else 0] * len(__UpperCAmelCase )
# Zero-pad up to the sequence length.
__UpperCamelCase = max_seq_length - len(__UpperCAmelCase )
if pad_on_left:
__UpperCamelCase = ([pad_token] * padding_length) + input_ids
__UpperCamelCase = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask
__UpperCamelCase = ([pad_token_segment_id] * padding_length) + segment_ids
__UpperCamelCase = ([pad_token_label_id] * padding_length) + label_ids
else:
input_ids += [pad_token] * padding_length
input_mask += [0 if mask_padding_with_zero else 1] * padding_length
segment_ids += [pad_token_segment_id] * padding_length
label_ids += [pad_token_label_id] * padding_length
assert len(__UpperCAmelCase ) == max_seq_length
assert len(__UpperCAmelCase ) == max_seq_length
assert len(__UpperCAmelCase ) == max_seq_length
assert len(__UpperCAmelCase ) == max_seq_length
if ex_index < 5:
logger.info('*** Example ***' )
logger.info('guid: %s' , example.guid )
logger.info('tokens: %s' , ' '.join([str(__UpperCAmelCase ) for x in tokens] ) )
logger.info('input_ids: %s' , ' '.join([str(__UpperCAmelCase ) for x in input_ids] ) )
logger.info('input_mask: %s' , ' '.join([str(__UpperCAmelCase ) for x in input_mask] ) )
logger.info('segment_ids: %s' , ' '.join([str(__UpperCAmelCase ) for x in segment_ids] ) )
logger.info('label_ids: %s' , ' '.join([str(__UpperCAmelCase ) for x in label_ids] ) )
if "token_type_ids" not in tokenizer.model_input_names:
__UpperCamelCase = None
features.append(
InputFeatures(
input_ids=__UpperCAmelCase , attention_mask=__UpperCAmelCase , token_type_ids=__UpperCAmelCase , label_ids=__UpperCAmelCase ) )
return features
if is_torch_available():
import torch
from torch import nn
from torch.utils.data import Dataset
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = 42
lowercase = nn.CrossEntropyLoss().ignore_index
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase=False , __UpperCAmelCase = Split.train , ):
'''simple docstring'''
__UpperCamelCase = os.path.join(
__UpperCAmelCase , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(__UpperCAmelCase ) ) , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
__UpperCamelCase = cached_features_file + '.lock'
with FileLock(__UpperCAmelCase ):
if os.path.exists(__UpperCAmelCase ) and not overwrite_cache:
logger.info(F'Loading features from cached file {cached_features_file}' )
__UpperCamelCase = torch.load(__UpperCAmelCase )
else:
logger.info(F'Creating features from dataset file at {data_dir}' )
__UpperCamelCase = token_classification_task.read_examples_from_file(__UpperCAmelCase , __UpperCAmelCase )
# TODO clean up all this to leverage built-in features of tokenizers
__UpperCamelCase = token_classification_task.convert_examples_to_features(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
logger.info(F'Saving features into cached file {cached_features_file}' )
torch.save(self.features , __UpperCAmelCase )
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
return self.features[i]
if is_tf_available():
import tensorflow as tf
class __lowerCAmelCase :
lowercase = 42
lowercase = -100
def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase=False , __UpperCAmelCase = Split.train , ):
'''simple docstring'''
__UpperCamelCase = token_classification_task.read_examples_from_file(__UpperCAmelCase , __UpperCAmelCase )
# TODO clean up all this to leverage built-in features of tokenizers
__UpperCamelCase = token_classification_task.convert_examples_to_features(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=__UpperCAmelCase , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , )
def gen():
for ex in self.features:
if ex.token_type_ids is None:
yield (
{"input_ids": ex.input_ids, "attention_mask": ex.attention_mask},
ex.label_ids,
)
else:
yield (
{
"input_ids": ex.input_ids,
"attention_mask": ex.attention_mask,
"token_type_ids": ex.token_type_ids,
},
ex.label_ids,
)
if "token_type_ids" not in tokenizer.model_input_names:
__UpperCamelCase = tf.data.Dataset.from_generator(
__UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , (
{'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )},
tf.TensorShape([None] ),
) , )
else:
__UpperCamelCase = tf.data.Dataset.from_generator(
__UpperCAmelCase , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , (
{
'input_ids': tf.TensorShape([None] ),
'attention_mask': tf.TensorShape([None] ),
'token_type_ids': tf.TensorShape([None] ),
},
tf.TensorShape([None] ),
) , )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) )
return self.dataset
def __len__( self ):
'''simple docstring'''
return len(self.features )
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
return self.features[i]
| 316 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = IFInpaintingSuperResolutionPipeline
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
lowercase = PipelineTesterMixin.required_optional_params - {"latents"}
def UpperCAmelCase ( self ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 316 | 1 |
"""simple docstring"""
from __future__ import annotations
def A ( snake_case :str , snake_case :list[str] | None = None , snake_case :dict[str, float] | None = None , snake_case :bool = False , ) -> tuple[int, float, str]:
__UpperCamelCase = cipher_alphabet or [chr(snake_case ) for i in range(9_7 , 1_2_3 )]
# If the argument is None or the user provided an empty dictionary
if not frequencies_dict:
# Frequencies of letters in the english language (how much they show up)
__UpperCamelCase = {
'a': 0.08_497,
'b': 0.01_492,
'c': 0.02_202,
'd': 0.04_253,
'e': 0.11_162,
'f': 0.02_228,
'g': 0.02_015,
'h': 0.06_094,
'i': 0.07_546,
'j': 0.00_153,
'k': 0.01_292,
'l': 0.04_025,
'm': 0.02_406,
'n': 0.06_749,
'o': 0.07_507,
'p': 0.01_929,
'q': 0.00_095,
'r': 0.07_587,
's': 0.06_327,
't': 0.09_356,
'u': 0.02_758,
'v': 0.00_978,
'w': 0.02_560,
'x': 0.00_150,
'y': 0.01_994,
'z': 0.00_077,
}
else:
# Custom frequencies dictionary
__UpperCamelCase = frequencies_dict
if not case_sensitive:
__UpperCamelCase = ciphertext.lower()
# Chi squared statistic values
__UpperCamelCase = {}
# cycle through all of the shifts
for shift in range(len(snake_case ) ):
__UpperCamelCase = ''
# decrypt the message with the shift
for letter in ciphertext:
try:
# Try to index the letter in the alphabet
__UpperCamelCase = (alphabet_letters.index(letter.lower() ) - shift) % len(
snake_case )
decrypted_with_shift += (
alphabet_letters[new_key].upper()
if case_sensitive and letter.isupper()
else alphabet_letters[new_key]
)
except ValueError:
# Append the character if it isn't in the alphabet
decrypted_with_shift += letter
__UpperCamelCase = 0.0
# Loop through each letter in the decoded message with the shift
for letter in decrypted_with_shift:
if case_sensitive:
__UpperCamelCase = letter.lower()
if letter in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase = decrypted_with_shift.lower().count(snake_case )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
else:
if letter.lower() in frequencies:
# Get the amount of times the letter occurs in the message
__UpperCamelCase = decrypted_with_shift.count(snake_case )
# Get the excepcted amount of times the letter should appear based
# on letter frequencies
__UpperCamelCase = frequencies[letter] * occurrences
# Complete the chi squared statistic formula
__UpperCamelCase = ((occurrences - expected) ** 2) / expected
# Add the margin of error to the total chi squared statistic
chi_squared_statistic += chi_letter_value
# Add the data to the chi_squared_statistic_values dictionary
__UpperCamelCase = (
chi_squared_statistic,
decrypted_with_shift,
)
# Get the most likely cipher by finding the cipher with the smallest chi squared
# statistic
def chi_squared_statistic_values_sorting_key(snake_case :int ) -> tuple[float, str]:
return chi_squared_statistic_values[key]
__UpperCamelCase = min(
snake_case , key=snake_case , )
# Get all the data from the most likely cipher (key, decoded message)
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = chi_squared_statistic_values[most_likely_cipher]
# Return the data on the most likely shift
return (
most_likely_cipher,
most_likely_cipher_chi_squared_value,
decoded_most_likely_cipher,
)
| 316 |
"""simple docstring"""
def A ( snake_case :int ) -> int:
__UpperCamelCase = [1]
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0
__UpperCamelCase = ugly_nums[ia] * 2
__UpperCamelCase = ugly_nums[ia] * 3
__UpperCamelCase = ugly_nums[ia] * 5
for _ in range(1 , snake_case ):
__UpperCamelCase = min(snake_case , snake_case , snake_case )
ugly_nums.append(snake_case )
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f'''{ugly_numbers(2_0_0) = }''')
| 316 | 1 |
"""simple docstring"""
import math
UpperCamelCase : Union[str, Any] = 1_0
UpperCamelCase : List[str] = 7
UpperCamelCase : Any = BALLS_PER_COLOUR * NUM_COLOURS
def A ( snake_case :int = 2_0 ) -> str:
__UpperCamelCase = math.comb(snake_case , snake_case )
__UpperCamelCase = math.comb(NUM_BALLS - BALLS_PER_COLOUR , snake_case )
__UpperCamelCase = NUM_COLOURS * (1 - missing_colour / total)
return f'{result:.9f}'
if __name__ == "__main__":
print(solution(2_0))
| 316 |
"""simple docstring"""
import warnings
from typing import List
import numpy as np
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding
from ...utils import is_flax_available, is_tf_available, is_torch_available
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["image_processor", "tokenizer"]
lowercase = "OwlViTImageProcessor"
lowercase = ("CLIPTokenizer", "CLIPTokenizerFast")
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , __UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('feature_extractor' )
__UpperCamelCase = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="max_length" , __UpperCAmelCase="np" , **__UpperCAmelCase ):
'''simple docstring'''
if text is None and query_images is None and images is None:
raise ValueError(
'You have to specify at least one text or query image or image. All three cannot be none.' )
if text is not None:
if isinstance(__UpperCAmelCase , __UpperCAmelCase ) or (isinstance(__UpperCAmelCase , __UpperCAmelCase ) and not isinstance(text[0] , __UpperCAmelCase )):
__UpperCamelCase = [self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )]
elif isinstance(__UpperCAmelCase , __UpperCAmelCase ) and isinstance(text[0] , __UpperCAmelCase ):
__UpperCamelCase = []
# Maximum number of queries across batch
__UpperCamelCase = max([len(__UpperCAmelCase ) for t in text] )
# Pad all batch samples to max number of text queries
for t in text:
if len(__UpperCAmelCase ) != max_num_queries:
__UpperCamelCase = t + [' '] * (max_num_queries - len(__UpperCAmelCase ))
__UpperCamelCase = self.tokenizer(__UpperCAmelCase , padding=__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
encodings.append(__UpperCAmelCase )
else:
raise TypeError('Input text should be a string, a list of strings or a nested list of strings' )
if return_tensors == "np":
__UpperCamelCase = np.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = np.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "jax" and is_flax_available():
import jax.numpy as jnp
__UpperCamelCase = jnp.concatenate([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = jnp.concatenate([encoding['attention_mask'] for encoding in encodings] , axis=0 )
elif return_tensors == "pt" and is_torch_available():
import torch
__UpperCamelCase = torch.cat([encoding['input_ids'] for encoding in encodings] , dim=0 )
__UpperCamelCase = torch.cat([encoding['attention_mask'] for encoding in encodings] , dim=0 )
elif return_tensors == "tf" and is_tf_available():
import tensorflow as tf
__UpperCamelCase = tf.stack([encoding['input_ids'] for encoding in encodings] , axis=0 )
__UpperCamelCase = tf.stack([encoding['attention_mask'] for encoding in encodings] , axis=0 )
else:
raise ValueError('Target return tensor type could not be returned' )
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = input_ids
__UpperCamelCase = attention_mask
if query_images is not None:
__UpperCamelCase = BatchEncoding()
__UpperCamelCase = self.image_processor(
__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase ).pixel_values
__UpperCamelCase = query_pixel_values
if images is not None:
__UpperCamelCase = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif query_images is not None and images is not None:
__UpperCamelCase = image_features.pixel_values
return encoding
elif text is not None or query_images is not None:
return encoding
else:
return BatchEncoding(data=dict(**__UpperCAmelCase ) , tensor_type=__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_object_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.image_processor.post_process_image_guided_detection(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.batch_decode(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
return self.tokenizer.decode(*__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , __UpperCAmelCase , )
return self.image_processor_class
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , __UpperCAmelCase , )
return self.image_processor
| 316 | 1 |
"""simple docstring"""
import math
import sys
def A ( snake_case :int ) -> int:
if number != int(snake_case ):
raise ValueError('the value of input must be a natural number' )
if number < 0:
raise ValueError('the value of input must not be a negative number' )
if number == 0:
return 1
__UpperCamelCase = [-1] * (number + 1)
__UpperCamelCase = 0
for i in range(1 , number + 1 ):
__UpperCamelCase = sys.maxsize
__UpperCamelCase = int(math.sqrt(snake_case ) )
for j in range(1 , root + 1 ):
__UpperCamelCase = 1 + answers[i - (j**2)]
__UpperCamelCase = min(snake_case , snake_case )
__UpperCamelCase = answer
return answers[number]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
import tempfile
import unittest
import numpy as np
import transformers
from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available
from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow
from ...generation.test_flax_utils import FlaxGenerationTesterMixin
from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask
if is_flax_available():
import jax
import jax.numpy as jnp
from transformers.modeling_flax_pytorch_utils import (
convert_pytorch_state_dict_to_flax,
load_flax_weights_in_pytorch_model,
)
from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel
if is_torch_available():
import torch
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=14 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=0.0_2 , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = rotary_dim
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = initializer_range
__UpperCamelCase = None
__UpperCamelCase = vocab_size - 1
__UpperCamelCase = vocab_size - 1
__UpperCamelCase = vocab_size - 1
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = GPTJConfig(
vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=__UpperCAmelCase , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , )
return (config, input_ids, input_mask)
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = 20
__UpperCamelCase = model_class_name(__UpperCAmelCase )
__UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase )
__UpperCamelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCamelCase = model(
input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__UpperCamelCase = model(
input_ids[:, -1:] , attention_mask=__UpperCAmelCase , past_key_values=outputs_cache.past_key_values , position_ids=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = 20
__UpperCamelCase = model_class_name(__UpperCAmelCase )
__UpperCamelCase = jnp.concatenate(
[attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , )
__UpperCamelCase = model.init_cache(input_ids.shape[0] , __UpperCAmelCase )
__UpperCamelCase = jnp.broadcast_to(
jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) )
__UpperCamelCase = model(
input_ids[:, :-1] , attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' )
__UpperCamelCase = model(
input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=__UpperCAmelCase , position_ids=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCamelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) )
self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' )
@require_flax
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else ()
lowercase = (FlaxGPTJForCausalLM,) if is_flax_available() else ()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = FlaxGPTJModelTester(self )
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.check_use_cache_forward_with_attn_mask(
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase )
@tooslow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' )
__UpperCamelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=__UpperCAmelCase , truncation=__UpperCAmelCase )
__UpperCamelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' )
__UpperCamelCase = False
__UpperCamelCase = model.config.eos_token_id
__UpperCamelCase = jax.jit(model.generate )
__UpperCamelCase = jit_generate(
inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences
__UpperCamelCase = tokenizer.batch_decode(__UpperCAmelCase , skip_special_tokens=__UpperCAmelCase )
__UpperCamelCase = [
'Hello this is a long string of text.\n\nI\'m trying to get the text of the',
'Hey, I\'m a little late to the party. I\'m going to',
]
self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
@is_pt_flax_cross_test
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape
__UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval()
__UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa )
__UpperCamelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , __UpperCAmelCase )
__UpperCamelCase = fx_state
with torch.no_grad():
__UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple()
__UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
pt_model.save_pretrained(__UpperCAmelCase )
__UpperCamelCase = model_class.from_pretrained(__UpperCAmelCase , from_pt=__UpperCAmelCase )
__UpperCamelCase = fx_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(
len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output_loaded, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@is_pt_flax_cross_test
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
with self.subTest(model_class.__name__ ):
# prepare inputs
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()}
# load corresponding PyTorch class
__UpperCamelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning
__UpperCamelCase = getattr(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = pt_model_class(__UpperCAmelCase ).eval()
__UpperCamelCase = model_class(__UpperCAmelCase , dtype=jnp.floataa )
__UpperCamelCase = load_flax_weights_in_pytorch_model(__UpperCAmelCase , fx_model.params )
__UpperCamelCase , __UpperCamelCase = pt_inputs['input_ids'].shape
__UpperCamelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) )
for batch_idx, start_index in enumerate(__UpperCAmelCase ):
__UpperCamelCase = 0
__UpperCamelCase = 1
__UpperCamelCase = 0
__UpperCamelCase = 1
# make sure weights are tied in PyTorch
pt_model.tie_weights()
with torch.no_grad():
__UpperCamelCase = pt_model(**__UpperCAmelCase ).to_tuple()
__UpperCamelCase = fx_model(**__UpperCAmelCase ).to_tuple()
self.assertEqual(len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
with tempfile.TemporaryDirectory() as tmpdirname:
fx_model.save_pretrained(__UpperCAmelCase )
__UpperCamelCase = pt_model_class.from_pretrained(__UpperCAmelCase , from_flax=__UpperCAmelCase )
with torch.no_grad():
__UpperCamelCase = pt_model_loaded(**__UpperCAmelCase ).to_tuple()
self.assertEqual(
len(__UpperCAmelCase ) , len(__UpperCAmelCase ) , 'Output lengths differ between Flax and PyTorch' )
for fx_output, pt_output in zip(__UpperCAmelCase , __UpperCAmelCase ):
self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 )
@tooslow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_class_name in self.all_model_classes:
__UpperCamelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' )
__UpperCamelCase = model(np.ones((1, 1) ) )
self.assertIsNotNone(__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import tempfile
import torch
from diffusers import IPNDMScheduler
from .test_schedulers import SchedulerCommonTest
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = (IPNDMScheduler,)
lowercase = (("num_inference_steps", 50),)
def UpperCAmelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = {'num_train_timesteps': 1000}
config.update(**__UpperCAmelCase )
return config
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
__UpperCamelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCamelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
__UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase )
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals
__UpperCamelCase = dummy_past_residuals[:]
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self , __UpperCAmelCase=0 , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residuals (must be after setting timesteps)
__UpperCamelCase = dummy_past_residuals[:]
if time_step is None:
__UpperCamelCase = scheduler.timesteps[len(scheduler.timesteps ) // 2]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(__UpperCAmelCase )
__UpperCamelCase = scheduler_class.from_pretrained(__UpperCAmelCase )
# copy over dummy past residuals
new_scheduler.set_timesteps(__UpperCAmelCase )
# copy over dummy past residual (must be after setting timesteps)
__UpperCamelCase = dummy_past_residuals[:]
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = new_scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def UpperCAmelCase ( self , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.scheduler_classes[0]
__UpperCamelCase = self.get_scheduler_config(**__UpperCAmelCase )
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = 10
__UpperCamelCase = self.dummy_model()
__UpperCamelCase = self.dummy_sample_deter
scheduler.set_timesteps(__UpperCAmelCase )
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
for i, t in enumerate(scheduler.timesteps ):
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase )
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ).prev_sample
return sample
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = dict(self.forward_default_kwargs )
__UpperCamelCase = kwargs.pop('num_inference_steps' , __UpperCAmelCase )
for scheduler_class in self.scheduler_classes:
__UpperCamelCase = self.get_scheduler_config()
__UpperCamelCase = scheduler_class(**__UpperCAmelCase )
__UpperCamelCase = self.dummy_sample
__UpperCamelCase = 0.1 * sample
if num_inference_steps is not None and hasattr(__UpperCAmelCase , 'set_timesteps' ):
scheduler.set_timesteps(__UpperCAmelCase )
elif num_inference_steps is not None and not hasattr(__UpperCAmelCase , 'set_timesteps' ):
__UpperCamelCase = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
__UpperCamelCase = [residual + 0.2, residual + 0.1_5, residual + 0.1, residual + 0.0_5]
__UpperCamelCase = dummy_past_residuals[:]
__UpperCamelCase = scheduler.timesteps[5]
__UpperCamelCase = scheduler.timesteps[6]
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
__UpperCamelCase = scheduler.step(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def UpperCAmelCase ( self ):
'''simple docstring'''
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=__UpperCAmelCase , time_step=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ):
self.check_over_forward(num_inference_steps=__UpperCAmelCase , time_step=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.full_loop()
__UpperCamelCase = torch.mean(torch.abs(__UpperCAmelCase ) )
assert abs(result_mean.item() - 254_0529 ) < 10
| 316 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :list[int] ) -> None:
__UpperCamelCase = len(snake_case )
print('The following activities are selected:' )
# The first activity is always selected
__UpperCamelCase = 0
print(snake_case , end=',' )
# Consider rest of the activities
for j in range(snake_case ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(snake_case , end=',' )
__UpperCamelCase = j
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCamelCase : int = [1, 3, 0, 5, 8, 5]
UpperCamelCase : str = [2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 316 | 1 |
"""simple docstring"""
from typing import Dict, List
from nltk.translate import gleu_score
import datasets
from datasets import MetricInfo
UpperCamelCase : int = "\\n@misc{wu2016googles,\n title={Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation},\n author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey\n and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin\n Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto\n Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and\n Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes\n and Jeffrey Dean},\n year={2016},\n eprint={1609.08144},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n"
UpperCamelCase : str = "\\nThe BLEU score has some undesirable properties when used for single\nsentences, as it was designed to be a corpus measure. We therefore\nuse a slightly different score for our RL experiments which we call\nthe 'GLEU score'. For the GLEU score, we record all sub-sequences of\n1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then\ncompute a recall, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the target (ground truth) sequence,\nand a precision, which is the ratio of the number of matching n-grams\nto the number of total n-grams in the generated output sequence. Then\nGLEU score is simply the minimum of recall and precision. This GLEU\nscore's range is always between 0 (no matches) and 1 (all match) and\nit is symmetrical when switching output and target. According to\nour experiments, GLEU score correlates quite well with the BLEU\nmetric on a corpus level but does not have its drawbacks for our per\nsentence reward objective.\n"
UpperCamelCase : List[Any] = "\\nComputes corpus-level Google BLEU (GLEU) score of translated segments against one or more references.\nInstead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching\ntokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values.\n\nArgs:\n predictions (list of str): list of translations to score.\n Each translation should be tokenized into a list of tokens.\n references (list of list of str): list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\n min_len (int): The minimum order of n-gram this function should extract. Defaults to 1.\n max_len (int): The maximum order of n-gram this function should extract. Defaults to 4.\n\nReturns:\n 'google_bleu': google_bleu score\n\nExamples:\n Example 1:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.44\n\n Example 2:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.61\n\n Example 3:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.53\n\n Example 4:\n >>> hyp1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'always',\n ... 'disobeys', 'the', 'commands', 'of', 'the', 'cat']\n >>> ref1a = ['It', 'is', 'the', 'guiding', 'principle', 'which',\n ... 'guarantees', 'the', 'rubber', 'duck', 'forces', 'never',\n ... 'being', 'under', 'the', 'command', 'of', 'the', 'cat']\n >>> ref1b = ['It', 'is', 'a', 'guide', 'to', 'action', 'that',\n ... 'ensures', 'that', 'the', 'rubber', 'duck', 'will', 'never',\n ... 'heed', 'the', 'cat', 'commands']\n >>> ref1c = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the',\n ... 'rubber', 'duck', 'army', 'never', 'to', 'heed', 'the', 'directions',\n ... 'of', 'the', 'cat']\n\n >>> hyp2 = ['he', 'read', 'the', 'book', 'because', 'he', 'was',\n ... 'interested', 'in', 'world', 'history']\n >>> ref2a = ['he', 'was', 'interested', 'in', 'world', 'history',\n ... 'because', 'he', 'read', 'the', 'book']\n\n >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]]\n >>> hypotheses = [hyp1, hyp2]\n >>> google_bleu = datasets.load_metric(\"google_bleu\")\n >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6)\n >>> print(round(results[\"google_bleu\"], 2))\n 0.4\n"
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __lowerCAmelCase ( datasets.Metric ):
def UpperCAmelCase ( self ):
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ),
'references': datasets.Sequence(
datasets.Sequence(datasets.Value('string' , id='token' ) , id='sequence' ) , id='references' ),
} ) , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = 1 , __UpperCAmelCase = 4 , ):
'''simple docstring'''
return {
"google_bleu": gleu_score.corpus_gleu(
list_of_references=__UpperCAmelCase , hypotheses=__UpperCAmelCase , min_len=__UpperCAmelCase , max_len=__UpperCAmelCase )
}
| 316 |
"""simple docstring"""
def A ( snake_case :int ) -> list:
# bit count represents no. of bits in the gray code
if bit_count < 0:
raise ValueError('The given input must be positive' )
# get the generated string sequence
__UpperCamelCase = gray_code_sequence_string(snake_case )
#
# convert them to integers
for i in range(len(snake_case ) ):
__UpperCamelCase = int(sequence[i] , 2 )
return sequence
def A ( snake_case :int ) -> list:
# The approach is a recursive one
# Base case achieved when either n = 0 or n=1
if bit_count == 0:
return ["0"]
if bit_count == 1:
return ["0", "1"]
__UpperCamelCase = 1 << bit_count # defines the length of the sequence
# 1<< n is equivalent to 2^n
# recursive answer will generate answer for n-1 bits
__UpperCamelCase = gray_code_sequence_string(bit_count - 1 )
__UpperCamelCase = []
# append 0 to first half of the smaller sequence generated
for i in range(seq_len // 2 ):
__UpperCamelCase = '0' + smaller_sequence[i]
sequence.append(snake_case )
# append 1 to second half ... start from the end of the list
for i in reversed(range(seq_len // 2 ) ):
__UpperCamelCase = '1' + smaller_sequence[i]
sequence.append(snake_case )
return sequence
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
import argparse
import json
import os
import tensorstore as ts
import torch
from flax import serialization
from flax.traverse_util import flatten_dict, unflatten_dict
from tensorflow.io import gfile
from transformers.modeling_utils import dtype_byte_size
from transformers.models.switch_transformers.convert_switch_transformers_original_flax_checkpoint_to_pytorch import (
rename_keys,
)
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
from transformers.utils.hub import convert_file_size_to_int
def A ( snake_case :Optional[int] , snake_case :int ) -> int:
if flax_key_tuple[-1] == "kernel" and flax_tensor.ndim == 3:
# expert layer
__UpperCamelCase = flax_key_tuple[:-1] + ('weight',)
__UpperCamelCase = torch.permute(snake_case , (0, 2, 1) )
elif flax_key_tuple[-1] == "kernel" and ".".join(snake_case ):
# linear layer
__UpperCamelCase = flax_key_tuple[:-1] + ('weight',)
__UpperCamelCase = flax_tensor.T
elif flax_key_tuple[-1] in ["scale", "embedding"]:
__UpperCamelCase = flax_key_tuple[:-1] + ('weight',)
return flax_key_tuple, flax_tensor
def A ( snake_case :List[str] , snake_case :List[str] , snake_case :Union[str, Any] ) -> Tuple:
if "metadata" in layer:
__UpperCamelCase = layer.split('metadata' )
__UpperCamelCase = ''.join(split_layer[0] )[:-1]
__UpperCamelCase = [tuple(('metadata' + split_layer[1]).split('/' ) )]
elif "kvstore" in layer:
__UpperCamelCase = layer.split('kvstore' )
__UpperCamelCase = ''.join(split_layer[0] )[:-1]
__UpperCamelCase = [tuple(('kvstore' + split_layer[1]).split('/' ) )]
else:
__UpperCamelCase = layer.split('/' )
__UpperCamelCase = '/'.join(split_layer[:-1] )
__UpperCamelCase = (split_layer[-1],)
if "kvstore/path" in layer:
__UpperCamelCase = f'{switch_checkpoint_path}/{checkpoint_info[layer]}'
elif "kvstore/driver" in layer:
__UpperCamelCase = 'file'
else:
__UpperCamelCase = checkpoint_info[layer]
return curr_real_layer_name, split_layer, content
def A ( snake_case :List[str] , snake_case :str ) -> List[str]:
__UpperCamelCase = rename_keys(snake_case )
__UpperCamelCase = {}
for k, v in current_block.items():
__UpperCamelCase = v
__UpperCamelCase = new_current_block
torch.save(snake_case , snake_case )
def A ( snake_case :Optional[int] , snake_case :Tuple , snake_case :Optional[Any] , snake_case :Dict , snake_case :str = WEIGHTS_NAME ) -> str:
__UpperCamelCase = convert_file_size_to_int(snake_case )
__UpperCamelCase = []
__UpperCamelCase = {}
__UpperCamelCase = 0
__UpperCamelCase = 0
os.makedirs(snake_case , exist_ok=snake_case )
with gfile.GFile(switch_checkpoint_path + '/checkpoint' , 'rb' ) as fp:
__UpperCamelCase = serialization.msgpack_restore(fp.read() )['optimizer']['target']
__UpperCamelCase = flatten_dict(snake_case , sep='/' )
__UpperCamelCase = {}
for layer in checkpoint_info.keys():
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = get_key_and_tensorstore_dict(
snake_case , snake_case , snake_case )
if curr_real_layer_name in all_layers:
__UpperCamelCase = content
else:
__UpperCamelCase = {split_layer[-1]: content}
for key in all_layers.keys():
# open tensorstore file
__UpperCamelCase = ts.open(unflatten_dict(all_layers[key] ) ).result().read().result()
__UpperCamelCase = torch.tensor(snake_case )
__UpperCamelCase = raw_weights.numel() * dtype_byte_size(raw_weights.dtype )
# use the renaming pattern from the small conversion scripts
__UpperCamelCase , __UpperCamelCase = rename_base_flax_keys(tuple(key.split('/' ) ) , snake_case )
__UpperCamelCase = '/'.join(snake_case )
# If this weight is going to tip up over the maximal size, we split.
if current_block_size + weight_size > max_shard_size:
__UpperCamelCase = os.path.join(
snake_case , weights_name.replace('.bin' , f'-{len(snake_case )+1:05d}-of-???.bin' ) )
rename_and_save_block(snake_case , snake_case )
sharded_state_dicts.append(current_block.keys() )
del current_block
__UpperCamelCase = {}
__UpperCamelCase = 0
__UpperCamelCase = raw_weights.to(getattr(snake_case , snake_case ) )
current_block_size += weight_size
total_size += weight_size
# Add the last block
__UpperCamelCase = os.path.join(snake_case , weights_name.replace('.bin' , f'-{len(snake_case )+1:05d}-of-???.bin' ) )
rename_and_save_block(snake_case , snake_case )
sharded_state_dicts.append(current_block.keys() )
# If we only have one shard, we return it
if len(snake_case ) == 1:
return {weights_name: sharded_state_dicts[0]}, None
# Otherwise, let's build the index
__UpperCamelCase = {}
__UpperCamelCase = {}
for idx, shard in enumerate(snake_case ):
__UpperCamelCase = weights_name.replace(
'.bin' , f'-{idx+1:05d}-of-{len(snake_case ):05d}.bin' ) # len(sharded_state_dicts):05d}
__UpperCamelCase = os.path.join(snake_case , weights_name.replace('.bin' , f'-{idx+1:05d}-of-???.bin' ) )
os.rename(snake_case , os.path.join(snake_case , snake_case ) )
__UpperCamelCase = shard
for key in shard:
__UpperCamelCase = shard_file
# Add the metadata
__UpperCamelCase = {'total_size': total_size}
__UpperCamelCase = {'metadata': metadata, 'weight_map': weight_map}
with open(os.path.join(snake_case , snake_case ) , 'w' , encoding='utf-8' ) as f:
__UpperCamelCase = json.dumps(snake_case , indent=2 , sort_keys=snake_case ) + '\n'
f.write(snake_case )
return metadata, index
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--switch_t5x_checkpoint_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128/checkpoint_634600",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--max_shard_size", default="10GB", required=False, help="Max shard size")
parser.add_argument("--dtype", default="bfloat16", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/mnt/disks/disk_switch/original_checkpoints/switch-xxl-128-converted",
type=str,
required=False,
help="Path to the output pytorch model.",
)
UpperCamelCase : List[Any] = parser.parse_args()
shard_on_the_fly(
args.switch_tax_checkpoint_path,
args.pytorch_dump_folder_path,
args.max_shard_size,
args.dtype,
)
def A ( ) -> List[str]:
from transformers import SwitchTransformersConfig, SwitchTransformersForConditionalGeneration, TaTokenizer
__UpperCamelCase = SwitchTransformersConfig.from_pretrained('google/switch-base-8' )
config.save_pretrained('/home/arthur_huggingface_co/transformers/switch_converted' )
__UpperCamelCase = SwitchTransformersForConditionalGeneration.from_pretrained(
'/home/arthur_huggingface_co/transformers/switch_converted' , device_map='auto' )
__UpperCamelCase = TaTokenizer.from_pretrained('t5-small' )
__UpperCamelCase = 'A <extra_id_0> walks into a bar a orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.'
__UpperCamelCase = tokenizer(snake_case , return_tensors='pt' ).input_ids
__UpperCamelCase = model.generate(snake_case , decoder_start_token_id=0 )
print(tokenizer.decode(out[0] ) )
| 316 |
"""simple docstring"""
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 100
__UpperCamelCase = batch_size
__UpperCamelCase = image_size
__UpperCamelCase = patch_size
__UpperCamelCase = num_channels
__UpperCamelCase = is_training
__UpperCamelCase = use_labels
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = scope
__UpperCamelCase = out_indices
__UpperCamelCase = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
__UpperCamelCase = (image_size // patch_size) ** 2
__UpperCamelCase = num_patches + 1
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
__UpperCamelCase = self.get_config()
return config, pixel_values, labels, pixel_labels
def UpperCAmelCase ( self ):
'''simple docstring'''
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = BeitModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = BeitForMaskedImageModeling(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.type_sequence_label_size
__UpperCamelCase = BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
__UpperCamelCase = 1
__UpperCamelCase = BeitForImageClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = BeitForSemanticSegmentation(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
__UpperCamelCase = model(__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = config_and_inputs
__UpperCamelCase = {'pixel_values': pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowercase = (
{
"feature-extraction": BeitModel,
"image-classification": BeitForImageClassification,
"image-segmentation": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
lowercase = False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
@unittest.skip(reason='BEiT does not use inputs_embeds' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
@require_torch_multi_gpu
@unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
__UpperCamelCase = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(__UpperCAmelCase )
__UpperCamelCase = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
__UpperCamelCase = [*signature.parameters.keys()]
__UpperCamelCase = ['pixel_values']
self.assertListEqual(arg_names[:1] , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
if not self.model_tester.is_training:
return
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]:
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
__UpperCamelCase = False
__UpperCamelCase = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
__UpperCamelCase = model_class(__UpperCAmelCase )
model.gradient_checkpointing_enable()
model.to(__UpperCAmelCase )
model.train()
__UpperCamelCase = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase )
__UpperCamelCase = model(**__UpperCAmelCase ).loss
loss.backward()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = _config_zero_init(__UpperCAmelCase )
for model_class in self.all_model_classes:
__UpperCamelCase = model_class(config=__UpperCAmelCase )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F'Parameter {name} of model {model_class} seems not properly initialized' , )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = BeitModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
def A ( ) -> int:
__UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' )
return image
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase ):
@cached_property
def UpperCAmelCase ( self ):
'''simple docstring'''
return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).pixel_values.to(__UpperCAmelCase )
# prepare bool_masked_pos
__UpperCamelCase = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor(
[[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 1000) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
__UpperCamelCase = 281
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to(
__UpperCAmelCase )
__UpperCamelCase = self.default_image_processor
__UpperCamelCase = prepare_img()
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 2_1841) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase )
self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) )
__UpperCamelCase = 2396
self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__UpperCamelCase = model.to(__UpperCAmelCase )
__UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase )
__UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__UpperCamelCase = Image.open(ds[0]['file'] )
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits
# verify the logits
__UpperCamelCase = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , __UpperCAmelCase )
__UpperCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' )
if is_pillow_less_than_a:
__UpperCamelCase = torch.tensor(
[
[[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]],
[[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]],
[[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]],
] , device=__UpperCAmelCase , )
else:
__UpperCamelCase = torch.tensor(
[
[[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]],
[[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]],
[[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]],
] , device=__UpperCAmelCase , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' )
__UpperCamelCase = model.to(__UpperCAmelCase )
__UpperCamelCase = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase )
__UpperCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' )
__UpperCamelCase = Image.open(ds[0]['file'] )
__UpperCamelCase = image_processor(images=__UpperCAmelCase , return_tensors='pt' ).to(__UpperCAmelCase )
# forward pass
with torch.no_grad():
__UpperCamelCase = model(**__UpperCAmelCase )
__UpperCamelCase = outputs.logits.detach().cpu()
__UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] )
__UpperCamelCase = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
__UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase )
__UpperCamelCase = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import numpy as np
def A ( snake_case :np.array ) -> np.array:
return 1 / (1 + np.exp(-vector ))
def A ( snake_case :np.array ) -> np.array:
return vector * sigmoid(1.702 * vector )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int:
__UpperCamelCase = range(1 , snake_case )
__UpperCamelCase = range(1 , snake_case )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :int , snake_case :int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
# this script reports modified .py files under the desired list of top-level sub-dirs passed as a list of arguments, e.g.:
# python ./utils/get_modified_files.py utils src tests examples
#
# it uses git to find the forking point and which files were modified - i.e. files not under git won't be considered
# since the output of this script is fed into Makefile commands it doesn't print a newline after the results
import re
import subprocess
import sys
UpperCamelCase : Union[str, Any] = subprocess.check_output("git merge-base main HEAD".split()).decode("utf-8")
UpperCamelCase : Any = subprocess.check_output(f'''git diff --name-only {fork_point_sha}'''.split()).decode("utf-8").split()
UpperCamelCase : Tuple = "|".join(sys.argv[1:])
UpperCamelCase : Optional[int] = re.compile(Rf'''^({joined_dirs}).*?\.py$''')
UpperCamelCase : Optional[Any] = [x for x in modified_files if regex.match(x)]
print(" ".join(relevant_modified_files), end="")
| 316 | 1 |
"""simple docstring"""
from ..utils import is_flax_available, is_torch_available
if is_torch_available():
from .autoencoder_kl import AutoencoderKL
from .controlnet import ControlNetModel
from .dual_transformer_ad import DualTransformeraDModel
from .modeling_utils import ModelMixin
from .prior_transformer import PriorTransformer
from .ta_film_transformer import TaFilmDecoder
from .transformer_ad import TransformeraDModel
from .unet_ad import UNetaDModel
from .unet_ad import UNetaDModel
from .unet_ad_condition import UNetaDConditionModel
from .unet_ad_condition import UNetaDConditionModel
from .vq_model import VQModel
if is_flax_available():
from .controlnet_flax import FlaxControlNetModel
from .unet_ad_condition_flax import FlaxUNetaDConditionModel
from .vae_flax import FlaxAutoencoderKL
| 316 |
"""simple docstring"""
from typing import Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature
from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format
from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images
from ...utils import TensorType, logging
UpperCamelCase : Any = logging.get_logger(__name__)
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = ["pixel_values"]
def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = 8 , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(**__UpperCAmelCase )
__UpperCamelCase = do_rescale
__UpperCamelCase = rescale_factor
__UpperCamelCase = do_pad
__UpperCamelCase = pad_size
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase ):
'''simple docstring'''
return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = get_image_size(__UpperCAmelCase )
__UpperCamelCase = (old_height // size + 1) * size - old_height
__UpperCamelCase = (old_width // size + 1) * size - old_width
return pad(__UpperCAmelCase , ((0, pad_height), (0, pad_width)) , mode='symmetric' , data_format=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale
__UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor
__UpperCamelCase = do_pad if do_pad is not None else self.do_pad
__UpperCamelCase = pad_size if pad_size is not None else self.pad_size
__UpperCamelCase = make_list_of_images(__UpperCAmelCase )
if not valid_images(__UpperCAmelCase ):
raise ValueError(
'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, '
'torch.Tensor, tf.Tensor or jax.ndarray.' )
if do_rescale and rescale_factor is None:
raise ValueError('Rescale factor must be specified if do_rescale is True.' )
# All transformations expect numpy arrays.
__UpperCamelCase = [to_numpy_array(__UpperCAmelCase ) for image in images]
if do_rescale:
__UpperCamelCase = [self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images]
if do_pad:
__UpperCamelCase = [self.pad(__UpperCAmelCase , size=__UpperCAmelCase ) for image in images]
__UpperCamelCase = [to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images]
__UpperCamelCase = {'pixel_values': images}
return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : int = logging.get_logger(__name__)
UpperCamelCase : Optional[int] = {
"transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "transfo-xl"
lowercase = ["mems"]
lowercase = {
"n_token": "vocab_size",
"hidden_size": "d_model",
"num_attention_heads": "n_head",
"num_hidden_layers": "n_layer",
}
def __init__( self , __UpperCAmelCase=26_7735 , __UpperCAmelCase=[2_0000, 4_0000, 20_0000] , __UpperCAmelCase=1024 , __UpperCAmelCase=1024 , __UpperCAmelCase=16 , __UpperCAmelCase=64 , __UpperCAmelCase=4096 , __UpperCAmelCase=4 , __UpperCAmelCase=False , __UpperCAmelCase=18 , __UpperCAmelCase=1600 , __UpperCAmelCase=1000 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=0 , __UpperCAmelCase=-1 , __UpperCAmelCase=True , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=True , __UpperCAmelCase="normal" , __UpperCAmelCase=0.0_1 , __UpperCAmelCase=0.0_1 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-5 , __UpperCAmelCase=0 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = []
self.cutoffs.extend(__UpperCAmelCase )
if proj_share_all_but_first:
__UpperCamelCase = [False] + [True] * len(self.cutoffs )
else:
__UpperCamelCase = [False] + [False] * len(self.cutoffs )
__UpperCamelCase = d_model
__UpperCamelCase = d_embed
__UpperCamelCase = d_head
__UpperCamelCase = d_inner
__UpperCamelCase = div_val
__UpperCamelCase = pre_lnorm
__UpperCamelCase = n_layer
__UpperCamelCase = n_head
__UpperCamelCase = mem_len
__UpperCamelCase = same_length
__UpperCamelCase = attn_type
__UpperCamelCase = clamp_len
__UpperCamelCase = sample_softmax
__UpperCamelCase = adaptive
__UpperCamelCase = dropout
__UpperCamelCase = dropatt
__UpperCamelCase = untie_r
__UpperCamelCase = init
__UpperCamelCase = init_range
__UpperCamelCase = proj_init_std
__UpperCamelCase = init_std
__UpperCamelCase = layer_norm_epsilon
super().__init__(eos_token_id=__UpperCAmelCase , **__UpperCAmelCase )
@property
def UpperCAmelCase ( self ):
'''simple docstring'''
logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
return -1
@max_position_embeddings.setter
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
raise NotImplementedError(
F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
| 316 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy as np
import tensorflow as tf
from transformers import (
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
FlaubertConfig,
TFFlaubertForMultipleChoice,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForSequenceClassification,
TFFlaubertForTokenClassification,
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
)
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = 13
__UpperCamelCase = 7
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = False
__UpperCamelCase = 2
__UpperCamelCase = 99
__UpperCamelCase = 0
__UpperCamelCase = 32
__UpperCamelCase = 2
__UpperCamelCase = 4
__UpperCamelCase = 0.1
__UpperCamelCase = 0.1
__UpperCamelCase = 512
__UpperCamelCase = 16
__UpperCamelCase = 2
__UpperCamelCase = 0.0_2
__UpperCamelCase = 3
__UpperCamelCase = 4
__UpperCamelCase = 'last'
__UpperCamelCase = True
__UpperCamelCase = None
__UpperCamelCase = 0
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa )
__UpperCamelCase = None
if self.use_input_lengths:
__UpperCamelCase = (
ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2
) # small variation of seq_length
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.n_langs )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = FlaubertConfig(
vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , )
return (
config,
input_ids,
token_type_ids,
input_lengths,
sequence_labels,
token_labels,
is_impossible_labels,
choice_labels,
input_mask,
)
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
__UpperCamelCase = [input_ids, input_mask]
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertWithLMHeadModel(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths, 'langs': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForQuestionAnsweringSimple(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertForSequenceClassification(__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'lengths': input_lengths}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_labels
__UpperCamelCase = TFFlaubertForTokenClassification(config=__UpperCAmelCase )
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.num_choices
__UpperCamelCase = TFFlaubertForMultipleChoice(config=__UpperCAmelCase )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = tf.tile(tf.expand_dims(__UpperCAmelCase , 1 ) , (1, self.num_choices, 1) )
__UpperCamelCase = {
'input_ids': multiple_choice_inputs_ids,
'attention_mask': multiple_choice_input_mask,
'token_type_ids': multiple_choice_token_type_ids,
}
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {
'input_ids': input_ids,
'token_type_ids': token_type_ids,
'langs': token_type_ids,
'lengths': input_lengths,
}
return config, inputs_dict
@require_tf
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (
(
TFFlaubertModel,
TFFlaubertWithLMHeadModel,
TFFlaubertForSequenceClassification,
TFFlaubertForQuestionAnsweringSimple,
TFFlaubertForTokenClassification,
TFFlaubertForMultipleChoice,
)
if is_tf_available()
else ()
)
lowercase = (
(TFFlaubertWithLMHeadModel,) if is_tf_available() else ()
) # TODO (PVP): Check other models whether language generation is also applicable
lowercase = (
{
"feature-extraction": TFFlaubertModel,
"fill-mask": TFFlaubertWithLMHeadModel,
"question-answering": TFFlaubertForQuestionAnsweringSimple,
"text-classification": TFFlaubertForSequenceClassification,
"token-classification": TFFlaubertForTokenClassification,
"zero-shot": TFFlaubertForSequenceClassification,
}
if is_tf_available()
else {}
)
lowercase = False
lowercase = False
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
pipeline_test_casse_name == "QAPipelineTests"
and tokenizer_name is not None
and not tokenizer_name.endswith('Fast' )
):
# `QAPipelineTests` fails for a few models when the slower tokenizer are used.
# (The slower tokenizers were never used for pipeline tests before the pipeline testing rework)
# TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer
return True
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , emb_dim=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_lm_head(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_qa(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_sequence_classif(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_token_classification(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_flaubert_for_multiple_choice(*__UpperCAmelCase )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__UpperCamelCase = TFFlaubertModel.from_pretrained(__UpperCAmelCase )
self.assertIsNotNone(__UpperCAmelCase )
@require_tf
@require_sentencepiece
@require_tokenizers
class __lowerCAmelCase ( unittest.TestCase ):
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = TFFlaubertModel.from_pretrained('jplu/tf-flaubert-small-cased' )
__UpperCamelCase = tf.convert_to_tensor(
[[0, 158, 735, 2592, 1424, 6727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !"
__UpperCamelCase = model(__UpperCAmelCase )[0]
__UpperCamelCase = tf.TensorShape((1, 8, 512) )
self.assertEqual(output.shape , __UpperCAmelCase )
# compare the actual values for a slice.
__UpperCamelCase = tf.convert_to_tensor(
[
[
[-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8],
[-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9],
[-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2],
]
] , dtype=tf.floataa , )
self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :int = 1_0 , snake_case :int = 2_2 ) -> int:
__UpperCamelCase = range(1 , snake_case )
__UpperCamelCase = range(1 , snake_case )
return sum(
1 for power in powers for base in bases if len(str(base**power ) ) == power )
if __name__ == "__main__":
print(f'''{solution(1_0, 2_2) = }''')
| 316 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import FlavaImageCodebook, FlavaImageCodebookConfig
def A ( snake_case :Union[str, Any] , snake_case :Any , snake_case :Union[str, Any] , snake_case :Any ) -> str:
__UpperCamelCase = s.rsplit(snake_case , snake_case )
return new.join(snake_case )
def A ( snake_case :List[Any] ) -> int:
# encoder.embeddings are double copied in original FLAVA
return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() )
def A ( snake_case :str ) -> Union[str, Any]:
__UpperCamelCase = {}
__UpperCamelCase = ['group_1', 'group_2', 'group_3', 'group_4']
for key, value in state_dict.items():
for group_key in group_keys:
if group_key in key:
__UpperCamelCase = key.replace(f'{group_key}.' , f'{group_key}.group.' )
if "res_path" in key:
__UpperCamelCase = key.replace('res_path.' , 'res_path.path.' )
if key.endswith('.w' ):
__UpperCamelCase = rreplace(snake_case , '.w' , '.weight' , 1 )
if key.endswith('.b' ):
__UpperCamelCase = rreplace(snake_case , '.b' , '.bias' , 1 )
__UpperCamelCase = value.float()
return upgrade
@torch.no_grad()
def A ( snake_case :List[str] , snake_case :Tuple , snake_case :List[Any]=None , snake_case :str=True ) -> int:
from dall_e import Encoder
__UpperCamelCase = Encoder()
if os.path.exists(snake_case ):
__UpperCamelCase = torch.load(snake_case )
else:
__UpperCamelCase = torch.hub.load_state_dict_from_url(snake_case )
if isinstance(snake_case , snake_case ):
__UpperCamelCase = ckpt.state_dict()
encoder.load_state_dict(snake_case )
if config_path is not None:
__UpperCamelCase = FlavaImageCodebookConfig.from_pretrained(snake_case )
else:
__UpperCamelCase = FlavaImageCodebookConfig()
__UpperCamelCase = FlavaImageCodebook(snake_case ).eval()
__UpperCamelCase = encoder.state_dict()
__UpperCamelCase = upgrade_state_dict(snake_case )
hf_model.load_state_dict(snake_case )
__UpperCamelCase = hf_model.state_dict()
__UpperCamelCase = count_parameters(snake_case )
__UpperCamelCase = count_parameters(snake_case )
assert torch.allclose(snake_case , snake_case , atol=1e-3 )
if save_checkpoint:
hf_model.save_pretrained(snake_case )
else:
return hf_state_dict
if __name__ == "__main__":
UpperCamelCase : Any = argparse.ArgumentParser()
parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.")
parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to flava checkpoint")
parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert")
UpperCamelCase : int = parser.parse_args()
convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 316 | 1 |
"""simple docstring"""
from typing import Any
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = data
__UpperCamelCase = None
def __repr__( self ):
'''simple docstring'''
return F'Node({self.data})'
class __lowerCAmelCase :
def __init__( self ):
'''simple docstring'''
__UpperCamelCase = None
def __iter__( self ):
'''simple docstring'''
__UpperCamelCase = self.head
while node:
yield node.data
__UpperCamelCase = node.next
def __len__( self ):
'''simple docstring'''
return sum(1 for _ in self )
def __repr__( self ):
'''simple docstring'''
return "->".join([str(__UpperCAmelCase ) for item in self] )
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if not 0 <= index < len(self ):
raise ValueError('list index out of range.' )
__UpperCamelCase = self.head
for _ in range(__UpperCAmelCase ):
__UpperCamelCase = current.next
__UpperCamelCase = data
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
self.insert_nth(len(self ) , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
self.insert_nth(0 , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if not 0 <= index <= len(self ):
raise IndexError('list index out of range' )
__UpperCamelCase = Node(__UpperCAmelCase )
if self.head is None:
__UpperCamelCase = new_node
elif index == 0:
__UpperCamelCase = self.head # link new_node to head
__UpperCamelCase = new_node
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = new_node
def UpperCAmelCase ( self ): # print every node data
'''simple docstring'''
print(self )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.delete_nth(0 )
def UpperCAmelCase ( self ): # delete from tail
'''simple docstring'''
return self.delete_nth(len(self ) - 1 )
def UpperCAmelCase ( self , __UpperCAmelCase = 0 ):
'''simple docstring'''
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError('List index out of range.' )
__UpperCamelCase = self.head # default first node
if index == 0:
__UpperCamelCase = self.head.next
else:
__UpperCamelCase = self.head
for _ in range(index - 1 ):
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next
__UpperCamelCase = temp.next.next
return delete_node.data
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.head is None
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = None
__UpperCamelCase = self.head
while current:
# Store the current node's next node.
__UpperCamelCase = current.next
# Make the current node's next point backwards
__UpperCamelCase = prev
# Make the previous node be the current node
__UpperCamelCase = current
# Make the current node the next node (to progress iteration)
__UpperCamelCase = next_node
# Return prev in order to put the head at the end
__UpperCamelCase = prev
def A ( ) -> None:
__UpperCamelCase = LinkedList()
assert linked_list.is_empty() is True
assert str(snake_case ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(snake_case ) == i
linked_list.insert_nth(snake_case , i + 1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(0 , 1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(snake_case ) == 9
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(1 , 1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
__UpperCamelCase = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(snake_case ) == "->".join(str(snake_case ) for i in range(-8 , 1 ) )
def A ( ) -> None:
__UpperCamelCase = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
'dlrow olleH',
7,
5_5_5_5,
0,
-192.55_555,
'Hello, world!',
77.9,
Node(1_0 ),
None,
None,
12.20,
]
__UpperCamelCase = LinkedList()
for i in test_input:
linked_list.insert_tail(snake_case )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
__UpperCamelCase = linked_list.delete_head()
assert result == -9
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
__UpperCamelCase = linked_list.delete_tail()
assert result == 12.2
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
__UpperCamelCase = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node('Hello again, world!' ) )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(snake_case )
assert (
str(snake_case )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(snake_case )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def A ( ) -> str:
from doctest import testmod
testmod()
__UpperCamelCase = LinkedList()
linked_list.insert_head(input('Inserting 1st at head ' ).strip() )
linked_list.insert_head(input('Inserting 2nd at head ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() )
linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() )
print('\nPrint list:' )
linked_list.print_list()
print('\nDelete head' )
linked_list.delete_head()
print('Delete tail' )
linked_list.delete_tail()
print('\nPrint list:' )
linked_list.print_list()
print('\nReverse linked list' )
linked_list.reverse()
print('\nPrint list:' )
linked_list.print_list()
print('\nString representation of linked list:' )
print(snake_case )
print('\nReading/changing Node data using indexing:' )
print(f'Element at Position 1: {linked_list[1]}' )
__UpperCamelCase = input('Enter New Value: ' ).strip()
print('New list:' )
print(snake_case )
print(f'length of linked_list is : {len(snake_case )}' )
if __name__ == "__main__":
main()
| 316 |
"""simple docstring"""
import logging
from dataclasses import dataclass, field
from pathlib import Path
from typing import Optional, Union
from .generation.configuration_utils import GenerationConfig
from .training_args import TrainingArguments
from .utils import add_start_docstrings
UpperCamelCase : str = logging.getLogger(__name__)
@dataclass
@add_start_docstrings(TrainingArguments.__doc__ )
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = field(default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use SortishSampler or not."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use generate to calculate generative metrics (ROUGE, BLEU)."} )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `max_length` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `max_length` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": (
"The `num_beams` to use on each evaluation loop when `predict_with_generate=True`. Will default "
"to the `num_beams` value of the model configuration."
)
} , )
lowercase = field(
default=__SCREAMING_SNAKE_CASE , metadata={
"help": "Model id, file path or url pointing to a GenerationConfig json file, to use during prediction."
} , )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = super().to_dict()
for k, v in d.items():
if isinstance(__UpperCAmelCase , __UpperCAmelCase ):
__UpperCamelCase = v.to_dict()
return d
| 316 | 1 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline
else:
from .camera import create_pan_cameras
from .pipeline_shap_e import ShapEPipeline
from .pipeline_shap_e_img2img import ShapEImgaImgPipeline
from .renderer import (
BoundingBoxVolume,
ImportanceRaySampler,
MLPNeRFModelOutput,
MLPNeRSTFModel,
ShapEParamsProjModel,
ShapERenderer,
StratifiedRaySampler,
VoidNeRFModel,
)
| 316 |
"""simple docstring"""
from collections.abc import Iterator, MutableMapping
from dataclasses import dataclass
from typing import Generic, TypeVar
UpperCamelCase : List[str] = TypeVar("KEY")
UpperCamelCase : List[str] = TypeVar("VAL")
@dataclass(frozen=__SCREAMING_SNAKE_CASE , slots=__SCREAMING_SNAKE_CASE )
class __lowerCAmelCase ( Generic[KEY, VAL] ):
lowercase = 42
lowercase = 42
class __lowerCAmelCase ( _Item ):
def __init__( self ):
'''simple docstring'''
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __bool__( self ):
'''simple docstring'''
return False
UpperCamelCase : Any = _DeletedItem()
class __lowerCAmelCase ( MutableMapping[KEY, VAL] ):
def __init__( self , __UpperCAmelCase = 8 , __UpperCAmelCase = 0.7_5 ):
'''simple docstring'''
__UpperCamelCase = initial_block_size
__UpperCamelCase = [None] * initial_block_size
assert 0.0 < capacity_factor < 1.0
__UpperCamelCase = capacity_factor
__UpperCamelCase = 0
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return hash(__UpperCAmelCase ) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return (ind + 1) % len(self._buckets )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets[ind]
if not stored:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
self._len += 1
return True
elif stored.key == key:
__UpperCamelCase = _Item(__UpperCAmelCase , __UpperCAmelCase )
return True
else:
return False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = len(self._buckets ) * self._capacity_factor
return len(self ) >= int(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
if len(self._buckets ) <= self._initial_block_size:
return False
__UpperCamelCase = len(self._buckets ) * self._capacity_factor / 2
return len(self ) < limit
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._buckets
__UpperCamelCase = [None] * new_size
__UpperCamelCase = 0
for item in old_buckets:
if item:
self._add_item(item.key , item.val )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) * 2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._resize(len(self._buckets ) // 2 )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self._get_bucket_index(__UpperCAmelCase )
for _ in range(len(self._buckets ) ):
yield ind
__UpperCamelCase = self._get_next_ind(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
if self._try_set(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
break
def __setitem__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if self._is_full():
self._size_up()
self._add_item(__UpperCAmelCase , __UpperCAmelCase )
def __delitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
raise KeyError(__UpperCAmelCase )
if item is _deleted:
continue
if item.key == key:
__UpperCamelCase = _deleted
self._len -= 1
break
if self._is_sparse():
self._size_down()
def __getitem__( self , __UpperCAmelCase ):
'''simple docstring'''
for ind in self._iterate_buckets(__UpperCAmelCase ):
__UpperCamelCase = self._buckets[ind]
if item is None:
break
if item is _deleted:
continue
if item.key == key:
return item.val
raise KeyError(__UpperCAmelCase )
def __len__( self ):
'''simple docstring'''
return self._len
def __iter__( self ):
'''simple docstring'''
yield from (item.key for item in self._buckets if item)
def __repr__( self ):
'''simple docstring'''
__UpperCamelCase = ' ,'.join(
F'{item.key}: {item.val}' for item in self._buckets if item )
return F'HashMap({val_string})'
| 316 | 1 |
"""simple docstring"""
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase : Dict = get_tests_dir("fixtures/test_sentencepiece.model")
@require_sentencepiece
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = XLMProphetNetTokenizer
lowercase = False
lowercase = True
def UpperCAmelCase ( self ):
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
__UpperCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
tokenizer.save_pretrained(self.tmpdirname )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = '[PAD]'
__UpperCamelCase = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(__UpperCAmelCase ) , __UpperCAmelCase )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(__UpperCAmelCase ) , __UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '[PAD]' )
self.assertEqual(vocab_keys[1] , '[CLS]' )
self.assertEqual(vocab_keys[-1] , 'j' )
self.assertEqual(len(__UpperCAmelCase ) , 1012 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 1012 )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = XLMProphetNetTokenizer(__UpperCAmelCase , keep_accents=__UpperCAmelCase )
__UpperCamelCase = tokenizer.tokenize('This is a test' )
self.assertListEqual(__UpperCAmelCase , ['▁This', '▁is', '▁a', '▁t', 'est'] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , )
__UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'9',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'é',
'.',
] , )
__UpperCamelCase = tokenizer.convert_tokens_to_ids(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
__UpperCamelCase = tokenizer.convert_ids_to_tokens(__UpperCAmelCase )
self.assertListEqual(
__UpperCAmelCase , [
SPIECE_UNDERLINE + 'I',
SPIECE_UNDERLINE + 'was',
SPIECE_UNDERLINE + 'b',
'or',
'n',
SPIECE_UNDERLINE + 'in',
SPIECE_UNDERLINE + '',
'[UNK]',
'2',
'0',
'0',
'0',
',',
SPIECE_UNDERLINE + 'and',
SPIECE_UNDERLINE + 'this',
SPIECE_UNDERLINE + 'is',
SPIECE_UNDERLINE + 'f',
'al',
's',
'[UNK]',
'.',
] , )
@cached_property
def UpperCAmelCase ( self ):
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('microsoft/xprophetnet-large-wiki100-cased' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'Hello World!'
__UpperCamelCase = [3_5389, 6672, 49, 2]
self.assertListEqual(__UpperCAmelCase , self.big_tokenizer.encode(__UpperCAmelCase ) )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = {'input_ids': [[1_1073, 8_2783, 18, 26, 8_2783, 549, 5_1540, 248, 1_7209, 1301, 217, 20, 21_5186, 1325, 147, 1_7209, 1301, 217, 20, 5_6370, 53, 12_2020, 20, 1_6477, 27, 8_7355, 4548, 20, 4728, 7_8392, 17, 15_9969, 18, 26, 2_4491, 629, 15, 538, 2_2704, 5439, 15, 2788, 2_4491, 9885, 15, 4_3534, 605, 15, 814, 1_8403, 3_3200, 29, 15, 4_3534, 2_4458, 1_2410, 111, 2_4966, 8_3669, 9637, 14_4068, 26, 850, 2_2346, 27, 147, 2_4966, 8_3669, 8_3490, 26, 3_9113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 12_2020, 11_5785, 34, 816, 1339, 4_6887, 18, 147, 5_3905, 1951, 4_2238, 4_1170, 1_7732, 834, 436, 15, 2_7523, 9_8733, 217, 147, 5542, 4981, 930, 1_7347, 16, 2], [2_0091, 629, 94, 8_2786, 58, 490, 20, 1528, 84, 5_3905, 344, 8_0592, 11_0128, 1_8822, 5267, 1306, 62, 15_2537, 308, 7997, 401, 12_4427, 549, 3_5442, 225, 109, 1_5055, 2_5748, 147, 7119, 4_3712, 34, 767, 13_5366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 6_3784, 11_9466, 17, 14_7808, 8_8214, 18, 656, 81, 32, 3296, 1_0280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=__UpperCAmelCase , model_name='microsoft/xprophetnet-large-wiki100-cased' , revision='1acad1643ddd54a44df6a1b797ada8373685d90e' , )
| 316 |
"""simple docstring"""
def A ( snake_case :int , snake_case :int ) -> bool:
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
def A ( snake_case :float , snake_case :list[float] ) -> float:
if discount_rate < 0:
raise ValueError('Discount rate cannot be negative' )
if not cash_flows:
raise ValueError('Cash flows list cannot be empty' )
__UpperCamelCase = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(snake_case ) )
return round(snake_case , ndigits=2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel
from ...schedulers import ScoreSdeVeScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = 42
lowercase = 42
def __init__( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
super().__init__()
self.register_modules(unet=__UpperCAmelCase , scheduler=__UpperCAmelCase )
@torch.no_grad()
def __call__( self , __UpperCAmelCase = 1 , __UpperCAmelCase = 2000 , __UpperCAmelCase = None , __UpperCAmelCase = "pil" , __UpperCAmelCase = True , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = self.unet.config.sample_size
__UpperCamelCase = (batch_size, 3, img_size, img_size)
__UpperCamelCase = self.unet
__UpperCamelCase = randn_tensor(__UpperCAmelCase , generator=__UpperCAmelCase ) * self.scheduler.init_noise_sigma
__UpperCamelCase = sample.to(self.device )
self.scheduler.set_timesteps(__UpperCAmelCase )
self.scheduler.set_sigmas(__UpperCAmelCase )
for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ):
__UpperCamelCase = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device )
# correction step
for _ in range(self.scheduler.config.correct_steps ):
__UpperCamelCase = self.unet(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_correct(__UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase ).prev_sample
# prediction step
__UpperCamelCase = model(__UpperCAmelCase , __UpperCAmelCase ).sample
__UpperCamelCase = self.scheduler.step_pred(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , generator=__UpperCAmelCase )
__UpperCamelCase , __UpperCamelCase = output.prev_sample, output.prev_sample_mean
__UpperCamelCase = sample_mean.clamp(0 , 1 )
__UpperCamelCase = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
__UpperCamelCase = self.numpy_to_pil(__UpperCAmelCase )
if not return_dict:
return (sample,)
return ImagePipelineOutput(images=__UpperCAmelCase )
| 316 | 1 |
"""simple docstring"""
import argparse
import os
import torch
from diffusers import (
CMStochasticIterativeScheduler,
ConsistencyModelPipeline,
UNetaDModel,
)
UpperCamelCase : Tuple = {
"sample_size": 3_2,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": 1_0_0_0,
"block_out_channels": [3_2, 6_4],
"attention_head_dim": 8,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCamelCase : List[Any] = {
"sample_size": 6_4,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 3,
"num_class_embeds": 1_0_0_0,
"block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4],
"attention_head_dim": 6_4,
"down_block_types": [
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "scale_shift",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCamelCase : Any = {
"sample_size": 2_5_6,
"in_channels": 3,
"out_channels": 3,
"layers_per_block": 2,
"num_class_embeds": None,
"block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4],
"attention_head_dim": 6_4,
"down_block_types": [
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"ResnetDownsampleBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
"AttnDownBlock2D",
],
"up_block_types": [
"AttnUpBlock2D",
"AttnUpBlock2D",
"AttnUpBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
"ResnetUpsampleBlock2D",
],
"resnet_time_scale_shift": "default",
"upsample_type": "resnet",
"downsample_type": "resnet",
}
UpperCamelCase : str = {
"num_train_timesteps": 4_0,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
UpperCamelCase : Union[str, Any] = {
"num_train_timesteps": 2_0_1,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
UpperCamelCase : Any = {
"num_train_timesteps": 1_5_1,
"sigma_min": 0.0_02,
"sigma_max": 80.0,
}
def A ( snake_case :Dict ) -> int:
if isinstance(snake_case , snake_case ):
return v
if v.lower() in ("yes", "true", "t", "y", "1"):
return True
elif v.lower() in ("no", "false", "f", "n", "0"):
return False
else:
raise argparse.ArgumentTypeError('boolean value expected' )
def A ( snake_case :List[str] , snake_case :List[Any] , snake_case :Dict , snake_case :List[str] , snake_case :Any=False ) -> Optional[Any]:
__UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.0.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.0.bias']
__UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.2.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.in_layers.2.bias']
__UpperCamelCase = checkpoint[f'{old_prefix}.emb_layers.1.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.emb_layers.1.bias']
__UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.0.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.0.bias']
__UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.3.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.out_layers.3.bias']
if has_skip:
__UpperCamelCase = checkpoint[f'{old_prefix}.skip_connection.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.skip_connection.bias']
return new_checkpoint
def A ( snake_case :Union[str, Any] , snake_case :str , snake_case :List[str] , snake_case :List[Any] , snake_case :Union[str, Any]=None ) -> List[str]:
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = checkpoint[f'{old_prefix}.qkv.weight'].chunk(3 , dim=0 )
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = checkpoint[f'{old_prefix}.qkv.bias'].chunk(3 , dim=0 )
__UpperCamelCase = checkpoint[f'{old_prefix}.norm.weight']
__UpperCamelCase = checkpoint[f'{old_prefix}.norm.bias']
__UpperCamelCase = weight_q.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = bias_q.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = weight_k.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = bias_k.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = weight_v.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = bias_v.squeeze(-1 ).squeeze(-1 )
__UpperCamelCase = (
checkpoint[f'{old_prefix}.proj_out.weight'].squeeze(-1 ).squeeze(-1 )
)
__UpperCamelCase = checkpoint[f'{old_prefix}.proj_out.bias'].squeeze(-1 ).squeeze(-1 )
return new_checkpoint
def A ( snake_case :str , snake_case :List[Any] ) -> Tuple:
__UpperCamelCase = torch.load(snake_case , map_location='cpu' )
__UpperCamelCase = {}
__UpperCamelCase = checkpoint['time_embed.0.weight']
__UpperCamelCase = checkpoint['time_embed.0.bias']
__UpperCamelCase = checkpoint['time_embed.2.weight']
__UpperCamelCase = checkpoint['time_embed.2.bias']
if unet_config["num_class_embeds"] is not None:
__UpperCamelCase = checkpoint['label_emb.weight']
__UpperCamelCase = checkpoint['input_blocks.0.0.weight']
__UpperCamelCase = checkpoint['input_blocks.0.0.bias']
__UpperCamelCase = unet_config['down_block_types']
__UpperCamelCase = unet_config['layers_per_block']
__UpperCamelCase = unet_config['attention_head_dim']
__UpperCamelCase = unet_config['block_out_channels']
__UpperCamelCase = 1
__UpperCamelCase = channels_list[0]
for i, layer_type in enumerate(snake_case ):
__UpperCamelCase = channels_list[i]
__UpperCamelCase = current_channels != prev_channels
if layer_type == "ResnetDownsampleBlock2D":
for j in range(snake_case ):
__UpperCamelCase = f'down_blocks.{i}.resnets.{j}'
__UpperCamelCase = f'input_blocks.{current_layer}.0'
__UpperCamelCase = True if j == 0 and downsample_block_has_skip else False
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case )
current_layer += 1
elif layer_type == "AttnDownBlock2D":
for j in range(snake_case ):
__UpperCamelCase = f'down_blocks.{i}.resnets.{j}'
__UpperCamelCase = f'input_blocks.{current_layer}.0'
__UpperCamelCase = True if j == 0 and downsample_block_has_skip else False
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case )
__UpperCamelCase = f'down_blocks.{i}.attentions.{j}'
__UpperCamelCase = f'input_blocks.{current_layer}.1'
__UpperCamelCase = convert_attention(
snake_case , snake_case , snake_case , snake_case , snake_case )
current_layer += 1
if i != len(snake_case ) - 1:
__UpperCamelCase = f'down_blocks.{i}.downsamplers.0'
__UpperCamelCase = f'input_blocks.{current_layer}.0'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case )
current_layer += 1
__UpperCamelCase = current_channels
# hardcoded the mid-block for now
__UpperCamelCase = 'mid_block.resnets.0'
__UpperCamelCase = 'middle_block.0'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = 'mid_block.attentions.0'
__UpperCamelCase = 'middle_block.1'
__UpperCamelCase = convert_attention(snake_case , snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = 'mid_block.resnets.1'
__UpperCamelCase = 'middle_block.2'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = 0
__UpperCamelCase = unet_config['up_block_types']
for i, layer_type in enumerate(snake_case ):
if layer_type == "ResnetUpsampleBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCamelCase = f'up_blocks.{i}.resnets.{j}'
__UpperCamelCase = f'output_blocks.{current_layer}.0'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case )
current_layer += 1
if i != len(snake_case ) - 1:
__UpperCamelCase = f'up_blocks.{i}.upsamplers.0'
__UpperCamelCase = f'output_blocks.{current_layer-1}.1'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case )
elif layer_type == "AttnUpBlock2D":
for j in range(layers_per_block + 1 ):
__UpperCamelCase = f'up_blocks.{i}.resnets.{j}'
__UpperCamelCase = f'output_blocks.{current_layer}.0'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case , has_skip=snake_case )
__UpperCamelCase = f'up_blocks.{i}.attentions.{j}'
__UpperCamelCase = f'output_blocks.{current_layer}.1'
__UpperCamelCase = convert_attention(
snake_case , snake_case , snake_case , snake_case , snake_case )
current_layer += 1
if i != len(snake_case ) - 1:
__UpperCamelCase = f'up_blocks.{i}.upsamplers.0'
__UpperCamelCase = f'output_blocks.{current_layer-1}.2'
__UpperCamelCase = convert_resnet(snake_case , snake_case , snake_case , snake_case )
__UpperCamelCase = checkpoint['out.0.weight']
__UpperCamelCase = checkpoint['out.0.bias']
__UpperCamelCase = checkpoint['out.2.weight']
__UpperCamelCase = checkpoint['out.2.bias']
return new_checkpoint
if __name__ == "__main__":
UpperCamelCase : List[str] = argparse.ArgumentParser()
parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.")
parser.add_argument(
"--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model."
)
parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.")
UpperCamelCase : Dict = parser.parse_args()
UpperCamelCase : List[Any] = strabool(args.class_cond)
UpperCamelCase : List[str] = os.path.basename(args.unet_path)
print(f'''Checkpoint: {ckpt_name}''')
# Get U-Net config
if "imagenet64" in ckpt_name:
UpperCamelCase : Optional[int] = IMAGENET_64_UNET_CONFIG
elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCamelCase : int = LSUN_256_UNET_CONFIG
elif "test" in ckpt_name:
UpperCamelCase : int = TEST_UNET_CONFIG
else:
raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''')
if not args.class_cond:
UpperCamelCase : Optional[int] = None
UpperCamelCase : Dict = con_pt_to_diffuser(args.unet_path, unet_config)
UpperCamelCase : List[Any] = UNetaDModel(**unet_config)
image_unet.load_state_dict(converted_unet_ckpt)
# Get scheduler config
if "cd" in ckpt_name or "test" in ckpt_name:
UpperCamelCase : str = CD_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "imagenet64" in ckpt_name:
UpperCamelCase : int = CT_IMAGENET_64_SCHEDULER_CONFIG
elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)):
UpperCamelCase : Union[str, Any] = CT_LSUN_256_SCHEDULER_CONFIG
else:
raise ValueError(f'''Checkpoint type {ckpt_name} is not currently supported.''')
UpperCamelCase : Optional[Any] = CMStochasticIterativeScheduler(**scheduler_config)
UpperCamelCase : Tuple = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler)
consistency_model.save_pretrained(args.dump_path)
| 316 |
"""simple docstring"""
def A ( snake_case :list[int] , snake_case :int ) -> bool:
__UpperCamelCase = len(snake_case )
__UpperCamelCase = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
__UpperCamelCase = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
__UpperCamelCase = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
__UpperCamelCase = subset[i - 1][j]
if arr[i - 1] <= j:
__UpperCamelCase = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
import argparse
from torch import nn
# transformers_old should correspond to branch `save_old_prophetnet_model_structure` here
# original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively
from transformers_old.modeling_prophetnet import (
ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld,
)
from transformers_old.modeling_xlm_prophetnet import (
XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld,
)
from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging
UpperCamelCase : Optional[Any] = logging.get_logger(__name__)
logging.set_verbosity_info()
def A ( snake_case :str , snake_case :str ) -> Any:
if "xprophetnet" in prophetnet_checkpoint_path:
__UpperCamelCase = XLMProphetNetForConditionalGenerationOld.from_pretrained(snake_case )
__UpperCamelCase , __UpperCamelCase = XLMProphetNetForConditionalGeneration.from_pretrained(
snake_case , output_loading_info=snake_case )
else:
__UpperCamelCase = ProphetNetForConditionalGenerationOld.from_pretrained(snake_case )
__UpperCamelCase , __UpperCamelCase = ProphetNetForConditionalGeneration.from_pretrained(
snake_case , output_loading_info=snake_case )
__UpperCamelCase = ['key_proj', 'value_proj', 'query_proj']
__UpperCamelCase = {
'self_attn': 'ngram_self_attn',
'cross_attn': 'encoder_attn',
'cross_attn_layer_norm': 'encoder_attn_layer_norm',
'feed_forward_layer_norm': 'final_layer_norm',
'feed_forward': '',
'intermediate': 'fc1',
'output': 'fc2',
'key_proj': 'k_proj',
'query_proj': 'q_proj',
'value_proj': 'v_proj',
'word_embeddings': 'embed_tokens',
'embeddings_layer_norm': 'emb_layer_norm',
'relative_pos_embeddings': 'relative_linear',
'ngram_embeddings': 'ngram_input_embed',
'position_embeddings': 'embed_positions',
}
for key in loading_info["missing_keys"]:
__UpperCamelCase = key.split('.' )
if attributes[0] == "lm_head":
__UpperCamelCase = prophet
__UpperCamelCase = prophet_old
else:
__UpperCamelCase = prophet.prophetnet
__UpperCamelCase = prophet_old.model
__UpperCamelCase = False
for attribute in attributes:
if attribute in mapping:
__UpperCamelCase = mapping[attribute]
if not hasattr(snake_case , snake_case ) and len(snake_case ) > 0:
__UpperCamelCase = attribute
elif hasattr(snake_case , snake_case ):
__UpperCamelCase = attribute
if attribute == "weight":
assert old_model.weight.shape == model.weight.shape, "Shapes have to match!"
__UpperCamelCase = old_model.weight
logger.info(f'{attribute} is initialized.' )
__UpperCamelCase = True
break
elif attribute == "bias":
assert old_model.bias.shape == model.bias.shape, "Shapes have to match!"
__UpperCamelCase = old_model.bias
logger.info(f'{attribute} is initialized' )
__UpperCamelCase = True
break
elif attribute in special_keys and hasattr(snake_case , 'in_proj_weight' ):
__UpperCamelCase = old_model.in_proj_weight.shape[0] // 3
__UpperCamelCase = getattr(snake_case , snake_case )
param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match"
param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match"
if attribute == "query_proj":
__UpperCamelCase = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] )
__UpperCamelCase = nn.Parameter(old_model.in_proj_bias[:embed_dim] )
elif attribute == "key_proj":
__UpperCamelCase = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] )
__UpperCamelCase = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] )
elif attribute == "value_proj":
__UpperCamelCase = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] )
__UpperCamelCase = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] )
__UpperCamelCase = True
break
elif attribute == "position_embeddings":
assert (
model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1]
), "Hidden size has to match"
assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings."
__UpperCamelCase = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] )
__UpperCamelCase = True
break
if attribute.isdigit():
__UpperCamelCase = model[int(snake_case )]
__UpperCamelCase = old_model[int(snake_case )]
else:
__UpperCamelCase = getattr(snake_case , snake_case )
if old_attribute == "":
__UpperCamelCase = old_model
else:
if not hasattr(snake_case , snake_case ):
raise ValueError(f'{old_model} does not have {old_attribute}' )
__UpperCamelCase = getattr(snake_case , snake_case )
if not is_key_init:
raise ValueError(f'{key} was not correctly initialized!' )
print(f'Saving model to {pytorch_dump_folder_path}' )
prophet.save_pretrained(snake_case )
if __name__ == "__main__":
UpperCamelCase : str = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
UpperCamelCase : Optional[Any] = parser.parse_args()
convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
| 316 |
"""simple docstring"""
import argparse
import logging
import os
from pathlib import Path
from typing import Any, Dict
import pytorch_lightning as pl
from pytorch_lightning.utilities import rank_zero_info
from transformers import (
AdamW,
AutoConfig,
AutoModel,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelForTokenClassification,
AutoModelWithLMHead,
AutoTokenizer,
PretrainedConfig,
PreTrainedTokenizer,
)
from transformers.optimization import (
Adafactor,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.utils.versions import require_version
UpperCamelCase : Union[str, Any] = logging.getLogger(__name__)
require_version("pytorch_lightning>=1.0.4")
UpperCamelCase : int = {
"base": AutoModel,
"sequence-classification": AutoModelForSequenceClassification,
"question-answering": AutoModelForQuestionAnswering,
"pretraining": AutoModelForPreTraining,
"token-classification": AutoModelForTokenClassification,
"language-modeling": AutoModelWithLMHead,
"summarization": AutoModelForSeqaSeqLM,
"translation": AutoModelForSeqaSeqLM,
}
# update this and the import above to support new schedulers from transformers.optimization
UpperCamelCase : Optional[Any] = {
"linear": get_linear_schedule_with_warmup,
"cosine": get_cosine_schedule_with_warmup,
"cosine_w_restarts": get_cosine_with_hard_restarts_schedule_with_warmup,
"polynomial": get_polynomial_decay_schedule_with_warmup,
# '': get_constant_schedule, # not supported for now
# '': get_constant_schedule_with_warmup, # not supported for now
}
UpperCamelCase : str = sorted(arg_to_scheduler.keys())
UpperCamelCase : List[str] = "{" + ", ".join(arg_to_scheduler_choices) + "}"
class __lowerCAmelCase ( pl.LightningModule ):
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase="base" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__()
# TODO: move to self.save_hyperparameters()
# self.save_hyperparameters()
# can also expand arguments into trainer signature for easier reading
self.save_hyperparameters(__UpperCAmelCase )
__UpperCamelCase = 0
__UpperCamelCase = Path(self.hparams.output_dir )
__UpperCamelCase = self.hparams.cache_dir if self.hparams.cache_dir else None
if config is None:
__UpperCamelCase = AutoConfig.from_pretrained(
self.hparams.config_name if self.hparams.config_name else self.hparams.model_name_or_path , **({'num_labels': num_labels} if num_labels is not None else {}) , cache_dir=__UpperCAmelCase , **__UpperCAmelCase , )
else:
__UpperCamelCase = config
__UpperCamelCase = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout')
for p in extra_model_params:
if getattr(self.hparams , __UpperCAmelCase , __UpperCAmelCase ):
assert hasattr(self.config , __UpperCAmelCase ), F'model config doesn\'t have a `{p}` attribute'
setattr(self.config , __UpperCAmelCase , getattr(self.hparams , __UpperCAmelCase ) )
if tokenizer is None:
__UpperCamelCase = AutoTokenizer.from_pretrained(
self.hparams.tokenizer_name if self.hparams.tokenizer_name else self.hparams.model_name_or_path , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = tokenizer
__UpperCamelCase = MODEL_MODES[mode]
if model is None:
__UpperCamelCase = self.model_type.from_pretrained(
self.hparams.model_name_or_path , from_tf=bool('.ckpt' in self.hparams.model_name_or_path ) , config=self.config , cache_dir=__UpperCAmelCase , )
else:
__UpperCamelCase = model
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.model_type.from_pretrained(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = arg_to_scheduler[self.hparams.lr_scheduler]
__UpperCamelCase = get_schedule_func(
self.opt , num_warmup_steps=self.hparams.warmup_steps , num_training_steps=self.total_steps() )
__UpperCamelCase = {'scheduler': scheduler, 'interval': 'step', 'frequency': 1}
return scheduler
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model
__UpperCamelCase = ['bias', 'LayerNorm.weight']
__UpperCamelCase = [
{
'params': [
p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay )
], # check this named paramters
'weight_decay': self.hparams.weight_decay,
},
{
'params': [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay )],
'weight_decay': 0.0,
},
]
if self.hparams.adafactor:
__UpperCamelCase = Adafactor(
__UpperCAmelCase , lr=self.hparams.learning_rate , scale_parameter=__UpperCAmelCase , relative_step=__UpperCAmelCase )
else:
__UpperCamelCase = AdamW(
__UpperCAmelCase , lr=self.hparams.learning_rate , eps=self.hparams.adam_epsilon )
__UpperCamelCase = optimizer
__UpperCamelCase = self.get_lr_scheduler()
return [optimizer], [scheduler]
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_step(__UpperCAmelCase , __UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return self.validation_end(__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = max(1 , self.hparams.gpus ) # TODO: consider num_tpu_cores
__UpperCamelCase = self.hparams.train_batch_size * self.hparams.accumulate_grad_batches * num_devices
return (self.dataset_size / effective_batch_size) * self.hparams.max_epochs
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
if stage == "test":
__UpperCamelCase = len(self.test_dataloader().dataset )
else:
__UpperCamelCase = self.get_dataloader('train' , self.hparams.train_batch_size , shuffle=__UpperCAmelCase )
__UpperCamelCase = len(self.train_dataloader().dataset )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False ):
'''simple docstring'''
raise NotImplementedError('You must implement this for your task' )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.train_loader
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('dev' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
return self.get_dataloader('test' , self.hparams.eval_batch_size , shuffle=__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
return os.path.join(
self.hparams.data_dir , 'cached_{}_{}_{}'.format(
__UpperCAmelCase , list(filter(__UpperCAmelCase , self.hparams.model_name_or_path.split('/' ) ) ).pop() , str(self.hparams.max_seq_length ) , ) , )
@pl.utilities.rank_zero_only
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = self.output_dir.joinpath('best_tfmr' )
__UpperCamelCase = self.step_count
self.model.save_pretrained(__UpperCAmelCase )
self.tokenizer.save_pretrained(__UpperCAmelCase )
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
parser.add_argument(
'--model_name_or_path' , default=__UpperCAmelCase , type=__UpperCAmelCase , required=__UpperCAmelCase , help='Path to pretrained model or model identifier from huggingface.co/models' , )
parser.add_argument(
'--config_name' , default='' , type=__UpperCAmelCase , help='Pretrained config name or path if not the same as model_name' )
parser.add_argument(
'--tokenizer_name' , default=__UpperCAmelCase , type=__UpperCAmelCase , help='Pretrained tokenizer name or path if not the same as model_name' , )
parser.add_argument(
'--cache_dir' , default=str(Path(__UpperCAmelCase ).parent / 'test_run' / 'cache' ) , type=__UpperCAmelCase , help='Where do you want to store the pre-trained models downloaded from huggingface.co' , )
parser.add_argument(
'--encoder_layerdrop' , type=__UpperCAmelCase , help='Encoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--decoder_layerdrop' , type=__UpperCAmelCase , help='Decoder layer dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--dropout' , type=__UpperCAmelCase , help='Dropout probability (Optional). Goes into model.config' , )
parser.add_argument(
'--attention_dropout' , type=__UpperCAmelCase , help='Attention dropout probability (Optional). Goes into model.config' , )
parser.add_argument('--learning_rate' , default=5E-5 , type=__UpperCAmelCase , help='The initial learning rate for Adam.' )
parser.add_argument(
'--lr_scheduler' , default='linear' , choices=__UpperCAmelCase , metavar=__UpperCAmelCase , type=__UpperCAmelCase , help='Learning rate scheduler' , )
parser.add_argument('--weight_decay' , default=0.0 , type=__UpperCAmelCase , help='Weight decay if we apply some.' )
parser.add_argument('--adam_epsilon' , default=1E-8 , type=__UpperCAmelCase , help='Epsilon for Adam optimizer.' )
parser.add_argument('--warmup_steps' , default=0 , type=__UpperCAmelCase , help='Linear warmup over warmup_steps.' )
parser.add_argument('--num_workers' , default=4 , type=__UpperCAmelCase , help='kwarg passed to DataLoader' )
parser.add_argument('--num_train_epochs' , dest='max_epochs' , default=3 , type=__UpperCAmelCase )
parser.add_argument('--train_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--eval_batch_size' , default=32 , type=__UpperCAmelCase )
parser.add_argument('--adafactor' , action='store_true' )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
if (
trainer.is_global_zero and trainer.global_rank == 0
): # we initialize the retriever only on master worker with RAY. In new pytorch-lightning accelorators are removed.
pl_module.model.rag.retriever.init_retrieval() # better to use hook functions.
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
for name, param in pl_module.model.rag.named_parameters():
if param.grad is None:
print(__UpperCAmelCase )
class __lowerCAmelCase ( pl.Callback ):
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = trainer.lr_schedulers[0]['scheduler']
__UpperCamelCase = {F'lr_group_{i}': lr for i, lr in enumerate(lr_scheduler.get_lr() )}
pl_module.logger.log_metrics(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Validation results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log results
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
rank_zero_info('***** Test results *****' )
__UpperCamelCase = trainer.callback_metrics
# Log and save results to file
__UpperCamelCase = os.path.join(pl_module.hparams.output_dir , 'test_results.txt' )
with open(__UpperCAmelCase , 'w' ) as writer:
for key in sorted(__UpperCAmelCase ):
if key not in ["log", "progress_bar"]:
rank_zero_info('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
writer.write('{} = {}\n'.format(__UpperCAmelCase , str(metrics[key] ) ) )
def A ( snake_case :Any , snake_case :int ) -> None:
# To allow all pl args uncomment the following line
# parser = pl.Trainer.add_argparse_args(parser)
parser.add_argument(
'--output_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'model_checkpoints' ) , type=snake_case , help='The output directory where the model predictions and checkpoints will be written.' , )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=snake_case , default='O2' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_tpu_cores' , dest='tpu_cores' , type=snake_case )
parser.add_argument('--max_grad_norm' , dest='gradient_clip_val' , default=1.0 , type=snake_case , help='Max gradient norm' )
parser.add_argument('--do_train' , action='store_true' , help='Whether to run training.' )
parser.add_argument('--do_predict' , action='store_true' , help='Whether to run predictions on the test set.' )
parser.add_argument(
'--gradient_accumulation_steps' , dest='accumulate_grad_batches' , type=snake_case , default=1 , help='Number of updates steps to accumulate before performing a backward/update pass.' , )
parser.add_argument('--seed' , type=snake_case , default=4_2 , help='random seed for initialization' )
parser.add_argument(
'--data_dir' , default=str(Path(snake_case ).parent / 'test_run' / 'dummy-train-data' ) , type=snake_case , help='The input data dir. Should contain the training files for the CoNLL-2003 NER task.' , )
def A ( snake_case :BaseTransformer , snake_case :argparse.Namespace , snake_case :Union[str, Any]=None , snake_case :Union[str, Any]=True , snake_case :Any=[] , snake_case :Tuple=None , snake_case :List[str]=None , **snake_case :Union[str, Any] , ) -> Optional[int]:
pl.seed_everything(args.seed )
# init model
__UpperCamelCase = Path(model.hparams.output_dir )
odir.mkdir(exist_ok=snake_case )
# add custom checkpoints
if checkpoint_callback is None:
__UpperCamelCase = pl.callbacks.ModelCheckpoint(
filepath=args.output_dir , prefix='checkpoint' , monitor='val_loss' , mode='min' , save_top_k=1 )
if early_stopping_callback:
extra_callbacks.append(snake_case )
if logging_callback is None:
__UpperCamelCase = LoggingCallback()
__UpperCamelCase = {}
if args.fpaa:
__UpperCamelCase = 1_6
if args.gpus > 1:
__UpperCamelCase = 'auto'
__UpperCamelCase = 'ddp'
__UpperCamelCase = args.accumulate_grad_batches
__UpperCamelCase = None
__UpperCamelCase = 'auto'
__UpperCamelCase = pl.Trainer.from_argparse_args(
snake_case , weights_summary=snake_case , callbacks=[logging_callback] + extra_callbacks + [InitCallback()] + [checkpoint_callback] , logger=snake_case , val_check_interval=1 , num_sanity_val_steps=2 , **snake_case , )
if args.do_train:
trainer.fit(snake_case )
else:
print('RAG modeling tests with new set functions successfuly executed!' )
return trainer
| 316 | 1 |
"""simple docstring"""
import numpy as np
class __lowerCAmelCase :
def __init__( self ):
'''simple docstring'''
__UpperCamelCase = (0, 0)
__UpperCamelCase = None
__UpperCamelCase = 0
__UpperCamelCase = 0
__UpperCamelCase = 0
def __eq__( self , __UpperCAmelCase ):
'''simple docstring'''
return self.position == cell.position
def UpperCAmelCase ( self ):
'''simple docstring'''
print(self.position )
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase=(5, 5) ):
'''simple docstring'''
__UpperCamelCase = np.zeros(__UpperCAmelCase )
__UpperCamelCase = world_size[0]
__UpperCamelCase = world_size[1]
def UpperCAmelCase ( self ):
'''simple docstring'''
print(self.w )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
__UpperCamelCase = cell.position[0]
__UpperCamelCase = cell.position[1]
__UpperCamelCase = []
for n in neughbour_cord:
__UpperCamelCase = current_x + n[0]
__UpperCamelCase = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
__UpperCamelCase = Cell()
__UpperCamelCase = (x, y)
__UpperCamelCase = cell
neighbours.append(__UpperCAmelCase )
return neighbours
def A ( snake_case :Dict , snake_case :Tuple , snake_case :int ) -> Any:
__UpperCamelCase = []
__UpperCamelCase = []
_open.append(snake_case )
while _open:
__UpperCamelCase = np.argmin([n.f for n in _open] )
__UpperCamelCase = _open[min_f]
_closed.append(_open.pop(snake_case ) )
if current == goal:
break
for n in world.get_neigbours(snake_case ):
for c in _closed:
if c == n:
continue
__UpperCamelCase = current.g + 1
__UpperCamelCase , __UpperCamelCase = n.position
__UpperCamelCase , __UpperCamelCase = goal.position
__UpperCamelCase = (ya - ya) ** 2 + (xa - xa) ** 2
__UpperCamelCase = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(snake_case )
__UpperCamelCase = []
while current.parent is not None:
path.append(current.position )
__UpperCamelCase = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
UpperCamelCase : Optional[int] = Gridworld()
# Start position and goal
UpperCamelCase : List[Any] = Cell()
UpperCamelCase : int = (0, 0)
UpperCamelCase : str = Cell()
UpperCamelCase : Optional[int] = (4, 4)
print(f'''path from {start.position} to {goal.position}''')
UpperCamelCase : Optional[Any] = astar(world, start, goal)
# Just for visual reasons.
for i in s:
UpperCamelCase : Tuple = 1
print(world.w)
| 316 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase : Dict = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
UpperCamelCase : Dict = {
"gpt2": 1_0_2_4,
"gpt2-medium": 1_0_2_4,
"gpt2-large": 1_0_2_4,
"gpt2-xl": 1_0_2_4,
"distilgpt2": 1_0_2_4,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["input_ids", "attention_mask"]
lowercase = GPTaTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase )
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space:
__UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**__UpperCAmelCase )
__UpperCamelCase = add_prefix_space
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
__UpperCamelCase = input_ids[-self.model_max_length :]
return input_ids
| 316 | 1 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Dict = logging.get_logger(__name__)
UpperCamelCase : Union[str, Any] = {
"RUCAIBox/mvp": "https://huggingface.co/RUCAIBox/mvp/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = "mvp"
lowercase = ["past_key_values"]
lowercase = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
def __init__( self , __UpperCAmelCase=5_0267 , __UpperCAmelCase=1024 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=12 , __UpperCAmelCase=4096 , __UpperCAmelCase=16 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase="gelu" , __UpperCAmelCase=1024 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=1 , __UpperCAmelCase=0 , __UpperCAmelCase=2 , __UpperCAmelCase=True , __UpperCAmelCase=2 , __UpperCAmelCase=2 , __UpperCAmelCase=False , __UpperCAmelCase=100 , __UpperCAmelCase=800 , **__UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = vocab_size
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = d_model
__UpperCamelCase = encoder_ffn_dim
__UpperCamelCase = encoder_layers
__UpperCamelCase = encoder_attention_heads
__UpperCamelCase = decoder_ffn_dim
__UpperCamelCase = decoder_layers
__UpperCamelCase = decoder_attention_heads
__UpperCamelCase = dropout
__UpperCamelCase = attention_dropout
__UpperCamelCase = activation_dropout
__UpperCamelCase = activation_function
__UpperCamelCase = init_std
__UpperCamelCase = encoder_layerdrop
__UpperCamelCase = decoder_layerdrop
__UpperCamelCase = classifier_dropout
__UpperCamelCase = use_cache
__UpperCamelCase = encoder_layers
__UpperCamelCase = scale_embedding # scale factor will be sqrt(d_model) if True
__UpperCamelCase = use_prompt
__UpperCamelCase = prompt_length
__UpperCamelCase = prompt_mid_dim
super().__init__(
pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase , is_encoder_decoder=__UpperCAmelCase , decoder_start_token_id=__UpperCAmelCase , forced_eos_token_id=__UpperCAmelCase , **__UpperCAmelCase , )
if self.forced_bos_token_id is None and kwargs.get('force_bos_token_to_be_generated' , __UpperCAmelCase ):
__UpperCamelCase = self.bos_token_id
warnings.warn(
F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. '
'The config can simply be saved and uploaded again to be fixed.' )
| 316 |
"""simple docstring"""
import argparse
from pathlib import Path
import torch
from packaging import version
from torch.onnx import export
from diffusers import AutoencoderKL
UpperCamelCase : Union[str, Any] = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
def A ( snake_case :str , snake_case :tuple , snake_case :Path , snake_case :Dict , snake_case :int , snake_case :List[str] , snake_case :Union[str, Any] , snake_case :Union[str, Any]=False , ) -> str:
output_path.parent.mkdir(parents=snake_case , exist_ok=snake_case )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , use_external_data_format=snake_case , enable_onnx_checker=snake_case , opset_version=snake_case , )
else:
export(
snake_case , snake_case , f=output_path.as_posix() , input_names=snake_case , output_names=snake_case , dynamic_axes=snake_case , do_constant_folding=snake_case , opset_version=snake_case , )
@torch.no_grad()
def A ( snake_case :str , snake_case :str , snake_case :int , snake_case :bool = False ) -> List[str]:
__UpperCamelCase = torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
__UpperCamelCase = 'cuda'
elif fpaa and not torch.cuda.is_available():
raise ValueError('`float16` model export is only supported on GPUs with CUDA' )
else:
__UpperCamelCase = 'cpu'
__UpperCamelCase = Path(snake_case )
# VAE DECODER
__UpperCamelCase = AutoencoderKL.from_pretrained(model_path + '/vae' )
__UpperCamelCase = vae_decoder.config.latent_channels
# forward only through the decoder part
__UpperCamelCase = vae_decoder.decode
onnx_export(
snake_case , model_args=(
torch.randn(1 , snake_case , 2_5 , 2_5 ).to(device=snake_case , dtype=snake_case ),
False,
) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={
'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'},
} , opset=snake_case , )
del vae_decoder
if __name__ == "__main__":
UpperCamelCase : Dict = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
required=True,
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
)
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
parser.add_argument(
"--opset",
default=1_4,
type=int,
help="The version of the ONNX operator set to use.",
)
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
UpperCamelCase : List[Any] = parser.parse_args()
print(args.output_path)
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
print("SD: Done: ONNX")
| 316 | 1 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase : Optional[Any] = {"configuration_xglm": ["XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XGLMConfig"]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = ["XGLMTokenizer"]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : int = ["XGLMTokenizerFast"]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Dict = [
"XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XGLMForCausalLM",
"XGLMModel",
"XGLMPreTrainedModel",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
"FlaxXGLMForCausalLM",
"FlaxXGLMModel",
"FlaxXGLMPreTrainedModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase : Optional[Any] = [
"TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXGLMForCausalLM",
"TFXGLMModel",
"TFXGLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
UpperCamelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure)
| 316 |
"""simple docstring"""
from __future__ import annotations
import string
from itertools import cycle, product
from pathlib import Path
UpperCamelCase : str = (
string.ascii_letters + string.digits + string.punctuation + string.whitespace
)
UpperCamelCase : list[int] = [ord(letter) for letter in string.ascii_lowercase]
UpperCamelCase : set[int] = {ord(char) for char in VALID_CHARS}
UpperCamelCase : list[str] = ["the", "be", "to", "of", "and", "in", "that", "have"]
def A ( snake_case :list[int] , snake_case :tuple[int, ...] ) -> str | None:
__UpperCamelCase = ""
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
for keychar, cipherchar in zip(cycle(snake_case ) , snake_case ):
__UpperCamelCase = cipherchar ^ keychar
if decodedchar not in VALID_INTS:
return None
decoded += chr(snake_case )
return decoded
def A ( snake_case :list[int] ) -> list[str]:
__UpperCamelCase = []
for key in product(snake_case , repeat=3 ):
__UpperCamelCase = try_key(snake_case , snake_case )
if encoded is not None:
possibles.append(snake_case )
return possibles
def A ( snake_case :list[str] , snake_case :str ) -> list[str]:
return [possible for possible in possibles if common_word in possible.lower()]
def A ( snake_case :str = "p059_cipher.txt" ) -> int:
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = 42
__UpperCamelCase = Path(snake_case ).parent.joinpath(snake_case ).read_text(encoding='utf-8' )
__UpperCamelCase = [int(snake_case ) for number in data.strip().split(',' )]
__UpperCamelCase = filter_valid_chars(snake_case )
for common_word in COMMON_WORDS:
__UpperCamelCase = filter_common_word(snake_case , snake_case )
if len(snake_case ) == 1:
break
__UpperCamelCase = possibles[0]
return sum(ord(snake_case ) for char in decoded_text )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 316 | 1 |
"""simple docstring"""
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : Any = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
UpperCamelCase : Dict = {
"vocab_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json",
},
"merges_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt",
},
"tokenizer_file": {
"gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json",
"gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json",
"gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json",
"gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json",
"distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json",
},
}
UpperCamelCase : Dict = {
"gpt2": 1_0_2_4,
"gpt2-medium": 1_0_2_4,
"gpt2-large": 1_0_2_4,
"gpt2-xl": 1_0_2_4,
"distilgpt2": 1_0_2_4,
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
lowercase = VOCAB_FILES_NAMES
lowercase = PRETRAINED_VOCAB_FILES_MAP
lowercase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase = ["input_ids", "attention_mask"]
lowercase = GPTaTokenizer
def __init__( self , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase="<|endoftext|>" , __UpperCAmelCase=False , **__UpperCAmelCase , ):
'''simple docstring'''
super().__init__(
__UpperCAmelCase , __UpperCAmelCase , tokenizer_file=__UpperCAmelCase , unk_token=__UpperCAmelCase , bos_token=__UpperCAmelCase , eos_token=__UpperCAmelCase , add_prefix_space=__UpperCAmelCase , **__UpperCAmelCase , )
__UpperCamelCase = kwargs.pop('add_bos_token' , __UpperCAmelCase )
__UpperCamelCase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('add_prefix_space' , __UpperCAmelCase ) != add_prefix_space:
__UpperCamelCase = getattr(__UpperCAmelCase , pre_tok_state.pop('type' ) )
__UpperCamelCase = add_prefix_space
__UpperCamelCase = pre_tok_class(**__UpperCAmelCase )
__UpperCamelCase = add_prefix_space
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , *__UpperCAmelCase , **__UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = kwargs.get('is_split_into_words' , __UpperCAmelCase )
assert self.add_prefix_space or not is_split_into_words, (
F'You need to instantiate {self.__class__.__name__} with add_prefix_space=True '
"to use it with pretokenized inputs."
)
return super()._encode_plus(*__UpperCAmelCase , **__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ):
'''simple docstring'''
__UpperCamelCase = self._tokenizer.model.save(__UpperCAmelCase , name=__UpperCAmelCase )
return tuple(__UpperCAmelCase )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) + [self.eos_token_id] )
if len(__UpperCAmelCase ) > self.model_max_length:
__UpperCamelCase = input_ids[-self.model_max_length :]
return input_ids
| 316 |
"""simple docstring"""
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 3.6,
"mph": 1.60_93_44,
"knot": 1.8_52,
}
UpperCamelCase : dict[str, float] = {
"km/h": 1.0,
"m/s": 0.2_77_77_77_78,
"mph": 0.6_21_37_11_92,
"knot": 0.5_39_95_68_03,
}
def A ( snake_case :float , snake_case :str , snake_case :str ) -> float:
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
__UpperCamelCase = (
f'Incorrect \'from_type\' or \'to_type\' value: {unit_from!r}, {unit_to!r}\n'
f'Valid values are: {", ".join(snake_case )}'
)
raise ValueError(snake_case )
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 316 | 1 |
"""simple docstring"""
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class __lowerCAmelCase :
lowercase = 42
lowercase = None
lowercase = None
def A ( ) -> Node | None:
__UpperCamelCase = Node(1 )
__UpperCamelCase = Node(2 )
__UpperCamelCase = Node(3 )
__UpperCamelCase = Node(4 )
__UpperCamelCase = Node(5 )
return tree
def A ( snake_case :Node | None ) -> list[int]:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def A ( snake_case :Node | None ) -> list[int]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def A ( snake_case :Node | None ) -> list[int]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def A ( snake_case :Node | None ) -> int:
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def A ( snake_case :Node | None ) -> Sequence[Node | None]:
__UpperCamelCase = []
if root is None:
return output
__UpperCamelCase = deque([root] )
while process_queue:
__UpperCamelCase = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def A ( snake_case :Node | None , snake_case :int ) -> Sequence[Node | None]:
__UpperCamelCase = []
def populate_output(snake_case :Node | None , snake_case :int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(snake_case , snake_case )
return output
def A ( snake_case :Node | None , snake_case :int ) -> Sequence[Node | None]:
__UpperCamelCase = []
def populate_output(snake_case :Node | None , snake_case :int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(snake_case , snake_case )
return output
def A ( snake_case :Node | None ) -> Sequence[Node | None] | list[Any]:
if root is None:
return []
__UpperCamelCase = []
__UpperCamelCase = 0
__UpperCamelCase = height(snake_case )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(snake_case , snake_case ) )
__UpperCamelCase = 1
else:
output.append(get_nodes_from_right_to_left(snake_case , snake_case ) )
__UpperCamelCase = 0
return output
def A ( ) -> None: # Main function for testing.
__UpperCamelCase = make_tree()
print(f'In-order Traversal: {inorder(snake_case )}' )
print(f'Pre-order Traversal: {preorder(snake_case )}' )
print(f'Post-order Traversal: {postorder(snake_case )}' , '\n' )
print(f'Height of Tree: {height(snake_case )}' , '\n' )
print('Complete Level Order Traversal: ' )
print(level_order(snake_case ) , '\n' )
print('Level-wise order Traversal: ' )
for level in range(1 , height(snake_case ) + 1 ):
print(f'Level {level}:' , get_nodes_from_left_to_right(snake_case , level=snake_case ) )
print('\nZigZag order Traversal: ' )
print(zigzag(snake_case ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 316 |
"""simple docstring"""
import random
import unittest
import torch
from diffusers import IFInpaintingSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import (
TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_INPAINTING_PARAMS,
)
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = IFInpaintingSuperResolutionPipeline
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {"width", "height"}
lowercase = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS.union({"original_image"} )
lowercase = PipelineTesterMixin.required_optional_params - {"latents"}
def UpperCAmelCase ( self ):
'''simple docstring'''
return self._get_superresolution_dummy_components()
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase=0 ):
'''simple docstring'''
if str(__UpperCAmelCase ).startswith('mps' ):
__UpperCamelCase = torch.manual_seed(__UpperCAmelCase )
else:
__UpperCamelCase = torch.Generator(device=__UpperCAmelCase ).manual_seed(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__UpperCAmelCase ) ).to(__UpperCAmelCase )
__UpperCamelCase = {
'prompt': 'A painting of a squirrel eating a burger',
'image': image,
'original_image': original_image,
'mask_image': mask_image,
'generator': generator,
'num_inference_steps': 2,
'output_type': 'numpy',
}
return inputs
@unittest.skipIf(
torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != 'cuda' , reason='float16 requires CUDA' )
def UpperCAmelCase ( self ):
'''simple docstring'''
super().test_save_load_floataa(expected_max_diff=1E-1 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_save_load_local()
def UpperCAmelCase ( self ):
'''simple docstring'''
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , )
| 316 | 1 |
"""simple docstring"""
import unittest
from parameterized import parameterized
from transformers import LlamaConfig, is_torch_available, set_seed
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import LlamaForCausalLM, LlamaForSequenceClassification, LlamaModel, LlamaTokenizer
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=512 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ):
'''simple docstring'''
__UpperCamelCase = parent
__UpperCamelCase = batch_size
__UpperCamelCase = seq_length
__UpperCamelCase = is_training
__UpperCamelCase = use_input_mask
__UpperCamelCase = use_token_type_ids
__UpperCamelCase = use_labels
__UpperCamelCase = vocab_size
__UpperCamelCase = hidden_size
__UpperCamelCase = num_hidden_layers
__UpperCamelCase = num_attention_heads
__UpperCamelCase = intermediate_size
__UpperCamelCase = hidden_act
__UpperCamelCase = hidden_dropout_prob
__UpperCamelCase = attention_probs_dropout_prob
__UpperCamelCase = max_position_embeddings
__UpperCamelCase = type_vocab_size
__UpperCamelCase = type_sequence_label_size
__UpperCamelCase = initializer_range
__UpperCamelCase = num_labels
__UpperCamelCase = num_choices
__UpperCamelCase = scope
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__UpperCamelCase = None
if self.use_input_mask:
__UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length] )
__UpperCamelCase = None
if self.use_token_type_ids:
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__UpperCamelCase = None
__UpperCamelCase = None
__UpperCamelCase = None
if self.use_labels:
__UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices )
__UpperCamelCase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def UpperCAmelCase ( self ):
'''simple docstring'''
return LlamaConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = LlamaModel(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
__UpperCamelCase = model(__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = LlamaModel(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , )
__UpperCamelCase = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , )
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , ):
'''simple docstring'''
__UpperCamelCase = True
__UpperCamelCase = True
__UpperCamelCase = LlamaForCausalLM(config=__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
# first forward pass
__UpperCamelCase = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , use_cache=__UpperCAmelCase , )
__UpperCamelCase = outputs.past_key_values
# create hypothetical multiple next token and extent to next_input_ids
__UpperCamelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
__UpperCamelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 )
# append to next input_ids and
__UpperCamelCase = torch.cat([input_ids, next_tokens] , dim=-1 )
__UpperCamelCase = torch.cat([input_mask, next_mask] , dim=-1 )
__UpperCamelCase = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0]
__UpperCamelCase = model(
__UpperCAmelCase , attention_mask=__UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , encoder_attention_mask=__UpperCAmelCase , past_key_values=__UpperCAmelCase , output_hidden_states=__UpperCAmelCase , )['hidden_states'][0]
# select random slice
__UpperCamelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item()
__UpperCamelCase = output_from_no_past[:, -3:, random_slice_idx].detach()
__UpperCamelCase = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-3 ) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.prepare_config_and_inputs()
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = config_and_inputs
__UpperCamelCase = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ):
lowercase = (LlamaModel, LlamaForCausalLM, LlamaForSequenceClassification) if is_torch_available() else ()
lowercase = (LlamaForCausalLM,) if is_torch_available() else ()
lowercase = (
{
"feature-extraction": LlamaModel,
"text-classification": LlamaForSequenceClassification,
"text-generation": LlamaForCausalLM,
"zero-shot": LlamaForSequenceClassification,
}
if is_torch_available()
else {}
)
lowercase = False
lowercase = False
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = LlamaModelTester(self )
__UpperCamelCase = ConfigTester(self , config_class=__UpperCAmelCase , hidden_size=37 )
def UpperCAmelCase ( self ):
'''simple docstring'''
self.config_tester.run_common_tests()
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__UpperCamelCase = type
self.model_tester.create_and_check_model(*__UpperCAmelCase )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = 'single_label_classification'
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCamelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
__UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = 3
__UpperCamelCase = 'multi_label_classification'
__UpperCamelCase = input_dict['input_ids']
__UpperCamelCase = input_ids.ne(1 ).to(__UpperCAmelCase )
__UpperCamelCase = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
__UpperCamelCase = LlamaForSequenceClassification(__UpperCAmelCase )
model.to(__UpperCAmelCase )
model.eval()
__UpperCamelCase = model(__UpperCAmelCase , attention_mask=__UpperCAmelCase , labels=__UpperCAmelCase )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@unittest.skip('LLaMA buffers include complex numbers, which breaks this test' )
def UpperCAmelCase ( self ):
'''simple docstring'''
pass
@parameterized.expand([('linear',), ('dynamic',)] )
def UpperCAmelCase ( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase , __UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common()
__UpperCamelCase = ids_tensor([1, 10] , config.vocab_size )
__UpperCamelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size )
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase = LlamaModel(__UpperCAmelCase )
original_model.to(__UpperCAmelCase )
original_model.eval()
__UpperCamelCase = original_model(__UpperCAmelCase ).last_hidden_state
__UpperCamelCase = original_model(__UpperCAmelCase ).last_hidden_state
set_seed(42 ) # Fixed seed at init time so the two models get the same random weights
__UpperCamelCase = {'type': scaling_type, 'factor': 1_0.0}
__UpperCamelCase = LlamaModel(__UpperCAmelCase )
scaled_model.to(__UpperCAmelCase )
scaled_model.eval()
__UpperCamelCase = scaled_model(__UpperCAmelCase ).last_hidden_state
__UpperCamelCase = scaled_model(__UpperCAmelCase ).last_hidden_state
# Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original
# maximum sequence length, so the outputs for the short input should match.
if scaling_type == "dynamic":
self.assertTrue(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
else:
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
# The output should be different for long inputs
self.assertFalse(torch.allclose(__UpperCAmelCase , __UpperCAmelCase , atol=1E-5 ) )
@require_torch
class __lowerCAmelCase ( unittest.TestCase ):
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-7b-hf' , device_map='auto' )
__UpperCamelCase = model(torch.tensor([input_ids] ) )
# Expected mean on dim = -1
__UpperCamelCase = torch.tensor([[-6.6_5_5_0, -4.1_2_2_7, -4.9_8_5_9, -3.2_4_0_6, 0.8_2_6_2, -3.0_0_3_3, 1.2_9_6_4, -3.3_6_9_9]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase = torch.tensor([-1_2.8_2_8_1, -7.4_4_5_3, -0.4_6_3_9, -8.0_6_2_5, -7.2_5_0_0, -8.0_0_0_0, -6.4_8_8_3, -7.7_6_9_5, -7.8_4_3_8, -7.0_3_1_2, -6.2_1_8_8, -7.1_3_2_8, -1.8_4_9_6, 1.9_9_6_1, -8.6_2_5_0, -6.7_2_2_7, -1_2.8_2_8_1, -6.9_4_9_2, -7.0_7_4_2, -7.7_8_5_2, -7.5_8_2_0, -7.9_0_6_2, -6.9_3_7_5, -7.9_8_0_5, -8.3_4_3_8, -8.1_5_6_2, -8.0_4_6_9, -7.6_2_5_0, -7.7_4_2_2, -7.3_3_9_8,] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-hf' , device_map='auto' )
__UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCamelCase = torch.tensor([[-2.0_6_2_2, -1.2_7_9_4, -1.1_6_3_8, -0.9_7_8_8, -1.4_6_0_3, -1.0_2_3_8, -1.7_8_9_3, -1.4_4_1_1]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase = torch.tensor([-8.1_4_0_6, -8.0_5_4_7, 2.7_4_6_1, -1.2_3_4_4, -0.1_4_4_8, -1.8_2_6_2, -1.0_0_2_0, -1.8_1_5_4, -1.6_8_9_5, -1.8_5_1_6, -2.3_5_7_4, -0.9_2_7_7, 3.7_5_9_8, 6.5_7_4_2, -1.2_9_9_8, -0.1_1_7_7, -8.1_4_0_6, -2.9_6_8_8, -2.9_1_9_9, -3.1_6_9_9, -3.5_2_5_4, -2.3_5_5_5, -2.7_9_8_8, -3.4_1_4_1, -2.8_2_6_2, -4.5_1_9_5, -3.3_3_7_9, -3.3_1_6_4, -2.7_8_3_2, -3.0_2_7_3] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Logits are not exactly the same, once we fix the instabalities somehow, will update!' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-13b-chat-hf' , device_map='auto' )
__UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) )
# Expected mean on dim = -1
__UpperCamelCase = torch.tensor([[-0.8_5_6_2, -1.8_5_2_0, -0.7_5_5_1, -0.4_1_6_2, -1.5_1_6_1, -1.2_0_3_8, -2.4_8_2_3, -2.3_2_5_4]] )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# slicing logits[0, 0, 0:30]
# fmt: off
__UpperCamelCase = torch.tensor([-2.2_2_2_7, 4.8_8_2_8, 0.9_0_2_3, -0.4_5_7_8, -0.7_8_7_1, -0.1_0_3_3, -0.6_2_2_1, -0.5_7_8_6, -0.7_8_0_3, -1.0_6_7_4, -1.2_9_2_0, -0.1_5_7_0, 0.8_0_0_8, 2.0_7_2_3, -0.9_4_9_7, 0.2_7_7_1, -2.2_2_2_7, -0.7_6_1_2, -1.4_3_4_6, -1.2_0_6_1, -1.6_4_2_6, -0.3_0_0_0, -0.7_1_3_9, -1.1_9_3_4, -1.8_6_9_1, -1.6_9_7_3, -1.5_9_4_7, -1.2_7_0_5, -0.3_5_2_3, -0.5_5_1_3] )
# fmt: on
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
@unittest.skip(
'Logits are not exactly the same, once we fix the instabalities somehow, will update! Also it is gonna be a `too_slow` test' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = [1, 306, 4658, 278, 6593, 310, 2834, 338]
__UpperCamelCase = LlamaForCausalLM.from_pretrained('meta-llama/Llama-2-70b-hf' , device_map='auto' )
__UpperCamelCase = model(torch.tensor(__UpperCAmelCase ) )
__UpperCamelCase = torch.tensor(
[[-4.2_3_2_7, -3.3_3_6_0, -4.6_6_6_5, -4.7_6_3_1, -1.8_1_8_0, -3.4_1_7_0, -1.4_2_1_1, -3.1_8_1_0]] , dtype=torch.floataa )
torch.testing.assert_close(out.mean(-1 ) , __UpperCAmelCase , atol=1E-2 , rtol=1E-2 )
# fmt: off
__UpperCamelCase = torch.tensor([-9.4_9_2_2, -3.9_5_5_1, 1.7_9_9_8, -5.6_7_5_8, -5.1_0_5_5, -5.8_9_8_4, -4.8_3_2_0, -6.8_0_8_6, -6.5_3_9_1, -5.6_1_7_2, -5.5_8_2_0, -5.5_3_5_2, 1.7_8_8_1, 3.6_2_8_9, -6.5_1_1_7, -3.4_7_8_5, -9.5_0_0_0, -6.0_3_5_2, -6.8_1_2_5, -6.0_1_9_5, -6.6_8_3_6, -5.4_7_2_7, -6.2_8_1_2, -6.0_3_9_1, -7.3_3_9_8, -7.4_2_9_7, -7.4_8_4_4, -6.5_8_2_0, -5.8_7_8_9, -5.5_3_1_2] )
# fmt: on
torch.testing.assert_close(out[0, 0, :30] , __UpperCAmelCase , atol=1E-5 , rtol=1E-5 )
@unittest.skip('Model is curently gated' )
@slow
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = 'Simply put, the theory of relativity states that 1) the laws of physics are the same everywhere in the universe and 2) the passage of time and the length of objects can vary depending on the observer\'s frame of reference.\n\nThe first part of the theory, that the laws of physics are the same everywhere, is known as the "princi'
__UpperCamelCase = 'Simply put, the theory of relativity states that '
__UpperCamelCase = LlamaTokenizer.from_pretrained('meta-llama/Llama-2-13b-chat-hf' )
__UpperCamelCase = tokenizer.encode(__UpperCAmelCase , return_tensors='pt' )
__UpperCamelCase = LlamaForCausalLM.from_pretrained(
'meta-llama/Llama-2-13b-chat-hf' , device_map='sequential' , use_safetensors=__UpperCAmelCase )
# greedy generation outputs
__UpperCamelCase = model.generate(__UpperCAmelCase , max_new_tokens=64 , top_p=__UpperCAmelCase , temperature=1 , do_sample=__UpperCAmelCase )
__UpperCamelCase = tokenizer.decode(generated_ids[0] , skip_special_tokens=__UpperCAmelCase )
self.assertEqual(__UpperCAmelCase , __UpperCAmelCase )
| 316 |
"""simple docstring"""
def A ( snake_case :int ) -> int:
__UpperCamelCase = [1]
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 0, 0, 0
__UpperCamelCase = ugly_nums[ia] * 2
__UpperCamelCase = ugly_nums[ia] * 3
__UpperCamelCase = ugly_nums[ia] * 5
for _ in range(1 , snake_case ):
__UpperCamelCase = min(snake_case , snake_case , snake_case )
ugly_nums.append(snake_case )
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 2
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 3
if next_num == next_a:
ia += 1
__UpperCamelCase = ugly_nums[ia] * 5
return ugly_nums[-1]
if __name__ == "__main__":
from doctest import testmod
testmod(verbose=True)
print(f'''{ugly_numbers(2_0_0) = }''')
| 316 | 1 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.