code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
"""simple docstring"""
import random
import unittest
from torch.utils.data import BatchSampler, DataLoader, IterableDataset
from accelerate import Accelerator
from accelerate.data_loader import (
BatchSamplerShard,
DataLoaderDispatcher,
DataLoaderShard,
IterableDatasetShard,
SkipBatchSampler,
SkipDataLoader,
skip_first_batches,
)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : Union[str, Any]=0.01 , _UpperCAmelCase : Any=1_000 ):
_A = p_stop
_A = max_length
def __iter__( self : str ):
_A = 0
_A = False
while not stop and count < self.max_length:
yield count
count += 1
_A = random.random() < self.p_stop
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True ):
_A = [
BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
for i in range(2 )
]
_A = [list(_UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards]
if not split_batches:
self.assertListEqual([len(_UpperCAmelCase ) for shard in batch_sampler_shards] , [len(_UpperCAmelCase ) for e in expected] )
self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
# Check the shards when the dataset is a round multiple of total batch size.
_A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
_A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
_A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
_A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
_A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
# Check the shards when the dataset is very small.
_A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [[[0, 1, 0]], [[1, 0, 1]]]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
_A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [[], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
# Check the shards when the dataset is a round multiple of batch size.
_A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
_A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size.
_A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
_A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
_A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
# Check the shards when the dataset is very small.
_A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [[[0, 1]], [[0, 1]]]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
_A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [[], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
# Check the shards when the dataset is a round multiple of total batch size.
_A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is a round multiple of batch size but not total batch size.
_A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but has a multiple of
# num_processes batch.
_A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of
# num_processes batch.
_A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1, 2], [6, 7, 8], [12, 13, 14]],
[[3, 4, 5], [9, 10, 11], [15, 16, 17]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is very small.
_A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [[[0, 1]], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase )
_A = [[], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase )
def lowerCAmelCase_ ( self : int ):
# Check the shards when the dataset is a round multiple of batch size.
_A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase )
# Expected shouldn't change
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size.
_A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is not a round multiple of batch size or num_processes.
_A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [
[[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]],
[[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]],
]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
# Check the shards when the dataset is very small.
_A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [[[0, 1]], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
_A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = [[], []]
self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]]
_A = [BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 )]
self.assertEqual(len(batch_sampler_shards[0] ) , 3 )
self.assertEqual(len(batch_sampler_shards[1] ) , 2 )
self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] )
self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] )
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=False ):
random.seed(_UpperCAmelCase )
_A = list(_UpperCAmelCase )
_A = [
IterableDatasetShard(
_UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase , num_processes=_UpperCAmelCase , process_index=_UpperCAmelCase , split_batches=_UpperCAmelCase , )
for i in range(_UpperCAmelCase )
]
_A = []
for iterable_dataset_shard in iterable_dataset_shards:
# Since our random iterable dataset will be... random... we need to use a seed to get reproducible results.
random.seed(_UpperCAmelCase )
iterable_dataset_lists.append(list(_UpperCAmelCase ) )
_A = batch_size // num_processes if split_batches else batch_size
# All iterable dataset shard should have the same length, a round multiple of shard_batch_size
_A = iterable_dataset_lists[0]
for l in iterable_dataset_lists[1:]:
self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) )
self.assertTrue(len(_UpperCAmelCase ) % shard_batch_size == 0 )
_A = []
for idx in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ):
for l in iterable_dataset_lists:
observed += l[idx : idx + shard_batch_size]
if not drop_last:
while len(_UpperCAmelCase ) < len(_UpperCAmelCase ):
reference += reference
self.assertListEqual(_UpperCAmelCase , reference[: len(_UpperCAmelCase )] )
def lowerCAmelCase_ ( self : List[Any] ):
_A = 42
_A = RandomIterableDataset()
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
# Edge case with a very small dataset
_A = RandomIterableDataset(max_length=2 )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_UpperCAmelCase )
_A = SkipBatchSampler(_UpperCAmelCase , 2 )
self.assertListEqual(list(_UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase_ ( self : str ):
_A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 )
self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase_ ( self : List[Any] ):
_A = DataLoader(list(range(16 ) ) , batch_size=4 )
_A = skip_first_batches(_UpperCAmelCase , num_batches=2 )
self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] )
def lowerCAmelCase_ ( self : Tuple ):
_A = DataLoaderShard(list(range(16 ) ) , batch_size=4 )
for idx, _ in enumerate(_UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(_UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
def lowerCAmelCase_ ( self : Dict ):
Accelerator()
_A = DataLoaderDispatcher(range(16 ) , batch_size=4 )
for idx, _ in enumerate(_UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
# Test it also works on the second iteration
for idx, _ in enumerate(_UpperCAmelCase ):
self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
| 315 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 1 |
"""simple docstring"""
from typing import Callable, List, Optional, Union
import PIL
import torch
from transformers import (
CLIPImageProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
CLIPTextModel,
CLIPTokenizer,
)
from diffusers import DiffusionPipeline
from diffusers.configuration_utils import FrozenDict
from diffusers.models import AutoencoderKL, UNetaDConditionModel
from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
from diffusers.utils import deprecate, is_accelerate_available, logging
a = logging.get_logger(__name__) # pylint: disable=invalid-name
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : List[str] , _UpperCAmelCase : CLIPSegForImageSegmentation , _UpperCAmelCase : CLIPSegProcessor , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ):
super().__init__()
if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1:
_A = (
F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`'''
F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure '''
'to update the config accordingly as leaving `steps_offset` might led to incorrect results'
' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,'
' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`'
' file'
)
deprecate('steps_offset!=1' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
_A = dict(scheduler.config )
_A = 1
_A = FrozenDict(_UpperCAmelCase )
if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False:
_A = (
F'''The configuration file of this scheduler: {scheduler} has not set the configuration'''
' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make'
' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to'
' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face'
' Hub, it would be very nice if you could open a Pull request for the'
' `scheduler/scheduler_config.json` file'
)
deprecate('skip_prk_steps not set' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase )
_A = dict(scheduler.config )
_A = True
_A = FrozenDict(_UpperCAmelCase )
if safety_checker is None:
logger.warning(
F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure'''
' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered'
' results in services or applications open to the public. Both the diffusers team and Hugging Face'
' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling'
' it only for use-cases that involve analyzing network behavior or auditing its results. For more'
' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' )
self.register_modules(
segmentation_model=_UpperCAmelCase , segmentation_processor=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ):
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
_A = self.unet.config.attention_head_dim // 2
self.unet.set_attention_slice(_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[Any] ):
self.enable_attention_slicing(_UpperCAmelCase )
def lowerCAmelCase_ ( self : Optional[Any] ):
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError('Please install accelerate via `pip install accelerate`' )
_A = torch.device('cuda' )
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]:
if cpu_offloaded_model is not None:
cpu_offload(_UpperCAmelCase , _UpperCAmelCase )
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def lowerCAmelCase_ ( self : int ):
if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ):
return self.device
for module in self.unet.modules():
if (
hasattr(_UpperCAmelCase , '_hf_hook' )
and hasattr(module._hf_hook , 'execution_device' )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
def __call__( self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase : str , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , **_UpperCAmelCase : Optional[int] , ):
_A = self.segmentation_processor(
text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device )
_A = self.segmentation_model(**_UpperCAmelCase )
_A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy()
_A = self.numpy_to_pil(_UpperCAmelCase )[0].resize(image.size )
# Run inpainting pipeline with the generated mask
_A = StableDiffusionInpaintPipeline(
vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , )
return inpainting_pipeline(
prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , )
| 315 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 1 |
"""simple docstring"""
import math
def _snake_case ( ) -> None:
'''simple docstring'''
_A = input('Enter message: ' )
_A = int(input(F'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) )
_A = input('Encryption/Decryption [e/d]: ' )
if mode.lower().startswith('e' ):
_A = encrypt_message(_snake_case , _snake_case )
elif mode.lower().startswith('d' ):
_A = decrypt_message(_snake_case , _snake_case )
# Append pipe symbol (vertical bar) to identify spaces at the end.
print(F'''Output:\n{text + "|"}''' )
def _snake_case ( _snake_case : int , _snake_case : str ) -> str:
'''simple docstring'''
_A = [''] * key
for col in range(_snake_case ):
_A = col
while pointer < len(_snake_case ):
cipher_text[col] += message[pointer]
pointer += key
return "".join(_snake_case )
def _snake_case ( _snake_case : int , _snake_case : str ) -> str:
'''simple docstring'''
_A = math.ceil(len(_snake_case ) / key )
_A = key
_A = (num_cols * num_rows) - len(_snake_case )
_A = [''] * num_cols
_A = 0
_A = 0
for symbol in message:
plain_text[col] += symbol
col += 1
if (
(col == num_cols)
or (col == num_cols - 1)
and (row >= num_rows - num_shaded_boxes)
):
_A = 0
row += 1
return "".join(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 315 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 1 |
"""simple docstring"""
import inspect
from typing import List, Optional, Tuple, Union
import torch
from ...models import UNetaDModel, VQModel
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : DDIMScheduler ):
super().__init__()
self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase )
@torch.no_grad()
def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Dict , ):
_A = randn_tensor(
(batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , )
_A = latents.to(self.device )
# scale the initial noise by the standard deviation required by the scheduler
_A = latents * self.scheduler.init_noise_sigma
self.scheduler.set_timesteps(_UpperCAmelCase )
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
_A = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() )
_A = {}
if accepts_eta:
_A = eta
for t in self.progress_bar(self.scheduler.timesteps ):
_A = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase )
# predict the noise residual
_A = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample
# compute the previous noisy sample x_t -> x_t-1
_A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample
# decode the image latents with the VAE
_A = self.vqvae.decode(_UpperCAmelCase ).sample
_A = (image / 2 + 0.5).clamp(0 , 1 )
_A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy()
if output_type == "pil":
_A = self.numpy_to_pil(_UpperCAmelCase )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=_UpperCAmelCase )
| 315 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 1 |
"""simple docstring"""
import inspect
import os
import unittest
from pathlib import Path
import torch
import accelerate
from accelerate.test_utils import execute_subprocess_async
from accelerate.test_utils.testing import run_command
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils )
UpperCAmelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] )
UpperCAmelCase : Optional[Any] = ['''accelerate''', '''launch''']
UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate'''
UpperCAmelCase : str = '''default_config.yaml'''
UpperCAmelCase : int = config_folder / config_file
UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml'''
UpperCAmelCase : Dict = Path('''tests/test_configs''' )
@classmethod
def lowerCAmelCase_ ( cls : Optional[int] ):
if cls.config_path.is_file():
cls.config_path.rename(cls.changed_path )
@classmethod
def lowerCAmelCase_ ( cls : Tuple ):
if cls.changed_path.is_file():
cls.changed_path.rename(cls.config_path )
def lowerCAmelCase_ ( self : Dict ):
_A = self.base_cmd
if torch.cuda.is_available() and (torch.cuda.device_count() > 1):
cmd += ["--multi_gpu"]
execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase_ ( self : str ):
for config in sorted(self.test_config_path.glob('**/*.yaml' ) ):
with self.subTest(config_file=_UpperCAmelCase ):
execute_subprocess_async(
self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() )
def lowerCAmelCase_ ( self : Optional[Any] ):
execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = '''test-tpu'''
UpperCAmelCase : Dict = '''us-central1-a'''
UpperCAmelCase : Union[str, Any] = '''ls'''
UpperCAmelCase : List[str] = ['''accelerate''', '''tpu-config''']
UpperCAmelCase : Any = '''cd /usr/share'''
UpperCAmelCase : Optional[int] = '''tests/test_samples/test_command_file.sh'''
UpperCAmelCase : Dict = '''Running gcloud compute tpus tpu-vm ssh'''
def lowerCAmelCase_ ( self : Tuple ):
_A = run_command(
self.cmd
+ ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[Any] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command',
self.command,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[str] ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : List[str] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--command',
self.command,
'--command',
'echo "Hello World"',
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = run_command(
self.cmd
+ ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/0_12_0.yaml',
'--command_file',
self.command_file,
'--tpu_zone',
self.tpu_zone,
'--tpu_name',
self.tpu_name,
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Any ):
_A = run_command(
self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
def lowerCAmelCase_ ( self : Tuple ):
_A = run_command(
self.cmd
+ [
'--config_file',
'tests/test_configs/latest.yaml',
'--install_accelerate',
'--accelerate_version',
'12.0.0',
'--debug',
] , return_stdout=_UpperCAmelCase , )
self.assertIn(
F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
| 315 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 1 |
"""simple docstring"""
from __future__ import annotations
from math import ceil, floor, sqrt
def _snake_case ( _snake_case : int = 2_00_00_00 ) -> int:
'''simple docstring'''
_A = [0]
_A = 42
for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ):
triangle_numbers.append(triangle_numbers[-1] + idx )
# we want this to be as close as possible to target
_A = 0
# the area corresponding to the grid that gives the product closest to target
_A = 0
# an estimate of b, using the quadratic formula
_A = 42
# the largest integer less than b_estimate
_A = 42
# the largest integer less than b_estimate
_A = 42
# the triangle number corresponding to b_floor
_A = 42
# the triangle number corresponding to b_ceil
_A = 42
for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ):
_A = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2
_A = floor(_snake_case )
_A = ceil(_snake_case )
_A = triangle_numbers[b_floor]
_A = triangle_numbers[b_ceil]
if abs(target - triangle_b_first_guess * triangle_a ) < abs(
target - best_product ):
_A = triangle_b_first_guess * triangle_a
_A = idx_a * b_floor
if abs(target - triangle_b_second_guess * triangle_a ) < abs(
target - best_product ):
_A = triangle_b_second_guess * triangle_a
_A = idx_a * b_ceil
return area
if __name__ == "__main__":
print(F'''{solution() = }''')
| 315 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 1 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=__lowerCAmelCase )
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : str = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} )
UpperCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} )
UpperCAmelCase : ClassVar[Features] = Features({} )
UpperCAmelCase : str = "text"
@property
def lowerCAmelCase_ ( self : List[str] ):
return {self.text_column: "text"}
| 315 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 1 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 1 |
"""simple docstring"""
from __future__ import annotations
import random
# Maximum size of the population. Bigger could be faster but is more memory expensive.
a = 200
# Number of elements selected in every generation of evolution. The selection takes
# place from best to worst of that generation and must be smaller than N_POPULATION.
a = 50
# Probability that an element of a generation can mutate, changing one of its genes.
# This will guarantee that all genes will be used during evolution.
a = 0.4
# Just a seed to improve randomness required by the algorithm.
random.seed(random.randint(0, 1_000))
def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, float]:
'''simple docstring'''
_A = len([g for position, g in enumerate(_snake_case ) if g == main_target[position]] )
return (item, float(_snake_case ))
def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, str]:
'''simple docstring'''
_A = random.randint(0 , len(_snake_case ) - 1 )
_A = parent_a[:random_slice] + parent_a[random_slice:]
_A = parent_a[:random_slice] + parent_a[random_slice:]
return (child_a, child_a)
def _snake_case ( _snake_case : str , _snake_case : list[str] ) -> str:
'''simple docstring'''
_A = list(_snake_case )
if random.uniform(0 , 1 ) < MUTATION_PROBABILITY:
_A = random.choice(_snake_case )
return "".join(_snake_case )
def _snake_case ( _snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]:
'''simple docstring'''
_A = []
# Generate more children proportionally to the fitness score.
_A = int(parent_a[1] * 1_00 ) + 1
_A = 10 if child_n >= 10 else child_n
for _ in range(_snake_case ):
_A = population_score[random.randint(0 , _snake_case )][0]
_A , _A = crossover(parent_a[0] , _snake_case )
# Append new string to the population list.
pop.append(mutate(_snake_case , _snake_case ) )
pop.append(mutate(_snake_case , _snake_case ) )
return pop
def _snake_case ( _snake_case : str , _snake_case : list[str] , _snake_case : bool = True ) -> tuple[int, int, str]:
'''simple docstring'''
if N_POPULATION < N_SELECTED:
_A = F'''{N_POPULATION} must be bigger than {N_SELECTED}'''
raise ValueError(_snake_case )
# Verify that the target contains no genes besides the ones inside genes variable.
_A = sorted({c for c in target if c not in genes} )
if not_in_genes_list:
_A = F'''{not_in_genes_list} is not in genes list, evolution cannot converge'''
raise ValueError(_snake_case )
# Generate random starting population.
_A = []
for _ in range(_snake_case ):
population.append(''.join([random.choice(_snake_case ) for i in range(len(_snake_case ) )] ) )
# Just some logs to know what the algorithms is doing.
_A , _A = 0, 0
# This loop will end when we find a perfect match for our target.
while True:
generation += 1
total_population += len(_snake_case )
# Random population created. Now it's time to evaluate.
# Adding a bit of concurrency can make everything faster,
#
# import concurrent.futures
# population_score: list[tuple[str, float]] = []
# with concurrent.futures.ThreadPoolExecutor(
# max_workers=NUM_WORKERS) as executor:
# futures = {executor.submit(evaluate, item) for item in population}
# concurrent.futures.wait(futures)
# population_score = [item.result() for item in futures]
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
_A = [evaluate(_snake_case , _snake_case ) for item in population]
# Check if there is a matching evolution.
_A = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case )
if population_score[0][0] == target:
return (generation, total_population, population_score[0][0])
# Print the best result every 10 generation.
# Just to know that the algorithm is working.
if debug and generation % 10 == 0:
print(
F'''\nGeneration: {generation}'''
F'''\nTotal Population:{total_population}'''
F'''\nBest score: {population_score[0][1]}'''
F'''\nBest string: {population_score[0][0]}''' )
# Flush the old population, keeping some of the best evolutions.
# Keeping this avoid regression of evolution.
_A = population[: int(N_POPULATION / 3 )]
population.clear()
population.extend(_snake_case )
# Normalize population score to be between 0 and 1.
_A = [
(item, score / len(_snake_case )) for item, score in population_score
]
# This is selection
for i in range(_snake_case ):
population.extend(select(population_score[int(_snake_case )] , _snake_case , _snake_case ) )
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in
# a far fewer generations.
if len(_snake_case ) > N_POPULATION:
break
if __name__ == "__main__":
a = (
'''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!'''
)
a = list(
''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm'''
'''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\'''
)
a , a , a = basic(target_str, genes_list)
print(
F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}'''
)
| 315 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 1 |
"""simple docstring"""
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = ['''image_processor''', '''tokenizer''']
UpperCAmelCase : str = '''FlavaImageProcessor'''
UpperCAmelCase : Tuple = ('''BertTokenizer''', '''BertTokenizerFast''')
def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Optional[int] ):
_A = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , _UpperCAmelCase , )
_A = kwargs.pop('feature_extractor' )
_A = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(_UpperCAmelCase , _UpperCAmelCase )
_A = self.image_processor
def __call__( self : int , _UpperCAmelCase : Optional[ImageInput] = None , _UpperCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ):
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
_A = self.tokenizer(
text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
if images is not None:
_A = self.image_processor(
_UpperCAmelCase , return_image_mask=_UpperCAmelCase , return_codebook_pixels=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , )
if text is not None and images is not None:
encoding.update(_UpperCAmelCase )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase )
def lowerCAmelCase_ ( self : List[str] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ):
return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase )
def lowerCAmelCase_ ( self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ):
return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.tokenizer.model_input_names
_A = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def lowerCAmelCase_ ( self : Dict ):
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , )
return self.image_processor_class
@property
def lowerCAmelCase_ ( self : Optional[int] ):
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , )
return self.image_processor
| 315 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 1 |
"""simple docstring"""
import argparse
import importlib
from pathlib import Path
# Test all the extensions added in the setup
a = [
'''kernels/rwkv/wkv_cuda.cu''',
'''kernels/rwkv/wkv_op.cpp''',
'''kernels/deformable_detr/ms_deform_attn.h''',
'''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''',
'''models/graphormer/algos_graphormer.pyx''',
]
def _snake_case ( _snake_case : List[str] ) -> str:
'''simple docstring'''
for file in FILES_TO_FIND:
if not (transformers_path / file).exists():
return False
return True
if __name__ == "__main__":
a = argparse.ArgumentParser()
parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''')
a = parser.parse_args()
if args.check_lib:
a = importlib.import_module('''transformers''')
a = Path(transformers_module.__file__).parent
else:
a = Path.cwd() / '''build/lib/transformers'''
if not test_custom_files_are_present(transformers_path):
raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
| 315 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 1 |
"""simple docstring"""
import unittest
from transformers import TrOCRConfig
from transformers.testing_utils import is_torch_available, require_torch, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM
@require_torch
class lowercase_ :
'''simple docstring'''
def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : str=30 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=None , ):
_A = parent
_A = batch_size
_A = decoder_seq_length
# For common tests
_A = self.decoder_seq_length
_A = is_training
_A = use_attention_mask
_A = use_labels
_A = vocab_size
_A = d_model
_A = d_model
_A = decoder_layers
_A = decoder_layers
_A = decoder_ffn_dim
_A = decoder_attention_heads
_A = decoder_attention_heads
_A = eos_token_id
_A = bos_token_id
_A = pad_token_id
_A = decoder_start_token_id
_A = use_cache
_A = max_position_embeddings
_A = None
_A = decoder_seq_length
_A = 2
_A = 1
def lowerCAmelCase_ ( self : str ):
_A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_A = None
if self.use_attention_mask:
_A = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 )
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size )
_A = TrOCRConfig(
vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , )
return (config, input_ids, attention_mask, lm_labels)
def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , ):
_A = True
_A = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval()
_A = input_ids[:2]
input_ids[input_ids == 0] += 1
# first forward pass
_A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
_A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase )
self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) )
self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 )
_A = outputs['past_key_values']
# create hypothetical next token and extent to next_input_ids
_A = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1
# append to next input_ids and
_A = torch.cat([input_ids, next_tokens] , dim=-1 )
_A = model(_UpperCAmelCase )['last_hidden_state']
_A = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['last_hidden_state']
# select random slice
_A = ids_tensor((1,) , output_from_past.shape[-1] ).item()
_A = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach()
_A = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 )
def lowerCAmelCase_ ( self : Dict ):
_A = self.prepare_config_and_inputs()
_A , _A , _A , _A = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': attention_mask}
return config, inputs_dict
@require_torch
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else ()
UpperCAmelCase : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else ()
UpperCAmelCase : Any = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {}
UpperCAmelCase : Dict = True
UpperCAmelCase : Tuple = False
def lowerCAmelCase_ ( self : Tuple ):
_A = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase )
_A = ConfigTester(self , config_class=_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
pass
def lowerCAmelCase_ ( self : List[Any] ):
pass
def lowerCAmelCase_ ( self : List[str] ):
pass
def lowerCAmelCase_ ( self : List[str] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : str ):
return
@unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :)
def lowerCAmelCase_ ( self : Optional[Any] ):
pass
| 315 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 1 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''',
'''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = '''markuplm'''
def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=3_072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=256 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Dict=216 , _UpperCAmelCase : Dict=1_001 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=50 , _UpperCAmelCase : Union[str, Any]="absolute" , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Any , ):
super().__init__(
pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , )
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = hidden_act
_A = intermediate_size
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = initializer_range
_A = layer_norm_eps
_A = position_embedding_type
_A = use_cache
_A = classifier_dropout
# additional properties
_A = max_depth
_A = max_xpath_tag_unit_embeddings
_A = max_xpath_subs_unit_embeddings
_A = tag_pad_id
_A = subs_pad_id
_A = xpath_unit_hidden_size
| 315 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 1 |
"""simple docstring"""
import argparse
import logging
import sys
from unittest.mock import patch
import run_glue_deebert
from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow
logging.basicConfig(level=logging.DEBUG)
a = logging.getLogger()
def _snake_case ( ) -> Optional[Any]:
'''simple docstring'''
_A = argparse.ArgumentParser()
parser.add_argument('-f' )
_A = parser.parse_args()
return args.f
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] ):
_A = logging.StreamHandler(sys.stdout )
logger.addHandler(_UpperCAmelCase )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[int] ):
_A = get_gpu_count()
if n_gpu > 1:
pass
# XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560
# script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py"
# distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split()
# cmd = [sys.executable] + distributed_args + args
# execute_subprocess_async(cmd, env=self.get_env())
# XXX: test the results - need to save them first into .json file
else:
args.insert(0 , 'run_glue_deebert.py' )
with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ):
_A = run_glue_deebert.main()
for value in result.values():
self.assertGreaterEqual(_UpperCAmelCase , 0.666 )
@slow
@require_torch_non_multi_gpu
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split()
self.run_and_check(_UpperCAmelCase )
_A = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(_UpperCAmelCase )
_A = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split()
self.run_and_check(_UpperCAmelCase )
| 315 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 1 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers import (
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
BertConfig,
DPRConfig,
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
class lowercase_ :
'''simple docstring'''
def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=0 , ):
_A = parent
_A = batch_size
_A = seq_length
_A = is_training
_A = use_input_mask
_A = use_token_type_ids
_A = use_labels
_A = vocab_size
_A = hidden_size
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = max_position_embeddings
_A = type_vocab_size
_A = type_sequence_label_size
_A = initializer_range
_A = num_labels
_A = num_choices
_A = scope
_A = projection_dim
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
# follow test_modeling_tf_ctrl.py
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
if self.use_token_type_ids:
_A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = BertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , )
_A = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ):
_A = TFDPRContextEncoder(config=_UpperCAmelCase )
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ):
_A = TFDPRQuestionEncoder(config=_UpperCAmelCase )
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase )
_A = model(_UpperCAmelCase )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ):
_A = TFDPRReader(config=_UpperCAmelCase )
_A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) )
def lowerCAmelCase_ ( self : int ):
_A = self.prepare_config_and_inputs()
(
(
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) , (
_A
) ,
) = config_and_inputs
_A = {'input_ids': input_ids}
return config, inputs_dict
@require_tf
class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : Any = (
(
TFDPRContextEncoder,
TFDPRQuestionEncoder,
TFDPRReader,
)
if is_tf_available()
else ()
)
UpperCAmelCase : List[Any] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {}
UpperCAmelCase : Tuple = False
UpperCAmelCase : Tuple = False
UpperCAmelCase : List[Any] = False
UpperCAmelCase : Dict = False
UpperCAmelCase : Optional[int] = False
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = TFDPRModelTester(self )
_A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 )
def lowerCAmelCase_ ( self : Optional[int] ):
self.config_tester.run_common_tests()
def lowerCAmelCase_ ( self : Dict ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_context_encoder(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_question_encoder(*_UpperCAmelCase )
def lowerCAmelCase_ ( self : Tuple ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_dpr_reader(*_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRQuestionEncoder.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFDPRReader.from_pretrained(_UpperCAmelCase )
self.assertIsNotNone(_UpperCAmelCase )
@require_tf
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase_ ( self : Any ):
_A = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' )
_A = tf.constant(
[[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP]
_A = model(_UpperCAmelCase )[0] # embedding shape = (1, 768)
# compare the actual values for a slice.
_A = tf.constant(
[
[
0.0323_6253,
0.1275_3335,
0.1681_8509,
0.0027_9786,
0.389_6933,
0.2426_4945,
0.217_8971,
-0.0233_5227,
-0.0848_1959,
-0.1432_4117,
]
] )
self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 315 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 1 |
"""simple docstring"""
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..bit import BitConfig
a = logging.get_logger(__name__)
a = {
'''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''',
# See all DPT models at https://huggingface.co/models?filter=dpt
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''dpt'''
def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Dict=384 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : int=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=[2, 5, 8, 11] , _UpperCAmelCase : int="project" , _UpperCAmelCase : Dict=[4, 2, 1, 0.5] , _UpperCAmelCase : Optional[Any]=[96, 192, 384, 768] , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : str=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=0.4 , _UpperCAmelCase : List[Any]=255 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : str=[1, 1_024, 24, 24] , _UpperCAmelCase : List[str]=[0, 1] , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Union[str, Any] , ):
super().__init__(**_UpperCAmelCase )
_A = hidden_size
_A = is_hybrid
if self.is_hybrid:
if backbone_config is None:
logger.info('Initializing the config with a `BiT` backbone.' )
_A = {
'global_padding': 'same',
'layer_type': 'bottleneck',
'depths': [3, 4, 9],
'out_features': ['stage1', 'stage2', 'stage3'],
'embedding_dynamic_padding': True,
}
_A = BitConfig(**_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
logger.info('Initializing the config with a `BiT` backbone.' )
_A = BitConfig(**_UpperCAmelCase )
elif isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = backbone_config
else:
raise ValueError(
F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' )
_A = backbone_featmap_shape
_A = neck_ignore_stages
if readout_type != "project":
raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' )
else:
_A = None
_A = None
_A = []
_A = num_hidden_layers
_A = num_attention_heads
_A = intermediate_size
_A = hidden_act
_A = hidden_dropout_prob
_A = attention_probs_dropout_prob
_A = initializer_range
_A = layer_norm_eps
_A = image_size
_A = patch_size
_A = num_channels
_A = qkv_bias
_A = backbone_out_indices
if readout_type not in ["ignore", "add", "project"]:
raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' )
_A = readout_type
_A = reassemble_factors
_A = neck_hidden_sizes
_A = fusion_hidden_size
_A = head_in_index
_A = use_batch_norm_in_fusion_residual
# auxiliary head attributes (semantic segmentation)
_A = use_auxiliary_head
_A = auxiliary_loss_weight
_A = semantic_loss_ignore_index
_A = semantic_classifier_dropout
def lowerCAmelCase_ ( self : Optional[int] ):
_A = copy.deepcopy(self.__dict__ )
if output["backbone_config"] is not None:
_A = self.backbone_config.to_dict()
_A = self.__class__.model_type
return output
| 315 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 1 |
"""simple docstring"""
import itertools
from dataclasses import dataclass
from typing import Optional
import pandas as pd
import pyarrow as pa
import datasets
from datasets.table import table_cast
@dataclass
class lowercase_ ( datasets.BuilderConfig ):
'''simple docstring'''
UpperCAmelCase : Optional[datasets.Features] = None
class lowercase_ ( datasets.ArrowBasedBuilder ):
'''simple docstring'''
UpperCAmelCase : List[str] = PandasConfig
def lowerCAmelCase_ ( self : Any ):
return datasets.DatasetInfo(features=self.config.features )
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str ):
if not self.config.data_files:
raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' )
_A = dl_manager.download_and_extract(self.config.data_files )
if isinstance(_UpperCAmelCase , (str, list, tuple) ):
_A = data_files
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_A = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )]
_A = []
for split_name, files in data_files.items():
if isinstance(_UpperCAmelCase , _UpperCAmelCase ):
_A = [files]
# Use `dl_manager.iter_files` to skip hidden files in an extracted archive
_A = [dl_manager.iter_files(_UpperCAmelCase ) for file in files]
splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) )
return splits
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : pa.Table ):
if self.config.features is not None:
# more expensive cast to support nested features with keys in a different order
# allows str <-> int/float or str to Audio for example
_A = table_cast(_UpperCAmelCase , self.config.features.arrow_schema )
return pa_table
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Union[str, Any] ):
for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ):
with open(_UpperCAmelCase , 'rb' ) as f:
_A = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) )
yield i, self._cast_table(_UpperCAmelCase )
| 315 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 1 |
"""simple docstring"""
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import MobileViTImageProcessor
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=18 , _UpperCAmelCase : str=30 , _UpperCAmelCase : List[Any]=400 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[int]=True , ):
_A = size if size is not None else {'shortest_edge': 20}
_A = crop_size if crop_size is not None else {'height': 18, 'width': 18}
_A = parent
_A = batch_size
_A = num_channels
_A = image_size
_A = min_resolution
_A = max_resolution
_A = do_resize
_A = size
_A = do_center_crop
_A = crop_size
_A = do_flip_channel_order
def lowerCAmelCase_ ( self : List[Any] ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_flip_channel_order": self.do_flip_channel_order,
}
@require_torch
@require_vision
class lowercase_ ( __lowerCAmelCase , unittest.TestCase ):
'''simple docstring'''
UpperCAmelCase : List[str] = MobileViTImageProcessor if is_vision_available() else None
def lowerCAmelCase_ ( self : List[Any] ):
_A = MobileViTImageProcessingTester(self )
@property
def lowerCAmelCase_ ( self : Dict ):
return self.image_processor_tester.prepare_image_processor_dict()
def lowerCAmelCase_ ( self : List[Any] ):
_A = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) )
self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) )
def lowerCAmelCase_ ( self : List[str] ):
_A = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'shortest_edge': 20} )
self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} )
_A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 )
self.assertEqual(image_processor.size , {'shortest_edge': 42} )
self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} )
def lowerCAmelCase_ ( self : List[Any] ):
pass
def lowerCAmelCase_ ( self : Tuple ):
# Initialize image_processing
_A = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , Image.Image )
# Test not batched input
_A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowerCAmelCase_ ( self : Tuple ):
# Initialize image_processing
_A = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , np.ndarray )
# Test not batched input
_A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
def lowerCAmelCase_ ( self : Optional[int] ):
# Initialize image_processing
_A = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
_A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(_UpperCAmelCase , torch.Tensor )
# Test not batched input
_A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
# Test batched
_A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size['height'],
self.image_processor_tester.crop_size['width'],
) , )
| 315 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 1 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 1 |
import os
try:
from .build_directory_md import good_file_paths
except ImportError:
from build_directory_md import good_file_paths # type: ignore
UpperCAmelCase__ = list(good_file_paths())
assert filepaths, "good_file_paths() failed!"
UpperCAmelCase__ = [file for file in filepaths if file != file.lower()]
if upper_files:
print(f"""{len(upper_files)} files contain uppercase characters:""")
print("\n".join(upper_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if " " in file]
if space_files:
print(f"""{len(space_files)} files contain space characters:""")
print("\n".join(space_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if "-" in file]
if hyphen_files:
print(f"""{len(hyphen_files)} files contain hyphen characters:""")
print("\n".join(hyphen_files) + "\n")
UpperCAmelCase__ = [file for file in filepaths if os.sep not in file]
if nodir_files:
print(f"""{len(nodir_files)} files are not in a directory:""")
print("\n".join(nodir_files) + "\n")
UpperCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files)
if bad_files:
import sys
sys.exit(bad_files)
| 0 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
self.resolver.convert_models(['heb-eng'] )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 315 | 0 |
'''simple docstring'''
import warnings
from functools import wraps
from typing import Callable
def lowerCAmelCase_ ( snake_case_ : Callable ) -> Callable:
'''simple docstring'''
@wraps(snake_case_ )
def _inner_fn(*snake_case_ : Optional[Any] , **snake_case_ : Tuple ):
warnings.warn(
(f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , snake_case_ , )
return fn(*snake_case_ , **snake_case_ )
return _inner_fn
| 1 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 315 | 0 |
'''simple docstring'''
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class __lowerCAmelCase (lowercase_ , unittest.TestCase ):
'''simple docstring'''
lowerCAmelCase__ : Tuple = GPTSanJapaneseTokenizer
lowerCAmelCase__ : List[str] = False
lowerCAmelCase__ : Dict = {"""do_clean_text""": False, """add_prefix_space""": False}
def UpperCamelCase__ (self : Any ):
'''simple docstring'''
super().setUp()
# fmt: off
lowercase__ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
lowercase__ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
lowercase__ = {'''unk_token''': '''<unk>'''}
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.emoji_file , '''w''' ) as emoji_writer:
emoji_writer.write(json.dumps(UpperCamelCase ) )
def UpperCamelCase__ (self : Optional[Any] , **UpperCamelCase : Dict ):
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase )
def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] ):
'''simple docstring'''
lowercase__ = '''こんにちは、世界。 \nこんばんは、㔺界。😀'''
lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[int] ):
'''simple docstring'''
lowercase__ ,lowercase__ = self.get_input_output_texts(UpperCamelCase )
lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase )
return text, ids
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass # TODO add if relevant
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
# Testing tokenization
lowercase__ = '''こんにちは、世界。 こんばんは、㔺界。'''
lowercase__ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
lowercase__ = tokenizer.tokenize(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# Testing conversion to ids without special tokens
lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
# Testing conversion to ids with special tokens
lowercase__ = tokens + [tokenizer.unk_token]
lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19]
lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.get_tokenizer()
# Testing tokenization
lowercase__ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
lowercase__ = '''こんにちは、、、、世界。こんばんは、、、、世界。'''
lowercase__ = tokenizer.encode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowercase__ = '''こんにちは、世界。'''
lowercase__ = '''こんばんは、㔺界。😀'''
lowercase__ = '''こんにちは、世界。こんばんは、世界。😀'''
lowercase__ = tokenizer.encode(prefix_text + input_text )
lowercase__ = tokenizer.encode('''''' , prefix_text=prefix_text + input_text )
lowercase__ = tokenizer.encode(UpperCamelCase , prefix_text=UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
lowercase__ = tokenizer.decode(UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : Union[str, Any] ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowercase__ = '''こんにちは、世界。'''
lowercase__ = '''こんばんは、㔺界。😀'''
lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2
lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2
lowercase__ = [1] + [0] * (len_prefix + len_text + 1)
lowercase__ = [1] * (len_prefix + len_text + 1) + [0]
lowercase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowercase__ = tokenizer(prefix_text + input_text ).token_type_ids
lowercase__ = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids
lowercase__ = tokenizer(UpperCamelCase , prefix_text=UpperCamelCase ).token_type_ids
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
self.assertListEqual(UpperCamelCase , UpperCamelCase )
@slow
def UpperCamelCase__ (self : int ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowercase__ = tokenizer.encode('''あンいワ''' )
lowercase__ = tokenizer.encode('''''' , prefix_text='''あンいワ''' )
lowercase__ = tokenizer.encode('''いワ''' , prefix_text='''あン''' )
self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) )
self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) )
self.assertNotEqual(UpperCamelCase , UpperCamelCase )
self.assertNotEqual(UpperCamelCase , UpperCamelCase )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def UpperCamelCase__ (self : Dict ):
'''simple docstring'''
lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowercase__ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
lowercase__ = tokenizer(UpperCamelCase , padding=UpperCamelCase )
lowercase__ = tokenizer.batch_encode_plus(UpperCamelCase , padding=UpperCamelCase )
# fmt: off
lowercase__ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]]
lowercase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowercase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , UpperCamelCase )
self.assertListEqual(x_token.token_type_ids , UpperCamelCase )
self.assertListEqual(x_token.attention_mask , UpperCamelCase )
self.assertListEqual(x_token_a.input_ids , UpperCamelCase )
self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase )
self.assertListEqual(x_token_a.attention_mask , UpperCamelCase )
def UpperCamelCase__ (self : List[Any] ):
'''simple docstring'''
pass
def UpperCamelCase__ (self : Optional[int] ):
'''simple docstring'''
pass
| 2 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]:
'''simple docstring'''
_A , _A = position
_A = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A = []
for position in positions:
_A , _A = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_snake_case )
return permissible_positions
def _snake_case ( _snake_case : list[list[int]] ) -> bool:
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool:
'''simple docstring'''
if is_complete(_snake_case ):
return True
for position in get_valid_pos(_snake_case , len(_snake_case ) ):
_A , _A = position
if board[y][x] == 0:
_A = curr + 1
if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ):
return True
_A = 0
return False
def _snake_case ( _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
for i in range(_snake_case ):
for j in range(_snake_case ):
_A = 1
if open_knight_tour_helper(_snake_case , (i, j) , 1 ):
return board
_A = 0
_A = F'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
'''simple docstring'''
import argparse
import torch
from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
logging.set_verbosity_info()
def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ):
'''simple docstring'''
if gpta_config_file == "":
A : Dict = GPTaConfig()
else:
A : Optional[int] = GPTaConfig.from_json_file(snake_case__ )
A : str = GPTaModel(snake_case__ )
# Load weights from numpy
load_tf_weights_in_gpta(snake_case__ , snake_case__ , snake_case__ )
# Save pytorch-model
A : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME
A : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME
print(F'Save PyTorch model to {pytorch_weights_dump_path}' )
torch.save(model.state_dict() , snake_case__ )
print(F'Save configuration file to {pytorch_config_dump_path}' )
with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
lowercase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.'
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.'
)
parser.add_argument(
'--gpt2_config_file',
default='',
type=str,
help=(
'An optional config json file corresponding to the pre-trained OpenAI model. \n'
'This specifies the model architecture.'
),
)
lowercase : Dict = parser.parse_args()
convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
| 3 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 0 |
'''simple docstring'''
def a_ ( lowerCamelCase : int = 1000 ):
lowerCAmelCase , lowerCAmelCase = 1, 1
lowerCAmelCase = 2
while True:
lowerCAmelCase = 0
lowerCAmelCase = fa + fa
lowerCAmelCase , lowerCAmelCase = fa, f
index += 1
for _ in str(lowerCamelCase ):
i += 1
if i == n:
break
return index
if __name__ == "__main__":
print(solution(int(str(input()).strip())))
| 4 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
from typing import Dict, List, Optional, Union
import numpy as np
from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin
from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy
UpperCAmelCase__ = logging.get_logger(__name__)
class lowerCamelCase__ ( lowerCAmelCase):
def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]:
_lowercase =feature_size
_lowercase =sampling_rate
_lowercase =padding_value
_lowercase =kwargs.pop('''padding_side''' , '''right''' )
_lowercase =kwargs.pop('''return_attention_mask''' , UpperCAmelCase )
super().__init__(**UpperCAmelCase )
def __A (self , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> BatchFeature:
# If we have a list of dicts, let's convert it in a dict of lists
# We do this to allow using this method as a collate_fn function in PyTorch Dataloader
if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ):
_lowercase ={
key: [example[key] for example in processed_features] for key in processed_features[0].keys()
}
# The model's main input name, usually `input_values`, has be passed for padding
if self.model_input_names[0] not in processed_features:
raise ValueError(
'''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`'''
f" to this method that includes {self.model_input_names[0]}, but you provided"
f" {list(processed_features.keys() )}" )
_lowercase =processed_features[self.model_input_names[0]]
_lowercase =(
return_attention_mask if return_attention_mask is not None else self.return_attention_mask
)
if len(UpperCAmelCase ) == 0:
if return_attention_mask:
_lowercase =[]
return processed_features
# If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays
# and rebuild them afterwards if no return_tensors is specified
# Note that we lose the specific device the tensor may be on for PyTorch
_lowercase =required_input[0]
if isinstance(UpperCAmelCase , (list, tuple) ):
# first_element might be an empty list/tuple in some edge cases so we grab the first non empty element.
_lowercase =0
while len(required_input[index] ) == 0:
index += 1
if index < len(UpperCAmelCase ):
_lowercase =required_input[index][0]
if return_tensors is None:
if is_tf_tensor(UpperCAmelCase ):
_lowercase ='''tf'''
elif is_torch_tensor(UpperCAmelCase ):
_lowercase ='''pt'''
elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ):
_lowercase ='''np'''
else:
raise ValueError(
f"type of {first_element} unknown: {type(UpperCAmelCase )}. "
'''Should be one of a python, numpy, pytorch or tensorflow object.''' )
for key, value in processed_features.items():
if isinstance(value[0] , (int, float) ):
_lowercase =to_numpy(UpperCAmelCase )
else:
_lowercase =[to_numpy(UpperCAmelCase ) for v in value]
# Convert padding_strategy in PaddingStrategy
_lowercase =self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase )
_lowercase =processed_features[self.model_input_names[0]]
_lowercase =len(UpperCAmelCase )
if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ):
raise ValueError('''Some items in the output dictionary have a different batch size than others.''' )
_lowercase =[]
for i in range(UpperCAmelCase ):
_lowercase ={k: v[i] for k, v in processed_features.items()}
# truncation
_lowercase =self._truncate(
UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , )
truncated_inputs.append(UpperCAmelCase )
if padding_strategy == PaddingStrategy.LONGEST:
# make sure that `max_length` cannot be longer than the longest truncated length
_lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs )
_lowercase =PaddingStrategy.MAX_LENGTH
_lowercase ={}
for i in range(UpperCAmelCase ):
# padding
_lowercase =self._pad(
truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , )
for key, value in outputs.items():
if key not in batch_outputs:
_lowercase =[]
if value.dtype is np.dtype(np.floataa ):
_lowercase =value.astype(np.floataa )
batch_outputs[key].append(UpperCAmelCase )
return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase )
def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict:
_lowercase =processed_features[self.model_input_names[0]]
if padding_strategy == PaddingStrategy.LONGEST:
_lowercase =len(UpperCAmelCase )
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length
if return_attention_mask and "attention_mask" not in processed_features:
_lowercase =np.ones(len(UpperCAmelCase ) , dtype=np.intaa )
if needs_to_be_padded:
_lowercase =max_length - len(UpperCAmelCase )
if self.padding_side == "right":
if return_attention_mask:
_lowercase =np.pad(
processed_features['''attention_mask'''] , (0, difference) )
_lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference)
_lowercase =np.pad(
UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value )
elif self.padding_side == "left":
if return_attention_mask:
_lowercase =np.pad(
processed_features['''attention_mask'''] , (difference, 0) )
_lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0)
_lowercase =np.pad(
UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value )
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return processed_features
def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> List[str]:
if not truncation:
return processed_features
elif truncation and max_length is None:
raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' )
_lowercase =processed_features[self.model_input_names[0]]
# find `max_length` that fits `pad_to_multiple_of`
if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0):
_lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of
_lowercase =len(UpperCAmelCase ) > max_length
if needs_to_be_truncated:
_lowercase =processed_features[self.model_input_names[0]][:max_length]
if "attention_mask" in processed_features:
_lowercase =processed_features['''attention_mask'''][:max_length]
return processed_features
def __A (self , UpperCAmelCase=False , UpperCAmelCase=None ) -> Dict:
# Get padding strategy
if padding is not False:
if padding is True:
_lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch
elif not isinstance(UpperCAmelCase , UpperCAmelCase ):
_lowercase =PaddingStrategy(UpperCAmelCase )
elif isinstance(UpperCAmelCase , UpperCAmelCase ):
_lowercase =padding
else:
_lowercase =PaddingStrategy.DO_NOT_PAD
# Set max length if needed
if max_length is None:
if padding_strategy == PaddingStrategy.MAX_LENGTH:
raise ValueError(
f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" )
# Test if we have a padding value
if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None):
raise ValueError(
'''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use'''
''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' )
return padding_strategy
| 5 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
A : Dict = logging.get_logger(__name__)
class __A( a ):
snake_case_ = '''encoder-decoder'''
snake_case_ = True
def __init__( self , **_snake_case ) -> str:
'''simple docstring'''
super().__init__(**_snake_case )
assert (
"encoder" in kwargs and "decoder" in kwargs
), "Config has to be initialized with encoder and decoder config"
__a = kwargs.pop('''encoder''' )
__a = encoder_config.pop('''model_type''' )
__a = kwargs.pop('''decoder''' )
__a = decoder_config.pop('''model_type''' )
from ..auto.configuration_auto import AutoConfig
__a = AutoConfig.for_model(_snake_case , **_snake_case )
__a = AutoConfig.for_model(_snake_case , **_snake_case )
__a = True
@classmethod
def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case , **_snake_case ) -> PretrainedConfig:
'''simple docstring'''
logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' )
__a = True
__a = True
return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case )
def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]:
'''simple docstring'''
__a = copy.deepcopy(self.__dict__ )
__a = self.encoder.to_dict()
__a = self.decoder.to_dict()
__a = self.__class__.model_type
return output
| 6 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple:
'''simple docstring'''
return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def _snake_case( ) -> Dict:
'''simple docstring'''
A__ = ArgumentParser(
'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ )
A__ = parser.add_subparsers(help='datasets-cli command helpers' )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ )
# Parse args
A__ , A__ = parser.parse_known_args()
if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ):
parser.print_help()
exit(1 )
A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ )
# Run
A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
service.run()
if __name__ == "__main__":
main()
| 7 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
import unittest
from transformers.testing_utils import CaptureStdout
from transformers.tools.python_interpreter import evaluate
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
return x + 2
class snake_case_ ( unittest.TestCase ):
'''simple docstring'''
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = '''x = 3'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3} )
snake_case_ = '''x = y'''
snake_case_ = {'''y''': 5}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} )
def snake_case__( self : Dict ) ->Optional[int]:
snake_case_ = '''y = add_two(x)'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
# Won't work without the tool
with CaptureStdout() as out:
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result is None
assert "tried to execute add_two" in out.out
def snake_case__( self : Union[str, Any] ) ->Dict:
snake_case_ = '''x = 3'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3} )
def snake_case__( self : Optional[int] ) ->Optional[int]:
snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__( self : Dict ) ->str:
snake_case_ = '''x = 3\ny = 5'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} )
def snake_case__( self : str ) ->Tuple:
snake_case_ = '''text = f\'This is x: {x}.\''''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == "This is x: 3."
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} )
def snake_case__( self : Optional[Any] ) ->List[str]:
snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 2
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} )
snake_case_ = {'''x''': 8}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
# evaluate returns the value of the last assignment.
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} )
def snake_case__( self : str ) ->str:
snake_case_ = '''test_list = [x, add_two(x)]'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
self.assertListEqual(_UpperCamelCase , [3, 5] )
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} )
def snake_case__( self : Any ) ->List[Any]:
snake_case_ = '''y = x'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase )
assert result == 3
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} )
def snake_case__( self : Optional[int] ) ->Dict:
snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} )
snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']'''
snake_case_ = {'''x''': 3}
snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase )
assert result == 5
self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} )
def snake_case__( self : Optional[Any] ) ->int:
snake_case_ = '''x = 0\nfor i in range(3):\n x = i'''
snake_case_ = {}
snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase )
assert result == 2
self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
| 8 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
import torch
from diffusers import StableDiffusionPipeline
__lowerCAmelCase : Dict ='path-to-your-trained-model'
__lowerCAmelCase : int =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda')
__lowerCAmelCase : Dict ='A photo of sks dog in a bucket'
__lowerCAmelCase : Dict =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0]
image.save('dog-bucket.png')
| 9 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
import gc
import unittest
from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline
from transformers.pipelines import PipelineException
from transformers.testing_utils import (
is_pipeline_test,
is_torch_available,
nested_simplify,
require_tf,
require_torch,
require_torch_gpu,
slow,
)
from .test_pipelines_common import ANY
@is_pipeline_test
class _SCREAMING_SNAKE_CASE ( unittest.TestCase ):
'''simple docstring'''
lowercase_ = MODEL_FOR_MASKED_LM_MAPPING
lowercase_ = TF_MODEL_FOR_MASKED_LM_MAPPING
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
super().tearDown()
# clean-up as much as possible GPU memory occupied by PyTorch
gc.collect()
if is_torch_available():
import torch
torch.cuda.empty_cache()
@require_tf
def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Any =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf")
lowerCamelCase__: List[Any] =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped"},
{"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser"},
] , )
lowerCamelCase__: List[str] =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{
"sequence": "The largest city in France is grouped",
"score": 2.1E-0_5,
"token": 38_015,
"token_str": " grouped",
},
{
"sequence": "The largest city in France is accuser",
"score": 2.1E-0_5,
"token": 25_506,
"token_str": " accuser",
},
] , )
lowerCamelCase__: List[str] =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"},
{"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2_941, "token_str": " Te"},
] , )
@require_torch
def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: List[str] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt")
lowerCamelCase__: Tuple =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul"},
{"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"},
] , )
lowerCamelCase__: str =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{
"sequence": "The largest city in France is Maul",
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
},
{"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"},
] , )
lowerCamelCase__: str =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
{"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Te", "score": 2E-0_5, "token": 2_941, "token_str": " Te"},
{"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"},
] , )
lowerCamelCase__: Dict =unmasker("My name is <mask> <mask>" , top_k=2)
self.assertEqual(
nested_simplify(UpperCAmelCase_ , decimals=6) , [
[
{
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
"sequence": "<s>My name is Maul<mask></s>",
},
{"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"},
],
[
{
"score": 2.2E-0_5,
"token": 35_676,
"token_str": " Maul",
"sequence": "<s>My name is<mask> Maul</s>",
},
{"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"},
],
] , )
@require_torch_gpu
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: Union[str, Any] =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt")
# convert model to fp16
pipe.model.half()
lowerCamelCase__: str =pipe("Paris is the [MASK] of France.")
# We actually don't care about the result, we just want to make sure
# it works, meaning the float16 tensor got casted back to float32
# for postprocessing.
self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_)
@slow
@require_torch
def SCREAMING_SNAKE_CASE_ (self : int) ->Any:
'''simple docstring'''
lowerCamelCase__: Any =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt")
self.run_large_test(UpperCAmelCase_)
@slow
@require_tf
def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict:
'''simple docstring'''
lowerCamelCase__: List[Any] =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf")
self.run_large_test(UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->List[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[int] =unmasker("My name is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"},
{"sequence": "My name is Chris", "score": 0.007, "token": 1_573, "token_str": " Chris"},
] , )
lowerCamelCase__: Tuple =unmasker("The largest city in France is <mask>")
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{
"sequence": "The largest city in France is Paris",
"score": 0.251,
"token": 2_201,
"token_str": " Paris",
},
{
"sequence": "The largest city in France is Lyon",
"score": 0.214,
"token": 12_790,
"token_str": " Lyon",
},
] , )
lowerCamelCase__: int =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3)
self.assertEqual(
nested_simplify(UpperCAmelCase_) , [
{"sequence": "My name is Patrick", "score": 0.005, "token": 3_499, "token_str": " Patrick"},
{"sequence": "My name is Clara", "score": 0.000, "token": 13_606, "token_str": " Clara"},
{"sequence": "My name is Te", "score": 0.000, "token": 2_941, "token_str": " Te"},
] , )
@require_torch
def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt")
lowerCamelCase__: Dict =None
lowerCamelCase__: Dict =None
self.run_pipeline_test(UpperCAmelCase_ , [])
@require_tf
def SCREAMING_SNAKE_CASE_ (self : str) ->str:
'''simple docstring'''
lowerCamelCase__: Tuple =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf")
lowerCamelCase__: Any =None
lowerCamelCase__: Optional[int] =None
self.run_pipeline_test(UpperCAmelCase_ , [])
def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]:
'''simple docstring'''
if tokenizer is None or tokenizer.mask_token_id is None:
self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)")
lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Optional[int] =[
F"""This is another {tokenizer.mask_token} test""",
]
return fill_masker, examples
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: int =fill_masker.tokenizer
lowerCamelCase__: str =fill_masker.model
lowerCamelCase__: Optional[int] =fill_masker(
F"""This is a {tokenizer.mask_token}""" , )
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: List[Any] =fill_masker([F"""This is a {tokenizer.mask_token}"""])
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Optional[Any] =fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""])
self.assertEqual(
UpperCAmelCase_ , [
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
] , )
with self.assertRaises(UpperCAmelCase_):
fill_masker([None])
# No mask_token is not supported
with self.assertRaises(UpperCAmelCase_):
fill_masker("This is")
self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_)
self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_)
self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_)
self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_)
self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_)
def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Tuple:
'''simple docstring'''
lowerCamelCase__: Optional[int] =tokenizer.get_vocab()
lowerCamelCase__: Optional[int] =sorted(vocab.keys())[:2]
# Pipeline argument
lowerCamelCase__: Tuple =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""")
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Tuple ={vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_)
lowerCamelCase__: List[str] =[tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_))
# Call argument
lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Optional[int] ={vocab[el] for el in targets}
self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_)
lowerCamelCase__: str =[tokenizer.decode([x]) for x in target_ids]
self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_))
# Score equivalence
lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
lowerCamelCase__: str =[top_mask["token_str"] for top_mask in outputs]
lowerCamelCase__: Dict =[top_mask["score"] for top_mask in outputs]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(UpperCAmelCase_) == set(UpperCAmelCase_):
lowerCamelCase__: Union[str, Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_)
lowerCamelCase__: Any =[top_mask["score"] for top_mask in unmasked_targets]
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
# Raises with invalid
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Optional[int] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[])
# For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised
if "" not in tokenizer.get_vocab():
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""])
with self.assertRaises(UpperCAmelCase_):
lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="")
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str:
'''simple docstring'''
lowerCamelCase__: Optional[int] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2)
lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""")
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
lowerCamelCase__: Dict =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2)
self.assertEqual(
UpperCAmelCase_ , [
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
] , )
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->Optional[int]:
'''simple docstring'''
lowerCamelCase__: Tuple =tokenizer.get_vocab()
lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
# top_k=2, ntargets=3
lowerCamelCase__: List[str] =sorted(vocab.keys())[:3]
lowerCamelCase__: List[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=UpperCAmelCase_)
# If we use the most probably targets, and filter differently, we should still
# have the same results
lowerCamelCase__: Union[str, Any] =[el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)]
# For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`.
if set(UpperCAmelCase_).issubset(UpperCAmelCase_):
lowerCamelCase__: int =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=UpperCAmelCase_)
# They should yield exactly the same result
self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_))
def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]:
'''simple docstring'''
lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =tokenizer.get_vocab()
# String duplicates + id duplicates
lowerCamelCase__: Optional[Any] =sorted(vocab.keys())[:3]
lowerCamelCase__: Optional[Any] =[targets[0], targets[1], targets[0], targets[2], targets[1]]
lowerCamelCase__: Union[str, Any] =fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=UpperCAmelCase_ , top_k=10)
# The target list contains duplicates, so we can't output more
# than them
self.assertEqual(len(UpperCAmelCase_) , 3)
def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str) ->Union[str, Any]:
'''simple docstring'''
lowerCamelCase__: Optional[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_)
lowerCamelCase__: Tuple =fill_masker(
F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2)
self.assertEqual(
UpperCAmelCase_ , [
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
[
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
{"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)},
],
] , )
| 10 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowerCAmelCase__ = logging.get_logger(__name__)
lowerCAmelCase__ = {
'microsoft/trocr-base-handwritten': (
'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json'
),
# See all TrOCR models at https://huggingface.co/models?filter=trocr
}
class lowerCAmelCase__ ( a):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = "trocr"
__SCREAMING_SNAKE_CASE = ["past_key_values"]
__SCREAMING_SNAKE_CASE = {
"num_attention_heads": "decoder_attention_heads",
"hidden_size": "d_model",
"num_hidden_layers": "decoder_layers",
}
def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase="gelu" , __lowerCamelCase=5_1_2 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> List[Any]:
_A : Tuple = vocab_size
_A : int = d_model
_A : Optional[Any] = decoder_layers
_A : int = decoder_attention_heads
_A : List[Any] = decoder_ffn_dim
_A : int = activation_function
_A : int = max_position_embeddings
_A : int = dropout
_A : Tuple = attention_dropout
_A : Any = activation_dropout
_A : List[str] = init_std
_A : Optional[int] = decoder_layerdrop
_A : Tuple = use_cache
_A : str = scale_embedding
_A : Any = use_learned_position_embeddings
_A : Optional[Any] = layernorm_embedding
super().__init__(
pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
| 11 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
import argparse
import datetime
def lowerCamelCase__ ( A__ : str ):
'''simple docstring'''
__lowerCamelCase = {
"""0""": """Sunday""",
"""1""": """Monday""",
"""2""": """Tuesday""",
"""3""": """Wednesday""",
"""4""": """Thursday""",
"""5""": """Friday""",
"""6""": """Saturday""",
}
__lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0}
# Validate
if not 0 < len(A__ ) < 11:
raise ValueError("""Must be 10 characters long""" )
# Get month
__lowerCamelCase = int(date_input[0] + date_input[1] )
# Validate
if not 0 < m < 13:
raise ValueError("""Month must be between 1 - 12""" )
__lowerCamelCase = date_input[2]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get day
__lowerCamelCase = int(date_input[3] + date_input[4] )
# Validate
if not 0 < d < 32:
raise ValueError("""Date must be between 1 - 31""" )
# Get second separator
__lowerCamelCase = date_input[5]
# Validate
if sep_a not in ["-", "/"]:
raise ValueError("""Date separator must be '-' or '/'""" )
# Get year
__lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] )
# Arbitrary year range
if not 45 < y < 8500:
raise ValueError(
"""Year out of range. There has to be some sort of limit...right?""" )
# Get datetime obj for validation
__lowerCamelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) )
# Start math
if m <= 2:
__lowerCamelCase = y - 1
__lowerCamelCase = m + 12
# maths var
__lowerCamelCase = int(str(A__ )[:2] )
__lowerCamelCase = int(str(A__ )[2:] )
__lowerCamelCase = int(2.6 * m - 5.39 )
__lowerCamelCase = int(c / 4 )
__lowerCamelCase = int(k / 4 )
__lowerCamelCase = int(d + k )
__lowerCamelCase = int(t + u + v + x )
__lowerCamelCase = int(z - (2 * c) )
__lowerCamelCase = round(w % 7 )
# End math
# Validate math
if f != convert_datetime_days[dt_ck.weekday()]:
raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" )
# Response
__lowerCamelCase = f'Your date {date_input}, is a {days[str(A__ )]}!'
return response
if __name__ == "__main__":
import doctest
doctest.testmod()
UpperCAmelCase_ = argparse.ArgumentParser(
description=(
'Find out what day of the week nearly any date is or was. Enter '
'date as a string in the mm-dd-yyyy or mm/dd/yyyy format'
)
)
parser.add_argument(
'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)'
)
UpperCAmelCase_ = parser.parse_args()
zeller(args.date_input)
| 12 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
lowerCAmelCase : List[str] = {
"""configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Any = ["""VisionEncoderDecoderModel"""]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Optional[Any] = ["""TFVisionEncoderDecoderModel"""]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCAmelCase : Tuple = ["""FlaxVisionEncoderDecoderModel"""]
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 13 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
_lowerCamelCase : Union[str, Any] = {
"""configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""],
"""tokenization_cpmant""": ["""CpmAntTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase : Optional[Any] = [
"""CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""CpmAntForCausalLM""",
"""CpmAntModel""",
"""CpmAntPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig
from .tokenization_cpmant import CpmAntTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_cpmant import (
CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST,
CpmAntForCausalLM,
CpmAntModel,
CpmAntPreTrainedModel,
)
else:
import sys
_lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 14 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=__SCREAMING_SNAKE_CASE )
class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
snake_case_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} )
snake_case_ = Features({"question": Value("string" ), "context": Value("string" )} )
snake_case_ = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
snake_case_ = "question"
snake_case_ = "context"
snake_case_ = "answers"
@property
def UpperCamelCase_ ( self : Dict ):
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
| 15 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 0 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import is_tf_available, is_torch_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow
if is_tf_available():
from transformers import (
AutoConfig,
BertConfig,
GPTaConfig,
TaConfig,
TFAutoModel,
TFAutoModelForCausalLM,
TFAutoModelForMaskedLM,
TFAutoModelForPreTraining,
TFAutoModelForQuestionAnswering,
TFAutoModelForSeqaSeqLM,
TFAutoModelForSequenceClassification,
TFAutoModelWithLMHead,
TFBertForMaskedLM,
TFBertForPreTraining,
TFBertForQuestionAnswering,
TFBertForSequenceClassification,
TFBertModel,
TFGPTaLMHeadModel,
TFRobertaForMaskedLM,
TFTaForConditionalGeneration,
)
from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST
from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST
if is_torch_available():
from transformers import (
AutoModel,
AutoModelForCausalLM,
AutoModelForMaskedLM,
AutoModelForPreTraining,
AutoModelForQuestionAnswering,
AutoModelForSeqaSeqLM,
AutoModelForSequenceClassification,
AutoModelWithLMHead,
BertForMaskedLM,
BertForPreTraining,
BertForQuestionAnswering,
BertForSequenceClassification,
BertModel,
GPTaLMHeadModel,
RobertaForMaskedLM,
TaForConditionalGeneration,
)
@is_pt_tf_cross_test
class __A ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Tuple ) -> Dict:
"""simple docstring"""
for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Any = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Any ) -> Tuple:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Any = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[str] ) -> Optional[Any]:
"""simple docstring"""
for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : str = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[Any] ) -> Dict:
"""simple docstring"""
for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case )
lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case )
lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained(
_snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
@slow
def UpperCAmelCase ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
for model_name in ["bert-base-uncased"]:
lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsNotNone(_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
def UpperCAmelCase ( self : Dict ) -> Any:
"""simple docstring"""
lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
def UpperCAmelCase ( self : int ) -> List[Any]:
"""simple docstring"""
lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case )
self.assertIsInstance(_snake_case ,_snake_case )
self.assertEqual(model.num_parameters() ,14_410 )
self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
| 16 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 0 |
"""simple docstring"""
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : Any, UpperCAmelCase__ : List[Any], ):
__lowercase = parent
__lowercase = 1_3
__lowercase = 7
__lowercase = 3_0
__lowercase = self.seq_length + self.mem_len
__lowercase = 1_5
__lowercase = True
__lowercase = True
__lowercase = 9_9
__lowercase = [1_0, 5_0, 8_0]
__lowercase = 3_2
__lowercase = 3_2
__lowercase = 4
__lowercase = 8
__lowercase = 1_2_8
__lowercase = 2
__lowercase = 2
__lowercase = None
__lowercase = 1
__lowercase = 0
__lowercase = 3
__lowercase = self.vocab_size - 1
__lowercase = 0.01
def _lowercase ( self : List[str] ):
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = TransfoXLConfig(
vocab_size=self.vocab_size, mem_len=self.mem_len, clamp_len=self.clamp_len, cutoffs=self.cutoffs, d_model=self.hidden_size, d_embed=self.d_embed, n_head=self.num_attention_heads, d_head=self.d_head, d_inner=self.d_inner, div_val=self.div_val, n_layer=self.num_hidden_layers, eos_token_id=self.eos_token_id, pad_token_id=self.vocab_size - 1, init_range=self.init_range, num_labels=self.num_labels, )
return (config, input_ids_a, input_ids_a, lm_labels)
def _lowercase ( self : List[Any] ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def _lowercase ( self : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ):
__lowercase = TFTransfoXLModel(UpperCAmelCase__ )
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "mems": mems_a}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
def _lowercase ( self : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ):
__lowercase = TFTransfoXLLMHeadModel(UpperCAmelCase__ )
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "labels": lm_labels}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
__lowercase ,__lowercase = model([input_ids_a, mems_a] ).to_tuple()
__lowercase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels}
__lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int] ):
__lowercase = TFTransfoXLForSequenceClassification(UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def _lowercase ( self : Any ):
__lowercase = self.prepare_config_and_inputs()
((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs
__lowercase = {"input_ids": input_ids_a}
return config, inputs_dict
@require_tf
class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[Any] = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
__UpperCAmelCase : Union[str, Any] = () if is_tf_available() else ()
__UpperCAmelCase : List[str] = (
{
"feature-extraction": TFTransfoXLModel,
"text-classification": TFTransfoXLForSequenceClassification,
"text-generation": TFTransfoXLLMHeadModel,
"zero-shot": TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
__UpperCAmelCase : Tuple = False
__UpperCAmelCase : List[str] = False
__UpperCAmelCase : Any = False
__UpperCAmelCase : List[Any] = False
def _lowercase ( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def _lowercase ( self : List[str] ):
__lowercase = TFTransfoXLModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, d_embed=3_7 )
def _lowercase ( self : int ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
self.model_tester.set_seed()
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCAmelCase__ )
def _lowercase ( self : Optional[int] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common()
__lowercase = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
__lowercase = model_class(UpperCAmelCase__ )
assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
__lowercase = model.get_output_embeddings()
assert isinstance(UpperCAmelCase__, tf.keras.layers.Layer )
__lowercase = model.get_bias()
assert name is None
else:
__lowercase = model.get_output_embeddings()
assert x is None
__lowercase = model.get_bias()
assert name is None
def _lowercase ( self : List[str] ):
# TODO JP: Make TransfoXL XLA compliant
pass
@slow
def _lowercase ( self : Tuple ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFTransfoXLModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." )
def _lowercase ( self : Any ):
pass
@require_tf
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@unittest.skip("Skip test until #12651 is resolved." )
@slow
def _lowercase ( self : List[str] ):
__lowercase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" )
# fmt: off
__lowercase = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]], dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
__lowercase = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
__lowercase = model.generate(UpperCAmelCase__, max_length=2_0_0, do_sample=UpperCAmelCase__ )
self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
| 17 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 0 |
def _snake_case ( lowerCAmelCase : int = 1_0_0 ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0
SCREAMING_SNAKE_CASE_ : Tuple = 0
for i in range(1 , n + 1 ):
sum_of_squares += i**2
sum_of_ints += i
return sum_of_ints**2 - sum_of_squares
if __name__ == "__main__":
print(f'''{solution() = }''')
| 18 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 0 |
import random
def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ):
lowerCamelCase_ = {i: [] for i in range(lowerCamelCase__ )}
# if probability is greater or equal than 1, then generate a complete graph
if probability >= 1:
return complete_graph(lowerCamelCase__ )
# if probability is lower or equal than 0, then return a graph without edges
if probability <= 0:
return graph
# for each couple of nodes, add an edge from u to v
# if the number randomly generated is greater than probability probability
for i in range(lowerCamelCase__ ):
for j in range(i + 1 , lowerCamelCase__ ):
if random.random() < probability:
graph[i].append(lowerCamelCase__ )
if not directed:
# if the graph is undirected, add an edge in from j to i, either
graph[j].append(lowerCamelCase__ )
return graph
def lowerCamelCase_ ( lowerCamelCase__ ):
return {
i: [j for j in range(lowerCamelCase__ ) if i != j] for i in range(lowerCamelCase__ )
}
if __name__ == "__main__":
import doctest
doctest.testmod()
| 19 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 0 |
from math import factorial, pi
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float:
if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ):
raise ValueError("""maclaurin_sin() requires either an int or float for theta""" )
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0:
raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" )
lowercase : List[str] = float(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum(
(-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE__ ) )
def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float:
if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ):
raise ValueError("""maclaurin_cos() requires either an int or float for theta""" )
if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0:
raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" )
lowercase : Dict = float(SCREAMING_SNAKE_CASE__ )
lowercase : Optional[int] = theta // (2 * pi)
theta -= 2 * div * pi
return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE__ ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
print(maclaurin_sin(10))
print(maclaurin_sin(-10))
print(maclaurin_sin(10, 15))
print(maclaurin_sin(-10, 15))
print(maclaurin_cos(5))
print(maclaurin_cos(-5))
print(maclaurin_cos(10, 15))
print(maclaurin_cos(-10, 15))
| 20 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
from transformers import DistilBertTokenizer, DistilBertTokenizerFast
from transformers.testing_utils import require_tokenizers, slow
from ..bert.test_tokenization_bert import BertTokenizationTest
@require_tokenizers
class _lowerCamelCase( _a ):
lowercase_ : Optional[Any] = DistilBertTokenizer
lowercase_ : Optional[int] = DistilBertTokenizerFast
lowercase_ : Any = True
@slow
def UpperCamelCase ( self) -> Dict:
"""simple docstring"""
_lowercase : int = DistilBertTokenizer.from_pretrained('distilbert-base-uncased')
_lowercase : Union[str, Any] = tokenizer.encode('sequence builders', add_special_tokens=lowerCamelCase)
_lowercase : Tuple = tokenizer.encode('multi-sequence build', add_special_tokens=lowerCamelCase)
_lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase)
_lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase)
assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id]
assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [
tokenizer.sep_token_id
]
| 21 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 0 |
'''simple docstring'''
# Usage:
# ./gen-card-facebook-wmt19.py
import os
from pathlib import Path
def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> str:
'''simple docstring'''
_UpperCAmelCase = {
"en": "Machine learning is great, isn't it?",
"ru": "Машинное обучение - это здорово, не так ли?",
"de": "Maschinelles Lernen ist großartig, oder?",
}
# BLUE scores as follows:
# "pair": [fairseq, transformers]
_UpperCAmelCase = {
"ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"],
"en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"],
"en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"],
"de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"],
}
_UpperCAmelCase = f'{src_lang}-{tgt_lang}'
_UpperCAmelCase = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n'
os.makedirs(__lowercase , exist_ok=__lowercase )
_UpperCAmelCase = os.path.join(__lowercase , "README.md" )
print(f'Generating {path}' )
with open(__lowercase , "w" , encoding="utf-8" ) as f:
f.write(__lowercase )
# make sure we are under the root of the project
__SCREAMING_SNAKE_CASE :Optional[Any] = Path(__file__).resolve().parent.parent.parent
__SCREAMING_SNAKE_CASE :Any = repo_dir / '''model_cards'''
for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = model_name.split('''-''')
__SCREAMING_SNAKE_CASE :List[str] = model_cards_dir / '''facebook''' / model_name
write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
| 22 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
self.resolver.convert_models(['heb-eng'] )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 315 | 0 |
'''simple docstring'''
from collections.abc import Callable
import numpy as np
def snake_case_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> np.ndarray:
UpperCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) )
UpperCAmelCase : Tuple = np.zeros((n + 1,) )
UpperCAmelCase : Optional[int] = ya
UpperCAmelCase : Optional[Any] = xa
for k in range(_lowerCAmelCase ):
UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] )
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 23 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 315 | 0 |
import unittest
import numpy as np
from transformers.file_utils import is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DPTImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def __init__(self : Tuple , a__ : int , a__ : Any=7 , a__ : Any=3 , a__ : Union[str, Any]=18 , a__ : str=30 , a__ : Optional[int]=400 , a__ : Any=True , a__ : Tuple=None , a__ : str=True , a__ : str=[0.5, 0.5, 0.5] , a__ : Any=[0.5, 0.5, 0.5] , ):
"""simple docstring"""
__snake_case = size if size is not None else {'''height''': 18, '''width''': 18}
__snake_case = parent
__snake_case = batch_size
__snake_case = num_channels
__snake_case = image_size
__snake_case = min_resolution
__snake_case = max_resolution
__snake_case = do_resize
__snake_case = size
__snake_case = do_normalize
__snake_case = image_mean
__snake_case = image_std
def a (self : str ):
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ):
A_ : List[str] = DPTImageProcessor if is_vision_available() else None
def a (self : Optional[int] ):
"""simple docstring"""
__snake_case = DPTImageProcessingTester(self )
@property
def a (self : int ):
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def a (self : Optional[Any] ):
"""simple docstring"""
__snake_case = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(a__ , '''image_mean''' ) )
self.assertTrue(hasattr(a__ , '''image_std''' ) )
self.assertTrue(hasattr(a__ , '''do_normalize''' ) )
self.assertTrue(hasattr(a__ , '''do_resize''' ) )
self.assertTrue(hasattr(a__ , '''size''' ) )
def a (self : Optional[int] ):
"""simple docstring"""
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} )
__snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} )
def a (self : Tuple ):
"""simple docstring"""
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , Image.Image )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def a (self : Any ):
"""simple docstring"""
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , np.ndarray )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
def a (self : str ):
"""simple docstring"""
__snake_case = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ )
for image in image_inputs:
self.assertIsInstance(a__ , torch.Tensor )
# Test not batched input
__snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
# Test batched
__snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['''height'''],
self.image_processor_tester.size['''width'''],
) , )
| 24 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]:
'''simple docstring'''
_A , _A = position
_A = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A = []
for position in positions:
_A , _A = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_snake_case )
return permissible_positions
def _snake_case ( _snake_case : list[list[int]] ) -> bool:
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool:
'''simple docstring'''
if is_complete(_snake_case ):
return True
for position in get_valid_pos(_snake_case , len(_snake_case ) ):
_A , _A = position
if board[y][x] == 0:
_A = curr + 1
if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ):
return True
_A = 0
return False
def _snake_case ( _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
for i in range(_snake_case ):
for j in range(_snake_case ):
_A = 1
if open_knight_tour_helper(_snake_case , (i, j) , 1 ):
return board
_A = 0
_A = F'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
import inspect
import os
import unittest
from dataclasses import dataclass
import torch
from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs
from accelerate.state import AcceleratorState
from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu
from accelerate.utils import KwargsHandler
@dataclass
class lowerCAmelCase_ (a__ ):
"""simple docstring"""
__UpperCamelCase : int = 0
__UpperCamelCase : bool = False
__UpperCamelCase : float = 3.0
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
self.assertDictEqual(MockClass().to_kwargs() , {} )
self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} )
self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE__ ).to_kwargs() , {"""a""": 2, """b""": True} )
self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} )
@require_cuda
def __magic_name__ (self ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Tuple = GradScalerKwargs(init_scale=10_24 , growth_factor=2 )
AcceleratorState._reset_state()
SCREAMING_SNAKE_CASE__ : Tuple = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] )
print(accelerator.use_fpaa )
SCREAMING_SNAKE_CASE__ : str = accelerator.scaler
# Check the kwargs have been applied
self.assertEqual(scaler._init_scale , 1024.0 )
self.assertEqual(scaler._growth_factor , 2.0 )
# Check the other values are at the default
self.assertEqual(scaler._backoff_factor , 0.5 )
self.assertEqual(scaler._growth_interval , 20_00 )
self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE__ )
@require_multi_gpu
def __magic_name__ (self ) -> Union[str, Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )]
execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() )
if __name__ == "__main__":
UpperCAmelCase__ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True)
UpperCAmelCase__ : Union[str, Any] = Accelerator(kwargs_handlers=[ddp_scaler])
UpperCAmelCase__ : Any = torch.nn.Linear(1_0_0, 2_0_0)
UpperCAmelCase__ : Optional[Any] = accelerator.prepare(model)
# Check the values changed in kwargs
UpperCAmelCase__ : Tuple = ''
UpperCAmelCase__ : List[str] = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4)
if observed_bucket_cap_map != 1_5:
error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n"
if model.find_unused_parameters is not True:
error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n"
# Check the values of the defaults
if model.dim != 0:
error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n"
if model.broadcast_buffers is not True:
error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n"
if model.gradient_as_bucket_view is not False:
error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n"
# Raise error at the end to make sure we don't stop at the first failure.
if len(error_msg) > 0:
raise ValueError(error_msg)
| 25 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_snake_case = {
"configuration_table_transformer": [
"TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"TableTransformerConfig",
"TableTransformerOnnxConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_snake_case = [
"TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"TableTransformerForObjectDetection",
"TableTransformerModel",
"TableTransformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TableTransformerConfig,
TableTransformerOnnxConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_table_transformer import (
TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TableTransformerForObjectDetection,
TableTransformerModel,
TableTransformerPreTrainedModel,
)
else:
import sys
_snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 26 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
'''simple docstring'''
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path:
# hack it in for now:
import sys
from pathlib import Path
__lowercase : List[Any] = Path(__file__).resolve().parents[3] / 'src'
sys.path.insert(1, str(git_repo_path))
import dataclasses # noqa
import io # noqa
import itertools # noqa
import json # noqa
import os # noqa
import unittest # noqa
from copy import deepcopy # noqa
from parameterized import parameterized # noqa
from transformers import TrainingArguments, is_torch_available # noqa
from transformers.deepspeed import is_deepspeed_available # noqa
from transformers.file_utils import WEIGHTS_NAME # noqa
from transformers.testing_utils import ( # noqa
CaptureLogger,
ExtendSysPath,
TestCasePlus,
execute_subprocess_async,
get_gpu_count,
mockenv_context,
require_deepspeed,
require_torch_gpu,
require_torch_multi_gpu,
slow,
)
from transformers.trainer_utils import set_seed # noqa
set_seed(42)
__lowercase : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'}
__lowercase : int = 'zero2'
__lowercase : Dict = 'zero3'
__lowercase : List[Any] = [ZEROa, ZEROa]
def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any ):
# customize the test name generator function as we want both params to appear in the sub-test
# name, as by default it shows only the first param
__a : Dict = parameterized.to_safe_name('_'.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) )
return F"""{func.__name__}_{param_based_name}"""
# Cartesian-product of zero stages with models to test
__lowercase : List[Any] = list(itertools.product(stages, models.keys()))
@slow
@require_deepspeed
@require_torch_gpu
class __UpperCamelCase ( lowerCAmelCase_ ):
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
@require_torch_multi_gpu
@parameterized.expand(__a , name_func=__a )
def __UpperCAmelCase ( self , __a , __a ):
'''simple docstring'''
self.run_and_check(
stage=__a , model=__a , distributed=__a , fpaa=__a , )
def __UpperCAmelCase ( self , __a ):
'''simple docstring'''
pass
def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ):
'''simple docstring'''
__a : Any = models[model]
__a : Union[str, Any] = self.run_trainer(
stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , )
self.do_checks(__a )
return output_dir
def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ):
'''simple docstring'''
__a : Tuple = self.get_auto_remove_tmp_dir('./xxx' , after=__a )
__a : Optional[Any] = f"""
--model_name_or_path {model_name}
--dataset_name hf-internal-testing/librispeech_asr_dummy
--dataset_config_name clean
--train_split_name validation
--validation_split_name validation
--output_dir {output_dir}
--num_train_epochs {str(__a )}
--per_device_train_batch_size 2
--per_device_eval_batch_size 2
--evaluation_strategy steps
--learning_rate 5e-4
--warmup_steps 8
--orthography timit
--preprocessing_num_workers 1
--group_by_length
--freeze_feature_extractor
--report_to none
--save_steps 0
--eval_steps {eval_steps}
--report_to none
""".split()
if fpaa:
args.extend(['--fp16'] )
# currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true,
# hence the separate config files
__a : int = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split()
__a : Union[str, Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""]
__a : Dict = self.get_launcher(__a )
__a : Tuple = launcher + script + args + ds_args
# keep for quick debug
# print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die
execute_subprocess_async(__a , env=self.get_env() )
return output_dir
def __UpperCAmelCase ( self , __a=False ):
'''simple docstring'''
__a : int = min(2 , get_gpu_count() ) if distributed else 1
return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
| 27 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from torchvision.transforms import functional as F
from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection
from transformers.utils import logging
logging.set_verbosity_info()
_lowerCamelCase : int = logging.get_logger(__name__)
# here we list all keys to be renamed (original name on the left, our name on the right)
_lowerCamelCase : int = []
for i in range(6):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias'''))
# decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''')
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''',
f'''decoder.layers.{i}.encoder_attn.out_proj.weight''',
)
)
rename_keys.append(
(
f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''',
f'''decoder.layers.{i}.encoder_attn.out_proj.bias''',
)
)
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias'''))
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')
)
rename_keys.append(
(f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')
)
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight'''))
rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias'''))
# convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads
rename_keys.extend(
[
("input_proj.weight", "input_projection.weight"),
("input_proj.bias", "input_projection.bias"),
("query_embed.weight", "query_position_embeddings.weight"),
("transformer.encoder.norm.weight", "encoder.layernorm.weight"),
("transformer.encoder.norm.bias", "encoder.layernorm.bias"),
("transformer.decoder.norm.weight", "decoder.layernorm.weight"),
("transformer.decoder.norm.bias", "decoder.layernorm.bias"),
("class_embed.weight", "class_labels_classifier.weight"),
("class_embed.bias", "class_labels_classifier.bias"),
("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"),
("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"),
("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"),
("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"),
("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"),
("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"),
]
)
def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict:
"""simple docstring"""
UpperCamelCase = state_dict.pop(A__ )
UpperCamelCase = val
def __lowerCamelCase ( A__ ) -> int:
"""simple docstring"""
UpperCamelCase = OrderedDict()
for key, value in state_dict.items():
if "backbone.0.body" in key:
UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' )
UpperCamelCase = value
else:
UpperCamelCase = value
return new_state_dict
def __lowerCamelCase ( A__ ) -> Dict:
"""simple docstring"""
UpperCamelCase = ''
# first: transformer encoder
for i in range(6 ):
# read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias)
UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase = in_proj_weight[:256, :]
UpperCamelCase = in_proj_bias[:256]
UpperCamelCase = in_proj_weight[256:512, :]
UpperCamelCase = in_proj_bias[256:512]
UpperCamelCase = in_proj_weight[-256:, :]
UpperCamelCase = in_proj_bias[-256:]
# next: transformer decoder (which is a bit more complex because it also includes cross-attention)
for i in range(6 ):
# read in weights + bias of input projection layer of self-attention
UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" )
UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) to the state dict
UpperCamelCase = in_proj_weight[:256, :]
UpperCamelCase = in_proj_bias[:256]
UpperCamelCase = in_proj_weight[256:512, :]
UpperCamelCase = in_proj_bias[256:512]
UpperCamelCase = in_proj_weight[-256:, :]
UpperCamelCase = in_proj_bias[-256:]
# read in weights + bias of input projection layer of cross-attention
UpperCamelCase = state_dict.pop(
F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" )
UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" )
# next, add query, keys and values (in that order) of cross-attention to the state dict
UpperCamelCase = in_proj_weight_cross_attn[:256, :]
UpperCamelCase = in_proj_bias_cross_attn[:256]
UpperCamelCase = in_proj_weight_cross_attn[256:512, :]
UpperCamelCase = in_proj_bias_cross_attn[256:512]
UpperCamelCase = in_proj_weight_cross_attn[-256:, :]
UpperCamelCase = in_proj_bias_cross_attn[-256:]
def __lowerCamelCase ( A__ , A__ ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase , UpperCamelCase = image.size
UpperCamelCase = max(A__ , A__ )
UpperCamelCase = 800 if 'detection' in checkpoint_url else 1_000
UpperCamelCase = target_max_size / current_max_size
UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) )
return resized_image
def __lowerCamelCase ( A__ ) -> List[Any]:
"""simple docstring"""
UpperCamelCase = F.to_tensor(A__ )
UpperCamelCase = F.normalize(A__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] )
return image
@torch.no_grad()
def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]:
"""simple docstring"""
logger.info('Converting model...' )
# load original state dict
UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )
# rename keys
for src, dest in rename_keys:
rename_key(A__ , A__ , A__ )
UpperCamelCase = rename_backbone_keys(A__ )
# query, key and value matrices need special treatment
read_in_q_k_v(A__ )
# important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them
UpperCamelCase = 'model.'
for key in state_dict.copy().keys():
if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ):
UpperCamelCase = state_dict.pop(A__ )
UpperCamelCase = val
# create HuggingFace model and load state dict
UpperCamelCase = TableTransformerConfig(
backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , )
if "detection" in checkpoint_url:
UpperCamelCase = 15
UpperCamelCase = 2
UpperCamelCase = {0: 'table', 1: 'table rotated'}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
else:
UpperCamelCase = 125
UpperCamelCase = 6
UpperCamelCase = {
0: 'table',
1: 'table column',
2: 'table row',
3: 'table column header',
4: 'table projected row header',
5: 'table spanning cell',
}
UpperCamelCase = idalabel
UpperCamelCase = {v: k for k, v in idalabel.items()}
UpperCamelCase = DetrImageProcessor(
format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 )
UpperCamelCase = TableTransformerForObjectDetection(A__ )
model.load_state_dict(A__ )
model.eval()
# verify our conversion
UpperCamelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png'
UpperCamelCase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=A__ )
UpperCamelCase = Image.open(A__ ).convert('RGB' )
UpperCamelCase = normalize(resize(A__ , A__ ) ).unsqueeze(0 )
UpperCamelCase = model(A__ )
if "detection" in checkpoint_url:
UpperCamelCase = (1, 15, 3)
UpperCamelCase = torch.tensor(
[[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] )
UpperCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] )
else:
UpperCamelCase = (1, 125, 7)
UpperCamelCase = torch.tensor(
[[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] )
UpperCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 )
assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 )
print('Looks ok!' )
if pytorch_dump_folder_path is not None:
# Save model and image processor
logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" )
Path(A__ ).mkdir(exist_ok=A__ )
model.save_pretrained(A__ )
image_processor.save_pretrained(A__ )
if push_to_hub:
# Push model to HF hub
logger.info('Pushing model to the hub...' )
UpperCamelCase = (
'microsoft/table-transformer-detection'
if 'detection' in checkpoint_url
else 'microsoft/table-transformer-structure-recognition'
)
model.push_to_hub(A__ )
image_processor.push_to_hub(A__ )
if __name__ == "__main__":
_lowerCamelCase : List[str] = argparse.ArgumentParser()
parser.add_argument(
"--checkpoint_url",
default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
type=str,
choices=[
"https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth",
"https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth",
],
help="URL of the Table Transformer checkpoint you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
parser.add_argument(
"--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
)
_lowerCamelCase : int = parser.parse_args()
convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
| 28 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__UpperCAmelCase = {
'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__UpperCAmelCase = [
'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST',
'TimesformerModel',
'TimesformerForVideoClassification',
'TimesformerPreTrainedModel',
]
if TYPE_CHECKING:
from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_timesformer import (
TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TimesformerForVideoClassification,
TimesformerModel,
TimesformerPreTrainedModel,
)
else:
import sys
__UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
| 29 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
from torch import nn
from torch.utils.data import DistributedSampler, RandomSampler
from transformers import PreTrainedModel, Trainer, logging
from transformers.integrations import is_fairscale_available
from transformers.models.fsmt.configuration_fsmt import FSMTConfig
from transformers.optimization import (
Adafactor,
AdamW,
get_constant_schedule,
get_constant_schedule_with_warmup,
get_cosine_schedule_with_warmup,
get_cosine_with_hard_restarts_schedule_with_warmup,
get_linear_schedule_with_warmup,
get_polynomial_decay_schedule_with_warmup,
)
from transformers.trainer_pt_utils import get_tpu_sampler
from transformers.training_args import ParallelMode
from transformers.utils import is_torch_tpu_available
if is_fairscale_available():
from fairscale.optim import OSS
__a = logging.get_logger(__name__)
__a = {
'linear': get_linear_schedule_with_warmup,
'cosine': get_cosine_schedule_with_warmup,
'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup,
'polynomial': get_polynomial_decay_schedule_with_warmup,
'constant': get_constant_schedule,
'constant_w_warmup': get_constant_schedule_with_warmup,
}
class lowercase__( UpperCAmelCase ):
"""simple docstring"""
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]:
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if config is None:
assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), (
"If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is"
f''' {self.model.__class__}'''
)
lowercase_ = self.model.config
else:
lowercase_ = config
lowercase_ = data_args
lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size
if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss):
assert self.config.pad_token_id is not None, (
"Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss"
" calculation or doing label smoothing."
)
if self.config.pad_token_id is None and self.config.eos_token_id is not None:
logger.warning(
f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for'''
''' padding..''' )
if self.args.label_smoothing == 0:
lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id )
else:
# dynamically import label_smoothed_nll_loss
from utils import label_smoothed_nll_loss
lowercase_ = label_smoothed_nll_loss
def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]:
if self.optimizer is None:
lowercase_ = ['''bias''', '''LayerNorm.weight''']
lowercase_ = [
{
'''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )],
'''weight_decay''': self.args.weight_decay,
},
{
'''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )],
'''weight_decay''': 0.0,
},
]
lowercase_ = Adafactor if self.args.adafactor else AdamW
if self.args.adafactor:
lowercase_ = Adafactor
lowercase_ = {'''scale_parameter''': False, '''relative_step''': False}
else:
lowercase_ = AdamW
lowercase_ = {
'''betas''': (self.args.adam_betaa, self.args.adam_betaa),
'''eps''': self.args.adam_epsilon,
}
lowercase_ = self.args.learning_rate
if self.sharded_ddp:
lowercase_ = OSS(
params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
else:
lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.lr_scheduler is None:
lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ )
else: # ignoring --lr_scheduler
logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' )
def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict:
lowercase_ = arg_to_scheduler[self.args.lr_scheduler]
if self.args.lr_scheduler == "constant":
lowercase_ = schedule_func(self.optimizer )
elif self.args.lr_scheduler == "constant_w_warmup":
lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps )
else:
lowercase_ = schedule_func(
self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ )
return scheduler
def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]:
if isinstance(self.train_dataset , torch.utils.data.IterableDataset ):
return None
elif is_torch_tpu_available():
return get_tpu_sampler(self.train_dataset )
else:
if self.args.sortish_sampler:
self.train_dataset.make_sortish_sampler(
self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , )
return (
RandomSampler(self.train_dataset )
if self.args.local_rank == -1
else DistributedSampler(self.train_dataset )
)
def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any:
if self.args.label_smoothing == 0:
if self.data_args is not None and self.data_args.ignore_pad_token_for_loss:
# force training to ignore pad token
lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0]
lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) )
else:
# compute usual loss via models
lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2]
else:
# compute label smoothed loss
lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0]
lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 )
lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id )
return loss, logits
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]:
lowercase_ = inputs.pop('''labels''' )
lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return loss
def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]:
lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ )
lowercase_ = {
'''max_length''': self.data_args.val_max_target_length
if self.data_args is not None
else self.config.max_length,
'''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams,
}
if self.args.predict_with_generate and not self.args.prediction_loss_only:
lowercase_ = self.model.generate(
inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , )
# in case the batch is shorter than max length, the output should be padded
if generated_tokens.shape[-1] < gen_kwargs["max_length"]:
lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] )
lowercase_ = inputs.pop('''labels''' )
with torch.no_grad():
# compute loss on predict data
lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowercase_ = loss.mean().detach()
if self.args.prediction_loss_only:
return (loss, None, None)
lowercase_ = generated_tokens if self.args.predict_with_generate else logits
if labels.shape[-1] < gen_kwargs["max_length"]:
lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] )
return (loss, logits, labels)
def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple:
# If PAD token is not defined at least EOS token has to be defined
lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id
if pad_token_id is None:
raise ValueError(
'''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be'''
f''' padded to `max_length`={max_length}''' )
lowercase_ = pad_token_id * torch.ones(
(tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device )
lowercase_ = tensor
return padded_tensor
| 30 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
'''simple docstring'''
from __future__ import annotations
from decimal import Decimal
from math import * # noqa: F403
from sympy import diff
def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : float | Decimal , _UpperCAmelCase : float = 10**-10 ) -> float:
"""simple docstring"""
_UpperCAmelCase : Optional[int] = a
while True:
_UpperCAmelCase : Optional[int] = Decimal(_UpperCAmelCase ) - (
Decimal(eval(_UpperCAmelCase ) ) / Decimal(eval(str(diff(_UpperCAmelCase ) ) ) ) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(_UpperCAmelCase ) ) < precision: # noqa: S307
return float(_UpperCAmelCase )
# Let's Execute
if __name__ == "__main__":
# Find root of trigonometric function
# Find value of pi
print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}')
# Find root of polynomial
print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}')
# Find Square Root of 5
print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}')
# Exponential Roots
print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
| 31 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any:
a_ : str = None
a_ : Tuple = None
a_ : Union[str, Any] = graph
self._normalize_graph(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
a_ : Dict = len(SCREAMING_SNAKE_CASE__ )
a_ : Optional[Any] = None
def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]:
if sources is int:
a_ : str = [sources]
if sinks is int:
a_ : str = [sinks]
if len(SCREAMING_SNAKE_CASE__ ) == 0 or len(SCREAMING_SNAKE_CASE__ ) == 0:
return
a_ : Tuple = sources[0]
a_ : Optional[int] = sinks[0]
# make fake vertex if there are more
# than one source or sink
if len(SCREAMING_SNAKE_CASE__ ) > 1 or len(SCREAMING_SNAKE_CASE__ ) > 1:
a_ : Tuple = 0
for i in sources:
max_input_flow += sum(self.graph[i] )
a_ : Optional[Any] = len(self.graph ) + 1
for room in self.graph:
room.insert(0 , 0 )
self.graph.insert(0 , [0] * size )
for i in sources:
a_ : Optional[int] = max_input_flow
a_ : int = 0
a_ : List[str] = len(self.graph ) + 1
for room in self.graph:
room.append(0 )
self.graph.append([0] * size )
for i in sinks:
a_ : Any = max_input_flow
a_ : Union[str, Any] = size - 1
def SCREAMING_SNAKE_CASE ( self : Dict ) -> str:
if self.maximum_flow_algorithm is None:
raise Exception('You need to set maximum flow algorithm before.' )
if self.source_index is None or self.sink_index is None:
return 0
self.maximum_flow_algorithm.execute()
return self.maximum_flow_algorithm.getMaximumFlow()
def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]:
a_ : Union[str, Any] = algorithm(self )
class SCREAMING_SNAKE_CASE__ :
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> int:
a_ : Dict = flow_network
a_ : Optional[Any] = flow_network.verticesCount
a_ : int = flow_network.sourceIndex
a_ : Optional[Any] = flow_network.sinkIndex
# it's just a reference, so you shouldn't change
# it in your algorithms, use deep copy before doing that
a_ : List[Any] = flow_network.graph
a_ : Optional[int] = False
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int:
if not self.executed:
self._algorithm()
a_ : Any = True
def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict:
pass
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any:
super().__init__(SCREAMING_SNAKE_CASE__ )
# use this to save your result
a_ : int = -1
def SCREAMING_SNAKE_CASE ( self : int ) -> Any:
if not self.executed:
raise Exception('You should execute algorithm before using its result!' )
return self.maximum_flow
class SCREAMING_SNAKE_CASE__ ( lowercase__ ):
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple:
super().__init__(SCREAMING_SNAKE_CASE__ )
a_ : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )]
a_ : Optional[Any] = [0] * self.verticies_count
a_ : Union[str, Any] = [0] * self.verticies_count
def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict:
a_ : List[str] = self.verticies_count
# push some substance to graph
for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ):
self.preflow[self.source_index][nextvertex_index] += bandwidth
self.preflow[nextvertex_index][self.source_index] -= bandwidth
self.excesses[nextvertex_index] += bandwidth
# Relabel-to-front selection rule
a_ : str = [
i
for i in range(self.verticies_count )
if i != self.source_index and i != self.sink_index
]
# move through list
a_ : List[str] = 0
while i < len(SCREAMING_SNAKE_CASE__ ):
a_ : Any = vertices_list[i]
a_ : Dict = self.heights[vertex_index]
self.process_vertex(SCREAMING_SNAKE_CASE__ )
if self.heights[vertex_index] > previous_height:
# if it was relabeled, swap elements
# and start from 0 index
vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE__ ) )
a_ : List[Any] = 0
else:
i += 1
a_ : Union[str, Any] = sum(self.preflow[self.source_index] )
def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> int:
while self.excesses[vertex_index] > 0:
for neighbour_index in range(self.verticies_count ):
# if it's neighbour and current vertex is higher
if (
self.graph[vertex_index][neighbour_index]
- self.preflow[vertex_index][neighbour_index]
> 0
and self.heights[vertex_index] > self.heights[neighbour_index]
):
self.push(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
self.relabel(SCREAMING_SNAKE_CASE__ )
def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any:
a_ : str = min(
self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , )
self.preflow[from_index][to_index] += preflow_delta
self.preflow[to_index][from_index] -= preflow_delta
self.excesses[from_index] -= preflow_delta
self.excesses[to_index] += preflow_delta
def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> str:
a_ : Optional[Any] = None
for to_index in range(self.verticies_count ):
if (
self.graph[vertex_index][to_index]
- self.preflow[vertex_index][to_index]
> 0
) and (min_height is None or self.heights[to_index] < min_height):
a_ : Optional[Any] = self.heights[to_index]
if min_height is not None:
a_ : List[Any] = min_height + 1
if __name__ == "__main__":
UpperCAmelCase_ : Any = [0]
UpperCAmelCase_ : Any = [3]
# graph = [
# [0, 0, 4, 6, 0, 0],
# [0, 0, 5, 2, 0, 0],
# [0, 0, 0, 0, 4, 4],
# [0, 0, 0, 0, 6, 6],
# [0, 0, 0, 0, 0, 0],
# [0, 0, 0, 0, 0, 0],
# ]
UpperCAmelCase_ : Any = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]]
# prepare our network
UpperCAmelCase_ : Tuple = FlowNetwork(graph, entrances, exits)
# set algorithm
flow_network.set_maximum_flow_algorithm(PushRelabelExecutor)
# and calculate
UpperCAmelCase_ : int = flow_network.find_maximum_flow()
print(F'maximum flow is {maximum_flow}')
| 32 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
"""simple docstring"""
import argparse
import os
import torch
from transformers import (
XLNetConfig,
XLNetForQuestionAnswering,
XLNetForSequenceClassification,
XLNetLMHeadModel,
load_tf_weights_in_xlnet,
)
from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging
__A : Tuple = {
'''cola''': 2,
'''mnli''': 3,
'''mrpc''': 2,
'''sst-2''': 2,
'''sts-b''': 1,
'''qqp''': 2,
'''qnli''': 2,
'''rte''': 2,
'''wnli''': 2,
}
logging.set_verbosity_info()
def lowercase ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[int]=None ):
# Initialise PyTorch model
lowercase_ : List[Any] = XLNetConfig.from_json_file(__snake_case )
lowercase_ : List[str] = finetuning_task.lower() if finetuning_task is not None else ''''''
if finetuning_task in GLUE_TASKS_NUM_LABELS:
print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' )
lowercase_ : Any = finetuning_task
lowercase_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task]
lowercase_ : Tuple = XLNetForSequenceClassification(__snake_case )
elif "squad" in finetuning_task:
lowercase_ : Union[str, Any] = finetuning_task
lowercase_ : Optional[int] = XLNetForQuestionAnswering(__snake_case )
else:
lowercase_ : Optional[Any] = XLNetLMHeadModel(__snake_case )
# Load weights from tf checkpoint
load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case )
# Save pytorch-model
lowercase_ : Tuple = os.path.join(__snake_case , __snake_case )
lowercase_ : Dict = os.path.join(__snake_case , __snake_case )
print(F'''Save PyTorch model to {os.path.abspath(__snake_case )}''' )
torch.save(model.state_dict() , __snake_case )
print(F'''Save configuration file to {os.path.abspath(__snake_case )}''' )
with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f:
f.write(config.to_json_string() )
if __name__ == "__main__":
__A : List[Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.'''
)
parser.add_argument(
'''--xlnet_config_file''',
default=None,
type=str,
required=True,
help=(
'''The config json file corresponding to the pre-trained XLNet model. \n'''
'''This specifies the model architecture.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=str,
required=True,
help='''Path to the folder to store the PyTorch model or dataset/vocab.''',
)
parser.add_argument(
'''--finetuning_task''',
default=None,
type=str,
help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''',
)
__A : List[Any] = parser.parse_args()
print(args)
convert_xlnet_checkpoint_to_pytorch(
args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task
)
| 33 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
'''simple docstring'''
import doctest
from collections import deque
import numpy as np
class _a :
def __init__( self : List[Any] ):
'''simple docstring'''
UpperCAmelCase = [2, 1, 2, -1]
UpperCAmelCase = [1, 2, 3, 4]
def A ( self : int ):
'''simple docstring'''
UpperCAmelCase = len(self.first_signal )
UpperCAmelCase = len(self.second_signal )
UpperCAmelCase = max(lowercase , lowercase )
# create a zero matrix of max_length x max_length
UpperCAmelCase = [[0] * max_length for i in range(lowercase )]
# fills the smaller signal with zeros to make both signals of same length
if length_first_signal < length_second_signal:
self.first_signal += [0] * (max_length - length_first_signal)
elif length_first_signal > length_second_signal:
self.second_signal += [0] * (max_length - length_second_signal)
for i in range(lowercase ):
UpperCAmelCase = deque(self.second_signal )
rotated_signal.rotate(lowercase )
for j, item in enumerate(lowercase ):
matrix[i][j] += item
# multiply the matrix with the first signal
UpperCAmelCase = np.matmul(np.transpose(lowercase ) , np.transpose(self.first_signal ) )
# rounding-off to two decimal places
return [round(lowercase , 2 ) for i in final_signal]
if __name__ == "__main__":
doctest.testmod()
| 34 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
__a = {
"configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"],
"tokenization_xlm": ["XLMTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"XLMForMultipleChoice",
"XLMForQuestionAnswering",
"XLMForQuestionAnsweringSimple",
"XLMForSequenceClassification",
"XLMForTokenClassification",
"XLMModel",
"XLMPreTrainedModel",
"XLMWithLMHeadModel",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a = [
"TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"TFXLMForMultipleChoice",
"TFXLMForQuestionAnsweringSimple",
"TFXLMForSequenceClassification",
"TFXLMForTokenClassification",
"TFXLMMainLayer",
"TFXLMModel",
"TFXLMPreTrainedModel",
"TFXLMWithLMHeadModel",
]
if TYPE_CHECKING:
from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig
from .tokenization_xlm import XLMTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlm import (
XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
XLMForMultipleChoice,
XLMForQuestionAnswering,
XLMForQuestionAnsweringSimple,
XLMForSequenceClassification,
XLMForTokenClassification,
XLMModel,
XLMPreTrainedModel,
XLMWithLMHeadModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlm import (
TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLMForMultipleChoice,
TFXLMForQuestionAnsweringSimple,
TFXLMForSequenceClassification,
TFXLMForTokenClassification,
TFXLMMainLayer,
TFXLMModel,
TFXLMPreTrainedModel,
TFXLMWithLMHeadModel,
)
else:
import sys
__a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 35 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase_ ( a):
lowerCamelCase__ = ['image_processor', 'tokenizer']
lowerCamelCase__ = 'ViltImageProcessor'
lowerCamelCase__ = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self, __a=None, __a=None, **__a):
'''simple docstring'''
_lowerCAmelCase : int = None
if "feature_extractor" in kwargs:
warnings.warn(
"The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
" instead.", __a, )
_lowerCAmelCase : int = kwargs.pop("feature_extractor")
_lowerCAmelCase : str = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError("You need to specify an `image_processor`.")
if tokenizer is None:
raise ValueError("You need to specify a `tokenizer`.")
super().__init__(__a, __a)
_lowerCAmelCase : int = self.image_processor
def __call__( self, __a, __a = None, __a = True, __a = False, __a = None, __a = None, __a = 0, __a = None, __a = None, __a = None, __a = False, __a = False, __a = False, __a = False, __a = True, __a = None, **__a, ):
'''simple docstring'''
_lowerCAmelCase : Dict = self.tokenizer(
text=__a, add_special_tokens=__a, padding=__a, truncation=__a, max_length=__a, stride=__a, pad_to_multiple_of=__a, return_token_type_ids=__a, return_attention_mask=__a, return_overflowing_tokens=__a, return_special_tokens_mask=__a, return_offsets_mapping=__a, return_length=__a, verbose=__a, return_tensors=__a, **__a, )
# add pixel_values + pixel_mask
_lowerCAmelCase : List[Any] = self.image_processor(__a, return_tensors=__a)
encoding.update(__a)
return encoding
def snake_case__ ( self, *__a, **__a):
'''simple docstring'''
return self.tokenizer.batch_decode(*__a, **__a)
def snake_case__ ( self, *__a, **__a):
'''simple docstring'''
return self.tokenizer.decode(*__a, **__a)
@property
def snake_case__ ( self):
'''simple docstring'''
_lowerCAmelCase : Dict = self.tokenizer.model_input_names
_lowerCAmelCase : int = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
@property
def snake_case__ ( self):
'''simple docstring'''
warnings.warn(
"`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", __a, )
return self.image_processor_class
@property
def snake_case__ ( self):
'''simple docstring'''
warnings.warn(
"`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", __a, )
return self.image_processor
| 36 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
'''simple docstring'''
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
_lowerCAmelCase = TypeVar('''T''')
class lowerCAmelCase_( Generic[T] ):
'''simple docstring'''
def __init__( self ,__UpperCAmelCase = True ) -> None:
lowerCAmelCase__ : dict[T, list[T]] = {} # dictionary of lists
lowerCAmelCase__ : Optional[int] = directed
def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> GraphAdjacencyList[T]:
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__UpperCAmelCase )
self.adj_list[destination_vertex].append(__UpperCAmelCase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__UpperCAmelCase )
lowerCAmelCase__ : List[str] = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(__UpperCAmelCase )
lowerCAmelCase__ : str = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
lowerCAmelCase__ : List[Any] = [destination_vertex]
lowerCAmelCase__ : str = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(__UpperCAmelCase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(__UpperCAmelCase )
lowerCAmelCase__ : List[str] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
lowerCAmelCase__ : List[str] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
lowerCAmelCase__ : Dict = [destination_vertex]
lowerCAmelCase__ : Optional[Any] = []
return self
def __repr__( self ) -> str:
return pformat(self.adj_list )
| 37 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 0 |
from __future__ import annotations
import time
from math import sqrt
# 1 for manhattan, 0 for euclidean
UpperCAmelCase_ : Dict = 0
UpperCAmelCase_ : List[str] = [
[0, 0, 0, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 1, 0, 0, 0, 0],
[1, 0, 1, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0],
]
UpperCAmelCase_ : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right
UpperCAmelCase_ : str = tuple[int, int]
class _SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None , ):
UpperCamelCase :Any = pos_x
UpperCamelCase :List[str] = pos_y
UpperCamelCase :Any = (pos_y, pos_x)
UpperCamelCase :str = goal_x
UpperCamelCase :Tuple = goal_y
UpperCamelCase :Tuple = g_cost
UpperCamelCase :Tuple = parent
UpperCamelCase :List[Any] = self.calculate_heuristic()
UpperCamelCase :List[str] = self.g_cost + self.h_cost
def _A ( self : List[Any] ):
UpperCamelCase :List[str] = self.pos_x - self.goal_x
UpperCamelCase :Optional[int] = self.pos_y - self.goal_y
if HEURISTIC == 1:
return abs(__lowerCamelCase ) + abs(__lowerCamelCase )
else:
return sqrt(dy**2 + dx**2 )
def __lt__( self : Optional[Any] , __lowerCamelCase : Node ):
return self.f_cost < other.f_cost
class _SCREAMING_SNAKE_CASE :
def __init__( self : List[Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ):
UpperCamelCase :str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase )
UpperCamelCase :int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , __lowerCamelCase )
UpperCamelCase :Optional[Any] = [self.start]
UpperCamelCase :list[Node] = []
UpperCamelCase :Optional[int] = False
def _A ( self : Optional[Any] ):
while self.open_nodes:
# Open Nodes are sorted using __lt__
self.open_nodes.sort()
UpperCamelCase :Dict = self.open_nodes.pop(0 )
if current_node.pos == self.target.pos:
return self.retrace_path(__lowerCamelCase )
self.closed_nodes.append(__lowerCamelCase )
UpperCamelCase :List[Any] = self.get_successors(__lowerCamelCase )
for child_node in successors:
if child_node in self.closed_nodes:
continue
if child_node not in self.open_nodes:
self.open_nodes.append(__lowerCamelCase )
else:
# retrieve the best current path
UpperCamelCase :List[Any] = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) )
if child_node.g_cost < better_node.g_cost:
self.open_nodes.append(__lowerCamelCase )
else:
self.open_nodes.append(__lowerCamelCase )
return [self.start.pos]
def _A ( self : Tuple , __lowerCamelCase : Node ):
UpperCamelCase :List[Any] = []
for action in delta:
UpperCamelCase :Union[str, Any] = parent.pos_x + action[1]
UpperCamelCase :List[Any] = parent.pos_y + action[0]
if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1):
continue
if grid[pos_y][pos_x] != 0:
continue
successors.append(
Node(
__lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) )
return successors
def _A ( self : Any , __lowerCamelCase : Node | None ):
UpperCamelCase :Union[str, Any] = node
UpperCamelCase :List[str] = []
while current_node is not None:
path.append((current_node.pos_y, current_node.pos_x) )
UpperCamelCase :Optional[Any] = current_node.parent
path.reverse()
return path
class _SCREAMING_SNAKE_CASE :
def __init__( self : Union[str, Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ):
UpperCamelCase :Any = AStar(__lowerCamelCase , __lowerCamelCase )
UpperCamelCase :List[str] = AStar(__lowerCamelCase , __lowerCamelCase )
UpperCamelCase :Dict = False
def _A ( self : Tuple ):
while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes:
self.fwd_astar.open_nodes.sort()
self.bwd_astar.open_nodes.sort()
UpperCamelCase :Dict = self.fwd_astar.open_nodes.pop(0 )
UpperCamelCase :Union[str, Any] = self.bwd_astar.open_nodes.pop(0 )
if current_bwd_node.pos == current_fwd_node.pos:
return self.retrace_bidirectional_path(
__lowerCamelCase , __lowerCamelCase )
self.fwd_astar.closed_nodes.append(__lowerCamelCase )
self.bwd_astar.closed_nodes.append(__lowerCamelCase )
UpperCamelCase :int = current_bwd_node
UpperCamelCase :str = current_fwd_node
UpperCamelCase :List[Any] = {
self.fwd_astar: self.fwd_astar.get_successors(__lowerCamelCase ),
self.bwd_astar: self.bwd_astar.get_successors(__lowerCamelCase ),
}
for astar in [self.fwd_astar, self.bwd_astar]:
for child_node in successors[astar]:
if child_node in astar.closed_nodes:
continue
if child_node not in astar.open_nodes:
astar.open_nodes.append(__lowerCamelCase )
else:
# retrieve the best current path
UpperCamelCase :Optional[int] = astar.open_nodes.pop(
astar.open_nodes.index(__lowerCamelCase ) )
if child_node.g_cost < better_node.g_cost:
astar.open_nodes.append(__lowerCamelCase )
else:
astar.open_nodes.append(__lowerCamelCase )
return [self.fwd_astar.start.pos]
def _A ( self : List[Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ):
UpperCamelCase :List[str] = self.fwd_astar.retrace_path(__lowerCamelCase )
UpperCamelCase :Tuple = self.bwd_astar.retrace_path(__lowerCamelCase )
bwd_path.pop()
bwd_path.reverse()
UpperCamelCase :List[Any] = fwd_path + bwd_path
return path
if __name__ == "__main__":
# all coordinates are given in format [y,x]
UpperCAmelCase_ : Optional[int] = (0, 0)
UpperCAmelCase_ : str = (len(grid) - 1, len(grid[0]) - 1)
for elem in grid:
print(elem)
UpperCAmelCase_ : Tuple = time.time()
UpperCAmelCase_ : Any = AStar(init, goal)
UpperCAmelCase_ : str = a_star.search()
UpperCAmelCase_ : Optional[int] = time.time() - start_time
print(F'''AStar execution time = {end_time:f} seconds''')
UpperCAmelCase_ : Union[str, Any] = time.time()
UpperCAmelCase_ : List[str] = BidirectionalAStar(init, goal)
UpperCAmelCase_ : Union[str, Any] = time.time() - bd_start_time
print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
| 38 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_a = {
'''configuration_clipseg''': [
'''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''CLIPSegConfig''',
'''CLIPSegTextConfig''',
'''CLIPSegVisionConfig''',
],
'''processing_clipseg''': ['''CLIPSegProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_a = [
'''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''CLIPSegModel''',
'''CLIPSegPreTrainedModel''',
'''CLIPSegTextModel''',
'''CLIPSegVisionModel''',
'''CLIPSegForImageSegmentation''',
]
if TYPE_CHECKING:
from .configuration_clipseg import (
CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP,
CLIPSegConfig,
CLIPSegTextConfig,
CLIPSegVisionConfig,
)
from .processing_clipseg import CLIPSegProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_clipseg import (
CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST,
CLIPSegForImageSegmentation,
CLIPSegModel,
CLIPSegPreTrainedModel,
CLIPSegTextModel,
CLIPSegVisionModel,
)
else:
import sys
_a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 39 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 0 |
"""simple docstring"""
import warnings
from ..trainer import Trainer
from ..utils import logging
__lowercase = logging.get_logger(__name__)
class _A ( _a ):
"""simple docstring"""
def __init__( self : str , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Union[str, Any]):
warnings.warn(
"`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` "
"instead." , __UpperCAmelCase , )
super().__init__(args=__UpperCAmelCase , **__UpperCAmelCase)
| 40 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 0 |
'''simple docstring'''
from collections.abc import Sequence
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float:
return sum(c * (x**i) for i, c in enumerate(UpperCamelCase ) )
def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float:
lowerCamelCase__ : str = 0.0
for coeff in reversed(UpperCamelCase ):
lowerCamelCase__ : Optional[int] = result * x + coeff
return result
if __name__ == "__main__":
_A : Any =(0.0, 0.0, 5.0, 9.3, 7.0)
_A : Optional[Any] =10.0
print(evaluate_poly(poly, x))
print(horner(poly, x))
| 41 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 0 |
'''simple docstring'''
import doctest
import glob
import importlib
import inspect
import os
import re
from contextlib import contextmanager
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
from absl.testing import parameterized
import datasets
from datasets import load_metric
from .utils import for_all_test_methods, local, slow
# mark all tests as integration
lowercase : str = pytest.mark.integration
lowercase : str = {"comet"}
lowercase : List[Any] = importlib.util.find_spec("fairseq") is not None
lowercase : str = {"code_eval"}
lowercase : Optional[Any] = os.name == "nt"
lowercase : Optional[Any] = {"bertscore", "frugalscore", "perplexity"}
lowercase : str = importlib.util.find_spec("transformers") is not None
def SCREAMING_SNAKE_CASE__ ( __A ) -> int:
@wraps(__A )
def wrapper(self , __A ):
if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ:
self.skipTest('"test requires Fairseq"' )
else:
test_case(self , __A )
return wrapper
def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]:
@wraps(__A )
def wrapper(self , __A ):
if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS:
self.skipTest('"test requires transformers"' )
else:
test_case(self , __A )
return wrapper
def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]:
@wraps(__A )
def wrapper(self , __A ):
if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS:
self.skipTest('"test not supported on Windows"' )
else:
test_case(self , __A )
return wrapper
def SCREAMING_SNAKE_CASE__ ( ) -> Any:
_snake_case = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )]
return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished
@parameterized.named_parameters(get_local_metric_names() )
@for_all_test_methods(
_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
@local
class __UpperCAmelCase ( parameterized.TestCase ):
__lowercase = {}
__lowercase = None
@pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' )
@pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' )
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = '[...]'
_snake_case = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path )
_snake_case = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase_ )
# check parameters
_snake_case = inspect.signature(metric._compute ).parameters
self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs
# run doctest
with self.patch_intensive_calls(lowerCAmelCase_ , metric_module.__name__ ):
with self.use_local_metrics():
try:
_snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ )
except doctest.UnexpectedException as e:
raise e.exc_info[1] # raise the exception that doctest caught
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@slow
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
_snake_case = '[...]'
_snake_case = importlib.import_module(
datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path )
# run doctest
with self.use_local_metrics():
_snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ )
self.assertEqual(results.failed , 0 )
self.assertGreater(results.attempted , 1 )
@contextmanager
def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ):
"""simple docstring"""
if metric_name in self.INTENSIVE_CALLS_PATCHER:
with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase_ ):
yield
else:
yield
@contextmanager
def lowerCamelCase ( self ):
"""simple docstring"""
def load_local_metric(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ):
return load_metric(os.path.join('metrics' , lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ )
with patch('datasets.load_metric' ) as mock_load_metric:
_snake_case = load_local_metric
yield
@classmethod
def lowerCamelCase ( cls , lowerCAmelCase_ ):
"""simple docstring"""
def wrapper(lowerCAmelCase_ ):
_snake_case = contextmanager(lowerCAmelCase_ )
_snake_case = patcher
return patcher
return wrapper
@LocalMetricTest.register_intensive_calls_patcher('bleurt' )
def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]:
import tensorflow.compat.va as tf
from bleurt.score import Predictor
tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags
class __UpperCAmelCase ( _lowerCamelCase ):
def lowerCamelCase ( self , lowerCAmelCase_ ):
"""simple docstring"""
assert len(input_dict['input_ids'] ) == 2
return np.array([1.03, 1.04] )
# mock predict_fn which is supposed to do a forward pass with a bleurt model
with patch('bleurt.score._create_predictor' ) as mock_create_predictor:
_snake_case = MockedPredictor()
yield
@LocalMetricTest.register_intensive_calls_patcher('bertscore' )
def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict:
import torch
def bert_cos_score_idf(__A , __A , *__A , **__A ):
return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) )
# mock get_model which is supposed to do download a bert model
# mock bert_cos_score_idf which is supposed to do a forward pass with a bert model
with patch('bert_score.scorer.get_model' ), patch(
'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf:
_snake_case = bert_cos_score_idf
yield
@LocalMetricTest.register_intensive_calls_patcher('comet' )
def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]:
def load_from_checkpoint(__A ):
class __UpperCAmelCase :
def lowerCamelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ):
"""simple docstring"""
assert len(lowerCAmelCase_ ) == 2
_snake_case = [0.19, 0.92]
return scores, sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ )
return Model()
# mock load_from_checkpoint which is supposed to do download a bert model
# mock load_from_checkpoint which is supposed to do download a bert model
with patch('comet.download_model' ) as mock_download_model:
_snake_case = None
with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint:
_snake_case = load_from_checkpoint
yield
def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]:
_snake_case = load_metric(os.path.join('metrics' , 'seqeval' ) )
_snake_case = 'ERROR'
_snake_case = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}'
with pytest.raises(__A , match=re.escape(__A ) ):
metric.compute(predictions=[] , references=[] , scheme=__A )
| 42 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
__lowercase = logging.getLogger(__name__)
__lowercase = 50 # max width of layer names
__lowercase = 70 # max width of quantizer names
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :List[Any] = parser.add_argument_group('''quant_trainer arguments''' )
group.add_argument('''--wprec''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''weight precision''' )
group.add_argument('''--aprec''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''activation precision''' )
group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' )
group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' )
group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' )
group.add_argument('''--quant-disable-keyword''' , type=SCREAMING_SNAKE_CASE , nargs='''+''' , help='''disable quantizers by keyword''' )
group.add_argument('''--quant-disable-layer-module''' , type=SCREAMING_SNAKE_CASE , help='''disable quantizers by keyword under layer.''' )
group.add_argument('''--quant-enable-layer-module''' , type=SCREAMING_SNAKE_CASE , help='''enable quantizers by keyword under layer''' )
group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' )
group.add_argument('''--percentile''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''percentile for PercentileCalibrator''' )
group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' )
group.add_argument('''--clip-gelu''' , metavar='''N''' , type=SCREAMING_SNAKE_CASE , help='''clip gelu output maximum value to N''' )
group.add_argument(
'''--recalibrate-weights''' , action='''store_true''' , help=(
'''recalibrate weight amaxes by taking the max of the weights.'''
''' amaxes will be computed with the current quantization granularity (axis).'''
) , )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
if args.calibrator == "max":
__UpperCamelCase :Union[str, Any] = '''max'''
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('''Specify --percentile when using percentile calibrator''' )
__UpperCamelCase :str = '''histogram'''
elif args.calibrator == "mse":
__UpperCamelCase :Union[str, Any] = '''histogram'''
else:
raise ValueError(f"""Invalid calibrator {args.calibrator}""" )
__UpperCamelCase :List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=SCREAMING_SNAKE_CASE )
__UpperCamelCase :Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(SCREAMING_SNAKE_CASE )
quant_nn.QuantLinear.set_default_quant_desc_weight(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ):
'''simple docstring'''
logger.info('''Configuring Model for Quantization''' )
logger.info(f"""using quantization package {pytorch_quantization.__file__}""" )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(SCREAMING_SNAKE_CASE , ['''embeddings'''] , which='''weight''' , _disabled=SCREAMING_SNAKE_CASE )
if args.quant_disable:
set_quantizer_by_name(SCREAMING_SNAKE_CASE , [''''''] , _disabled=SCREAMING_SNAKE_CASE )
if args.quant_disable_keyword:
set_quantizer_by_name(SCREAMING_SNAKE_CASE , args.quant_disable_keyword , _disabled=SCREAMING_SNAKE_CASE )
if args.quant_disable_layer_module:
set_quantizer_by_name(SCREAMING_SNAKE_CASE , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=SCREAMING_SNAKE_CASE )
if args.quant_enable_layer_module:
set_quantizer_by_name(SCREAMING_SNAKE_CASE , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=SCREAMING_SNAKE_CASE )
if args.recalibrate_weights:
recalibrate_weights(SCREAMING_SNAKE_CASE )
if args.fuse_qkv:
fuse_qkv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if args.clip_gelu:
clip_gelu(SCREAMING_SNAKE_CASE , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
logger.info('''Enabling Calibration''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(f"""{name:80}: {module}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
logger.info('''Loading calibrated amax''' )
for name, module in model.named_modules():
if name.endswith('''_quantizer''' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('''percentile''' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def fusea(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
for mod in [qq, qk, qv]:
if not hasattr(SCREAMING_SNAKE_CASE , '''_amax''' ):
print(''' WARNING: NO AMAX BUFFER''' )
return
__UpperCamelCase :Tuple = qq._amax.detach().item()
__UpperCamelCase :List[str] = qk._amax.detach().item()
__UpperCamelCase :Dict = qv._amax.detach().item()
__UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
qq._amax.fill_(SCREAMING_SNAKE_CASE )
qk._amax.fill_(SCREAMING_SNAKE_CASE )
qv._amax.fill_(SCREAMING_SNAKE_CASE )
logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" )
for name, mod in model.named_modules():
if name.endswith('''.attention.self''' ):
logger.info(f"""FUSE_QKV: {name:{name_width}}""" )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ):
__UpperCamelCase :List[str] = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=SCREAMING_SNAKE_CASE )
__UpperCamelCase :Optional[Any] = mod._input_quantizer._amax.data.detach().item()
logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None:
__UpperCamelCase :Dict = mod.weight.shape[0]
__UpperCamelCase :Tuple = mod._weight_quantizer._amax.detach()
__UpperCamelCase :str = torch.ones(SCREAMING_SNAKE_CASE , dtype=amax.dtype , device=amax.device ) * amax
print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ):
if not hasattr(mod.weight_quantizer , '''_amax''' ):
print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
__UpperCamelCase :Tuple = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
__UpperCamelCase :List[str] = set(range(len(mod.weight.size() ) ) ) - axis_set
__UpperCamelCase :Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=SCREAMING_SNAKE_CASE , keepdims=SCREAMING_SNAKE_CASE ).detach()
logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" )
__UpperCamelCase :List[Any] = amax
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=25 , SCREAMING_SNAKE_CASE=180 , SCREAMING_SNAKE_CASE=None ):
'''simple docstring'''
if ignore is None:
__UpperCamelCase :Optional[int] = []
elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :Optional[Any] = [ignore]
__UpperCamelCase :str = 0
for name, mod in model.named_modules():
if not hasattr(SCREAMING_SNAKE_CASE , '''weight''' ):
continue
__UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) )
for name, mod in model.named_modules():
__UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , '''_input_quantizer''' , SCREAMING_SNAKE_CASE )
__UpperCamelCase :Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' , SCREAMING_SNAKE_CASE )
if not hasattr(SCREAMING_SNAKE_CASE , '''weight''' ):
continue
if type(SCREAMING_SNAKE_CASE ) in ignore:
continue
if [True for s in ignore if type(SCREAMING_SNAKE_CASE ) is str and s in name]:
continue
__UpperCamelCase :Optional[int] = f"""Act:{input_q.extra_repr()}"""
__UpperCamelCase :List[str] = f"""Wgt:{weight_q.extra_repr()}"""
__UpperCamelCase :int = f"""{name:{name_width}} {act_str} {wgt_str}"""
if len(SCREAMING_SNAKE_CASE ) <= line_width:
logger.info(SCREAMING_SNAKE_CASE )
else:
logger.info(f"""{name:{name_width}} {act_str}""" )
logger.info(f"""{' ':{name_width}} {wgt_str}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :str = 0
for name, mod in model.named_modules():
if isinstance(SCREAMING_SNAKE_CASE , pytorch_quantization.nn.TensorQuantizer ):
print(f"""{name:80} {mod}""" )
count += 1
print(f"""{count} TensorQuantizers found in model""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if quantizer_mod is not None:
assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
else:
logger.warning(f"""{name} has no {quantizer}""" )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="both" , **SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCamelCase :Tuple = f"""Warning: changing {which} quantizers of {name:{qname_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
if which in ["input", "both"]:
set_quantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_input_quantizer''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
if which in ["weight", "both"]:
set_quantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_weight_quantizer''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
logger.info(SCREAMING_SNAKE_CASE )
def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ):
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(SCREAMING_SNAKE_CASE , '''_input_quantizer''' ) or hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ):
for n in names:
if re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
set_quantizers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
elif name.endswith('''_quantizer''' ):
for n in names:
if re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
__UpperCamelCase :str = f"""Warning: changing {name:{name_width}}"""
for k, v in kwargs.items():
s += f""" {k}={v}"""
setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
logger.info(SCREAMING_SNAKE_CASE )
| 43 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
_a : List[str] = logging.get_logger(__name__)
_a : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
_a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class __A :
_UpperCamelCase : str = field(
default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Model type selected in the list: " + ", ".join(SCREAMING_SNAKE_CASE_ )} )
_UpperCamelCase : str = field(
default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} )
_UpperCamelCase : int = field(
default=128 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
_UpperCamelCase : int = field(
default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , )
_UpperCamelCase : int = field(
default=64 , metadata={
"help": (
"The maximum number of tokens for the question. Questions longer than this will "
"be truncated to this length."
)
} , )
_UpperCamelCase : int = field(
default=30 , metadata={
"help": (
"The maximum length of an answer that can be generated. This is needed because the start "
"and end predictions are not conditioned on one another."
)
} , )
_UpperCamelCase : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached training and evaluation sets"} )
_UpperCamelCase : bool = field(
default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} )
_UpperCamelCase : float = field(
default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} )
_UpperCamelCase : int = field(
default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} )
_UpperCamelCase : int = field(
default=0 , metadata={
"help": (
"language id of input for language-specific xlm models (see"
" tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)"
)
} , )
_UpperCamelCase : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} )
class __A ( SCREAMING_SNAKE_CASE_ ):
_UpperCamelCase : Union[str, Any] = "train"
_UpperCamelCase : List[str] = "dev"
class __A ( SCREAMING_SNAKE_CASE_ ):
_UpperCamelCase : SquadDataTrainingArguments
_UpperCamelCase : List[SquadFeatures]
_UpperCamelCase : Split
_UpperCamelCase : bool
def __init__( self , a__ , a__ , a__ = None , a__ = Split.train , a__ = False , a__ = None , a__ = "pt" , ):
_lowerCAmelCase : List[Any] = args
_lowerCAmelCase : str = is_language_sensitive
_lowerCAmelCase : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(a__ , a__ ):
try:
_lowerCAmelCase : Any = Split[mode]
except KeyError:
raise KeyError("""mode is not a valid split name""" )
_lowerCAmelCase : Union[str, Any] = mode
# Load data features from cache or dataset file
_lowerCAmelCase : Optional[int] = """v2""" if args.version_2_with_negative else """v1"""
_lowerCAmelCase : Dict = os.path.join(
cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , )
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCAmelCase : int = cached_features_file + """.lock"""
with FileLock(a__ ):
if os.path.exists(a__ ) and not args.overwrite_cache:
_lowerCAmelCase : Dict = time.time()
_lowerCAmelCase : Optional[Any] = torch.load(a__ )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCAmelCase : Optional[int] = self.old_features["""features"""]
_lowerCAmelCase : Optional[int] = self.old_features.get("""dataset""" , a__ )
_lowerCAmelCase : Optional[int] = self.old_features.get("""examples""" , a__ )
logger.info(
F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in"
""" future run""" )
else:
if mode == Split.dev:
_lowerCAmelCase : Dict = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCAmelCase : int = self.processor.get_train_examples(args.data_dir )
_lowerCAmelCase , _lowerCAmelCase : Optional[Any] = squad_convert_examples_to_features(
examples=self.examples , tokenizer=a__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=a__ , )
_lowerCAmelCase : Optional[Any] = time.time()
torch.save(
{"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , a__ , )
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" )
def __len__( self ):
return len(self.features )
def __getitem__( self , a__ ):
# Convert to Tensors and build dataset
_lowerCAmelCase : Union[str, Any] = self.features[i]
_lowerCAmelCase : Optional[Any] = torch.tensor(feature.input_ids , dtype=torch.long )
_lowerCAmelCase : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long )
_lowerCAmelCase : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long )
_lowerCAmelCase : Union[str, Any] = torch.tensor(feature.cls_index , dtype=torch.long )
_lowerCAmelCase : str = torch.tensor(feature.p_mask , dtype=torch.float )
_lowerCAmelCase : List[Any] = torch.tensor(feature.is_impossible , dtype=torch.float )
_lowerCAmelCase : Tuple = {
"""input_ids""": input_ids,
"""attention_mask""": attention_mask,
"""token_type_ids""": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"""is_impossible""": is_impossible} )
if self.is_language_sensitive:
inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCAmelCase : Any = torch.tensor(feature.start_position , dtype=torch.long )
_lowerCAmelCase : Any = torch.tensor(feature.end_position , dtype=torch.long )
inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} )
return inputs
| 44 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
self.resolver.convert_models(['heb-eng'] )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 315 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
lowercase_ = logging.get_logger(__name__)
lowercase_ = {
"microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json",
"microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json",
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
__UpperCAmelCase : int = 'markuplm'
def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a=0 , _a=2 , _a=256 , _a=1_024 , _a=216 , _a=1_001 , _a=32 , _a=50 , _a="absolute" , _a=True , _a=None , **_a , ):
super().__init__(
pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , )
__a = vocab_size
__a = hidden_size
__a = num_hidden_layers
__a = num_attention_heads
__a = hidden_act
__a = intermediate_size
__a = hidden_dropout_prob
__a = attention_probs_dropout_prob
__a = max_position_embeddings
__a = type_vocab_size
__a = initializer_range
__a = layer_norm_eps
__a = position_embedding_type
__a = use_cache
__a = classifier_dropout
# additional properties
__a = max_depth
__a = max_xpath_tag_unit_embeddings
__a = max_xpath_subs_unit_embeddings
__a = tag_pad_id
__a = subs_pad_id
__a = xpath_unit_hidden_size
| 45 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 315 | 0 |
"""simple docstring"""
import gc
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline
from diffusers.pipelines.shap_e import ShapERenderer
from diffusers.utils import load_numpy, slow
from diffusers.utils.testing_utils import require_torch_gpu, torch_device
from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference
class lowercase ( _UpperCAmelCase , unittest.TestCase ):
_SCREAMING_SNAKE_CASE = ShapEPipeline
_SCREAMING_SNAKE_CASE = ['prompt']
_SCREAMING_SNAKE_CASE = ['prompt']
_SCREAMING_SNAKE_CASE = [
'num_images_per_prompt',
'num_inference_steps',
'generator',
'latents',
'guidance_scale',
'frame_size',
'output_type',
'return_dict',
]
_SCREAMING_SNAKE_CASE = False
@property
def _snake_case ( self ) -> Tuple:
return 32
@property
def _snake_case ( self ) -> Optional[Any]:
return 32
@property
def _snake_case ( self ) -> Tuple:
return self.time_input_dim * 4
@property
def _snake_case ( self ) -> str:
return 8
@property
def _snake_case ( self ) -> Optional[int]:
lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" )
return tokenizer
@property
def _snake_case ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , )
return CLIPTextModelWithProjection(lowercase )
@property
def _snake_case ( self ) -> int:
torch.manual_seed(0 )
lowerCAmelCase = {
"""num_attention_heads""": 2,
"""attention_head_dim""": 16,
"""embedding_dim""": self.time_input_dim,
"""num_embeddings""": 32,
"""embedding_proj_dim""": self.text_embedder_hidden_size,
"""time_embed_dim""": self.time_embed_dim,
"""num_layers""": 1,
"""clip_embed_dim""": self.time_input_dim * 2,
"""additional_embeddings""": 0,
"""time_embed_act_fn""": """gelu""",
"""norm_in_type""": """layer""",
"""encoder_hid_proj_type""": None,
"""added_emb_type""": None,
}
lowerCAmelCase = PriorTransformer(**lowercase )
return model
@property
def _snake_case ( self ) -> Union[str, Any]:
torch.manual_seed(0 )
lowerCAmelCase = {
"""param_shapes""": (
(self.renderer_dim, 93),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
(self.renderer_dim, 8),
),
"""d_latent""": self.time_input_dim,
"""d_hidden""": self.renderer_dim,
"""n_output""": 12,
"""background""": (
0.1,
0.1,
0.1,
),
}
lowerCAmelCase = ShapERenderer(**lowercase )
return model
def _snake_case ( self ) -> Tuple:
lowerCAmelCase = self.dummy_prior
lowerCAmelCase = self.dummy_text_encoder
lowerCAmelCase = self.dummy_tokenizer
lowerCAmelCase = self.dummy_renderer
lowerCAmelCase = HeunDiscreteScheduler(
beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , )
lowerCAmelCase = {
"""prior""": prior,
"""text_encoder""": text_encoder,
"""tokenizer""": tokenizer,
"""renderer""": renderer,
"""scheduler""": scheduler,
}
return components
def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[Any]:
if str(lowercase ).startswith("""mps""" ):
lowerCAmelCase = torch.manual_seed(lowercase )
else:
lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase )
lowerCAmelCase = {
"""prompt""": """horse""",
"""generator""": generator,
"""num_inference_steps""": 1,
"""frame_size""": 32,
"""output_type""": """np""",
}
return inputs
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = """cpu"""
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**lowercase )
lowerCAmelCase = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
lowerCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) )
lowerCAmelCase = output.images[0]
lowerCAmelCase = image[0, -3:, -3:, -1]
assert image.shape == (20, 32, 32, 3)
lowerCAmelCase = np.array(
[
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
0.00_039_216,
] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
def _snake_case ( self ) -> List[Any]:
# NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches
self._test_inference_batch_consistent(batch_sizes=[1, 2] )
def _snake_case ( self ) -> Union[str, Any]:
lowerCAmelCase = torch_device == """cpu"""
lowerCAmelCase = True
self._test_inference_batch_single_identical(
batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , )
def _snake_case ( self ) -> Optional[Any]:
lowerCAmelCase = self.get_dummy_components()
lowerCAmelCase = self.pipeline_class(**lowercase )
lowerCAmelCase = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
lowerCAmelCase = 1
lowerCAmelCase = 2
lowerCAmelCase = self.get_dummy_inputs(lowercase )
for key in inputs.keys():
if key in self.batch_params:
lowerCAmelCase = batch_size * [inputs[key]]
lowerCAmelCase = pipe(**lowercase , num_images_per_prompt=lowercase )[0]
assert images.shape[0] == batch_size * num_images_per_prompt
@slow
@require_torch_gpu
class lowercase ( unittest.TestCase ):
def _snake_case ( self ) -> Optional[Any]:
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self ) -> Any:
lowerCAmelCase = load_numpy(
"""https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"""
"""/shap_e/test_shap_e_np_out.npy""" )
lowerCAmelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" )
lowerCAmelCase = pipe.to(lowercase )
pipe.set_progress_bar_config(disable=lowercase )
lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 )
lowerCAmelCase = pipe(
"""a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0]
assert images.shape == (20, 64, 64, 3)
assert_mean_pixel_difference(lowercase , lowercase )
| 46 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]:
'''simple docstring'''
_A , _A = position
_A = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A = []
for position in positions:
_A , _A = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_snake_case )
return permissible_positions
def _snake_case ( _snake_case : list[list[int]] ) -> bool:
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool:
'''simple docstring'''
if is_complete(_snake_case ):
return True
for position in get_valid_pos(_snake_case , len(_snake_case ) ):
_A , _A = position
if board[y][x] == 0:
_A = curr + 1
if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ):
return True
_A = 0
return False
def _snake_case ( _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
for i in range(_snake_case ):
for j in range(_snake_case ):
_A = 1
if open_knight_tour_helper(_snake_case , (i, j) , 1 ):
return board
_A = 0
_A = F'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
'''simple docstring'''
import os
import shutil
import tempfile
from unittest import TestCase
from unittest.mock import patch
import numpy as np
from datasets import Dataset
from transformers.models.realm.configuration_realm import RealmConfig
from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever
from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer
class A__ ( A__ ):
def A ( self : Any ) -> Optional[int]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =tempfile.mkdtemp()
_SCREAMING_SNAKE_CASE =5
# Realm tok
_SCREAMING_SNAKE_CASE =[
'[UNK]',
'[CLS]',
'[SEP]',
'[PAD]',
'[MASK]',
'test',
'question',
'this',
'is',
'the',
'first',
'second',
'third',
'fourth',
'fifth',
'record',
'want',
'##want',
'##ed',
'wa',
'un',
'runn',
'##ing',
',',
'low',
'lowest',
]
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , 'realm_tokenizer' )
os.makedirs(_a , exist_ok=_a )
_SCREAMING_SNAKE_CASE =os.path.join(_a , VOCAB_FILES_NAMES['vocab_file'] )
with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer:
vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) )
_SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , 'realm_block_records' )
os.makedirs(_a , exist_ok=_a )
def A ( self : Union[str, Any] ) -> RealmTokenizer:
'''simple docstring'''
return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) )
def A ( self : int ) -> Any:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def A ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =RealmConfig(num_block_records=self.num_block_records )
return config
def A ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =Dataset.from_dict(
{
'id': ['0', '1'],
'question': ['foo', 'bar'],
'answers': [['Foo', 'Bar'], ['Bar']],
} )
return dataset
def A ( self : int ) -> Optional[int]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =np.array(
[
b'This is the first record',
b'This is the second record',
b'This is the third record',
b'This is the fourth record',
b'This is the fifth record',
b'This is a longer longer longer record',
] , dtype=_a , )
return block_records
def A ( self : int ) -> Union[str, Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =RealmRetriever(
block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , )
return retriever
def A ( self : str ) -> int:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.get_config()
_SCREAMING_SNAKE_CASE =self.get_dummy_retriever()
_SCREAMING_SNAKE_CASE =retriever.tokenizer
_SCREAMING_SNAKE_CASE =np.array([0, 3] , dtype='long' )
_SCREAMING_SNAKE_CASE =tokenizer(['Test question'] ).input_ids
_SCREAMING_SNAKE_CASE =tokenizer(
['the fourth'] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
_SCREAMING_SNAKE_CASE =config.reader_seq_len
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors='np' )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(len(_a ) , 2 )
self.assertEqual(concat_inputs.input_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) )
self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) )
self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , )
self.assertEqual(
tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , )
def A ( self : List[Any] ) -> Tuple:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.get_config()
_SCREAMING_SNAKE_CASE =self.get_dummy_retriever()
_SCREAMING_SNAKE_CASE =retriever.tokenizer
_SCREAMING_SNAKE_CASE =np.array([0, 3, 5] , dtype='long' )
_SCREAMING_SNAKE_CASE =tokenizer(['Test question'] ).input_ids
_SCREAMING_SNAKE_CASE =tokenizer(
['the fourth', 'longer longer'] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids
_SCREAMING_SNAKE_CASE =config.reader_seq_len
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever(
_a , _a , answer_ids=_a , max_length=_a , return_tensors='np' )
self.assertEqual([False, True, True] , _a )
self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a )
self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a )
def A ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_SCREAMING_SNAKE_CASE =self.get_dummy_retriever()
retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) )
# Test local path
_SCREAMING_SNAKE_CASE =retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) )
self.assertEqual(retriever.block_records[0] , b'This is the first record' )
# Test mocked remote path
with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download:
_SCREAMING_SNAKE_CASE =os.path.join(
os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME )
_SCREAMING_SNAKE_CASE =RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' )
self.assertEqual(retriever.block_records[0] , b'This is the first record' )
| 47 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 0 |
import inspect
import unittest
from datasets import load_dataset
from packaging import version
from transformers import BeitConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_MAPPING,
BeitForImageClassification,
BeitForMaskedImageModeling,
BeitForSemanticSegmentation,
BeitModel,
)
from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
import PIL
from PIL import Image
from transformers import BeitImageProcessor
class UpperCamelCase__ :
'''simple docstring'''
def __init__( self , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=[0, 1, 2, 3] , ) -> List[Any]:
lowerCamelCase : Optional[Any] = parent
lowerCamelCase : str = 100
lowerCamelCase : int = batch_size
lowerCamelCase : Tuple = image_size
lowerCamelCase : List[str] = patch_size
lowerCamelCase : Dict = num_channels
lowerCamelCase : Optional[int] = is_training
lowerCamelCase : int = use_labels
lowerCamelCase : Optional[int] = hidden_size
lowerCamelCase : Optional[int] = num_hidden_layers
lowerCamelCase : List[Any] = num_attention_heads
lowerCamelCase : Any = intermediate_size
lowerCamelCase : List[Any] = hidden_act
lowerCamelCase : str = hidden_dropout_prob
lowerCamelCase : Tuple = attention_probs_dropout_prob
lowerCamelCase : Dict = type_sequence_label_size
lowerCamelCase : int = initializer_range
lowerCamelCase : Optional[int] = scope
lowerCamelCase : Tuple = out_indices
lowerCamelCase : Dict = num_labels
# in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token)
lowerCamelCase : List[str] = (image_size // patch_size) ** 2
lowerCamelCase : Optional[Any] = num_patches + 1
def _lowercase ( self ) -> List[Any]:
lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCamelCase : Optional[int] = None
lowerCamelCase : Dict = None
if self.use_labels:
lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size )
lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels )
lowerCamelCase : List[str] = self.get_config()
return config, pixel_values, labels, pixel_labels
def _lowercase ( self ) -> str:
return BeitConfig(
vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any:
lowerCamelCase : Dict = BeitModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase : Optional[Any] = model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]:
lowerCamelCase : int = BeitForMaskedImageModeling(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase : Tuple = model(UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple:
lowerCamelCase : str = self.type_sequence_label_size
lowerCamelCase : Optional[Any] = BeitForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
# test greyscale images
lowerCamelCase : List[Any] = 1
lowerCamelCase : Any = BeitForImageClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] )
lowerCamelCase : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) )
def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]:
lowerCamelCase : Optional[int] = self.num_labels
lowerCamelCase : str = BeitForSemanticSegmentation(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
lowerCamelCase : Tuple = model(UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
lowerCamelCase : Optional[int] = model(UpperCamelCase__ , labels=UpperCamelCase__ )
self.parent.assertEqual(
result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) )
def _lowercase ( self ) -> Optional[Any]:
lowerCamelCase : int = self.prepare_config_and_inputs()
lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = config_and_inputs
lowerCamelCase : List[Any] = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase_ : Optional[int] = (
(BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation)
if is_torch_available()
else ()
)
lowerCamelCase_ : int = (
{
"""feature-extraction""": BeitModel,
"""image-classification""": BeitForImageClassification,
"""image-segmentation""": BeitForSemanticSegmentation,
}
if is_torch_available()
else {}
)
lowerCamelCase_ : Tuple = False
lowerCamelCase_ : List[str] = False
lowerCamelCase_ : str = False
def _lowercase ( self ) -> List[str]:
lowerCamelCase : Dict = BeitModelTester(self )
lowerCamelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 )
def _lowercase ( self ) -> Dict:
self.config_tester.run_common_tests()
@unittest.skip(reason="BEiT does not use inputs_embeds" )
def _lowercase ( self ) -> str:
pass
@require_torch_multi_gpu
@unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" )
def _lowercase ( self ) -> Any:
pass
def _lowercase ( self ) -> str:
lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase : List[str] = model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
lowerCamelCase : List[Any] = model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def _lowercase ( self ) -> Tuple:
lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCamelCase : Optional[Any] = model_class(UpperCamelCase__ )
lowerCamelCase : Union[str, Any] = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCamelCase : Optional[Any] = [*signature.parameters.keys()]
lowerCamelCase : str = ["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
def _lowercase ( self ) -> int:
lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def _lowercase ( self ) -> Any:
lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ )
def _lowercase ( self ) -> List[str]:
lowerCamelCase : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ )
def _lowercase ( self ) -> Optional[Any]:
lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ )
def _lowercase ( self ) -> Tuple:
if not self.model_tester.is_training:
return
lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : Tuple = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]:
continue
lowerCamelCase : int = model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.train()
lowerCamelCase : Dict = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
lowerCamelCase : Any = model(**UpperCamelCase__ ).loss
loss.backward()
def _lowercase ( self ) -> List[str]:
lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common()
if not self.model_tester.is_training:
return
lowerCamelCase : Optional[Any] = False
lowerCamelCase : str = True
for model_class in self.all_model_classes:
# we don't test BeitForMaskedImageModeling
if (
model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]
or not model_class.supports_gradient_checkpointing
):
continue
lowerCamelCase : Dict = model_class(UpperCamelCase__ )
model.gradient_checkpointing_enable()
model.to(UpperCamelCase__ )
model.train()
lowerCamelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ )
lowerCamelCase : Optional[int] = model(**UpperCamelCase__ ).loss
loss.backward()
def _lowercase ( self ) -> int:
lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common()
lowerCamelCase : str = _config_zero_init(UpperCamelCase__ )
for model_class in self.all_model_classes:
lowerCamelCase : Any = model_class(config=UpperCamelCase__ )
for name, param in model.named_parameters():
# we skip lambda parameters as these require special initial values
# determined by config.layer_scale_init_value
if "lambda" in name:
continue
if param.requires_grad:
self.assertIn(
((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , )
@slow
def _lowercase ( self ) -> List[str]:
for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCamelCase : Optional[Any] = BeitModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def A ( ) -> Tuple:
lowerCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class UpperCamelCase__ (unittest.TestCase ):
'''simple docstring'''
@cached_property
def _lowercase ( self ) -> Tuple:
return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None
@slow
def _lowercase ( self ) -> str:
lowerCamelCase : List[str] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCamelCase__ )
lowerCamelCase : Any = self.default_image_processor
lowerCamelCase : Union[str, Any] = prepare_img()
lowerCamelCase : str = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).pixel_values.to(UpperCamelCase__ )
# prepare bool_masked_pos
lowerCamelCase : List[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase : Dict = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ )
lowerCamelCase : List[str] = outputs.logits
# verify the logits
lowerCamelCase : Dict = torch.Size((1, 196, 8192) )
self.assertEqual(logits.shape , UpperCamelCase__ )
lowerCamelCase : int = torch.tensor(
[[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) )
@slow
def _lowercase ( self ) -> Dict:
lowerCamelCase : int = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCamelCase__ )
lowerCamelCase : Dict = self.default_image_processor
lowerCamelCase : Optional[Any] = prepare_img()
lowerCamelCase : int = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase : List[str] = model(**UpperCamelCase__ )
lowerCamelCase : Optional[Any] = outputs.logits
# verify the logits
lowerCamelCase : Optional[int] = torch.Size((1, 1000) )
self.assertEqual(logits.shape , UpperCamelCase__ )
lowerCamelCase : str = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
lowerCamelCase : List[str] = 281
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
@slow
def _lowercase ( self ) -> str:
lowerCamelCase : Union[str, Any] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to(
UpperCamelCase__ )
lowerCamelCase : int = self.default_image_processor
lowerCamelCase : Tuple = prepare_img()
lowerCamelCase : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase : Any = model(**UpperCamelCase__ )
lowerCamelCase : Tuple = outputs.logits
# verify the logits
lowerCamelCase : int = torch.Size((1, 2_1841) )
self.assertEqual(logits.shape , UpperCamelCase__ )
lowerCamelCase : Any = torch.tensor([1.6881, -0.2787, 0.5901] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) )
lowerCamelCase : str = 2396
self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ )
@slow
def _lowercase ( self ) -> int:
lowerCamelCase : int = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
lowerCamelCase : str = model.to(UpperCamelCase__ )
lowerCamelCase : Tuple = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ )
lowerCamelCase : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
lowerCamelCase : str = Image.open(ds[0]["file"] )
lowerCamelCase : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase : Optional[int] = model(**UpperCamelCase__ )
lowerCamelCase : Optional[Any] = outputs.logits
# verify the logits
lowerCamelCase : List[str] = torch.Size((1, 150, 160, 160) )
self.assertEqual(logits.shape , UpperCamelCase__ )
lowerCamelCase : Any = version.parse(PIL.__version__ ) < version.parse("9.0.0" )
if is_pillow_less_than_a:
lowerCamelCase : List[str] = torch.tensor(
[
[[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]],
[[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]],
[[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]],
] , device=UpperCamelCase__ , )
else:
lowerCamelCase : str = torch.tensor(
[
[[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]],
[[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]],
[[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]],
] , device=UpperCamelCase__ , )
self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) )
@slow
def _lowercase ( self ) -> List[str]:
lowerCamelCase : List[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" )
lowerCamelCase : Optional[int] = model.to(UpperCamelCase__ )
lowerCamelCase : int = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ )
lowerCamelCase : List[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
lowerCamelCase : str = Image.open(ds[0]["file"] )
lowerCamelCase : Any = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
lowerCamelCase : Dict = model(**UpperCamelCase__ )
lowerCamelCase : Optional[int] = outputs.logits.detach().cpu()
lowerCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] )
lowerCamelCase : int = torch.Size((500, 300) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
lowerCamelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ )
lowerCamelCase : Optional[Any] = torch.Size((160, 160) )
self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
| 48 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
import importlib
import json
import os
from collections import OrderedDict
from typing import Dict, Optional, Union
# Build the list of all feature extractors
from ...configuration_utils import PretrainedConfig
from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code
from ...feature_extraction_utils import FeatureExtractionMixin
from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging
from .auto_factory import _LazyAutoMapping
from .configuration_auto import (
CONFIG_MAPPING_NAMES,
AutoConfig,
model_type_to_module_name,
replace_list_option_in_docstrings,
)
__snake_case :Tuple = logging.get_logger(__name__)
__snake_case :Tuple = OrderedDict(
[
('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''),
('''beit''', '''BeitFeatureExtractor'''),
('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''),
('''clap''', '''ClapFeatureExtractor'''),
('''clip''', '''CLIPFeatureExtractor'''),
('''clipseg''', '''ViTFeatureExtractor'''),
('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''),
('''convnext''', '''ConvNextFeatureExtractor'''),
('''cvt''', '''ConvNextFeatureExtractor'''),
('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''),
('''data2vec-vision''', '''BeitFeatureExtractor'''),
('''deformable_detr''', '''DeformableDetrFeatureExtractor'''),
('''deit''', '''DeiTFeatureExtractor'''),
('''detr''', '''DetrFeatureExtractor'''),
('''dinat''', '''ViTFeatureExtractor'''),
('''donut-swin''', '''DonutFeatureExtractor'''),
('''dpt''', '''DPTFeatureExtractor'''),
('''encodec''', '''EncodecFeatureExtractor'''),
('''flava''', '''FlavaFeatureExtractor'''),
('''glpn''', '''GLPNFeatureExtractor'''),
('''groupvit''', '''CLIPFeatureExtractor'''),
('''hubert''', '''Wav2Vec2FeatureExtractor'''),
('''imagegpt''', '''ImageGPTFeatureExtractor'''),
('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''),
('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''),
('''levit''', '''LevitFeatureExtractor'''),
('''maskformer''', '''MaskFormerFeatureExtractor'''),
('''mctct''', '''MCTCTFeatureExtractor'''),
('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''),
('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''),
('''mobilevit''', '''MobileViTFeatureExtractor'''),
('''nat''', '''ViTFeatureExtractor'''),
('''owlvit''', '''OwlViTFeatureExtractor'''),
('''perceiver''', '''PerceiverFeatureExtractor'''),
('''poolformer''', '''PoolFormerFeatureExtractor'''),
('''regnet''', '''ConvNextFeatureExtractor'''),
('''resnet''', '''ConvNextFeatureExtractor'''),
('''segformer''', '''SegformerFeatureExtractor'''),
('''sew''', '''Wav2Vec2FeatureExtractor'''),
('''sew-d''', '''Wav2Vec2FeatureExtractor'''),
('''speech_to_text''', '''Speech2TextFeatureExtractor'''),
('''speecht5''', '''SpeechT5FeatureExtractor'''),
('''swiftformer''', '''ViTFeatureExtractor'''),
('''swin''', '''ViTFeatureExtractor'''),
('''swinv2''', '''ViTFeatureExtractor'''),
('''table-transformer''', '''DetrFeatureExtractor'''),
('''timesformer''', '''VideoMAEFeatureExtractor'''),
('''tvlt''', '''TvltFeatureExtractor'''),
('''unispeech''', '''Wav2Vec2FeatureExtractor'''),
('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''),
('''van''', '''ConvNextFeatureExtractor'''),
('''videomae''', '''VideoMAEFeatureExtractor'''),
('''vilt''', '''ViltFeatureExtractor'''),
('''vit''', '''ViTFeatureExtractor'''),
('''vit_mae''', '''ViTFeatureExtractor'''),
('''vit_msn''', '''ViTFeatureExtractor'''),
('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''),
('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''),
('''wavlm''', '''Wav2Vec2FeatureExtractor'''),
('''whisper''', '''WhisperFeatureExtractor'''),
('''xclip''', '''CLIPFeatureExtractor'''),
('''yolos''', '''YolosFeatureExtractor'''),
]
)
__snake_case :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES)
def __snake_case ( _UpperCAmelCase ):
for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items():
if class_name in extractors:
__a = model_type_to_module_name(_UpperCAmelCase )
__a = importlib.import_module(f'.{module_name}' , '''transformers.models''' )
try:
return getattr(_UpperCAmelCase , _UpperCAmelCase )
except AttributeError:
continue
for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items():
if getattr(_UpperCAmelCase , '''__name__''' , _UpperCAmelCase ) == class_name:
return extractor
# We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main
# init and we return the proper dummy to get an appropriate error message.
__a = importlib.import_module('''transformers''' )
if hasattr(_UpperCAmelCase , _UpperCAmelCase ):
return getattr(_UpperCAmelCase , _UpperCAmelCase )
return None
def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ):
__a = get_file_from_repo(
_UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , )
if resolved_config_file is None:
logger.info(
'''Could not locate the feature extractor configuration file, will try to use the model config instead.''' )
return {}
with open(_UpperCAmelCase , encoding='''utf-8''' ) as reader:
return json.load(_UpperCAmelCase )
class _A :
def __init__( self : int):
'''simple docstring'''
raise EnvironmentError(
'''AutoFeatureExtractor is designed to be instantiated '''
'''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''')
@classmethod
@replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE)
def _lowerCamelCase ( cls : Any , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[Any]):
'''simple docstring'''
__a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE)
__a = kwargs.pop('''trust_remote_code''' , __SCREAMING_SNAKE_CASE)
__a = True
__a , __a = FeatureExtractionMixin.get_feature_extractor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
__a = config_dict.get('''feature_extractor_type''' , __SCREAMING_SNAKE_CASE)
__a = None
if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}):
__a = config_dict['''auto_map''']['''AutoFeatureExtractor''']
# If we don't find the feature extractor class in the feature extractor config, let's try the model config.
if feature_extractor_class is None and feature_extractor_auto_map is None:
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE):
__a = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
# It could be in `config.feature_extractor_type``
__a = getattr(__SCREAMING_SNAKE_CASE , '''feature_extractor_type''' , __SCREAMING_SNAKE_CASE)
if hasattr(__SCREAMING_SNAKE_CASE , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map:
__a = config.auto_map['''AutoFeatureExtractor''']
if feature_extractor_class is not None:
__a = feature_extractor_class_from_name(__SCREAMING_SNAKE_CASE)
__a = feature_extractor_auto_map is not None
__a = feature_extractor_class is not None or type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING
__a = resolve_trust_remote_code(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
if has_remote_code and trust_remote_code:
__a = get_class_from_dynamic_module(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
__a = kwargs.pop('''code_revision''' , __SCREAMING_SNAKE_CASE)
if os.path.isdir(__SCREAMING_SNAKE_CASE):
feature_extractor_class.register_for_auto_class()
return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
elif feature_extractor_class is not None:
return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
# Last try: we use the FEATURE_EXTRACTOR_MAPPING.
elif type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING:
__a = FEATURE_EXTRACTOR_MAPPING[type(__SCREAMING_SNAKE_CASE)]
return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE)
raise ValueError(
F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a '
F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following '
F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}')
@staticmethod
def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]):
'''simple docstring'''
FEATURE_EXTRACTOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
| 49 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
import numpy
# List of input, output pairs
_UpperCAmelCase : Union[str, Any] = (
((5, 2, 3), 15),
((6, 5, 9), 25),
((11, 12, 13), 41),
((1, 1, 1), 8),
((11, 12, 13), 41),
)
_UpperCAmelCase : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50))
_UpperCAmelCase : Tuple = [2, 4, 1, 5]
_UpperCAmelCase : Optional[Any] = len(train_data)
_UpperCAmelCase : Optional[Any] = 0.009
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="train" ) -> List[str]:
return calculate_hypothesis_value(_UpperCAmelCase , _UpperCAmelCase ) - output(
_UpperCAmelCase , _UpperCAmelCase )
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int:
lowerCamelCase__ : str = 0
for i in range(len(_UpperCAmelCase ) - 1 ):
hyp_val += data_input_tuple[i] * parameter_vector[i + 1]
hyp_val += parameter_vector[0]
return hyp_val
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int:
if data_set == "train":
return train_data[example_no][1]
elif data_set == "test":
return test_data[example_no][1]
return None
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]:
if data_set == "train":
return _hypothesis_value(train_data[example_no][0] )
elif data_set == "test":
return _hypothesis_value(test_data[example_no][0] )
return None
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=m ) -> Dict:
lowerCamelCase__ : Union[str, Any] = 0
for i in range(_UpperCAmelCase ):
if index == -1:
summation_value += _error(_UpperCAmelCase )
else:
summation_value += _error(_UpperCAmelCase ) * train_data[i][0][index]
return summation_value
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str:
lowerCamelCase__ : List[Any] = summation_of_cost_derivative(_UpperCAmelCase , _UpperCAmelCase ) / m
return cost_derivative_value
def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]:
global parameter_vector
# Tune these values to set a tolerance value for predicted output
lowerCamelCase__ : List[str] = 0.000_002
lowerCamelCase__ : Any = 0
lowerCamelCase__ : Tuple = 0
while True:
j += 1
lowerCamelCase__ : str = [0, 0, 0, 0]
for i in range(0 , len(_UpperCAmelCase ) ):
lowerCamelCase__ : Optional[Any] = get_cost_derivative(i - 1 )
lowerCamelCase__ : Tuple = (
parameter_vector[i] - LEARNING_RATE * cost_derivative
)
if numpy.allclose(
_UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase , rtol=_UpperCAmelCase , ):
break
lowerCamelCase__ : str = temp_parameter_vector
print(('Number of iterations:', j) )
def SCREAMING_SNAKE_CASE ( ) -> Optional[int]:
for i in range(len(_UpperCAmelCase ) ):
print(('Actual output value:', output(_UpperCAmelCase , 'test' )) )
print(('Hypothesis output:', calculate_hypothesis_value(_UpperCAmelCase , 'test' )) )
if __name__ == "__main__":
run_gradient_descent()
print("""\nTesting gradient descent for a linear hypothesis function.\n""")
test_gradient_descent()
| 50 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
import pytest
import datasets
# Import fixture modules as plugins
snake_case_ : Tuple = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"]
def A (__A : Optional[int] , __A : Any ) -> Optional[int]:
"""simple docstring"""
for item in items:
if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ):
continue
item.add_marker(pytest.mark.unit )
def A (__A : Optional[Any] ) -> Optional[int]:
"""simple docstring"""
config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' )
@pytest.fixture(autouse=__A )
def A (__A : Optional[int] , __A : Dict ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase_ = tmp_path_factory.getbasetemp() / '''cache'''
UpperCAmelCase_ = test_hf_cache_home / '''datasets'''
UpperCAmelCase_ = test_hf_cache_home / '''metrics'''
UpperCAmelCase_ = test_hf_cache_home / '''modules'''
monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__A ) )
monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__A ) )
monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__A ) )
UpperCAmelCase_ = test_hf_datasets_cache / '''downloads'''
monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__A ) )
UpperCAmelCase_ = test_hf_datasets_cache / '''downloads''' / '''extracted'''
monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) )
@pytest.fixture(autouse=__A , scope='''session''' )
def A () -> Dict:
"""simple docstring"""
datasets.disable_progress_bar()
@pytest.fixture(autouse=__A )
def A (__A : Tuple ) -> str:
"""simple docstring"""
monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __A )
@pytest.fixture
def A (__A : Union[str, Any] ) -> int:
"""simple docstring"""
monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __A )
| 51 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
__lowerCamelCase : Dict = {
"""A""": ["""B""", """C""", """E"""],
"""B""": ["""A""", """D""", """E"""],
"""C""": ["""A""", """F""", """G"""],
"""D""": ["""B"""],
"""E""": ["""A""", """B""", """D"""],
"""F""": ["""C"""],
"""G""": ["""C"""],
}
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list[str]:
UpperCamelCase : Any = set()
# keep track of all the paths to be checked
UpperCamelCase : int = [[start]]
# return path if start is goal
if start == goal:
return [start]
# keeps looping until all possible paths have been checked
while queue:
# pop the first path from the queue
UpperCamelCase : List[str] = queue.pop(0 )
# get the last node from the path
UpperCamelCase : Tuple = path[-1]
if node not in explored:
UpperCamelCase : List[str] = graph[node]
# go through all neighbour nodes, construct a new path and
# push it into the queue
for neighbour in neighbours:
UpperCamelCase : str = list(_lowerCAmelCase )
new_path.append(_lowerCAmelCase )
queue.append(_lowerCAmelCase )
# return path if neighbour is goal
if neighbour == goal:
return new_path
# mark node as explored
explored.add(_lowerCAmelCase )
# in case there's no path between the 2 nodes
return []
def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int:
if not graph or start not in graph or target not in graph:
return -1
if start == target:
return 0
UpperCamelCase : List[str] = [start]
UpperCamelCase : str = set(_lowerCAmelCase )
# Keep tab on distances from `start` node.
UpperCamelCase : Any = {start: 0, target: -1}
while queue:
UpperCamelCase : Any = queue.pop(0 )
if node == target:
UpperCamelCase : int = (
dist[node] if dist[target] == -1 else min(dist[target] , dist[node] )
)
for adjacent in graph[node]:
if adjacent not in visited:
visited.add(_lowerCAmelCase )
queue.append(_lowerCAmelCase )
UpperCamelCase : str = dist[node] + 1
return dist[target]
if __name__ == "__main__":
print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D']
print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
| 52 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
'''simple docstring'''
import argparse
import pytorch_lightning as pl
import torch
from torch import nn
from transformers import LongformerForQuestionAnswering, LongformerModel
class snake_case ( pl.LightningModule ):
"""simple docstring"""
def __init__( self : List[str] , __A : List[str] ):
super().__init__()
__UpperCamelCase = model
__UpperCamelCase = 2
__UpperCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels )
def _lowerCamelCase ( self : Tuple ):
pass
def lowercase__ ( __lowercase : str , __lowercase : str , __lowercase : str ) -> List[Any]:
"""simple docstring"""
__UpperCamelCase = LongformerModel.from_pretrained(__lowercase )
__UpperCamelCase = LightningModel(__lowercase )
__UpperCamelCase = torch.load(__lowercase , map_location=torch.device('cpu' ) )
lightning_model.load_state_dict(ckpt['state_dict'] )
# init longformer question answering model
__UpperCamelCase = LongformerForQuestionAnswering.from_pretrained(__lowercase )
# transfer weights
longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() )
longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() )
longformer_for_qa.eval()
# save model
longformer_for_qa.save_pretrained(__lowercase )
print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' )
if __name__ == "__main__":
a__ : Any =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--longformer_model''',
default=None,
type=str,
required=True,
help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''',
)
parser.add_argument(
'''--longformer_question_answering_ckpt_path''',
default=None,
type=str,
required=True,
help='''Path the official PyTorch Lightning Checkpoint.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.'''
)
a__ : Union[str, Any] =parser.parse_args()
convert_longformer_qa_checkpoint_to_pytorch(
args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path
)
| 53 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer
from .base import PipelineTool
class UpperCamelCase_ ( UpperCamelCase):
"""simple docstring"""
snake_case__ : Optional[int] = "philschmid/bart-large-cnn-samsum"
snake_case__ : str = (
"This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, "
"and returns a summary of the text."
)
snake_case__ : Union[str, Any] = "summarizer"
snake_case__ : Optional[Any] = AutoTokenizer
snake_case__ : Optional[int] = AutoModelForSeqaSeqLM
snake_case__ : Any = ["text"]
snake_case__ : Tuple = ["text"]
def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[Any] ) -> int:
return self.pre_processor(UpperCAmelCase__ , return_tensors="pt" , truncation=UpperCAmelCase__ )
def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : int ) -> Any:
return self.model.generate(**UpperCAmelCase__ )[0]
def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : List[Any] ) -> List[Any]:
return self.pre_processor.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
| 54 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
'''simple docstring'''
class snake_case :
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
lowerCamelCase_ = {} # Mapping from char to TrieNode
lowerCamelCase_ = False
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
for word in words:
self.insert(UpperCamelCase )
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = self
for char in word:
if char not in curr.nodes:
lowerCamelCase_ = TrieNode()
lowerCamelCase_ = curr.nodes[char]
lowerCamelCase_ = True
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
lowerCamelCase_ = self
for char in word:
if char not in curr.nodes:
return False
lowerCamelCase_ = curr.nodes[char]
return curr.is_leaf
def snake_case ( self , UpperCamelCase ):
"""simple docstring"""
def _delete(UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool:
if index == len(UpperCamelCase ):
# If word does not exist
if not curr.is_leaf:
return False
lowerCamelCase_ = False
return len(curr.nodes ) == 0
lowerCamelCase_ = word[index]
lowerCamelCase_ = curr.nodes.get(UpperCamelCase )
# If char not in current trie node
if not char_node:
return False
# Flag to check if node can be deleted
lowerCamelCase_ = _delete(UpperCamelCase , UpperCamelCase , index + 1 )
if delete_curr:
del curr.nodes[char]
return len(curr.nodes ) == 0
return delete_curr
_delete(self , UpperCamelCase , 0 )
def __snake_case ( UpperCAmelCase_ : TrieNode , UpperCAmelCase_ : str ):
if node.is_leaf:
print(UpperCAmelCase_ , end=" " )
for key, value in node.nodes.items():
print_words(UpperCAmelCase_ , word + key )
def __snake_case ( ):
lowerCamelCase_ = "banana bananas bandana band apple all beast".split()
lowerCamelCase_ = TrieNode()
root.insert_many(UpperCAmelCase_ )
# print_words(root, "")
assert all(root.find(UpperCAmelCase_ ) for word in words )
assert root.find("banana" )
assert not root.find("bandanas" )
assert not root.find("apps" )
assert root.find("apple" )
assert root.find("all" )
root.delete("all" )
assert not root.find("all" )
root.delete("banana" )
assert not root.find("banana" )
assert root.find("bananas" )
return True
def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool ):
print(str(UpperCAmelCase_ ) , "works!" if passes else "doesn't work :(" )
def __snake_case ( ):
assert test_trie()
def __snake_case ( ):
print_results("Testing trie functionality" , test_trie() )
if __name__ == "__main__":
main()
| 55 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
'''simple docstring'''
import faiss # noqa: F401 # Here to have a nice missing dependency error message early on
import numpy # noqa: F401 # Here to have a nice missing dependency error message early on
import requests # noqa: F401 # Here to have a nice missing dependency error message early on
import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on
import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on
from mauve import compute_mauve # From: mauve-text
import datasets
a : Tuple = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n'
a : Optional[int] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n'
a : Optional[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class a ( datasets.Metric ):
def A_ ( self : str ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''string''' , id='''sequence''' ),
'''references''': datasets.Value('''string''' , id='''sequence''' ),
} ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[
'''https://arxiv.org/abs/2102.01454''',
'''https://github.com/krishnap25/mauve''',
] , )
def A_ ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Any="auto" , lowercase_ : Union[str, Any]=-1 , lowercase_ : Dict=0.9 , lowercase_ : Optional[int]=5 , lowercase_ : Tuple=500 , lowercase_ : Union[str, Any]="gpt2-large" , lowercase_ : Optional[int]=-1 , lowercase_ : Any=1024 , lowercase_ : List[str]=25 , lowercase_ : Any=5 , lowercase_ : Union[str, Any]=True , lowercase_ : str=25 , ):
snake_case_ = compute_mauve(
p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , )
return out
| 56 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
"""simple docstring"""
import argparse
import json
from collections import OrderedDict
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
A : Optional[Any] = logging.get_logger(__name__)
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = original_name.split("." )[0]
__lowerCAmelCase = key.split("." )
__lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 2] )
__lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 1] )
__lowerCAmelCase = orig_block_num - offset
__lowerCAmelCase = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" )
return key
def _lowerCamelCase ( _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = OrderedDict()
__lowerCAmelCase , __lowerCAmelCase = 0, 0
for key, value in state_dict.items():
if key.startswith("network" ):
__lowerCAmelCase = key.replace("network" , "poolformer.encoder" )
if "proj" in key:
# Works for the first embedding as well as the internal embedding layers
if key.endswith("bias" ) and "patch_embed" not in key:
patch_emb_offset += 1
__lowerCAmelCase = key[: key.find("proj" )]
__lowerCAmelCase = key.replace(_UpperCamelCase , f"patch_embeddings.{total_embed_found}." )
__lowerCAmelCase = key.replace("proj" , "projection" )
if key.endswith("bias" ):
total_embed_found += 1
if "patch_embeddings" in key:
__lowerCAmelCase = "poolformer.encoder." + key
if "mlp.fc1" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc1" , "output.conv1" )
if "mlp.fc2" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc2" , "output.conv2" )
if "norm1" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm1" , "before_norm" )
if "norm2" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm2" , "after_norm" )
if "layer_scale_1" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_1" , "layer_scale_1" )
if "layer_scale_2" in key:
__lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_2" , "layer_scale_2" )
if "head" in key:
__lowerCAmelCase = key.replace("head" , "classifier" )
__lowerCAmelCase = value
return new_state_dict
def _lowerCamelCase ( ):
'''simple docstring'''
__lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg"
__lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw )
return image
@torch.no_grad()
def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ):
'''simple docstring'''
__lowerCAmelCase = PoolFormerConfig()
# set attributes based on model_name
__lowerCAmelCase = "huggingface/label-files"
__lowerCAmelCase = model_name[-3:]
__lowerCAmelCase = 1000
__lowerCAmelCase = "imagenet-1k-id2label.json"
__lowerCAmelCase = (1, 1000)
# set config attributes
__lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) )
__lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
if size == "s12":
__lowerCAmelCase = [2, 2, 6, 2]
__lowerCAmelCase = [64, 128, 320, 512]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 0.9
elif size == "s24":
__lowerCAmelCase = [4, 4, 12, 4]
__lowerCAmelCase = [64, 128, 320, 512]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 0.9
elif size == "s36":
__lowerCAmelCase = [6, 6, 18, 6]
__lowerCAmelCase = [64, 128, 320, 512]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1e-6
__lowerCAmelCase = 0.9
elif size == "m36":
__lowerCAmelCase = [6, 6, 18, 6]
__lowerCAmelCase = [96, 192, 384, 768]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1e-6
__lowerCAmelCase = 0.95
elif size == "m48":
__lowerCAmelCase = [8, 8, 24, 8]
__lowerCAmelCase = [96, 192, 384, 768]
__lowerCAmelCase = 4.0
__lowerCAmelCase = 1e-6
__lowerCAmelCase = 0.95
else:
raise ValueError(f"Size {size} not supported" )
# load image processor
__lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase )
# Prepare image
__lowerCAmelCase = prepare_img()
__lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values
logger.info(f"Converting model {model_name}..." )
# load original state dict
__lowerCAmelCase = torch.load(_UpperCamelCase , map_location=torch.device("cpu" ) )
# rename keys
__lowerCAmelCase = rename_keys(_UpperCamelCase )
# create HuggingFace model and load state dict
__lowerCAmelCase = PoolFormerForImageClassification(_UpperCamelCase )
model.load_state_dict(_UpperCamelCase )
model.eval()
# Define image processor
__lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase )
__lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values
# forward pass
__lowerCAmelCase = model(_UpperCamelCase )
__lowerCAmelCase = outputs.logits
# define expected logit slices for different models
if size == "s12":
__lowerCAmelCase = torch.tensor([-0.30_45, -0.67_58, -0.48_69] )
elif size == "s24":
__lowerCAmelCase = torch.tensor([0.44_02, -0.13_74, -0.80_45] )
elif size == "s36":
__lowerCAmelCase = torch.tensor([-0.60_80, -0.51_33, -0.58_98] )
elif size == "m36":
__lowerCAmelCase = torch.tensor([0.39_52, 0.22_63, -1.26_68] )
elif size == "m48":
__lowerCAmelCase = torch.tensor([0.11_67, -0.06_56, -0.34_23] )
else:
raise ValueError(f"Size {size} not supported" )
# verify logits
assert logits.shape == expected_shape
assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 )
# finally, save model and image processor
logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." )
Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase )
model.save_pretrained(_UpperCamelCase )
print(f"Saving image processor to {pytorch_dump_folder_path}" )
image_processor.save_pretrained(_UpperCamelCase )
if __name__ == "__main__":
A : List[Any] = argparse.ArgumentParser()
parser.add_argument(
"--model_name",
default="poolformer_s12",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)."
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model."
)
A : int = parser.parse_args()
convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
| 57 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing how to properly calculate the metrics on the
# validation dataset when in a distributed system, and builds off the
# `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowercase_ = 16
lowercase_ = 32
def lowerCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 ) ->int:
_SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base-cased""" )
_SCREAMING_SNAKE_CASE = load_dataset("""glue""" , """mrpc""" )
def tokenize_function(__lowerCamelCase : int ):
# max_length=None => use the model max length (it's actually the default)
_SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
_SCREAMING_SNAKE_CASE = datasets.map(
__lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
_SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" , """labels""" )
def collate_fn(__lowerCamelCase : Any ):
# On TPU it's best to pad everything to the same length or training will be very slow.
_SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
_SCREAMING_SNAKE_CASE = 16
elif accelerator.mixed_precision != "no":
_SCREAMING_SNAKE_CASE = 8
else:
_SCREAMING_SNAKE_CASE = None
return tokenizer.pad(
__lowerCamelCase , padding="""longest""" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="""pt""" , )
# Instantiate dataloaders.
_SCREAMING_SNAKE_CASE = DataLoader(
tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
_SCREAMING_SNAKE_CASE = DataLoader(
tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowercase_ = mocked_dataloaders # noqa: F811
def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any ) ->Optional[Any]:
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCamelCase ) == "1":
_SCREAMING_SNAKE_CASE = 2
# Initialize accelerator
_SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
_SCREAMING_SNAKE_CASE = config["""lr"""]
_SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] )
_SCREAMING_SNAKE_CASE = int(config["""seed"""] )
_SCREAMING_SNAKE_CASE = int(config["""batch_size"""] )
_SCREAMING_SNAKE_CASE = evaluate.load("""glue""" , """mrpc""" )
# If the batch size is too big we use gradient accumulation
_SCREAMING_SNAKE_CASE = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
_SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE
_SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE
set_seed(__lowerCamelCase )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataloaders(__lowerCamelCase , __lowerCamelCase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
_SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
_SCREAMING_SNAKE_CASE = model.to(accelerator.device )
# Instantiate optimizer
_SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=__lowerCamelCase )
# Instantiate scheduler
_SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup(
optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare(
__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# Now we train the model
for epoch in range(__lowerCamelCase ):
model.train()
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
_SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE = outputs.loss
_SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps
accelerator.backward(__lowerCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
_SCREAMING_SNAKE_CASE = 0
for step, batch in enumerate(__lowerCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
_SCREAMING_SNAKE_CASE = model(**__lowerCamelCase )
_SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 )
_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather((predictions, batch["""labels"""]) )
# New Code #
# First we check if it's a distributed system
if accelerator.use_distributed:
# Then see if we're on the last batch of our eval dataloader
if step == len(__lowerCamelCase ) - 1:
# Last batch needs to be truncated on distributed systems as it contains additional samples
_SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen]
_SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen]
else:
# Otherwise we add the number of samples seen
samples_seen += references.shape[0]
# All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`:
# accelerator.gather_for_metrics((predictions, batch["labels"]))
metric.add_batch(
predictions=__lowerCamelCase , references=__lowerCamelCase , )
_SCREAMING_SNAKE_CASE = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F'epoch {epoch}:' , __lowerCamelCase )
def lowerCamelCase ( ) ->List[str]:
_SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" )
parser.add_argument(
"""--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose"""
"""between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."""
"""and an Nvidia Ampere GPU.""" , )
parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" )
_SCREAMING_SNAKE_CASE = parser.parse_args()
_SCREAMING_SNAKE_CASE = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16}
training_function(__lowerCamelCase , __lowerCamelCase )
if __name__ == "__main__":
main()
| 58 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
__lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""XGLMTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = ["""XGLMTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XGLMForCausalLM""",
"""XGLMModel""",
"""XGLMPreTrainedModel""",
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""FlaxXGLMForCausalLM""",
"""FlaxXGLMModel""",
"""FlaxXGLMPreTrainedModel""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCamelCase = [
"""TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXGLMForCausalLM""",
"""TFXGLMModel""",
"""TFXGLMPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm import XGLMTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xglm_fast import XGLMTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
TFXGLMPreTrainedModel,
)
else:
import sys
__lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
| 59 |
"""simple docstring"""
from __future__ import annotations
from collections.abc import Iterator
from typing import Generic, TypeVar
a = TypeVar('''T''')
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Any , _UpperCAmelCase : T ):
_A = data
_A = None
def __str__( self : str ):
return F'''{self.data}'''
class lowercase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple ):
_A = None
def __iter__( self : List[Any] ):
_A = self.top
while node:
yield node.data
_A = node.next
def __str__( self : Union[str, Any] ):
return "->".join([str(_UpperCAmelCase ) for item in self] )
def __len__( self : List[Any] ):
return len(tuple(iter(self ) ) )
def lowerCAmelCase_ ( self : str ):
return self.top is None
def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ):
_A = Node(_UpperCAmelCase )
if not self.is_empty():
_A = self.top
_A = node
def lowerCAmelCase_ ( self : Dict ):
if self.is_empty():
raise IndexError('pop from empty stack' )
assert isinstance(self.top , _UpperCAmelCase )
_A = self.top
_A = self.top.next
return pop_node.data
def lowerCAmelCase_ ( self : Tuple ):
if self.is_empty():
raise IndexError('peek from empty stack' )
assert self.top is not None
return self.top.data
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = None
if __name__ == "__main__":
from doctest import testmod
testmod()
| 315 | 0 |
"""simple docstring"""
import json
import os
import unittest
from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import (
VOCAB_FILES_NAMES,
GPTSanJapaneseTokenizer,
)
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class snake_case_( a__ , unittest.TestCase ):
__UpperCamelCase = GPTSanJapaneseTokenizer
__UpperCamelCase = False
__UpperCamelCase = {'''do_clean_text''': False, '''add_prefix_space''': False}
def lowerCamelCase__ ( self : Optional[int] ):
super().setUp()
# fmt: off
lowerCAmelCase : List[str] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>''']
# fmt: on
lowerCAmelCase : int = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀
lowerCAmelCase : List[str] = {'''unk_token''': '''<unk>'''}
lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) )
with open(self.emoji_file , '''w''' ) as emoji_writer:
emoji_writer.write(json.dumps(UpperCamelCase_ ) )
def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ):
kwargs.update(self.special_tokens_map )
return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ )
def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] ):
lowerCAmelCase : int = '''こんにちは、世界。 \nこんばんは、㔺界。😀'''
lowerCAmelCase : List[Any] = '''こんにちは、世界。 \nこんばんは、世界。😀'''
return input_text, output_text
def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Dict ):
lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_input_output_texts(UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ )
lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ )
return text, ids
def lowerCamelCase__ ( self : Any ):
pass # TODO add if relevant
def lowerCamelCase__ ( self : Union[str, Any] ):
pass # TODO add if relevant
def lowerCamelCase__ ( self : Union[str, Any] ):
pass # TODO add if relevant
def lowerCamelCase__ ( self : Optional[Any] ):
lowerCAmelCase : Any = self.get_tokenizer()
# Testing tokenization
lowerCAmelCase : int = '''こんにちは、世界。 こんばんは、㔺界。'''
lowerCAmelCase : Union[str, Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。''']
lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# Testing conversion to ids without special tokens
lowerCAmelCase : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6]
lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
# Testing conversion to ids with special tokens
lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token]
lowerCAmelCase : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9]
lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : List[Any] = self.get_tokenizer()
# Testing tokenization
lowerCAmelCase : str = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。'''
lowerCAmelCase : List[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。'''
lowerCAmelCase : Dict = tokenizer.encode(UpperCamelCase_ )
lowerCAmelCase : Dict = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : str ):
lowerCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowerCAmelCase : Optional[int] = '''こんにちは、世界。'''
lowerCAmelCase : Dict = '''こんばんは、㔺界。😀'''
lowerCAmelCase : int = '''こんにちは、世界。こんばんは、世界。😀'''
lowerCAmelCase : Any = tokenizer.encode(prefix_text + input_text )
lowerCAmelCase : List[str] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text )
lowerCAmelCase : Any = tokenizer.encode(UpperCamelCase_ , prefix_text=UpperCamelCase_ )
lowerCAmelCase : Tuple = tokenizer.decode(UpperCamelCase_ )
lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ )
lowerCAmelCase : Optional[int] = tokenizer.decode(UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : Optional[int] ):
lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
# Testing tokenization
lowerCAmelCase : Optional[int] = '''こんにちは、世界。'''
lowerCAmelCase : Union[str, Any] = '''こんばんは、㔺界。😀'''
lowerCAmelCase : Dict = len(tokenizer.encode(UpperCamelCase_ ) ) - 2
lowerCAmelCase : List[Any] = len(tokenizer.encode(UpperCamelCase_ ) ) - 2
lowerCAmelCase : List[Any] = [1] + [0] * (len_prefix + len_text + 1)
lowerCAmelCase : Tuple = [1] * (len_prefix + len_text + 1) + [0]
lowerCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1)
lowerCAmelCase : Dict = tokenizer(prefix_text + input_text ).token_type_ids
lowerCAmelCase : Optional[int] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids
lowerCAmelCase : Dict = tokenizer(UpperCamelCase_ , prefix_text=UpperCamelCase_ ).token_type_ids
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ )
@slow
def lowerCamelCase__ ( self : Dict ):
lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowerCAmelCase : List[Any] = tokenizer.encode('''あンいワ''' )
lowerCAmelCase : List[Any] = tokenizer.encode('''''' , prefix_text='''あンいワ''' )
lowerCAmelCase : List[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' )
self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) )
self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) )
self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ )
self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token
self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token
@slow
def lowerCamelCase__ ( self : Union[str, Any] ):
lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' )
lowerCAmelCase : List[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']]
lowerCAmelCase : List[str] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ )
lowerCAmelCase : Optional[Any] = tokenizer.batch_encode_plus(UpperCamelCase_ , padding=UpperCamelCase_ )
# fmt: off
lowerCAmelCase : Optional[Any] = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]]
lowerCAmelCase : Tuple = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]]
lowerCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]]
# fmt: on
self.assertListEqual(x_token.input_ids , UpperCamelCase_ )
self.assertListEqual(x_token.token_type_ids , UpperCamelCase_ )
self.assertListEqual(x_token.attention_mask , UpperCamelCase_ )
self.assertListEqual(x_token_a.input_ids , UpperCamelCase_ )
self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase_ )
self.assertListEqual(x_token_a.attention_mask , UpperCamelCase_ )
def lowerCamelCase__ ( self : Optional[int] ):
# Intentionally convert some words to accommodate character fluctuations unique to Japanese
pass
def lowerCamelCase__ ( self : int ):
# tokenizer has no padding token
pass
| 60 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_imagegpt import ImageGPTImageProcessor
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ):
warnings.warn(
'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'
' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , )
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
| 315 | 0 |
"""simple docstring"""
import numpy as np
class A_ :
'''simple docstring'''
def __init__( self ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = (0, 0)
UpperCAmelCase_ : int = None
UpperCAmelCase_ : Tuple = 0
UpperCAmelCase_ : List[str] = 0
UpperCAmelCase_ : Optional[int] = 0
def __eq__( self , lowercase_ ):
"""simple docstring"""
return self.position == cell.position
def UpperCamelCase__ ( self ):
"""simple docstring"""
print(self.position )
class A_ :
'''simple docstring'''
def __init__( self , lowercase_=(5, 5) ):
"""simple docstring"""
UpperCAmelCase_ : List[str] = np.zeros(lowercase_ )
UpperCAmelCase_ : str = world_size[0]
UpperCAmelCase_ : str = world_size[1]
def UpperCamelCase__ ( self ):
"""simple docstring"""
print(self.w )
def UpperCamelCase__ ( self , lowercase_ ):
"""simple docstring"""
UpperCAmelCase_ : Dict = [
(-1, -1),
(-1, 0),
(-1, 1),
(0, -1),
(0, 1),
(1, -1),
(1, 0),
(1, 1),
]
UpperCAmelCase_ : List[Any] = cell.position[0]
UpperCAmelCase_ : Dict = cell.position[1]
UpperCAmelCase_ : List[Any] = []
for n in neughbour_cord:
UpperCAmelCase_ : List[str] = current_x + n[0]
UpperCAmelCase_ : Optional[Any] = current_y + n[1]
if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit:
UpperCAmelCase_ : Tuple = Cell()
UpperCAmelCase_ : List[str] = (x, y)
UpperCAmelCase_ : Union[str, Any] = cell
neighbours.append(lowercase_ )
return neighbours
def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ):
UpperCAmelCase_ : Any = []
UpperCAmelCase_ : int = []
_open.append(__lowerCamelCase )
while _open:
UpperCAmelCase_ : Optional[Any] = np.argmin([n.f for n in _open] )
UpperCAmelCase_ : Tuple = _open[min_f]
_closed.append(_open.pop(__lowerCamelCase ) )
if current == goal:
break
for n in world.get_neigbours(__lowerCamelCase ):
for c in _closed:
if c == n:
continue
UpperCAmelCase_ : int = current.g + 1
UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = n.position
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = goal.position
UpperCAmelCase_ : Dict = (ya - ya) ** 2 + (xa - xa) ** 2
UpperCAmelCase_ : str = n.h + n.g
for c in _open:
if c == n and c.f < n.f:
continue
_open.append(__lowerCamelCase )
UpperCAmelCase_ : Tuple = []
while current.parent is not None:
path.append(current.position )
UpperCAmelCase_ : Union[str, Any] = current.parent
path.append(current.position )
return path[::-1]
if __name__ == "__main__":
_a = Gridworld()
# Start position and goal
_a = Cell()
_a = (0, 0)
_a = Cell()
_a = (4, 4)
print(f"""path from {start.position} to {goal.position}""")
_a = astar(world, start, goal)
# Just for visual reasons.
for i in s:
_a = 1
print(world.w)
| 61 |
"""simple docstring"""
from __future__ import annotations
import collections
import pprint
from pathlib import Path
def _snake_case ( _snake_case : str ) -> str:
'''simple docstring'''
return "".join(sorted(_snake_case ) )
def _snake_case ( _snake_case : str ) -> list[str]:
'''simple docstring'''
return word_by_signature[signature(_snake_case )]
a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''')
a = sorted({word.strip().lower() for word in data.splitlines()})
a = collections.defaultdict(list)
for word in word_list:
word_by_signature[signature(word)].append(word)
if __name__ == "__main__":
a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1}
with open('''anagrams.txt''', '''w''') as file:
file.write('''all_anagrams = \n ''')
file.write(pprint.pformat(all_anagrams))
| 315 | 0 |
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
_A = logging.get_logger(__name__)
_A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'}
_A = {
'vocab_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'
),
},
'tokenizer_file': {
'yjernite/retribert-base-uncased': (
'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'
),
},
}
_A = {
'yjernite/retribert-base-uncased': 512,
}
_A = {
'yjernite/retribert-base-uncased': {'do_lower_case': True},
}
class UpperCAmelCase__ ( A_ ):
"""simple docstring"""
UpperCAmelCase__ : Any = VOCAB_FILES_NAMES
UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION
UpperCAmelCase__ : Optional[int] = RetriBertTokenizer
UpperCAmelCase__ : int = ["input_ids", "attention_mask"]
def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any:
super().__init__(
A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , )
__UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('lowercase' , A_ ) != do_lower_case
or normalizer_state.get('strip_accents' , A_ ) != strip_accents
or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars
):
__UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) )
__UpperCamelCase =do_lower_case
__UpperCamelCase =strip_accents
__UpperCamelCase =tokenize_chinese_chars
__UpperCamelCase =normalizer_class(**A_ )
__UpperCamelCase =do_lower_case
def _a ( self , A_ , A_=None ) -> Optional[Any]:
__UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _a ( self , A_ , A_ = None ) -> List[int]:
__UpperCamelCase =[self.sep_token_id]
__UpperCamelCase =[self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self , A_ , A_ = None ) -> Tuple[str]:
__UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ )
return tuple(A_ )
| 62 |
"""simple docstring"""
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import torch
from datasets import load_dataset
from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor
from torchvision.transforms.functional import InterpolationMode
import transformers
from transformers import (
HfArgumentParser,
Trainer,
TrainingArguments,
ViTImageProcessor,
ViTMAEConfig,
ViTMAEForPreTraining,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
a = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''')
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : Optional[str] = field(
default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} )
UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} )
UpperCAmelCase : Optional[float] = field(
default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of training examples to this '''
'''value if set.'''
)
} , )
UpperCAmelCase : Optional[int] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''For debugging purposes or quicker training, truncate the number of evaluation examples to this '''
'''value if set.'''
)
} , )
def lowerCAmelCase_ ( self : Dict ):
_A = {}
if self.train_dir is not None:
_A = self.train_dir
if self.validation_dir is not None:
_A = self.validation_dir
_A = data_files if data_files else None
@dataclass
class lowercase_ :
'''simple docstring'''
UpperCAmelCase : str = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Override some existing default config settings when a model is trained from scratch. Example: '''
'''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index'''
)
} , )
UpperCAmelCase : Optional[str] = field(
default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} )
UpperCAmelCase : str = field(
default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , )
UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={
'''help''': (
'''Will use the token generated when running `huggingface-cli login` (necessary to use this script '''
'''with private models).'''
)
} , )
UpperCAmelCase : float = field(
default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} )
UpperCAmelCase : bool = field(
default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} )
@dataclass
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : float = field(
default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} )
def _snake_case ( _snake_case : int ) -> Optional[int]:
'''simple docstring'''
_A = torch.stack([example['pixel_values'] for example in examples] )
return {"pixel_values": pixel_values}
def _snake_case ( ) -> List[str]:
'''simple docstring'''
_A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
_A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
_A , _A , _A = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('run_mae' , _snake_case , _snake_case )
# Setup logging
logging.basicConfig(
format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
_A = training_args.get_process_log_level()
logger.setLevel(_snake_case )
transformers.utils.logging.set_verbosity(_snake_case )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'''
+ F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' )
logger.info(F'''Training/evaluation parameters {training_args}''' )
# Detecting last checkpoint.
_A = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
_A = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'''Output directory ({training_args.output_dir}) already exists and is not empty. '''
'Use --overwrite_output_dir to overcome.' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '''
'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' )
# Initialize our dataset.
_A = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
# If we don't have a validation split, split off a percentage of train as validation.
_A = None if 'validation' in ds.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0:
_A = ds['train'].train_test_split(data_args.train_val_split )
_A = split['train']
_A = split['test']
# Load pretrained model and image processor
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
_A = {
'cache_dir': model_args.cache_dir,
'revision': model_args.model_revision,
'use_auth_token': True if model_args.use_auth_token else None,
}
if model_args.config_name:
_A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTMAEConfig()
logger.warning('You are instantiating a new config instance from scratch.' )
if model_args.config_overrides is not None:
logger.info(F'''Overriding config: {model_args.config_overrides}''' )
config.update_from_string(model_args.config_overrides )
logger.info(F'''New config: {config}''' )
# adapt config
config.update(
{
'mask_ratio': model_args.mask_ratio,
'norm_pix_loss': model_args.norm_pix_loss,
} )
# create image processor
if model_args.image_processor_name:
_A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case )
elif model_args.model_name_or_path:
_A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case )
else:
_A = ViTImageProcessor()
# create model
if model_args.model_name_or_path:
_A = ViTMAEForPreTraining.from_pretrained(
model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('Training new model from scratch' )
_A = ViTMAEForPreTraining(_snake_case )
if training_args.do_train:
_A = ds['train'].column_names
else:
_A = ds['validation'].column_names
if data_args.image_column_name is not None:
_A = data_args.image_column_name
elif "image" in column_names:
_A = 'image'
elif "img" in column_names:
_A = 'img'
else:
_A = column_names[0]
# transformations as done in original MAE paper
# source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py
if "shortest_edge" in image_processor.size:
_A = image_processor.size['shortest_edge']
else:
_A = (image_processor.size['height'], image_processor.size['width'])
_A = Compose(
[
Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ),
RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ),
RandomHorizontalFlip(),
ToTensor(),
Normalize(mean=image_processor.image_mean , std=image_processor.image_std ),
] )
def preprocess_images(_snake_case : List[Any] ):
_A = [transforms(_snake_case ) for image in examples[image_column_name]]
return examples
if training_args.do_train:
if "train" not in ds:
raise ValueError('--do_train requires a train dataset' )
if data_args.max_train_samples is not None:
_A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
# Set the training transforms
ds["train"].set_transform(_snake_case )
if training_args.do_eval:
if "validation" not in ds:
raise ValueError('--do_eval requires a validation dataset' )
if data_args.max_eval_samples is not None:
_A = (
ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
ds["validation"].set_transform(_snake_case )
# Compute absolute learning rate
_A = (
training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size
)
if training_args.base_learning_rate is not None:
_A = training_args.base_learning_rate * total_train_batch_size / 2_56
# Initialize our trainer
_A = Trainer(
model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , )
# Training
if training_args.do_train:
_A = None
if training_args.resume_from_checkpoint is not None:
_A = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
_A = last_checkpoint
_A = trainer.train(resume_from_checkpoint=_snake_case )
trainer.save_model()
trainer.log_metrics('train' , train_result.metrics )
trainer.save_metrics('train' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
_A = trainer.evaluate()
trainer.log_metrics('eval' , _snake_case )
trainer.save_metrics('eval' , _snake_case )
# Write model card and (optionally) push to hub
_A = {
'tasks': 'masked-auto-encoding',
'dataset': data_args.dataset_name,
'tags': ['masked-auto-encoding'],
}
if training_args.push_to_hub:
trainer.push_to_hub(**_snake_case )
else:
trainer.create_model_card(**_snake_case )
def _snake_case ( _snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
main()
if __name__ == "__main__":
main()
| 315 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections import deque
from collections.abc import Sequence
from dataclasses import dataclass
from typing import Any
@dataclass
class __SCREAMING_SNAKE_CASE :
"""simple docstring"""
__a =42
__a =None
__a =None
def _lowerCamelCase ( ) -> Node | None:
_a = Node(1 )
_a = Node(2 )
_a = Node(3 )
_a = Node(4 )
_a = Node(5 )
return tree
def _lowerCamelCase ( lowercase : Node | None ) -> list[int]:
return [root.data, *preorder(root.left ), *preorder(root.right )] if root else []
def _lowerCamelCase ( lowercase : Node | None ) -> list[int]:
return postorder(root.left ) + postorder(root.right ) + [root.data] if root else []
def _lowerCamelCase ( lowercase : Node | None ) -> list[int]:
return [*inorder(root.left ), root.data, *inorder(root.right )] if root else []
def _lowerCamelCase ( lowercase : Node | None ) -> int:
return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0
def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None]:
_a = []
if root is None:
return output
_a = deque([root] )
while process_queue:
_a = process_queue.popleft()
output.append(node.data )
if node.left:
process_queue.append(node.left )
if node.right:
process_queue.append(node.right )
return output
def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]:
_a = []
def populate_output(lowercase : Node | None , lowercase : int ) -> None:
if not root:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.left , level - 1 )
populate_output(root.right , level - 1 )
populate_output(lowercase , lowercase )
return output
def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]:
_a = []
def populate_output(lowercase : Node | None , lowercase : int ) -> None:
if root is None:
return
if level == 1:
output.append(root.data )
elif level > 1:
populate_output(root.right , level - 1 )
populate_output(root.left , level - 1 )
populate_output(lowercase , lowercase )
return output
def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None] | list[Any]:
if root is None:
return []
_a = []
_a = 0
_a = height(lowercase )
for h in range(1 , height_tree + 1 ):
if not flag:
output.append(get_nodes_from_left_to_right(lowercase , lowercase ) )
_a = 1
else:
output.append(get_nodes_from_right_to_left(lowercase , lowercase ) )
_a = 0
return output
def _lowerCamelCase ( ) -> None: # Main function for testing.
_a = make_tree()
print(F'In-order Traversal: {inorder(lowercase )}' )
print(F'Pre-order Traversal: {preorder(lowercase )}' )
print(F'Post-order Traversal: {postorder(lowercase )}' , "\n" )
print(F'Height of Tree: {height(lowercase )}' , "\n" )
print("Complete Level Order Traversal: " )
print(level_order(lowercase ) , "\n" )
print("Level-wise order Traversal: " )
for level in range(1 , height(lowercase ) + 1 ):
print(F'Level {level}:' , get_nodes_from_left_to_right(lowercase , level=lowercase ) )
print("\nZigZag order Traversal: " )
print(zigzag(lowercase ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 63 |
"""simple docstring"""
import logging
import re
import pytorch_quantization
import pytorch_quantization.nn as quant_nn
import torch
from pytorch_quantization import calib
from pytorch_quantization.tensor_quant import QuantDescriptor
a = logging.getLogger(__name__)
a = 50 # max width of layer names
a = 70 # max width of quantizer names
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
_A = parser.add_argument_group('quant_trainer arguments' )
group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' )
group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' )
group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' )
group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' )
group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' )
group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' )
group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' )
group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' )
group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' )
group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' )
group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' )
group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' )
group.add_argument(
'--recalibrate-weights' , action='store_true' , help=(
'recalibrate weight amaxes by taking the max of the weights.'
' amaxes will be computed with the current quantization granularity (axis).'
) , )
def _snake_case ( _snake_case : Dict ) -> Optional[Any]:
'''simple docstring'''
if args.calibrator == "max":
_A = 'max'
elif args.calibrator == "percentile":
if args.percentile is None:
raise ValueError('Specify --percentile when using percentile calibrator' )
_A = 'histogram'
elif args.calibrator == "mse":
_A = 'histogram'
else:
raise ValueError(F'''Invalid calibrator {args.calibrator}''' )
_A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case )
_A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) )
quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case )
quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case )
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]:
'''simple docstring'''
logger.info('Configuring Model for Quantization' )
logger.info(F'''using quantization package {pytorch_quantization.__file__}''' )
if not calib:
if args.quant_disable_embeddings:
set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case )
if args.quant_disable:
set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case )
if args.quant_disable_keyword:
set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case )
if args.quant_disable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case )
if args.quant_enable_layer_module:
set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case )
if args.recalibrate_weights:
recalibrate_weights(_snake_case )
if args.fuse_qkv:
fuse_qkv(_snake_case , _snake_case )
if args.clip_gelu:
clip_gelu(_snake_case , args.clip_gelu )
# if args.local_rank in [-1, 0] and not calib:
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str ) -> Any:
'''simple docstring'''
logger.info('Enabling Calibration' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
module.disable_quant()
module.enable_calib()
else:
module.disable()
logger.info(F'''{name:80}: {module}''' )
def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str:
'''simple docstring'''
logger.info('Loading calibrated amax' )
for name, module in model.named_modules():
if name.endswith('_quantizer' ):
if module._calibrator is not None:
if isinstance(module._calibrator , calib.MaxCalibrator ):
module.load_calib_amax()
else:
module.load_calib_amax('percentile' , percentile=args.percentile )
module.enable_quant()
module.disable_calib()
else:
module.enable()
model.cuda()
print_quant_summary(_snake_case )
def _snake_case ( _snake_case : str , _snake_case : int ) -> str:
'''simple docstring'''
def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ):
for mod in [qq, qk, qv]:
if not hasattr(_snake_case , '_amax' ):
print(' WARNING: NO AMAX BUFFER' )
return
_A = qq._amax.detach().item()
_A = qk._amax.detach().item()
_A = qv._amax.detach().item()
_A = max(_snake_case , _snake_case , _snake_case )
qq._amax.fill_(_snake_case )
qk._amax.fill_(_snake_case )
qv._amax.fill_(_snake_case )
logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' )
for name, mod in model.named_modules():
if name.endswith('.attention.self' ):
logger.info(F'''FUSE_QKV: {name:{name_width}}''' )
fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer )
if args.quant_per_tensor:
fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer )
def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]:
'''simple docstring'''
for name, mod in model.named_modules():
if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ):
_A = mod._input_quantizer._amax.data.detach().item()
mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case )
_A = mod._input_quantizer._amax.data.detach().item()
logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' )
def _snake_case ( _snake_case : List[str] ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None:
_A = mod.weight.shape[0]
_A = mod._weight_quantizer._amax.detach()
_A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax
print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' )
def _snake_case ( _snake_case : Dict ) -> Tuple:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_weight_quantizer' ):
if not hasattr(mod.weight_quantizer , '_amax' ):
print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' )
continue
# determine which axes to reduce across
# e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3)
_A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis )
_A = set(range(len(mod.weight.size() ) ) ) - axis_set
_A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach()
logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' )
_A = amax
def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]:
'''simple docstring'''
if ignore is None:
_A = []
elif not isinstance(_snake_case , _snake_case ):
_A = [ignore]
_A = 0
for name, mod in model.named_modules():
if not hasattr(_snake_case , 'weight' ):
continue
_A = max(_snake_case , len(_snake_case ) )
for name, mod in model.named_modules():
_A = getattr(_snake_case , '_input_quantizer' , _snake_case )
_A = getattr(_snake_case , '_weight_quantizer' , _snake_case )
if not hasattr(_snake_case , 'weight' ):
continue
if type(_snake_case ) in ignore:
continue
if [True for s in ignore if type(_snake_case ) is str and s in name]:
continue
_A = F'''Act:{input_q.extra_repr()}'''
_A = F'''Wgt:{weight_q.extra_repr()}'''
_A = F'''{name:{name_width}} {act_str} {wgt_str}'''
if len(_snake_case ) <= line_width:
logger.info(_snake_case )
else:
logger.info(F'''{name:{name_width}} {act_str}''' )
logger.info(F'''{" ":{name_width}} {wgt_str}''' )
def _snake_case ( _snake_case : Dict ) -> int:
'''simple docstring'''
_A = 0
for name, mod in model.named_modules():
if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ):
print(F'''{name:80} {mod}''' )
count += 1
print(F'''{count} TensorQuantizers found in model''' )
def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int:
'''simple docstring'''
_A = getattr(_snake_case , _snake_case , _snake_case )
if quantizer_mod is not None:
assert hasattr(_snake_case , _snake_case )
setattr(_snake_case , _snake_case , _snake_case )
else:
logger.warning(F'''{name} has no {quantizer}''' )
def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str:
'''simple docstring'''
_A = F'''Warning: changing {which} quantizers of {name:{qname_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
if which in ["input", "both"]:
set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case )
if which in ["weight", "both"]:
set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case )
logger.info(_snake_case )
def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]:
'''simple docstring'''
for name, mod in model.named_modules():
if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
set_quantizers(_snake_case , _snake_case , **_snake_case )
elif name.endswith('_quantizer' ):
for n in names:
if re.search(_snake_case , _snake_case ):
_A = F'''Warning: changing {name:{name_width}}'''
for k, v in kwargs.items():
s += F''' {k}={v}'''
setattr(_snake_case , _snake_case , _snake_case )
logger.info(_snake_case )
| 315 | 0 |
"""simple docstring"""
from typing import List, Optional, Tuple, Union
import torch
from ...schedulers import DDIMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
class lowercase( __a ):
'''simple docstring'''
def __init__( self: str, a_: List[Any], a_: Optional[Any] ):
'''simple docstring'''
super().__init__()
# make sure scheduler can always be converted to DDIM
_snake_case : int = DDIMScheduler.from_config(scheduler.config )
self.register_modules(unet=a_, scheduler=a_ )
@torch.no_grad()
def __call__( self: Optional[int], a_: int = 1, a_: Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_: float = 0.0, a_: int = 50, a_: Optional[bool] = None, a_: Optional[str] = "pil", a_: bool = True, ):
'''simple docstring'''
if isinstance(self.unet.config.sample_size, a_ ):
_snake_case : Optional[Any] = (
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size,
self.unet.config.sample_size,
)
else:
_snake_case : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size)
if isinstance(a_, a_ ) and len(a_ ) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(a_ )}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators." )
_snake_case : Dict = randn_tensor(a_, generator=a_, device=self.device, dtype=self.unet.dtype )
# set step values
self.scheduler.set_timesteps(a_ )
for t in self.progress_bar(self.scheduler.timesteps ):
# 1. predict noise model_output
_snake_case : List[Any] = self.unet(a_, a_ ).sample
# 2. predict previous mean of image x_t-1 and add variance depending on eta
# eta corresponds to η in paper and should be between [0, 1]
# do x_t -> x_t-1
_snake_case : Optional[int] = self.scheduler.step(
a_, a_, a_, eta=a_, use_clipped_model_output=a_, generator=a_ ).prev_sample
_snake_case : List[Any] = (image / 2 + 0.5).clamp(0, 1 )
_snake_case : Union[str, Any] = image.cpu().permute(0, 2, 3, 1 ).numpy()
if output_type == "pil":
_snake_case : str = self.numpy_to_pil(a_ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=a_ )
| 64 |
"""simple docstring"""
from scipy.stats import spearmanr
import datasets
a = '''
The Spearman rank-order correlation coefficient is a measure of the
relationship between two datasets. Like other correlation coefficients,
this one varies between -1 and +1 with 0 implying no correlation.
Positive correlations imply that as data in dataset x increases, so
does data in dataset y. Negative correlations imply that as x increases,
y decreases. Correlations of -1 or +1 imply an exact monotonic relationship.
Unlike the Pearson correlation, the Spearman correlation does not
assume that both datasets are normally distributed.
The p-value roughly indicates the probability of an uncorrelated system
producing datasets that have a Spearman correlation at least as extreme
as the one computed from these datasets. The p-values are not entirely
reliable but are probably reasonable for datasets larger than 500 or so.
'''
a = '''
Args:
predictions (`List[float]`): Predicted labels, as returned by a model.
references (`List[float]`): Ground truth labels.
return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns
only the spearmanr score. Defaults to `False`.
Returns:
spearmanr (`float`): Spearman correlation coefficient.
p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input.
Examples:
Example 1:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4])
>>> print(results)
{\'spearmanr\': -0.7}
Example 2:
>>> spearmanr_metric = datasets.load_metric("spearmanr")
>>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5],
... predictions=[10, 9, 2.5, 6, 4],
... return_pvalue=True)
>>> print(results[\'spearmanr\'])
-0.7
>>> print(round(results[\'spearmanr_pvalue\'], 2))
0.19
'''
a = r'''\
@book{kokoska2000crc,
title={CRC standard probability and statistics tables and formulae},
author={Kokoska, Stephen and Zwillinger, Daniel},
year={2000},
publisher={Crc Press}
}
@article{2020SciPy-NMeth,
author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and
Haberland, Matt and Reddy, Tyler and Cournapeau, David and
Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and
Bright, Jonathan and {van der Walt}, St{\'e}fan J. and
Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and
Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and
Kern, Robert and Larson, Eric and Carey, C J and
Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and
{VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and
Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and
Harris, Charles R. and Archibald, Anne M. and
Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and
{van Mulbregt}, Paul and {SciPy 1.0 Contributors}},
title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific
Computing in Python}},
journal = {Nature Methods},
year = {2020},
volume = {17},
pages = {261--272},
adsurl = {https://rdcu.be/b08Wh},
doi = {10.1038/s41592-019-0686-2},
}
'''
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowercase_ ( datasets.Metric ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Optional[int] ):
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'predictions': datasets.Value('float' ),
'references': datasets.Value('float' ),
} ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , )
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ):
_A = spearmanr(_UpperCAmelCase , _UpperCAmelCase )
if return_pvalue:
return {"spearmanr": results[0], "spearmanr_pvalue": results[1]}
else:
return {"spearmanr": results[0]}
| 315 | 0 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class A ( UpperCAmelCase_ ):
__UpperCAmelCase : torch.FloatTensor
__UpperCAmelCase : Optional[torch.FloatTensor] = None
def lowerCAmelCase_ ( __A, __A=0.999, __A="cosine", ) -> Tuple:
'''simple docstring'''
if alpha_transform_type == "cosine":
def alpha_bar_fn(__A ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(__A ):
return math.exp(t * -12.0 )
else:
raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" )
UpperCAmelCase__ = []
for i in range(__A ):
UpperCAmelCase__ = i / num_diffusion_timesteps
UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ), __A ) )
return torch.tensor(__A, dtype=torch.floataa )
class A ( UpperCAmelCase_ , UpperCAmelCase_ ):
@register_to_config
def __init__(self : List[str] , __UpperCAmelCase : int = 1_0_0_0 , __UpperCAmelCase : str = "fixed_small_log" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[float] = 1.0 , __UpperCAmelCase : str = "epsilon" , __UpperCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]:
"""simple docstring"""
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
UpperCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase )
UpperCAmelCase__ = 1.0 - self.betas
UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 )
UpperCAmelCase__ = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
UpperCAmelCase__ = 1.0
# setable values
UpperCAmelCase__ = None
UpperCAmelCase__ = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() )
UpperCAmelCase__ = variance_type
def lowercase_ (self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor:
"""simple docstring"""
return sample
def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> Any:
"""simple docstring"""
UpperCAmelCase__ = num_inference_steps
UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
UpperCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
UpperCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase )
def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=None ) -> Tuple:
"""simple docstring"""
if prev_timestep is None:
UpperCAmelCase__ = t - 1
UpperCAmelCase__ = self.alphas_cumprod[t]
UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase__ = 1 - alpha_prod_t
UpperCAmelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase__ = self.betas[t]
else:
UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
UpperCAmelCase__ = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
UpperCAmelCase__ = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) )
UpperCAmelCase__ = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
UpperCAmelCase__ = variance.log()
UpperCAmelCase__ = beta.log()
UpperCAmelCase__ = (predicted_variance + 1) / 2
UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log
return variance
def lowercase_ (self : Optional[int] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
"""simple docstring"""
UpperCAmelCase__ = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
UpperCAmelCase__ , UpperCAmelCase__ = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 )
else:
UpperCAmelCase__ = None
# 1. compute alphas, betas
if prev_timestep is None:
UpperCAmelCase__ = t - 1
UpperCAmelCase__ = self.alphas_cumprod[t]
UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
UpperCAmelCase__ = 1 - alpha_prod_t
UpperCAmelCase__ = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
UpperCAmelCase__ = self.betas[t]
UpperCAmelCase__ = self.alphas[t]
else:
UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev
UpperCAmelCase__ = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
UpperCAmelCase__ = model_output
else:
raise ValueError(
f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`"""
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
UpperCAmelCase__ = torch.clamp(
__UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
UpperCAmelCase__ = 0
if t > 0:
UpperCAmelCase__ = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device )
UpperCAmelCase__ = self._get_variance(
__UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , )
if self.variance_type == "fixed_small_log":
UpperCAmelCase__ = variance
elif self.variance_type == "learned_range":
UpperCAmelCase__ = (0.5 * variance).exp()
else:
raise ValueError(
f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`"""
" for the UnCLIPScheduler." )
UpperCAmelCase__ = variance * variance_noise
UpperCAmelCase__ = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase )
def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.IntTensor , ) -> torch.FloatTensor:
"""simple docstring"""
UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
UpperCAmelCase__ = timesteps.to(original_samples.device )
UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5
UpperCAmelCase__ = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 )
UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5
UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples
| 65 |
"""simple docstring"""
from collections.abc import Callable
def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float:
'''simple docstring'''
_A = a
_A = b
if function(_snake_case ) == 0: # one of the a or b is a root for the function
return a
elif function(_snake_case ) == 0:
return b
elif (
function(_snake_case ) * function(_snake_case ) > 0
): # if none of these are root and they are both positive or negative,
# then this algorithm can't find the root
raise ValueError('could not find root in given interval.' )
else:
_A = start + (end - start) / 2.0
while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7
if function(_snake_case ) == 0:
return mid
elif function(_snake_case ) * function(_snake_case ) < 0:
_A = mid
else:
_A = mid
_A = start + (end - start) / 2.0
return mid
def _snake_case ( _snake_case : float ) -> float:
'''simple docstring'''
return x**3 - 2 * x - 5
if __name__ == "__main__":
print(bisection(f, 1, 1_000))
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
import tempfile
import torch
from diffusers import (
DEISMultistepScheduler,
DPMSolverMultistepScheduler,
DPMSolverSinglestepScheduler,
UniPCMultistepScheduler,
)
from .test_schedulers import SchedulerCommonTest
class lowerCamelCase ( _lowerCAmelCase ):
'''simple docstring'''
_A : Tuple = (UniPCMultistepScheduler,)
_A : Any = (("""num_inference_steps""", 2_5),)
def lowerCAmelCase_ ( self: Any , **snake_case: Optional[Any] ) -> Optional[int]:
snake_case_ :Tuple = {
"""num_train_timesteps""": 1_000,
"""beta_start""": 0.0_0_0_1,
"""beta_end""": 0.0_2,
"""beta_schedule""": """linear""",
"""solver_order""": 2,
"""solver_type""": """bh2""",
}
config.update(**snake_case )
return config
def lowerCAmelCase_ ( self: List[Any] , snake_case: Dict=0 , **snake_case: List[str] ) -> Union[str, Any]:
snake_case_ :Any = dict(self.forward_default_kwargs )
snake_case_ :str = kwargs.pop("""num_inference_steps""" , snake_case )
snake_case_ :Optional[int] = self.dummy_sample
snake_case_ :Tuple = 0.1 * sample
snake_case_ :str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
snake_case_ :Union[str, Any] = self.get_scheduler_config(**snake_case )
snake_case_ :Tuple = scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
snake_case_ :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
snake_case_ :int = scheduler_class.from_pretrained(snake_case )
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residuals
snake_case_ :Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
snake_case_, snake_case_ :Union[str, Any] = sample, sample
for t in range(snake_case , time_step + scheduler.config.solver_order + 1 ):
snake_case_ :Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
snake_case_ :Dict = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self: Tuple , snake_case: List[Any]=0 , **snake_case: Union[str, Any] ) -> Union[str, Any]:
snake_case_ :Dict = dict(self.forward_default_kwargs )
snake_case_ :List[Any] = kwargs.pop("""num_inference_steps""" , snake_case )
snake_case_ :Optional[int] = self.dummy_sample
snake_case_ :Any = 0.1 * sample
snake_case_ :Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
for scheduler_class in self.scheduler_classes:
snake_case_ :Tuple = self.get_scheduler_config()
snake_case_ :Dict = scheduler_class(**snake_case )
scheduler.set_timesteps(snake_case )
# copy over dummy past residuals (must be after setting timesteps)
snake_case_ :Dict = dummy_past_residuals[: scheduler.config.solver_order]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(snake_case )
snake_case_ :Tuple = scheduler_class.from_pretrained(snake_case )
# copy over dummy past residuals
new_scheduler.set_timesteps(snake_case )
# copy over dummy past residual (must be after setting timesteps)
snake_case_ :List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order]
snake_case_ :List[Any] = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
snake_case_ :List[Any] = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical"
def lowerCAmelCase_ ( self: Any , snake_case: List[str]=None , **snake_case: int ) -> Any:
if scheduler is None:
snake_case_ :Optional[int] = self.scheduler_classes[0]
snake_case_ :Optional[int] = self.get_scheduler_config(**snake_case )
snake_case_ :int = scheduler_class(**snake_case )
snake_case_ :Optional[int] = self.scheduler_classes[0]
snake_case_ :List[str] = self.get_scheduler_config(**snake_case )
snake_case_ :Optional[int] = scheduler_class(**snake_case )
snake_case_ :Dict = 10
snake_case_ :List[str] = self.dummy_model()
snake_case_ :str = self.dummy_sample_deter
scheduler.set_timesteps(snake_case )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ :Dict = model(snake_case , snake_case )
snake_case_ :int = scheduler.step(snake_case , snake_case , snake_case ).prev_sample
return sample
def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]:
snake_case_ :Dict = dict(self.forward_default_kwargs )
snake_case_ :List[Any] = kwargs.pop("""num_inference_steps""" , snake_case )
for scheduler_class in self.scheduler_classes:
snake_case_ :Union[str, Any] = self.get_scheduler_config()
snake_case_ :List[str] = scheduler_class(**snake_case )
snake_case_ :int = self.dummy_sample
snake_case_ :Tuple = 0.1 * sample
if num_inference_steps is not None and hasattr(snake_case , """set_timesteps""" ):
scheduler.set_timesteps(snake_case )
elif num_inference_steps is not None and not hasattr(snake_case , """set_timesteps""" ):
snake_case_ :Optional[int] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
snake_case_ :Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0]
snake_case_ :int = dummy_past_residuals[: scheduler.config.solver_order]
snake_case_ :int = scheduler.timesteps[5]
snake_case_ :List[str] = scheduler.timesteps[6]
snake_case_ :Dict = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
snake_case_ :Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample
self.assertEqual(output_a.shape , sample.shape )
self.assertEqual(output_a.shape , output_a.shape )
def lowerCAmelCase_ ( self: int ) -> List[Any]:
# make sure that iterating over schedulers with same config names gives same results
# for defaults
snake_case_ :str = UniPCMultistepScheduler(**self.get_scheduler_config() )
snake_case_ :List[Any] = self.full_loop(scheduler=snake_case )
snake_case_ :Optional[int] = torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
snake_case_ :Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config )
snake_case_ :Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config )
snake_case_ :int = DPMSolverMultistepScheduler.from_config(scheduler.config )
snake_case_ :Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config )
snake_case_ :str = self.full_loop(scheduler=snake_case )
snake_case_ :Dict = torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def lowerCAmelCase_ ( self: Any ) -> List[str]:
for timesteps in [25, 50, 100, 999, 1_000]:
self.check_over_configs(num_train_timesteps=snake_case )
def lowerCAmelCase_ ( self: Tuple ) -> Tuple:
self.check_over_configs(thresholding=snake_case )
for order in [1, 2, 3]:
for solver_type in ["bh1", "bh2"]:
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , solver_order=snake_case , solver_type=snake_case , )
def lowerCAmelCase_ ( self: Dict ) -> List[str]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case )
def lowerCAmelCase_ ( self: str ) -> Optional[int]:
for solver_type in ["bh1", "bh2"]:
for order in [1, 2, 3]:
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(
solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , )
snake_case_ :str = self.full_loop(
solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , )
assert not torch.isnan(snake_case ).any(), "Samples have nan numbers"
def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]:
self.check_over_configs(lower_order_final=snake_case )
self.check_over_configs(lower_order_final=snake_case )
def lowerCAmelCase_ ( self: List[str] ) -> int:
for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]:
self.check_over_forward(num_inference_steps=snake_case , time_step=0 )
def lowerCAmelCase_ ( self: str ) -> Optional[int]:
snake_case_ :Tuple = self.full_loop()
snake_case_ :List[Any] = torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3
def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]:
snake_case_ :Dict = self.full_loop(prediction_type="""v_prediction""" )
snake_case_ :Any = torch.mean(torch.abs(snake_case ) )
assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3
def lowerCAmelCase_ ( self: Any ) -> List[str]:
snake_case_ :Dict = self.scheduler_classes[0]
snake_case_ :Tuple = self.get_scheduler_config(thresholding=snake_case , dynamic_thresholding_ratio=0 )
snake_case_ :List[Any] = scheduler_class(**snake_case )
snake_case_ :Any = 10
snake_case_ :int = self.dummy_model()
snake_case_ :Union[str, Any] = self.dummy_sample_deter.half()
scheduler.set_timesteps(snake_case )
for i, t in enumerate(scheduler.timesteps ):
snake_case_ :int = model(snake_case , snake_case )
snake_case_ :List[Any] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample
assert sample.dtype == torch.floataa
def lowerCAmelCase_ ( self: Tuple , **snake_case: List[Any] ) -> Dict:
for scheduler_class in self.scheduler_classes:
snake_case_ :int = self.get_scheduler_config(**snake_case )
snake_case_ :Tuple = scheduler_class(**snake_case )
scheduler.set_timesteps(scheduler.config.num_train_timesteps )
assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
| 66 |
"""simple docstring"""
import os
import tempfile
import unittest
from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter
from transformers.testing_utils import slow
from transformers.utils import cached_property
@unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' )
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
@cached_property
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = tempfile.mkdtemp()
return TatoebaConverter(save_dir=_UpperCAmelCase )
@slow
def lowerCAmelCase_ ( self : Optional[int] ):
self.resolver.convert_models(['heb-eng'] )
@slow
def lowerCAmelCase_ ( self : Optional[Any] ):
_A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase )
assert mmeta["long_pair"] == "heb-eng"
| 315 | 0 |
'''simple docstring'''
from dataclasses import dataclass
from enum import Enum
from typing import List, Optional, Union
import numpy as np
import PIL
from PIL import Image
from ...utils import BaseOutput, is_torch_available, is_transformers_available
@dataclass
class a__ ( UpperCAmelCase__ ):
lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray]
lowerCamelCase : Optional[List[bool]]
if is_transformers_available() and is_torch_available():
from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
| 67 |
"""simple docstring"""
from ...utils import is_note_seq_available, is_transformers_available, is_torch_available
from ...utils import OptionalDependencyNotAvailable
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .notes_encoder import SpectrogramNotesEncoder
from .continous_encoder import SpectrogramContEncoder
from .pipeline_spectrogram_diffusion import (
SpectrogramContEncoder,
SpectrogramDiffusionPipeline,
TaFilmDecoder,
)
try:
if not (is_transformers_available() and is_torch_available() and is_note_seq_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403
else:
from .midi_utils import MidiProcessor
| 315 | 0 |
lowerCAmelCase__ = """
# Transformers installation
! pip install transformers datasets
# To install from source instead of the last release, comment the command above and uncomment the following one.
# ! pip install git+https://github.com/huggingface/transformers.git
"""
lowerCAmelCase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}]
lowerCAmelCase__ = {
"""{processor_class}""": """FakeProcessorClass""",
"""{model_class}""": """FakeModelClass""",
"""{object_class}""": """FakeObjectClass""",
}
| 68 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]:
'''simple docstring'''
_A , _A = position
_A = [
(y + 1, x + 2),
(y - 1, x + 2),
(y + 1, x - 2),
(y - 1, x - 2),
(y + 2, x + 1),
(y + 2, x - 1),
(y - 2, x + 1),
(y - 2, x - 1),
]
_A = []
for position in positions:
_A , _A = position
if 0 <= y_test < n and 0 <= x_test < n:
permissible_positions.append(_snake_case )
return permissible_positions
def _snake_case ( _snake_case : list[list[int]] ) -> bool:
'''simple docstring'''
return not any(elem == 0 for row in board for elem in row )
def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool:
'''simple docstring'''
if is_complete(_snake_case ):
return True
for position in get_valid_pos(_snake_case , len(_snake_case ) ):
_A , _A = position
if board[y][x] == 0:
_A = curr + 1
if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ):
return True
_A = 0
return False
def _snake_case ( _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = [[0 for i in range(_snake_case )] for j in range(_snake_case )]
for i in range(_snake_case ):
for j in range(_snake_case ):
_A = 1
if open_knight_tour_helper(_snake_case , (i, j) , 1 ):
return board
_A = 0
_A = F'''Open Kight Tour cannot be performed on a board of size {n}'''
raise ValueError(_snake_case )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
"""simple docstring"""
def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> int:
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 69 |
"""simple docstring"""
import math
import time
from transformers import Trainer, is_torch_tpu_available
from transformers.trainer_utils import PredictionOutput, speed_metrics
if is_torch_tpu_available(check_device=False):
import torch_xla.core.xla_model as xm
import torch_xla.debug.metrics as met
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ):
super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
_A = eval_examples
_A = post_process_function
def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ):
_A = self.eval_dataset if eval_dataset is None else eval_dataset
_A = self.get_eval_dataloader(_UpperCAmelCase )
_A = self.eval_examples if eval_examples is None else eval_examples
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save:
# Only the main node write the results by default
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
else:
_A = output.metrics
if self.args.should_log:
# Only the main node log the results by default
self.log(_UpperCAmelCase )
if self.args.tpu_metrics_debug or self.args.debug:
# tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.)
xm.master_print(met.metrics_report() )
_A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase )
return metrics
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ):
_A = self.get_test_dataloader(_UpperCAmelCase )
# Temporarily disable metric computation, we will do it in the loop here.
_A = self.compute_metrics
_A = None
_A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop
_A = time.time()
try:
_A = eval_loop(
_UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , )
finally:
_A = compute_metrics
_A = self.args.eval_batch_size * self.args.world_size
if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics:
start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time''']
output.metrics.update(
speed_metrics(
_UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) )
if self.post_process_function is None or self.compute_metrics is None:
return output
_A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' )
_A = self.compute_metrics(_UpperCAmelCase )
# Prefix all keys with metric_key_prefix + '_'
for key in list(metrics.keys() ):
if not key.startswith(F'''{metric_key_prefix}_''' ):
_A = metrics.pop(_UpperCAmelCase )
metrics.update(output.metrics )
return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
| 315 | 0 |
'''simple docstring'''
A__ : Optional[int] ='''
# Transformers 설치 방법
! pip install transformers datasets
# 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요.
# ! pip install git+https://github.com/huggingface/transformers.git
'''
A__ : int =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}]
A__ : str ={
'''{processor_class}''': '''FakeProcessorClass''',
'''{model_class}''': '''FakeModelClass''',
'''{object_class}''': '''FakeObjectClass''',
}
| 70 |
"""simple docstring"""
def _snake_case ( _snake_case : int , _snake_case : int ) -> bool:
'''simple docstring'''
return numa ^ numa < 0
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
def A ( a_ ,a_ ) -> int:
return int((input_a, input_a).count(1 ) != 0 )
def A ( ) -> None:
assert or_gate(0 ,0 ) == 0
assert or_gate(0 ,1 ) == 1
assert or_gate(1 ,0 ) == 1
assert or_gate(1 ,1 ) == 1
if __name__ == "__main__":
print(or_gate(0, 1))
print(or_gate(1, 0))
print(or_gate(0, 0))
print(or_gate(1, 1))
| 71 |
"""simple docstring"""
import unittest
from .lib import (
Matrix,
Vector,
axpy,
square_zero_matrix,
unit_basis_vector,
zero_vector,
)
class lowercase_ ( unittest.TestCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
self.assertEqual(x.component(0 ) , 1 )
self.assertEqual(x.component(2 ) , 3 )
_A = Vector()
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([0, 0, 0, 0, 0, 1] )
self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' )
def lowerCAmelCase_ ( self : Optional[int] ):
_A = Vector([1, 2, 3, 4] )
self.assertEqual(len(_UpperCAmelCase ) , 4 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2] )
_A = Vector([1, 2, 3, 4, 5] )
_A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] )
_A = Vector([1, -1, 1, -1, 2, -3, 4, -5] )
self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 )
self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 )
self.assertEqual(z.euclidean_length() , 0 )
self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 )
def lowerCAmelCase_ ( self : str ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x + y).component(0 ) , 2 )
self.assertEqual((x + y).component(1 ) , 3 )
self.assertEqual((x + y).component(2 ) , 4 )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 1, 1] )
self.assertEqual((x - y).component(0 ) , 0 )
self.assertEqual((x - y).component(1 ) , 1 )
self.assertEqual((x - y).component(2 ) , 2 )
def lowerCAmelCase_ ( self : int ):
_A = Vector([1, 2, 3] )
_A = Vector([2, -1, 4] ) # for test of dot product
_A = Vector([1, -2, -1] )
self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' )
self.assertEqual((a * b) , 0 )
def lowerCAmelCase_ ( self : Dict ):
self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 )
def lowerCAmelCase_ ( self : Tuple ):
self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 2, 3] )
_A = Vector([1, 0, 1] )
self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' )
def lowerCAmelCase_ ( self : Union[str, Any] ):
_A = Vector([1, 0, 0, 0, 0, 0] )
_A = x.copy()
self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Vector([1, 0, 0] )
x.change_component(0 , 0 )
x.change_component(1 , 1 )
self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]]
for x in range(a.height() ):
for y in range(a.width() ):
self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) )
def lowerCAmelCase_ ( self : str ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(-5 , a.determinant() )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 )
_A = Vector([1, 2, 3] )
self.assertEqual('(14,32,50)' , str(a * x ) )
self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) )
def lowerCAmelCase_ ( self : Any ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
a.change_component(0 , 2 , 5 )
self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) )
def lowerCAmelCase_ ( self : List[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
self.assertEqual(7 , a.component(2 , 1 ) , 0.01 )
def lowerCAmelCase_ ( self : Tuple ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) )
def lowerCAmelCase_ ( self : Optional[Any] ):
_A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 )
_A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 )
self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) )
def lowerCAmelCase_ ( self : int ):
self.assertEqual(
'|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , )
if __name__ == "__main__":
unittest.main()
| 315 | 0 |
"""simple docstring"""
from manim import *
class __snake_case ( _lowercase):
def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ):
"""simple docstring"""
_lowerCamelCase : List[Any] = Rectangle(height=0.5 , width=0.5 )
_lowerCamelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_lowerCamelCase : List[Any] = Rectangle(height=0.25 , width=0.25 )
_lowerCamelCase : int = [mem.copy() for i in range(6 )]
_lowerCamelCase : List[str] = [mem.copy() for i in range(6 )]
_lowerCamelCase : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : Dict = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : Any = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : List[str] = Text('''CPU''' , font_size=2_4 )
_lowerCamelCase : Any = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(__lowerCAmelCase )
_lowerCamelCase : Optional[int] = [mem.copy() for i in range(4 )]
_lowerCamelCase : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : List[str] = Text('''GPU''' , font_size=2_4 )
_lowerCamelCase : Optional[int] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(__lowerCAmelCase )
_lowerCamelCase : List[str] = [mem.copy() for i in range(6 )]
_lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : Optional[Any] = Text('''Model''' , font_size=2_4 )
_lowerCamelCase : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(__lowerCAmelCase )
_lowerCamelCase : List[str] = []
_lowerCamelCase : List[str] = []
for i, rect in enumerate(__lowerCAmelCase ):
_lowerCamelCase : List[str] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.8 )
target.move_to(__lowerCAmelCase )
model_arr.append(__lowerCAmelCase )
_lowerCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(__lowerCAmelCase )
self.add(*__lowerCAmelCase , *__lowerCAmelCase )
_lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )]
_lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )]
_lowerCamelCase : Optional[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : Optional[Any] = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 )
_lowerCamelCase : str = Text('''Disk''' , font_size=2_4 )
_lowerCamelCase : List[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(__lowerCAmelCase , __lowerCAmelCase )
_lowerCamelCase : Optional[int] = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_lowerCamelCase : List[Any] = MarkupText(
f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , )
key_text.move_to([-5, 2.4, 0] )
self.add(__lowerCAmelCase , __lowerCAmelCase )
_lowerCamelCase : List[Any] = MarkupText(
f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , )
blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(__lowerCAmelCase )
_lowerCamelCase : Tuple = MarkupText(
f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCAmelCase ) )
_lowerCamelCase : Union[str, Any] = Square(0.3 )
input.set_fill(__lowerCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , __lowerCAmelCase , buff=0.5 )
self.play(Write(__lowerCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=__lowerCAmelCase , buff=0.02 )
self.play(MoveToTarget(__lowerCAmelCase ) )
self.play(FadeOut(__lowerCAmelCase ) )
_lowerCamelCase : List[Any] = Arrow(start=__lowerCAmelCase , end=__lowerCAmelCase , color=__lowerCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , __lowerCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_lowerCamelCase : Any = MarkupText(
f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCAmelCase , run_time=3 ) )
_lowerCamelCase : List[str] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02}
self.play(
Write(__lowerCAmelCase ) , Circumscribe(model_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_lowerCamelCase : Optional[int] = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , __lowerCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_lowerCamelCase : int = AnimationGroup(
FadeOut(__lowerCAmelCase , run_time=0.5 ) , MoveToTarget(__lowerCAmelCase , run_time=0.5 ) , FadeIn(__lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(__lowerCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_lowerCamelCase : Dict = 0.7
self.play(
Circumscribe(model_arr[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_lowerCamelCase : Dict = a_c
_lowerCamelCase : List[str] = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(__lowerCAmelCase ) , FadeOut(__lowerCAmelCase , run_time=0.5 ) , )
_lowerCamelCase : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 )
step_a.move_to([2, 2, 0] )
self.play(Write(__lowerCAmelCase , run_time=3 ) , MoveToTarget(__lowerCAmelCase ) )
self.wait()
| 72 |
"""simple docstring"""
import warnings
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a = logging.get_logger(__name__)
a = {
'''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''',
'''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''',
}
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : int = '''xlnet'''
UpperCAmelCase : List[Any] = ['''mems''']
UpperCAmelCase : Any = {
'''n_token''': '''vocab_size''', # Backward compatibility
'''hidden_size''': '''d_model''',
'''num_attention_heads''': '''n_head''',
'''num_hidden_layers''': '''n_layer''',
}
def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ):
_A = vocab_size
_A = d_model
_A = n_layer
_A = n_head
if d_model % n_head != 0:
raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' )
if "d_head" in kwargs:
if kwargs["d_head"] != d_model // n_head:
raise ValueError(
F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' )
_A = d_model // n_head
_A = ff_activation
_A = d_inner
_A = untie_r
_A = attn_type
_A = initializer_range
_A = layer_norm_eps
_A = dropout
_A = mem_len
_A = reuse_len
_A = bi_data
_A = clamp_len
_A = same_length
_A = summary_type
_A = summary_use_proj
_A = summary_activation
_A = summary_last_dropout
_A = start_n_top
_A = end_n_top
_A = bos_token_id
_A = pad_token_id
_A = eos_token_id
if "use_cache" in kwargs:
warnings.warn(
'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`'
' instead.' , _UpperCAmelCase , )
_A = kwargs['use_cache']
_A = use_mems_eval
_A = use_mems_train
super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase )
@property
def lowerCAmelCase_ ( self : Tuple ):
logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
return -1
@max_position_embeddings.setter
def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ):
# Message copied from Transformer-XL documentation
raise NotImplementedError(
F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
| 315 | 0 |
import pyarrow.parquet as pq
import pytest
from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config
from datasets.features.image import Image
from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size
from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any:
assert isinstance(lowerCamelCase__ , lowerCamelCase__ )
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
__lowerCamelCase : str = tmp_path / 'cache'
__lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read()
_check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any:
__lowerCamelCase : Union[str, Any] = tmp_path / 'cache'
__lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features
__lowerCamelCase : Union[str, Any] = (
Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read()
_check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str:
__lowerCamelCase : Union[str, Any] = tmp_path / 'cache'
__lowerCamelCase : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , split=lowerCamelCase__ ).read()
_check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ )
assert dataset.split == split if split else "train"
@pytest.mark.parametrize('path_type' , [str, list] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
if issubclass(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase : Optional[int] = parquet_path
elif issubclass(lowerCamelCase__ , lowerCamelCase__ ):
__lowerCamelCase : Dict = [parquet_path]
__lowerCamelCase : List[Any] = tmp_path / 'cache'
__lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read()
_check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=("train",) ) -> List[str]:
assert isinstance(lowerCamelCase__ , lowerCamelCase__ )
for split in splits:
__lowerCamelCase : Dict = dataset_dict[split]
assert dataset.num_rows == 4
assert dataset.num_columns == 3
assert dataset.column_names == ["col_1", "col_2", "col_3"]
for feature, expected_dtype in expected_features.items():
assert dataset.features[feature].dtype == expected_dtype
@pytest.mark.parametrize('keep_in_memory' , [False, True] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
__lowerCamelCase : Union[str, Any] = tmp_path / 'cache'
__lowerCamelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase():
__lowerCamelCase : List[str] = ParquetDatasetReader(
{'train': parquet_path} , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read()
_check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ )
@pytest.mark.parametrize(
'features' , [
None,
{'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'},
{'col_1': 'string', 'col_2': 'string', 'col_3': 'string'},
{'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'},
{'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'},
] , )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
__lowerCamelCase : Tuple = tmp_path / 'cache'
__lowerCamelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : List[str] = features.copy() if features else default_expected_features
__lowerCamelCase : str = (
Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None
)
__lowerCamelCase : Union[str, Any] = ParquetDatasetReader({'train': parquet_path} , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read()
_check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ )
@pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
if split:
__lowerCamelCase : List[str] = {split: parquet_path}
else:
__lowerCamelCase : List[str] = 'train'
__lowerCamelCase : List[Any] = {'train': parquet_path, 'test': parquet_path}
__lowerCamelCase : Tuple = tmp_path / 'cache'
__lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}
__lowerCamelCase : Optional[Any] = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read()
_check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ , splits=list(path.keys() ) )
assert all(dataset[split].split == split for split in path.keys() )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict:
__lowerCamelCase : Union[str, Any] = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' )
assert writer.write() > 0
__lowerCamelCase : Union[str, Any] = pq.ParquetFile(tmp_path / 'foo.parquet' )
__lowerCamelCase : List[str] = pf.read()
assert dataset.data.table == output_table
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]:
__lowerCamelCase : List[str] = str(shared_datadir / 'test_image_rgb.jpg' )
__lowerCamelCase : Optional[int] = {'image': [image_path]}
__lowerCamelCase : int = Features({'image': Image()} )
__lowerCamelCase : Union[str, Any] = Dataset.from_dict(lowerCamelCase__ , features=lowerCamelCase__ )
__lowerCamelCase : Any = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' )
assert writer.write() > 0
__lowerCamelCase : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) )
assert dataset.features == reloaded_dataset.features
__lowerCamelCase : Dict = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowerCamelCase__ ).read()
assert dataset.features == reloaded_iterable_dataset.features
@pytest.mark.parametrize(
'feature, expected' , [
(Features({'foo': Value('int32' )} ), None),
(Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS),
(Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS),
] , )
def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]:
assert get_writer_batch_size(lowerCamelCase__ ) == expected
| 73 |
"""simple docstring"""
import argparse
import json
import os
import pickle
import shutil
import numpy as np
import torch
from distiller import Distiller
from lm_seqs_dataset import LmSeqsDataset
from transformers import (
BertConfig,
BertForMaskedLM,
BertTokenizer,
DistilBertConfig,
DistilBertForMaskedLM,
DistilBertTokenizer,
GPTaConfig,
GPTaLMHeadModel,
GPTaTokenizer,
RobertaConfig,
RobertaForMaskedLM,
RobertaTokenizer,
)
from utils import git_log, init_gpu_params, logger, set_seed
a = {
'''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer),
'''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer),
'''bert''': (BertConfig, BertForMaskedLM, BertTokenizer),
'''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer),
}
def _snake_case ( _snake_case : Tuple ) -> Dict:
'''simple docstring'''
assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0)
assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0)
if args.mlm:
assert os.path.isfile(args.token_counts )
assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"])
else:
assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"])
assert args.teacher_type == args.student_type or (
args.student_type == "distilbert" and args.teacher_type == "bert"
)
assert os.path.isfile(args.student_config )
if args.student_pretrained_weights is not None:
assert os.path.isfile(args.student_pretrained_weights )
if args.freeze_token_type_embds:
assert args.student_type in ["roberta"]
assert args.alpha_ce >= 0.0
assert args.alpha_mlm >= 0.0
assert args.alpha_clm >= 0.0
assert args.alpha_mse >= 0.0
assert args.alpha_cos >= 0.0
assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0
def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
elif args.student_type == "gpt2":
_A = False
def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple:
'''simple docstring'''
if args.student_type == "roberta":
_A = False
def _snake_case ( ) -> Tuple:
'''simple docstring'''
_A = argparse.ArgumentParser(description='Training' )
parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' )
parser.add_argument(
'--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' )
parser.add_argument(
'--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , )
parser.add_argument(
'--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , )
parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' )
parser.add_argument(
'--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' )
parser.add_argument(
'--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' )
parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' )
parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' )
parser.add_argument(
'--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' )
parser.add_argument(
'--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , )
parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' )
parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' )
parser.add_argument(
'--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' )
parser.add_argument(
'--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' )
parser.add_argument(
'--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , )
parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' )
parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' )
parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' )
parser.add_argument(
'--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , )
parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' )
parser.add_argument(
'--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , )
parser.add_argument(
'--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , )
parser.add_argument(
'--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , )
parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' )
parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' )
parser.add_argument(
'--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , )
parser.add_argument(
'--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , )
parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' )
parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' )
parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' )
parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' )
parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' )
parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' )
parser.add_argument(
'--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , )
parser.add_argument(
'--fp16_opt_level' , type=_snake_case , default='O1' , help=(
'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].'
'See details at https://nvidia.github.io/apex/amp.html'
) , )
parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' )
parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' )
parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' )
parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' )
parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' )
_A = parser.parse_args()
sanity_checks(_snake_case )
# ARGS #
init_gpu_params(_snake_case )
set_seed(_snake_case )
if args.is_master:
if os.path.exists(args.dump_path ):
if not args.force:
raise ValueError(
F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite'''
' itUse `--force` if you want to overwrite it' )
else:
shutil.rmtree(args.dump_path )
if not os.path.exists(args.dump_path ):
os.makedirs(args.dump_path )
logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' )
# SAVE PARAMS #
logger.info(F'''Param: {args}''' )
with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f:
json.dump(vars(_snake_case ) , _snake_case , indent=4 )
git_log(args.dump_path )
_A , _A , _A = MODEL_CLASSES[args.student_type]
_A , _A , _A = MODEL_CLASSES[args.teacher_type]
# TOKENIZER #
_A = teacher_tokenizer_class.from_pretrained(args.teacher_name )
_A = {}
for tok_name, tok_symbol in tokenizer.special_tokens_map.items():
_A = tokenizer.all_special_tokens.index(_snake_case )
_A = tokenizer.all_special_ids[idx]
logger.info(F'''Special tokens {special_tok_ids}''' )
_A = special_tok_ids
_A = tokenizer.max_model_input_sizes[args.teacher_name]
# DATA LOADER #
logger.info(F'''Loading data from {args.data_file}''' )
with open(args.data_file , 'rb' ) as fp:
_A = pickle.load(_snake_case )
if args.mlm:
logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' )
with open(args.token_counts , 'rb' ) as fp:
_A = pickle.load(_snake_case )
_A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing
for idx in special_tok_ids.values():
_A = 0.0 # do not predict special tokens
_A = torch.from_numpy(_snake_case )
else:
_A = None
_A = LmSeqsDataset(params=_snake_case , data=_snake_case )
logger.info('Data loader created.' )
# STUDENT #
logger.info(F'''Loading student config from {args.student_config}''' )
_A = student_config_class.from_pretrained(args.student_config )
_A = True
if args.student_pretrained_weights is not None:
logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' )
_A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case )
else:
_A = student_model_class(_snake_case )
if args.n_gpu > 0:
student.to(F'''cuda:{args.local_rank}''' )
logger.info('Student loaded.' )
# TEACHER #
_A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case )
if args.n_gpu > 0:
teacher.to(F'''cuda:{args.local_rank}''' )
logger.info(F'''Teacher loaded from {args.teacher_name}.''' )
# FREEZING #
if args.freeze_pos_embs:
freeze_pos_embeddings(_snake_case , _snake_case )
if args.freeze_token_type_embds:
freeze_token_type_embeddings(_snake_case , _snake_case )
# SANITY CHECKS #
assert student.config.vocab_size == teacher.config.vocab_size
assert student.config.hidden_size == teacher.config.hidden_size
assert student.config.max_position_embeddings == teacher.config.max_position_embeddings
if args.mlm:
assert token_probs.size(0 ) == stu_architecture_config.vocab_size
# DISTILLER #
torch.cuda.empty_cache()
_A = Distiller(
params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case )
distiller.train()
logger.info('Let\'s go get some drinks.' )
if __name__ == "__main__":
main()
| 315 | 0 |
"""simple docstring"""
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_lowercase = logging.get_logger(__name__)
_lowercase = {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json'''
),
# See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text
}
class lowerCAmelCase_ ( _lowercase ):
'''simple docstring'''
_lowerCamelCase: Optional[Any] = '''speech_to_text'''
_lowerCamelCase: Union[str, Any] = ['''past_key_values''']
_lowerCamelCase: Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''}
def __init__( self : Union[str, Any] ,A_ : Tuple=1_0000 ,A_ : Union[str, Any]=12 ,A_ : int=2048 ,A_ : List[Any]=4 ,A_ : int=6 ,A_ : List[Any]=2048 ,A_ : List[str]=4 ,A_ : Optional[Any]=0.0 ,A_ : str=0.0 ,A_ : Dict=True ,A_ : List[Any]=True ,A_ : int="relu" ,A_ : List[str]=256 ,A_ : Dict=0.1 ,A_ : List[Any]=0.0 ,A_ : List[Any]=0.0 ,A_ : Union[str, Any]=0.02 ,A_ : str=2 ,A_ : Union[str, Any]=True ,A_ : List[str]=1 ,A_ : Union[str, Any]=0 ,A_ : int=2 ,A_ : int=6000 ,A_ : Dict=1024 ,A_ : str=2 ,A_ : Tuple=(5, 5) ,A_ : List[str]=1024 ,A_ : str=80 ,A_ : int=1 ,**A_ : Union[str, Any] ,) -> Optional[Any]:
A = vocab_size
A = d_model
A = encoder_ffn_dim
A = encoder_layers
A = encoder_attention_heads
A = decoder_ffn_dim
A = decoder_layers
A = decoder_attention_heads
A = dropout
A = attention_dropout
A = activation_dropout
A = activation_function
A = init_std
A = encoder_layerdrop
A = decoder_layerdrop
A = use_cache
A = encoder_layers
A = scale_embedding # scale factor will be sqrt(d_model) if True
A = max_source_positions
A = max_target_positions
A = num_conv_layers
A = list(A_ )
A = conv_channels
A = input_feat_per_channel
A = input_channels
if len(self.conv_kernel_sizes ) != self.num_conv_layers:
raise ValueError(
'Configuration for convolutional module is incorrect. '
'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` '
F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, '
F'`config.num_conv_layers = {self.num_conv_layers}`.' )
super().__init__(
pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,is_encoder_decoder=A_ ,decoder_start_token_id=A_ ,**A_ ,)
| 74 |
"""simple docstring"""
from manim import *
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
def lowerCAmelCase_ ( self : Dict ):
_A = Rectangle(height=0.5 , width=0.5 )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 )
_A = Rectangle(height=0.25 , width=0.25 )
_A = [mem.copy() for i in range(6 )]
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('CPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
cpu.move_to([-2.5, -0.5, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(4 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('GPU' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
gpu.move_to([-1, -1, 0] )
self.add(_UpperCAmelCase )
_A = [mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Model' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
model.move_to([3, -1.0, 0] )
self.add(_UpperCAmelCase )
_A = []
_A = []
for i, rect in enumerate(_UpperCAmelCase ):
_A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 )
target.move_to(_UpperCAmelCase )
model_arr.append(_UpperCAmelCase )
_A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 )
cpu_target.move_to(cpu_left_col_base[i] )
model_cpu_arr.append(_UpperCAmelCase )
self.add(*_UpperCAmelCase , *_UpperCAmelCase )
_A = [meta_mem.copy() for i in range(6 )]
_A = [meta_mem.copy() for i in range(6 )]
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 )
_A = Text('Disk' , font_size=24 )
_A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase )
disk.move_to([-4, -1.25, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = Square(side_length=2.2 )
key.move_to([-5, 2, 0] )
_A = MarkupText(
F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , )
key_text.move_to([-5, 2.4, 0] )
self.add(_UpperCAmelCase , _UpperCAmelCase )
_A = MarkupText(
F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , )
blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() )
self.add(_UpperCAmelCase )
_A = MarkupText(
F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase ) )
_A = Square(0.3 )
input.set_fill(_UpperCAmelCase , opacity=1.0 )
input.set_stroke(width=0.0 )
input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 )
self.play(Write(_UpperCAmelCase ) )
input.generate_target()
input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 )
self.play(MoveToTarget(_UpperCAmelCase ) )
self.play(FadeOut(_UpperCAmelCase ) )
_A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 )
a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 )
model_cpu_arr[0].generate_target()
model_cpu_arr[0].target.move_to(gpu_rect[0] )
_A = MarkupText(
F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) )
_A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02}
self.play(
Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[0] ) )
_A = a.copy()
for i in range(6 ):
a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 )
input.generate_target()
input.target.move_to(model_arr[i].get_right() + 0.02 )
_A = AnimationGroup(
FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 )
self.play(_UpperCAmelCase )
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[i] )
if i < 5:
model_cpu_arr[i + 1].generate_target()
model_cpu_arr[i + 1].target.move_to(gpu_rect[0] )
if i >= 1:
_A = 0.7
self.play(
Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
if i < 1:
self.play(
MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , )
else:
self.play(
MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , )
else:
model_cpu_arr[i].generate_target()
model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] )
input.generate_target()
input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 )
self.play(
Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , )
self.play(MoveToTarget(model_cpu_arr[i] ) )
_A = a_c
_A = a_c.copy()
input.generate_target()
input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 )
self.play(
FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , )
_A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 )
step_a.move_to([2, 2, 0] )
self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) )
self.wait()
| 315 | 0 |
'''simple docstring'''
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.test_utils import execute_subprocess_async
def a_ ( __snake_case : Dict=None ) -> Dict:
"""simple docstring"""
if subparsers is not None:
lowerCamelCase_ =subparsers.add_parser('''test''' )
else:
lowerCamelCase_ =argparse.ArgumentParser('''Accelerate test command''' )
parser.add_argument(
'''--config_file''' , default=__snake_case , help=(
'''The path to use to store the config file. Will default to a file named default_config.yaml in the cache '''
'''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have '''
'''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed '''
'''with \'huggingface\'.'''
) , )
if subparsers is not None:
parser.set_defaults(func=__snake_case )
return parser
def a_ ( __snake_case : Optional[Any] ) -> Any:
"""simple docstring"""
lowerCamelCase_ =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] )
if args.config_file is None:
lowerCamelCase_ =script_name
else:
lowerCamelCase_ =F'''--config_file={args.config_file} {script_name}'''
lowerCamelCase_ =['''accelerate-launch'''] + test_args.split()
lowerCamelCase_ =execute_subprocess_async(__snake_case , env=os.environ.copy() )
if result.returncode == 0:
print('''Test is a success! You are ready for your distributed training!''' )
def a_ ( ) -> List[Any]:
"""simple docstring"""
lowerCamelCase_ =test_command_parser()
lowerCamelCase_ =parser.parse_args()
test_command(__snake_case )
if __name__ == "__main__":
main()
| 75 |
"""simple docstring"""
def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list:
'''simple docstring'''
_A = length or len(_snake_case )
_A = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
_A , _A = list_data[i + 1], list_data[i]
_A = True
return list_data if not swapped else bubble_sort(_snake_case , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 315 | 0 |
import copy
import os
from typing import Union
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ = logging.get_logger(__name__)
a_ = {
'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json',
}
class _UpperCamelCase ( __A ):
'''simple docstring'''
lowerCamelCase__ ='git_vision_model'
def __init__( self : Dict , a : Optional[Any]=768 , a : Union[str, Any]=3072 , a : Tuple=12 , a : int=12 , a : List[str]=3 , a : str=224 , a : List[str]=16 , a : List[Any]="quick_gelu" , a : Any=1e-5 , a : str=0.0 , a : Optional[int]=0.02 , **a : Optional[int] , ) -> Any:
"""simple docstring"""
super().__init__(**a )
SCREAMING_SNAKE_CASE : List[str] = hidden_size
SCREAMING_SNAKE_CASE : List[Any] = intermediate_size
SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers
SCREAMING_SNAKE_CASE : List[str] = num_attention_heads
SCREAMING_SNAKE_CASE : List[Any] = num_channels
SCREAMING_SNAKE_CASE : List[Any] = patch_size
SCREAMING_SNAKE_CASE : List[str] = image_size
SCREAMING_SNAKE_CASE : Tuple = initializer_range
SCREAMING_SNAKE_CASE : List[Any] = attention_dropout
SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act
@classmethod
def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Union[str, Any] ) -> "PretrainedConfig":
"""simple docstring"""
cls._set_token_in_kwargs(a )
SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a )
# get the vision config dict if we are loading from GITConfig
if config_dict.get("model_type" ) == "git":
SCREAMING_SNAKE_CASE : Dict = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
F"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(a , **a )
class _UpperCamelCase ( __A ):
'''simple docstring'''
lowerCamelCase__ ='git'
def __init__( self : Optional[Any] , a : Optional[Any]=None , a : str=3_0522 , a : Dict=768 , a : int=6 , a : Optional[int]=12 , a : List[str]=3072 , a : int="gelu" , a : List[str]=0.1 , a : int=0.1 , a : List[Any]=1024 , a : Union[str, Any]=0.02 , a : Dict=1e-12 , a : Any=0 , a : Any="absolute" , a : List[Any]=True , a : Optional[Any]=False , a : Any=101 , a : Union[str, Any]=102 , a : Optional[Any]=None , **a : Any , ) -> str:
"""simple docstring"""
super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a )
if vision_config is None:
SCREAMING_SNAKE_CASE : Any = {}
logger.info("vision_config is None. initializing the GitVisionConfig with default values." )
SCREAMING_SNAKE_CASE : Optional[Any] = GitVisionConfig(**a )
SCREAMING_SNAKE_CASE : Any = vocab_size
SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size
SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers
SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads
SCREAMING_SNAKE_CASE : Dict = hidden_act
SCREAMING_SNAKE_CASE : int = intermediate_size
SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob
SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob
SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings
SCREAMING_SNAKE_CASE : int = initializer_range
SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps
SCREAMING_SNAKE_CASE : int = position_embedding_type
SCREAMING_SNAKE_CASE : Any = use_cache
SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings
SCREAMING_SNAKE_CASE : Tuple = num_image_with_embedding
SCREAMING_SNAKE_CASE : int = bos_token_id
SCREAMING_SNAKE_CASE : Any = eos_token_id
def __UpperCamelCase ( self : Dict ) -> List[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ )
SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict()
SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type
return output
| 76 |
"""simple docstring"""
import warnings
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import PaddingStrategy, TensorType, logging
a = logging.get_logger(__name__)
class lowercase_ ( __lowerCAmelCase ):
'''simple docstring'''
UpperCAmelCase : Any = ['''input_values''', '''attention_mask''']
def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ):
super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase )
_A = do_normalize
_A = return_attention_mask
_A = num_mel_bins
_A = hop_length
_A = win_length
_A = win_function
_A = frame_signal_scale
_A = fmin
_A = fmax
_A = mel_floor
_A = reduction_factor
_A = win_length * sampling_rate // 1_000
_A = hop_length * sampling_rate // 1_000
_A = optimal_fft_length(self.sample_size )
_A = (self.n_fft // 2) + 1
_A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase )
_A = mel_filter_bank(
num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , )
if frame_signal_scale != 1.0:
warnings.warn(
'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
if reduction_factor != 2.0:
warnings.warn(
'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , )
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ):
if attention_mask is not None:
_A = np.array(_UpperCAmelCase , np.intaa )
_A = []
for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ):
_A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
_A = padding_value
normed_input_values.append(_UpperCAmelCase )
else:
_A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ):
_A = spectrogram(
_UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , )
return log_mel_spec.T
def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ):
if audio is None and audio_target is None:
raise ValueError('You must provide either `audio` or `audio_target` values.' )
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of'''
F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with'''
F''' {self.sampling_rate} and not {sampling_rate}.''' )
else:
logger.warning(
'It is strongly recommended to pass the ``sampling_rate`` argument to this function. '
'Failing to do so can result in silent errors that might be hard to debug.' )
if audio is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
else:
_A = None
if audio_target is not None:
_A = self._process_audio(
_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , )
if inputs is None:
return inputs_target
else:
_A = inputs_target['input_values']
_A = inputs_target.get('attention_mask' )
if decoder_attention_mask is not None:
_A = decoder_attention_mask
return inputs
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ):
_A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1
if is_batched_numpy and len(speech.shape ) > 2:
raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' )
_A = is_batched_numpy or (
isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech]
elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ):
_A = np.asarray(_UpperCAmelCase , dtype=np.floataa )
elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ):
_A = speech.astype(np.floataa )
# always return batch
if not is_batched:
_A = [speech]
# needed to make pad() work on spectrogram inputs
_A = self.feature_size
# convert into correct format for padding
if is_target:
_A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech]
_A = BatchFeature({'input_values': features} )
_A = self.num_mel_bins
else:
_A = BatchFeature({'input_values': speech} )
_A = self.pad(
_UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , )
_A = feature_size_hack
# convert input values to correct format
_A = padded_inputs['input_values']
if not isinstance(input_values[0] , np.ndarray ):
_A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values]
elif (
not isinstance(_UpperCAmelCase , np.ndarray )
and isinstance(input_values[0] , np.ndarray )
and input_values[0].dtype is np.dtype(np.floataa )
):
_A = [array.astype(np.floataa ) for array in input_values]
elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ):
_A = input_values.astype(np.floataa )
# convert attention_mask to correct format
_A = padded_inputs.get('attention_mask' )
if attention_mask is not None:
_A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask]
# zero-mean and unit-variance normalization
if not is_target and self.do_normalize:
_A = (
attention_mask
if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD
else None
)
_A = self.zero_mean_unit_var_norm(
padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value )
if return_tensors is not None:
_A = padded_inputs.convert_to_tensors(_UpperCAmelCase )
return padded_inputs
def lowerCAmelCase_ ( self : Any ):
_A = super().to_dict()
# Don't serialize these as they are derived from the other properties.
_A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs']
for name in names:
if name in output:
del output[name]
return output
| 315 | 0 |
"""simple docstring"""
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Value
from .base import TaskTemplate
@dataclass(frozen=_a)
class UpperCAmelCase_ ( _a):
lowerCamelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True})
lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")})
lowerCamelCase__ : ClassVar[Features] = Features({})
lowerCamelCase__ : str = "text"
@property
def _UpperCAmelCase ( self ) -> Dict[str, str]:
return {self.text_column: "text"}
| 77 |
"""simple docstring"""
from __future__ import annotations
def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]:
'''simple docstring'''
_A = []
create_all_state(1 , _snake_case , _snake_case , [] , _snake_case )
return result
def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None:
'''simple docstring'''
if level == 0:
total_list.append(current_list[:] )
return
for i in range(_snake_case , total_number - level + 2 ):
current_list.append(_snake_case )
create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case )
current_list.pop()
def _snake_case ( _snake_case : list[list[int]] ) -> None:
'''simple docstring'''
for i in total_list:
print(*_snake_case )
if __name__ == "__main__":
a = 4
a = 2
a = generate_all_combinations(n, k)
print_all_state(total_list)
| 315 | 0 |
"""simple docstring"""
from __future__ import annotations
def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ):
if (stress, tangential_force, area).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif stress < 0:
raise ValueError('Stress cannot be negative' )
elif tangential_force < 0:
raise ValueError('Tangential Force cannot be negative' )
elif area < 0:
raise ValueError('Area cannot be negative' )
elif stress == 0:
return (
"stress",
tangential_force / area,
)
elif tangential_force == 0:
return (
"tangential_force",
stress * area,
)
else:
return (
"area",
tangential_force / stress,
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 78 |
"""simple docstring"""
def _snake_case ( _snake_case : int = 10_00 ) -> int:
'''simple docstring'''
return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) )
if __name__ == "__main__":
print(solution())
| 315 | 0 |
'''simple docstring'''
# flake8: noqa
# Lint as: python3
lowerCamelCase_ = [
'''VerificationMode''',
'''Version''',
'''disable_progress_bar''',
'''enable_progress_bar''',
'''is_progress_bar_enabled''',
'''experimental''',
]
from .info_utils import VerificationMode
from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled
from .version import Version
from .experimental import experimental
| 79 |
"""simple docstring"""
import flax.linen as nn
import jax.numpy as jnp
from .attention_flax import FlaxTransformeraDModel
from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[str] ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ):
_A = ()
for resnet, attn in zip(self.resnets , self.attentions ):
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : List[Any] ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_downsample:
_A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ):
_A = ()
for resnet in self.resnets:
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
output_states += (hidden_states,)
if self.add_downsample:
_A = self.downsamplers_a(_UpperCAmelCase )
output_states += (hidden_states,)
return hidden_states, output_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = FlaxTransformeraDModel(
in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = resnets
_A = attentions
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ):
for resnet, attn in zip(self.resnets , self.attentions ):
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : bool = True
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Any ):
_A = []
for i in range(self.num_layers ):
_A = self.in_channels if (i == self.num_layers - 1) else self.out_channels
_A = self.prev_output_channel if i == 0 else self.out_channels
_A = FlaxResnetBlockaD(
in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
if self.add_upsample:
_A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype )
def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ):
for resnet in self.resnets:
# pop res hidden states
_A = res_hidden_states_tuple[-1]
_A = res_hidden_states_tuple[:-1]
_A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
if self.add_upsample:
_A = self.upsamplers_a(_UpperCAmelCase )
return hidden_states
class lowercase_ ( nn.Module ):
'''simple docstring'''
UpperCAmelCase : int
UpperCAmelCase : float = 0.0
UpperCAmelCase : int = 1
UpperCAmelCase : int = 1
UpperCAmelCase : bool = False
UpperCAmelCase : bool = False
UpperCAmelCase : jnp.dtype = jnp.floataa
def lowerCAmelCase_ ( self : Dict ):
# there is always at least one resnet
_A = [
FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
]
_A = []
for _ in range(self.num_layers ):
_A = FlaxTransformeraDModel(
in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , )
attentions.append(_UpperCAmelCase )
_A = FlaxResnetBlockaD(
in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , )
resnets.append(_UpperCAmelCase )
_A = resnets
_A = attentions
def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ):
_A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase )
for attn, resnet in zip(self.attentions , self.resnets[1:] ):
_A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
_A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase )
return hidden_states
| 315 | 0 |
'''simple docstring'''
import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipaConfig,
BlipaForConditionalGeneration,
BlipaProcessor,
BlipaVisionConfig,
BlipImageProcessor,
OPTConfig,
TaConfig,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def _UpperCamelCase ( ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png"
UpperCamelCase__ = Image.open(requests.get(__A , stream=__A ).raw ).convert("RGB" )
return image
def _UpperCamelCase ( __A ) -> Optional[Any]:
'''simple docstring'''
UpperCamelCase__ = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") )
# fmt: on
return rename_keys
def _UpperCamelCase ( __A , __A , __A ) -> List[Any]:
'''simple docstring'''
UpperCamelCase__ = dct.pop(__A )
UpperCamelCase__ = val
def _UpperCamelCase ( __A , __A ) -> Optional[Any]:
'''simple docstring'''
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
UpperCamelCase__ = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) )
UpperCamelCase__ = qkv_bias
def _UpperCamelCase ( __A , __A ) -> Any:
'''simple docstring'''
UpperCamelCase__ = 364 if "coco" in model_name else 224
UpperCamelCase__ = BlipaVisionConfig(image_size=__A ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "opt-2.7b" in model_name:
UpperCamelCase__ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__A ).to_dict()
elif "opt-6.7b" in model_name:
UpperCamelCase__ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__A ).to_dict()
elif "t5-xl" in model_name:
UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
UpperCamelCase__ = BlipaConfig(vision_config=__A , text_config=__A )
return config, image_size
@torch.no_grad()
def _UpperCamelCase ( __A , __A=None , __A=False ) -> Any:
'''simple docstring'''
UpperCamelCase__ = (
AutoTokenizer.from_pretrained("facebook/opt-2.7b" )
if "opt" in model_name
else AutoTokenizer.from_pretrained("google/flan-t5-xl" )
)
UpperCamelCase__ = tokenizer("\n" , add_special_tokens=__A ).input_ids[0]
UpperCamelCase__ , UpperCamelCase__ = get_blipa_config(__A , eos_token_id=__A )
UpperCamelCase__ = BlipaForConditionalGeneration(__A ).eval()
UpperCamelCase__ = {
"blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"),
"blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"),
"blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"),
"blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"),
"blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"),
"blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"),
"blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"),
}
UpperCamelCase__ , UpperCamelCase__ = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
UpperCamelCase__ = "cuda" if torch.cuda.is_available() else "cpu"
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_model_and_preprocess(
name=__A , model_type=__A , is_eval=__A , device=__A )
original_model.eval()
print("Done!" )
# update state dict keys
UpperCamelCase__ = original_model.state_dict()
UpperCamelCase__ = create_rename_keys(__A )
for src, dest in rename_keys:
rename_key(__A , __A , __A )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
UpperCamelCase__ = state_dict.pop(__A )
if key.startswith("Qformer.bert" ):
UpperCamelCase__ = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
UpperCamelCase__ = key.replace("self" , "attention" )
if "opt_proj" in key:
UpperCamelCase__ = key.replace("opt_proj" , "language_projection" )
if "t5_proj" in key:
UpperCamelCase__ = key.replace("t5_proj" , "language_projection" )
if key.startswith("opt" ):
UpperCamelCase__ = key.replace("opt" , "language" )
if key.startswith("t5" ):
UpperCamelCase__ = key.replace("t5" , "language" )
UpperCamelCase__ = val
# read in qv biases
read_in_q_v_bias(__A , __A )
UpperCamelCase__ , UpperCamelCase__ = hf_model.load_state_dict(__A , strict=__A )
assert len(__A ) == 0
assert unexpected_keys == ["qformer.embeddings.position_ids"]
UpperCamelCase__ = load_demo_image()
UpperCamelCase__ = vis_processors["eval"](__A ).unsqueeze(0 ).to(__A )
UpperCamelCase__ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__A )
# create processor
UpperCamelCase__ = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=__A , image_std=__A )
UpperCamelCase__ = BlipaProcessor(image_processor=__A , tokenizer=__A )
UpperCamelCase__ = processor(images=__A , return_tensors="pt" ).pixel_values.to(__A )
# make sure processor creates exact same pixel values
assert torch.allclose(__A , __A )
original_model.to(__A )
hf_model.to(__A )
with torch.no_grad():
if "opt" in model_name:
UpperCamelCase__ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits
UpperCamelCase__ = hf_model(__A , __A ).logits
else:
UpperCamelCase__ = original_model(
{"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits
UpperCamelCase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 )
UpperCamelCase__ = hf_model(__A , __A , labels=__A ).logits
assert original_logits.shape == logits.shape
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
if model_name == "blip2-flan-t5-xl":
UpperCamelCase__ = torch.tensor(
[[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=__A )
assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 )
elif model_name == "blip2-flan-t5-xl-coco":
UpperCamelCase__ = torch.tensor(
[[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__A )
else:
# cast to same type
UpperCamelCase__ = logits.dtype
assert torch.allclose(original_logits.to(__A ) , __A , atol=1E-2 )
print("Looks ok!" )
print("Generating a caption..." )
UpperCamelCase__ = ""
UpperCamelCase__ = tokenizer(__A , return_tensors="pt" ).input_ids.to(__A )
UpperCamelCase__ = original_model.generate({"image": original_pixel_values} )
UpperCamelCase__ = hf_model.generate(
__A , __A , do_sample=__A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , )
print("Original generation:" , __A )
UpperCamelCase__ = input_ids.shape[1]
UpperCamelCase__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__A )
UpperCamelCase__ = [text.strip() for text in output_text]
print("HF generation:" , __A )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(__A )
hf_model.save_pretrained(__A )
if push_to_hub:
processor.push_to_hub(F'''nielsr/{model_name}''' )
hf_model.push_to_hub(F'''nielsr/{model_name}''' )
if __name__ == "__main__":
a__ : Dict = argparse.ArgumentParser()
a__ : List[Any] = [
'blip2-opt-2.7b',
'blip2-opt-6.7b',
'blip2-opt-2.7b-coco',
'blip2-opt-6.7b-coco',
'blip2-flan-t5-xl',
'blip2-flan-t5-xl-coco',
'blip2-flan-t5-xxl',
]
parser.add_argument(
'--model_name',
default='blip2-opt-2.7b',
choices=choices,
type=str,
help='Path to hf config.json of model to convert',
)
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument(
'--push_to_hub',
action='store_true',
help='Whether to push the model and processor to the hub after converting',
)
a__ : Union[str, Any] = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 80 |
"""simple docstring"""
import numpy
class lowercase_ :
'''simple docstring'''
def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ):
_A = input_array
# Random initial weights are assigned where first argument is the
# number of nodes in previous layer and second argument is the
# number of nodes in the next layer.
# Random initial weights are assigned.
# self.input_array.shape[1] is used to represent number of nodes in input layer.
# First hidden layer consists of 4 nodes.
_A = numpy.random.rand(
self.input_array.shape[1] , 4 )
# Random initial values for the first hidden layer.
# First hidden layer has 4 nodes.
# Second hidden layer has 3 nodes.
_A = numpy.random.rand(
4 , 3 )
# Random initial values for the second hidden layer.
# Second hidden layer has 3 nodes.
# Output layer has 1 node.
_A = numpy.random.rand(3 , 1 )
# Real output values provided.
_A = output_array
# Predicted output values by the neural network.
# Predicted_output array initially consists of zeroes.
_A = numpy.zeros(output_array.shape )
def lowerCAmelCase_ ( self : List[str] ):
_A = sigmoid(
numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) )
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
# connecting the first hidden set of nodes with the second hidden set of nodes.
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
# layer_between_second_hidden_layer_and_output is the layer connecting
# second hidden layer with the output node.
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return self.layer_between_second_hidden_layer_and_output
def lowerCAmelCase_ ( self : Optional[int] ):
_A = numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , )
_A = numpy.dot(
self.layer_between_input_and_first_hidden_layer.T , numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , )
_A = numpy.dot(
self.input_array.T , numpy.dot(
numpy.dot(
2
* (self.output_array - self.predicted_output)
* sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , )
* sigmoid_derivative(
self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , )
* sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , )
self.input_layer_and_first_hidden_layer_weights += (
updated_input_layer_and_first_hidden_layer_weights
)
self.first_hidden_layer_and_second_hidden_layer_weights += (
updated_first_hidden_layer_and_second_hidden_layer_weights
)
self.second_hidden_layer_and_output_layer_weights += (
updated_second_hidden_layer_and_output_layer_weights
)
def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ):
for iteration in range(1 , iterations + 1 ):
_A = self.feedforward()
self.back_propagation()
if give_loss:
_A = numpy.mean(numpy.square(output - self.feedforward() ) )
print(F'''Iteration {iteration} Loss: {loss}''' )
def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ):
_A = input_arr
_A = sigmoid(
numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) )
_A = sigmoid(
numpy.dot(
self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) )
_A = sigmoid(
numpy.dot(
self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) )
return int(self.layer_between_second_hidden_layer_and_output > 0.6 )
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return 1 / (1 + numpy.exp(-value ))
def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray:
'''simple docstring'''
return (value) * (1 - (value))
def _snake_case ( ) -> int:
'''simple docstring'''
_A = numpy.array(
(
[0, 0, 0],
[0, 0, 1],
[0, 1, 0],
[0, 1, 1],
[1, 0, 0],
[1, 0, 1],
[1, 1, 0],
[1, 1, 1],
) , dtype=numpy.floataa , )
# True output values for the given input values.
_A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa )
# Calling neural network class.
_A = TwoHiddenLayerNeuralNetwork(
input_array=_snake_case , output_array=_snake_case )
# Calling training function.
# Set give_loss to True if you want to see loss in every iteration.
neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case )
return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) )
if __name__ == "__main__":
example()
| 315 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.