code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : Union[str, Any]=0.01 , _UpperCAmelCase : Any=1_000 ): _A = p_stop _A = max_length def __iter__( self : str ): _A = 0 _A = False while not stop and count < self.max_length: yield count count += 1 _A = random.random() < self.p_stop class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Dict=True ): _A = [ BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 ) ] _A = [list(_UpperCAmelCase ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(_UpperCAmelCase ) for shard in batch_sampler_shards] , [len(_UpperCAmelCase ) for e in expected] ) self.assertListEqual(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): # Check the shards when the dataset is a round multiple of total batch size. _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=3 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(20 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=3 , drop_last=_UpperCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , even_batches=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int ): # Check the shards when the dataset is a round multiple of batch size. _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(24 ) , batch_size=4 , drop_last=_UpperCAmelCase ) # Expected shouldn't change self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size. _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(22 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(21 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) # Check the shards when the dataset is very small. _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [[[0, 1]], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) _A = BatchSampler(range(2 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = [[], []] self.check_batch_sampler_shards(_UpperCAmelCase , _UpperCAmelCase , split_batches=_UpperCAmelCase , even_batches=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _A = [BatchSamplerShard(_UpperCAmelCase , 2 , _UpperCAmelCase , even_batches=_UpperCAmelCase ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : List[Any]=False , _UpperCAmelCase : Tuple=2 , _UpperCAmelCase : List[Any]=False ): random.seed(_UpperCAmelCase ) _A = list(_UpperCAmelCase ) _A = [ IterableDatasetShard( _UpperCAmelCase , batch_size=_UpperCAmelCase , drop_last=_UpperCAmelCase , num_processes=_UpperCAmelCase , process_index=_UpperCAmelCase , split_batches=_UpperCAmelCase , ) for i in range(_UpperCAmelCase ) ] _A = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(_UpperCAmelCase ) iterable_dataset_lists.append(list(_UpperCAmelCase ) ) _A = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _A = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) self.assertTrue(len(_UpperCAmelCase ) % shard_batch_size == 0 ) _A = [] for idx in range(0 , len(_UpperCAmelCase ) , _UpperCAmelCase ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(_UpperCAmelCase ) < len(_UpperCAmelCase ): reference += reference self.assertListEqual(_UpperCAmelCase , reference[: len(_UpperCAmelCase )] ) def lowerCAmelCase_ ( self : List[Any] ): _A = 42 _A = RandomIterableDataset() self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) # Edge case with a very small dataset _A = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) self.check_iterable_dataset_shards(_UpperCAmelCase , _UpperCAmelCase , batch_size=4 , drop_last=_UpperCAmelCase , split_batches=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = BatchSampler(range(16 ) , batch_size=4 , drop_last=_UpperCAmelCase ) _A = SkipBatchSampler(_UpperCAmelCase , 2 ) self.assertListEqual(list(_UpperCAmelCase ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : str ): _A = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : List[Any] ): _A = DataLoader(list(range(16 ) ) , batch_size=4 ) _A = skip_first_batches(_UpperCAmelCase , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def lowerCAmelCase_ ( self : Tuple ): _A = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCAmelCase_ ( self : Dict ): Accelerator() _A = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(_UpperCAmelCase ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
315
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
1
"""simple docstring""" from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging a = logging.get_logger(__name__) # pylint: disable=invalid-name class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : List[str] , _UpperCAmelCase : CLIPSegForImageSegmentation , _UpperCAmelCase : CLIPSegProcessor , _UpperCAmelCase : AutoencoderKL , _UpperCAmelCase : CLIPTextModel , _UpperCAmelCase : CLIPTokenizer , _UpperCAmelCase : UNetaDConditionModel , _UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , _UpperCAmelCase : StableDiffusionSafetyChecker , _UpperCAmelCase : CLIPImageProcessor , ): super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: _A = ( F'''The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`''' F''' should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure ''' 'to update the config accordingly as leaving `steps_offset` might led to incorrect results' ' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,' ' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`' ' file' ) deprecate('steps_offset!=1' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = dict(scheduler.config ) _A = 1 _A = FrozenDict(_UpperCAmelCase ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: _A = ( F'''The configuration file of this scheduler: {scheduler} has not set the configuration''' ' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make' ' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to' ' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face' ' Hub, it would be very nice if you could open a Pull request for the' ' `scheduler/scheduler_config.json` file' ) deprecate('skip_prk_steps not set' , '1.0.0' , _UpperCAmelCase , standard_warn=_UpperCAmelCase ) _A = dict(scheduler.config ) _A = True _A = FrozenDict(_UpperCAmelCase ) if safety_checker is None: logger.warning( F'''You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure''' ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=_UpperCAmelCase , segmentation_processor=_UpperCAmelCase , vae=_UpperCAmelCase , text_encoder=_UpperCAmelCase , tokenizer=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase , safety_checker=_UpperCAmelCase , feature_extractor=_UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[Union[str, int]] = "auto" ): if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory _A = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[Any] ): self.enable_attention_slicing(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[Any] ): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) _A = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(_UpperCAmelCase , _UpperCAmelCase ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def lowerCAmelCase_ ( self : int ): if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(_UpperCAmelCase , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : Any , _UpperCAmelCase : Union[str, List[str]] , _UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , _UpperCAmelCase : str , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 512 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : float = 7.5 , _UpperCAmelCase : Optional[Union[str, List[str]]] = None , _UpperCAmelCase : Optional[int] = 1 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : Optional[torch.Generator] = None , _UpperCAmelCase : Optional[torch.FloatTensor] = None , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , _UpperCAmelCase : int = 1 , **_UpperCAmelCase : Optional[int] , ): _A = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) _A = self.segmentation_model(**_UpperCAmelCase ) _A = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() _A = self.numpy_to_pil(_UpperCAmelCase )[0].resize(image.size ) # Run inpainting pipeline with the generated mask _A = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=_UpperCAmelCase , image=_UpperCAmelCase , mask_image=_UpperCAmelCase , height=_UpperCAmelCase , width=_UpperCAmelCase , num_inference_steps=_UpperCAmelCase , guidance_scale=_UpperCAmelCase , negative_prompt=_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase , eta=_UpperCAmelCase , generator=_UpperCAmelCase , latents=_UpperCAmelCase , output_type=_UpperCAmelCase , return_dict=_UpperCAmelCase , callback=_UpperCAmelCase , callback_steps=_UpperCAmelCase , )
315
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
1
"""simple docstring""" import math def _snake_case ( ) -> None: '''simple docstring''' _A = input('Enter message: ' ) _A = int(input(F'''Enter key [2-{len(_snake_case ) - 1}]: ''' ) ) _A = input('Encryption/Decryption [e/d]: ' ) if mode.lower().startswith('e' ): _A = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith('d' ): _A = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F'''Output:\n{text + "|"}''' ) def _snake_case ( _snake_case : int , _snake_case : str ) -> str: '''simple docstring''' _A = [''] * key for col in range(_snake_case ): _A = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def _snake_case ( _snake_case : int , _snake_case : str ) -> str: '''simple docstring''' _A = math.ceil(len(_snake_case ) / key ) _A = key _A = (num_cols * num_rows) - len(_snake_case ) _A = [''] * num_cols _A = 0 _A = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): _A = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
315
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : VQModel , _UpperCAmelCase : UNetaDModel , _UpperCAmelCase : DDIMScheduler ): super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : Optional[int] , _UpperCAmelCase : int = 1 , _UpperCAmelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : int = 50 , _UpperCAmelCase : Optional[str] = "pil" , _UpperCAmelCase : bool = True , **_UpperCAmelCase : Dict , ): _A = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , ) _A = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler _A = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature _A = 'eta' in set(inspect.signature(self.scheduler.step ).parameters.keys() ) _A = {} if accepts_eta: _A = eta for t in self.progress_bar(self.scheduler.timesteps ): _A = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual _A = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 _A = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VAE _A = self.vqvae.decode(_UpperCAmelCase ).sample _A = (image / 2 + 0.5).clamp(0 , 1 ) _A = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _A = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
315
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
1
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = inspect.getfile(accelerate.test_utils ) UpperCAmelCase : Any = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) UpperCAmelCase : Optional[Any] = ['''accelerate''', '''launch'''] UpperCAmelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' UpperCAmelCase : str = '''default_config.yaml''' UpperCAmelCase : int = config_folder / config_file UpperCAmelCase : Union[str, Any] = config_folder / '''_default_config.yaml''' UpperCAmelCase : Dict = Path('''tests/test_configs''' ) @classmethod def lowerCAmelCase_ ( cls : Optional[int] ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowerCAmelCase_ ( cls : Tuple ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowerCAmelCase_ ( self : Dict ): _A = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : str ): for config in sorted(self.test_config_path.glob('**/*.yaml' ) ): with self.subTest(config_file=_UpperCAmelCase ): execute_subprocess_async( self.base_cmd + ['--config_file', str(_UpperCAmelCase ), self.test_file_path] , env=os.environ.copy() ) def lowerCAmelCase_ ( self : Optional[Any] ): execute_subprocess_async(['accelerate', 'test'] , env=os.environ.copy() ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = '''test-tpu''' UpperCAmelCase : Dict = '''us-central1-a''' UpperCAmelCase : Union[str, Any] = '''ls''' UpperCAmelCase : List[str] = ['''accelerate''', '''tpu-config'''] UpperCAmelCase : Any = '''cd /usr/share''' UpperCAmelCase : Optional[int] = '''tests/test_samples/test_command_file.sh''' UpperCAmelCase : Dict = '''Running gcloud compute tpus tpu-vm ssh''' def lowerCAmelCase_ ( self : Tuple ): _A = run_command( self.cmd + ['--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[Any] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command', self.command, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--debug'] , return_stdout=_UpperCAmelCase ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : List[str] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--command', self.command, '--command', 'echo "Hello World"', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--command_file', self.command_file, '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Optional[int] ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/0_12_0.yaml', '--command_file', self.command_file, '--tpu_zone', self.tpu_zone, '--tpu_name', self.tpu_name, '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Any ): _A = run_command( self.cmd + ['--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--debug'] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , ) def lowerCAmelCase_ ( self : Tuple ): _A = run_command( self.cmd + [ '--config_file', 'tests/test_configs/latest.yaml', '--install_accelerate', '--accelerate_version', '12.0.0', '--debug', ] , return_stdout=_UpperCAmelCase , ) self.assertIn( F'''{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all''' , _UpperCAmelCase , )
315
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
1
"""simple docstring""" from __future__ import annotations from math import ceil, floor, sqrt def _snake_case ( _snake_case : int = 2_00_00_00 ) -> int: '''simple docstring''' _A = [0] _A = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target _A = 0 # the area corresponding to the grid that gives the product closest to target _A = 0 # an estimate of b, using the quadratic formula _A = 42 # the largest integer less than b_estimate _A = 42 # the largest integer less than b_estimate _A = 42 # the triangle number corresponding to b_floor _A = 42 # the triangle number corresponding to b_ceil _A = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): _A = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 _A = floor(_snake_case ) _A = ceil(_snake_case ) _A = triangle_numbers[b_floor] _A = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): _A = triangle_b_first_guess * triangle_a _A = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): _A = triangle_b_second_guess * triangle_a _A = idx_a * b_ceil return area if __name__ == "__main__": print(F'''{solution() = }''')
315
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
1
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : str = field(default='''language-modeling''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) UpperCAmelCase : ClassVar[Features] = Features({'''text''': Value('''string''' )} ) UpperCAmelCase : ClassVar[Features] = Features({} ) UpperCAmelCase : str = "text" @property def lowerCAmelCase_ ( self : List[str] ): return {self.text_column: "text"}
315
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
1
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
1
"""simple docstring""" from __future__ import annotations import random # Maximum size of the population. Bigger could be faster but is more memory expensive. a = 200 # Number of elements selected in every generation of evolution. The selection takes # place from best to worst of that generation and must be smaller than N_POPULATION. a = 50 # Probability that an element of a generation can mutate, changing one of its genes. # This will guarantee that all genes will be used during evolution. a = 0.4 # Just a seed to improve randomness required by the algorithm. random.seed(random.randint(0, 1_000)) def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, float]: '''simple docstring''' _A = len([g for position, g in enumerate(_snake_case ) if g == main_target[position]] ) return (item, float(_snake_case )) def _snake_case ( _snake_case : str , _snake_case : str ) -> tuple[str, str]: '''simple docstring''' _A = random.randint(0 , len(_snake_case ) - 1 ) _A = parent_a[:random_slice] + parent_a[random_slice:] _A = parent_a[:random_slice] + parent_a[random_slice:] return (child_a, child_a) def _snake_case ( _snake_case : str , _snake_case : list[str] ) -> str: '''simple docstring''' _A = list(_snake_case ) if random.uniform(0 , 1 ) < MUTATION_PROBABILITY: _A = random.choice(_snake_case ) return "".join(_snake_case ) def _snake_case ( _snake_case : tuple[str, float] , _snake_case : list[tuple[str, float]] , _snake_case : list[str] , ) -> list[str]: '''simple docstring''' _A = [] # Generate more children proportionally to the fitness score. _A = int(parent_a[1] * 1_00 ) + 1 _A = 10 if child_n >= 10 else child_n for _ in range(_snake_case ): _A = population_score[random.randint(0 , _snake_case )][0] _A , _A = crossover(parent_a[0] , _snake_case ) # Append new string to the population list. pop.append(mutate(_snake_case , _snake_case ) ) pop.append(mutate(_snake_case , _snake_case ) ) return pop def _snake_case ( _snake_case : str , _snake_case : list[str] , _snake_case : bool = True ) -> tuple[int, int, str]: '''simple docstring''' if N_POPULATION < N_SELECTED: _A = F'''{N_POPULATION} must be bigger than {N_SELECTED}''' raise ValueError(_snake_case ) # Verify that the target contains no genes besides the ones inside genes variable. _A = sorted({c for c in target if c not in genes} ) if not_in_genes_list: _A = F'''{not_in_genes_list} is not in genes list, evolution cannot converge''' raise ValueError(_snake_case ) # Generate random starting population. _A = [] for _ in range(_snake_case ): population.append(''.join([random.choice(_snake_case ) for i in range(len(_snake_case ) )] ) ) # Just some logs to know what the algorithms is doing. _A , _A = 0, 0 # This loop will end when we find a perfect match for our target. while True: generation += 1 total_population += len(_snake_case ) # Random population created. Now it's time to evaluate. # Adding a bit of concurrency can make everything faster, # # import concurrent.futures # population_score: list[tuple[str, float]] = [] # with concurrent.futures.ThreadPoolExecutor( # max_workers=NUM_WORKERS) as executor: # futures = {executor.submit(evaluate, item) for item in population} # concurrent.futures.wait(futures) # population_score = [item.result() for item in futures] # # but with a simple algorithm like this, it will probably be slower. # We just need to call evaluate for every item inside the population. _A = [evaluate(_snake_case , _snake_case ) for item in population] # Check if there is a matching evolution. _A = sorted(_snake_case , key=lambda _snake_case : x[1] , reverse=_snake_case ) if population_score[0][0] == target: return (generation, total_population, population_score[0][0]) # Print the best result every 10 generation. # Just to know that the algorithm is working. if debug and generation % 10 == 0: print( F'''\nGeneration: {generation}''' F'''\nTotal Population:{total_population}''' F'''\nBest score: {population_score[0][1]}''' F'''\nBest string: {population_score[0][0]}''' ) # Flush the old population, keeping some of the best evolutions. # Keeping this avoid regression of evolution. _A = population[: int(N_POPULATION / 3 )] population.clear() population.extend(_snake_case ) # Normalize population score to be between 0 and 1. _A = [ (item, score / len(_snake_case )) for item, score in population_score ] # This is selection for i in range(_snake_case ): population.extend(select(population_score[int(_snake_case )] , _snake_case , _snake_case ) ) # Check if the population has already reached the maximum value and if so, # break the cycle. If this check is disabled, the algorithm will take # forever to compute large strings, but will also calculate small strings in # a far fewer generations. if len(_snake_case ) > N_POPULATION: break if __name__ == "__main__": a = ( '''This is a genetic algorithm to evaluate, combine, evolve, and mutate a string!''' ) a = list( ''' ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklm''' '''nopqrstuvwxyz.,;!?+-*#@^\'èéòà€ù=)(&%$£/\\''' ) a , a , a = basic(target_str, genes_list) print( F'''\nGeneration: {generation}\nTotal Population: {population}\nTarget: {target}''' )
315
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
1
"""simple docstring""" import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : str = '''FlavaImageProcessor''' UpperCAmelCase : Tuple = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self : List[Any] , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=None , **_UpperCAmelCase : Optional[int] ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) _A = self.image_processor def __call__( self : int , _UpperCAmelCase : Optional[ImageInput] = None , _UpperCAmelCase : Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , _UpperCAmelCase : bool = True , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Union[bool, str, TruncationStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : int = 0 , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = False , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : Any , ): if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: _A = self.tokenizer( text=_UpperCAmelCase , add_special_tokens=_UpperCAmelCase , padding=_UpperCAmelCase , truncation=_UpperCAmelCase , max_length=_UpperCAmelCase , stride=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_overflowing_tokens=_UpperCAmelCase , return_special_tokens_mask=_UpperCAmelCase , return_offsets_mapping=_UpperCAmelCase , return_length=_UpperCAmelCase , verbose=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) if images is not None: _A = self.image_processor( _UpperCAmelCase , return_image_mask=_UpperCAmelCase , return_codebook_pixels=_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase , ) if text is not None and images is not None: encoding.update(_UpperCAmelCase ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] , *_UpperCAmelCase : Dict , **_UpperCAmelCase : Tuple ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : int ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Optional[int] ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
315
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
1
"""simple docstring""" import argparse import importlib from pathlib import Path # Test all the extensions added in the setup a = [ '''kernels/rwkv/wkv_cuda.cu''', '''kernels/rwkv/wkv_op.cpp''', '''kernels/deformable_detr/ms_deform_attn.h''', '''kernels/deformable_detr/cuda/ms_deform_im2col_cuda.cuh''', '''models/graphormer/algos_graphormer.pyx''', ] def _snake_case ( _snake_case : List[str] ) -> str: '''simple docstring''' for file in FILES_TO_FIND: if not (transformers_path / file).exists(): return False return True if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument('''--check_lib''', action='''store_true''', help='''Whether to check the build or the actual package.''') a = parser.parse_args() if args.check_lib: a = importlib.import_module('''transformers''') a = Path(transformers_module.__file__).parent else: a = Path.cwd() / '''build/lib/transformers''' if not test_custom_files_are_present(transformers_path): raise ValueError('''The built release does not contain the custom files. Fix this before going further!''')
315
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
1
"""simple docstring""" import unittest from transformers import TrOCRConfig from transformers.testing_utils import is_torch_available, require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.trocr.modeling_trocr import TrOCRDecoder, TrOCRForCausalLM @require_torch class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Tuple=13 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Optional[Any]=7 , _UpperCAmelCase : str=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Tuple=True , _UpperCAmelCase : Dict=False , _UpperCAmelCase : Dict=True , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : int=32 , _UpperCAmelCase : Union[str, Any]=4 , _UpperCAmelCase : int=4 , _UpperCAmelCase : str=30 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[Any]=1 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : List[Any]=None , ): _A = parent _A = batch_size _A = decoder_seq_length # For common tests _A = self.decoder_seq_length _A = is_training _A = use_attention_mask _A = use_labels _A = vocab_size _A = d_model _A = d_model _A = decoder_layers _A = decoder_layers _A = decoder_ffn_dim _A = decoder_attention_heads _A = decoder_attention_heads _A = eos_token_id _A = bos_token_id _A = pad_token_id _A = decoder_start_token_id _A = use_cache _A = max_position_embeddings _A = None _A = decoder_seq_length _A = 2 _A = 1 def lowerCAmelCase_ ( self : str ): _A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A = None if self.use_attention_mask: _A = ids_tensor([self.batch_size, self.decoder_seq_length] , vocab_size=2 ) _A = None if self.use_labels: _A = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) _A = TrOCRConfig( vocab_size=self.vocab_size , d_model=self.d_model , decoder_layers=self.decoder_layers , decoder_ffn_dim=self.decoder_ffn_dim , decoder_attention_heads=self.decoder_attention_heads , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , use_cache=self.use_cache , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , max_position_embeddings=self.max_position_embeddings , ) return (config, input_ids, attention_mask, lm_labels) def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , ): _A = True _A = TrOCRDecoder(config=_UpperCAmelCase ).to(_UpperCAmelCase ).eval() _A = input_ids[:2] input_ids[input_ids == 0] += 1 # first forward pass _A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase , use_cache=_UpperCAmelCase ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) ) self.parent.assertTrue(len(_UpperCAmelCase ) == len(_UpperCAmelCase ) + 1 ) _A = outputs['past_key_values'] # create hypothetical next token and extent to next_input_ids _A = ids_tensor((2, 1) , config.vocab_size - 1 ) + 1 # append to next input_ids and _A = torch.cat([input_ids, next_tokens] , dim=-1 ) _A = model(_UpperCAmelCase )['last_hidden_state'] _A = model(_UpperCAmelCase , past_key_values=_UpperCAmelCase )['last_hidden_state'] # select random slice _A = ids_tensor((1,) , output_from_past.shape[-1] ).item() _A = output_from_no_past[:, next_input_ids.shape[-1] - 1, random_slice_idx].detach() _A = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice assert torch.allclose(_UpperCAmelCase , _UpperCAmelCase , atol=1E-3 ) def lowerCAmelCase_ ( self : Dict ): _A = self.prepare_config_and_inputs() _A , _A , _A , _A = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_torch class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Tuple = (TrOCRDecoder, TrOCRForCausalLM) if is_torch_available() else () UpperCAmelCase : Union[str, Any] = (TrOCRForCausalLM,) if is_torch_available() else () UpperCAmelCase : Any = {'''text-generation''': TrOCRForCausalLM} if is_torch_available() else {} UpperCAmelCase : Dict = True UpperCAmelCase : Tuple = False def lowerCAmelCase_ ( self : Tuple ): _A = TrOCRStandaloneDecoderModelTester(self , is_training=_UpperCAmelCase ) _A = ConfigTester(self , config_class=_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): pass def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : List[str] ): pass def lowerCAmelCase_ ( self : List[str] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): return @unittest.skip('The model doesn\'t support left padding' ) # and it's not used enough to be worth fixing :) def lowerCAmelCase_ ( self : Optional[Any] ): pass
315
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''microsoft/markuplm-base''': '''https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json''', '''microsoft/markuplm-large''': '''https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : List[str] = '''markuplm''' def __init__( self : List[Any] , _UpperCAmelCase : List[Any]=30_522 , _UpperCAmelCase : Any=768 , _UpperCAmelCase : Tuple=12 , _UpperCAmelCase : Any=12 , _UpperCAmelCase : Any=3_072 , _UpperCAmelCase : Dict="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Union[str, Any]=2 , _UpperCAmelCase : Optional[int]=0.02 , _UpperCAmelCase : Union[str, Any]=1E-1_2 , _UpperCAmelCase : Union[str, Any]=0 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=256 , _UpperCAmelCase : Tuple=1_024 , _UpperCAmelCase : Dict=216 , _UpperCAmelCase : Dict=1_001 , _UpperCAmelCase : Optional[int]=32 , _UpperCAmelCase : List[Any]=50 , _UpperCAmelCase : Union[str, Any]="absolute" , _UpperCAmelCase : str=True , _UpperCAmelCase : List[str]=None , **_UpperCAmelCase : Any , ): super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout # additional properties _A = max_depth _A = max_xpath_tag_unit_embeddings _A = max_xpath_subs_unit_embeddings _A = tag_pad_id _A = subs_pad_id _A = xpath_unit_hidden_size
315
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
1
"""simple docstring""" import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) a = logging.getLogger() def _snake_case ( ) -> Optional[Any]: '''simple docstring''' _A = argparse.ArgumentParser() parser.add_argument('-f' ) _A = parser.parse_args() return args.f class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : List[Any] ): _A = logging.StreamHandler(sys.stdout ) logger.addHandler(_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Optional[int] ): _A = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , 'run_glue_deebert.py' ) with patch.object(_UpperCAmelCase , 'argv' , _UpperCAmelCase ): _A = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(_UpperCAmelCase , 0.666 ) @slow @require_torch_non_multi_gpu def lowerCAmelCase_ ( self : Optional[Any] ): _A = '\n --model_type roberta\n --model_name_or_path roberta-base\n --task_name MRPC\n --do_train\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --max_seq_length 128\n --per_gpu_eval_batch_size=1\n --per_gpu_train_batch_size=8\n --learning_rate 2e-4\n --num_train_epochs 3\n --overwrite_output_dir\n --seed 42\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --save_steps 0\n --overwrite_cache\n --eval_after_first_stage\n '.split() self.run_and_check(_UpperCAmelCase ) _A = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --eval_each_highway\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_UpperCAmelCase ) _A = '\n --model_type roberta\n --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --task_name MRPC\n --do_eval\n --do_lower_case\n --data_dir ./tests/fixtures/tests_samples/MRPC/\n --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage\n --plot_data_dir ./examples/deebert/results/\n --max_seq_length 128\n --early_exit_entropy 0.1\n --eval_highway\n --overwrite_cache\n --per_gpu_eval_batch_size=1\n '.split() self.run_and_check(_UpperCAmelCase )
315
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
1
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict=13 , _UpperCAmelCase : Union[str, Any]=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Any=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : Dict=2 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : List[str]=37 , _UpperCAmelCase : Union[str, Any]="gelu" , _UpperCAmelCase : Optional[Any]=0.1 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : str=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : Union[str, Any]=0.02 , _UpperCAmelCase : Union[str, Any]=3 , _UpperCAmelCase : Any=4 , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=0 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope _A = projection_dim def lowerCAmelCase_ ( self : Optional[Any] ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) _A = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str ): _A = TFDPRContextEncoder(config=_UpperCAmelCase ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : str ): _A = TFDPRQuestionEncoder(config=_UpperCAmelCase ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): _A = TFDPRReader(config=_UpperCAmelCase ) _A = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def lowerCAmelCase_ ( self : int ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids} return config, inputs_dict @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Any = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCAmelCase : List[Any] = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} UpperCAmelCase : Tuple = False UpperCAmelCase : Tuple = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Dict = False UpperCAmelCase : Optional[int] = False def lowerCAmelCase_ ( self : Union[str, Any] ): _A = TFDPRModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRQuestionEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = TFDPRReader.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Any ): _A = TFDPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base' ) _A = tf.constant( [[101, 7_592, 1_010, 2_003, 2_026, 3_899, 10_140, 1_029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _A = model(_UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _A = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
315
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig a = logging.get_logger(__name__) a = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''dpt''' def __init__( self : Optional[Any] , _UpperCAmelCase : List[Any]=768 , _UpperCAmelCase : Dict=12 , _UpperCAmelCase : List[Any]=12 , _UpperCAmelCase : Dict=3_072 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : str=0.0 , _UpperCAmelCase : Optional[int]=0.0 , _UpperCAmelCase : Any=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Dict=384 , _UpperCAmelCase : Optional[Any]=16 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : int=False , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=[2, 5, 8, 11] , _UpperCAmelCase : int="project" , _UpperCAmelCase : Dict=[4, 2, 1, 0.5] , _UpperCAmelCase : Optional[Any]=[96, 192, 384, 768] , _UpperCAmelCase : Union[str, Any]=256 , _UpperCAmelCase : Optional[Any]=-1 , _UpperCAmelCase : str=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : Tuple=0.4 , _UpperCAmelCase : List[Any]=255 , _UpperCAmelCase : Tuple=0.1 , _UpperCAmelCase : str=[1, 1_024, 24, 24] , _UpperCAmelCase : List[str]=[0, 1] , _UpperCAmelCase : Any=None , **_UpperCAmelCase : Union[str, Any] , ): super().__init__(**_UpperCAmelCase ) _A = hidden_size _A = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info('Initializing the config with a `BiT` backbone.' ) _A = { 'global_padding': 'same', 'layer_type': 'bottleneck', 'depths': [3, 4, 9], 'out_features': ['stage1', 'stage2', 'stage3'], 'embedding_dynamic_padding': True, } _A = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): logger.info('Initializing the config with a `BiT` backbone.' ) _A = BitConfig(**_UpperCAmelCase ) elif isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = backbone_config else: raise ValueError( F'''backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.''' ) _A = backbone_featmap_shape _A = neck_ignore_stages if readout_type != "project": raise ValueError('Readout type must be \'project\' when using `DPT-hybrid` mode.' ) else: _A = None _A = None _A = [] _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = initializer_range _A = layer_norm_eps _A = image_size _A = patch_size _A = num_channels _A = qkv_bias _A = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError('Readout_type must be one of [\'ignore\', \'add\', \'project\']' ) _A = readout_type _A = reassemble_factors _A = neck_hidden_sizes _A = fusion_hidden_size _A = head_in_index _A = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) _A = use_auxiliary_head _A = auxiliary_loss_weight _A = semantic_loss_ignore_index _A = semantic_classifier_dropout def lowerCAmelCase_ ( self : Optional[int] ): _A = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _A = self.backbone_config.to_dict() _A = self.__class__.model_type return output
315
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
1
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Optional import pandas as pd import pyarrow as pa import datasets from datasets.table import table_cast @dataclass class lowercase_ ( datasets.BuilderConfig ): '''simple docstring''' UpperCAmelCase : Optional[datasets.Features] = None class lowercase_ ( datasets.ArrowBasedBuilder ): '''simple docstring''' UpperCAmelCase : List[str] = PandasConfig def lowerCAmelCase_ ( self : Any ): return datasets.DatasetInfo(features=self.config.features ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str ): if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _A = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCAmelCase , (str, list, tuple) ): _A = data_files if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'files': files} )] _A = [] for split_name, files in data_files.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): _A = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive _A = [dl_manager.iter_files(_UpperCAmelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCAmelCase , gen_kwargs={'files': files} ) ) return splits def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : pa.Table ): if self.config.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example _A = table_cast(_UpperCAmelCase , self.config.features.arrow_schema ) return pa_table def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Union[str, Any] ): for i, file in enumerate(itertools.chain.from_iterable(_UpperCAmelCase ) ): with open(_UpperCAmelCase , 'rb' ) as f: _A = pa.Table.from_pandas(pd.read_pickle(_UpperCAmelCase ) ) yield i, self._cast_table(_UpperCAmelCase )
315
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
1
"""simple docstring""" import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase_ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any]=7 , _UpperCAmelCase : Optional[int]=3 , _UpperCAmelCase : Dict=18 , _UpperCAmelCase : str=30 , _UpperCAmelCase : List[Any]=400 , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Optional[int]=True , ): _A = size if size is not None else {'shortest_edge': 20} _A = crop_size if crop_size is not None else {'height': 18, 'width': 18} _A = parent _A = batch_size _A = num_channels _A = image_size _A = min_resolution _A = max_resolution _A = do_resize _A = size _A = do_center_crop _A = crop_size _A = do_flip_channel_order def lowerCAmelCase_ ( self : List[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase_ ( __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : List[str] = MobileViTImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : List[Any] ): _A = MobileViTImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : Dict ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[Any] ): _A = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_resize' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'size' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'center_crop' ) ) self.assertTrue(hasattr(_UpperCAmelCase , 'do_flip_channel_order' ) ) def lowerCAmelCase_ ( self : List[str] ): _A = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'shortest_edge': 20} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _A = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def lowerCAmelCase_ ( self : List[Any] ): pass def lowerCAmelCase_ ( self : Tuple ): # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Tuple ): # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing _A = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _A = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _A = image_processing(_UpperCAmelCase , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
315
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
1
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
1
import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore UpperCAmelCase__ = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" UpperCAmelCase__ = [file for file in filepaths if file != file.lower()] if upper_files: print(f"""{len(upper_files)} files contain uppercase characters:""") print("\n".join(upper_files) + "\n") UpperCAmelCase__ = [file for file in filepaths if " " in file] if space_files: print(f"""{len(space_files)} files contain space characters:""") print("\n".join(space_files) + "\n") UpperCAmelCase__ = [file for file in filepaths if "-" in file] if hyphen_files: print(f"""{len(hyphen_files)} files contain hyphen characters:""") print("\n".join(hyphen_files) + "\n") UpperCAmelCase__ = [file for file in filepaths if os.sep not in file] if nodir_files: print(f"""{len(nodir_files)} files are not in a directory:""") print("\n".join(nodir_files) + "\n") UpperCAmelCase__ = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
0
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
'''simple docstring''' import warnings from functools import wraps from typing import Callable def lowerCAmelCase_ ( snake_case_ : Callable ) -> Callable: '''simple docstring''' @wraps(snake_case_ ) def _inner_fn(*snake_case_ : Optional[Any] , **snake_case_ : Tuple ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , snake_case_ , ) return fn(*snake_case_ , **snake_case_ ) return _inner_fn
1
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowerCAmelCase (lowercase_ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ : Tuple = GPTSanJapaneseTokenizer lowerCAmelCase__ : List[str] = False lowerCAmelCase__ : Dict = {"""do_clean_text""": False, """add_prefix_space""": False} def UpperCamelCase__ (self : Any ): '''simple docstring''' super().setUp() # fmt: off lowercase__ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowercase__ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowercase__ = {'''unk_token''': '''<unk>'''} lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowercase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase ) ) def UpperCamelCase__ (self : Optional[Any] , **UpperCamelCase : Dict ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase ) def UpperCamelCase__ (self : Any , UpperCamelCase : Union[str, Any] ): '''simple docstring''' lowercase__ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowercase__ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def UpperCamelCase__ (self : Tuple , UpperCamelCase : Optional[int] ): '''simple docstring''' lowercase__ ,lowercase__ = self.get_input_output_texts(UpperCamelCase ) lowercase__ = tokenizer.encode(UpperCamelCase , add_special_tokens=UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase , clean_up_tokenization_spaces=UpperCamelCase ) return text, ids def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = '''こんにちは、世界。 こんばんは、㔺界。''' lowercase__ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowercase__ = tokenizer.tokenize(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids without special tokens lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) # Testing conversion to ids with special tokens lowercase__ = tokens + [tokenizer.unk_token] lowercase__ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] lowercase__ = tokenizer.convert_tokens_to_ids(UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.get_tokenizer() # Testing tokenization lowercase__ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowercase__ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowercase__ = tokenizer.encode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowercase__ = '''こんにちは、世界。''' lowercase__ = '''こんばんは、㔺界。😀''' lowercase__ = '''こんにちは、世界。こんばんは、世界。😀''' lowercase__ = tokenizer.encode(prefix_text + input_text ) lowercase__ = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) lowercase__ = tokenizer.encode(UpperCamelCase , prefix_text=UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) lowercase__ = tokenizer.decode(UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : Union[str, Any] ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowercase__ = '''こんにちは、世界。''' lowercase__ = '''こんばんは、㔺界。😀''' lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2 lowercase__ = len(tokenizer.encode(UpperCamelCase ) ) - 2 lowercase__ = [1] + [0] * (len_prefix + len_text + 1) lowercase__ = [1] * (len_prefix + len_text + 1) + [0] lowercase__ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowercase__ = tokenizer(prefix_text + input_text ).token_type_ids lowercase__ = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids lowercase__ = tokenizer(UpperCamelCase , prefix_text=UpperCamelCase ).token_type_ids self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) self.assertListEqual(UpperCamelCase , UpperCamelCase ) @slow def UpperCamelCase__ (self : int ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowercase__ = tokenizer.encode('''あンいワ''' ) lowercase__ = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) lowercase__ = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) ) self.assertEqual(tokenizer.decode(UpperCamelCase ) , tokenizer.decode(UpperCamelCase ) ) self.assertNotEqual(UpperCamelCase , UpperCamelCase ) self.assertNotEqual(UpperCamelCase , UpperCamelCase ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def UpperCamelCase__ (self : Dict ): '''simple docstring''' lowercase__ = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowercase__ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowercase__ = tokenizer(UpperCamelCase , padding=UpperCamelCase ) lowercase__ = tokenizer.batch_encode_plus(UpperCamelCase , padding=UpperCamelCase ) # fmt: off lowercase__ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] lowercase__ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowercase__ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase ) self.assertListEqual(x_token.attention_mask , UpperCamelCase ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase ) def UpperCamelCase__ (self : List[Any] ): '''simple docstring''' pass def UpperCamelCase__ (self : Optional[int] ): '''simple docstring''' pass
2
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
'''simple docstring''' import argparse import torch from transformers import GPTaConfig, GPTaModel, load_tf_weights_in_gpta from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging logging.set_verbosity_info() def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if gpta_config_file == "": A : Dict = GPTaConfig() else: A : Optional[int] = GPTaConfig.from_json_file(snake_case__ ) A : str = GPTaModel(snake_case__ ) # Load weights from numpy load_tf_weights_in_gpta(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model A : int = pytorch_dump_folder_path + '''/''' + WEIGHTS_NAME A : Union[str, Any] = pytorch_dump_folder_path + '''/''' + CONFIG_NAME print(F'Save PyTorch model to {pytorch_weights_dump_path}' ) torch.save(model.state_dict() , snake_case__ ) print(F'Save configuration file to {pytorch_config_dump_path}' ) with open(snake_case__ , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": lowercase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--gpt2_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--gpt2_config_file', default='', type=str, help=( 'An optional config json file corresponding to the pre-trained OpenAI model. \n' 'This specifies the model architecture.' ), ) lowercase : Dict = parser.parse_args() convert_gpta_checkpoint_to_pytorch(args.gpta_checkpoint_path, args.gpta_config_file, args.pytorch_dump_folder_path)
3
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
'''simple docstring''' def a_ ( lowerCamelCase : int = 1000 ): lowerCAmelCase , lowerCAmelCase = 1, 1 lowerCAmelCase = 2 while True: lowerCAmelCase = 0 lowerCAmelCase = fa + fa lowerCAmelCase , lowerCAmelCase = fa, f index += 1 for _ in str(lowerCamelCase ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
4
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy UpperCAmelCase__ = logging.get_logger(__name__) class lowerCamelCase__ ( lowerCAmelCase): def __init__(self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , **UpperCAmelCase ) -> Optional[Any]: _lowercase =feature_size _lowercase =sampling_rate _lowercase =padding_value _lowercase =kwargs.pop('''padding_side''' , '''right''' ) _lowercase =kwargs.pop('''return_attention_mask''' , UpperCAmelCase ) super().__init__(**UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = False , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(UpperCAmelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _lowercase ={ key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f" to this method that includes {self.model_input_names[0]}, but you provided" f" {list(processed_features.keys() )}" ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(UpperCAmelCase ) == 0: if return_attention_mask: _lowercase =[] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _lowercase =required_input[0] if isinstance(UpperCAmelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _lowercase =0 while len(required_input[index] ) == 0: index += 1 if index < len(UpperCAmelCase ): _lowercase =required_input[index][0] if return_tensors is None: if is_tf_tensor(UpperCAmelCase ): _lowercase ='''tf''' elif is_torch_tensor(UpperCAmelCase ): _lowercase ='''pt''' elif isinstance(UpperCAmelCase , (int, float, list, tuple, np.ndarray) ): _lowercase ='''np''' else: raise ValueError( f"type of {first_element} unknown: {type(UpperCAmelCase )}. " '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _lowercase =to_numpy(UpperCAmelCase ) else: _lowercase =[to_numpy(UpperCAmelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _lowercase =self._get_padding_strategies(padding=UpperCAmelCase , max_length=UpperCAmelCase ) _lowercase =processed_features[self.model_input_names[0]] _lowercase =len(UpperCAmelCase ) if not all(len(UpperCAmelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _lowercase =[] for i in range(UpperCAmelCase ): _lowercase ={k: v[i] for k, v in processed_features.items()} # truncation _lowercase =self._truncate( UpperCAmelCase , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , truncation=UpperCAmelCase , ) truncated_inputs.append(UpperCAmelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _lowercase =max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _lowercase =PaddingStrategy.MAX_LENGTH _lowercase ={} for i in range(UpperCAmelCase ): # padding _lowercase =self._pad( truncated_inputs[i] , max_length=UpperCAmelCase , padding_strategy=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _lowercase =[] if value.dtype is np.dtype(np.floataa ): _lowercase =value.astype(np.floataa ) batch_outputs[key].append(UpperCAmelCase ) return BatchFeature(UpperCAmelCase , tensor_type=UpperCAmelCase ) def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = PaddingStrategy.DO_NOT_PAD , UpperCAmelCase = None , UpperCAmelCase = None , ) -> dict: _lowercase =processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _lowercase =len(UpperCAmelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =padding_strategy != PaddingStrategy.DO_NOT_PAD and len(UpperCAmelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _lowercase =np.ones(len(UpperCAmelCase ) , dtype=np.intaa ) if needs_to_be_padded: _lowercase =max_length - len(UpperCAmelCase ) if self.padding_side == "right": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (0, difference) ) _lowercase =((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _lowercase =np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _lowercase =((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _lowercase =np.pad( UpperCAmelCase , UpperCAmelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __A (self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> List[str]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _lowercase =processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _lowercase =((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _lowercase =len(UpperCAmelCase ) > max_length if needs_to_be_truncated: _lowercase =processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _lowercase =processed_features['''attention_mask'''][:max_length] return processed_features def __A (self , UpperCAmelCase=False , UpperCAmelCase=None ) -> Dict: # Get padding strategy if padding is not False: if padding is True: _lowercase =PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =PaddingStrategy(UpperCAmelCase ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): _lowercase =padding else: _lowercase =PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
5
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging A : Dict = logging.get_logger(__name__) class __A( a ): snake_case_ = '''encoder-decoder''' snake_case_ = True def __init__( self , **_snake_case ) -> str: '''simple docstring''' super().__init__(**_snake_case ) assert ( "encoder" in kwargs and "decoder" in kwargs ), "Config has to be initialized with encoder and decoder config" __a = kwargs.pop('''encoder''' ) __a = encoder_config.pop('''model_type''' ) __a = kwargs.pop('''decoder''' ) __a = decoder_config.pop('''model_type''' ) from ..auto.configuration_auto import AutoConfig __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = AutoConfig.for_model(_snake_case , **_snake_case ) __a = True @classmethod def SCREAMING_SNAKE_CASE_ ( cls , _snake_case , _snake_case , **_snake_case ) -> PretrainedConfig: '''simple docstring''' logger.info('''Set `config.is_decoder=True` and `config.add_cross_attention=True` for decoder_config''' ) __a = True __a = True return cls(encoder=encoder_config.to_dict() , decoder=decoder_config.to_dict() , **_snake_case ) def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' __a = copy.deepcopy(self.__dict__ ) __a = self.encoder.to_dict() __a = self.decoder.to_dict() __a = self.__class__.model_type return output
6
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
from argparse import ArgumentParser from datasets.commands.convert import ConvertCommand from datasets.commands.dummy_data import DummyDataCommand from datasets.commands.env import EnvironmentCommand from datasets.commands.run_beam import RunBeamCommand from datasets.commands.test import TestCommand from datasets.utils.logging import set_verbosity_info def _snake_case( SCREAMING_SNAKE_CASE__ : Tuple ) -> Tuple: '''simple docstring''' return {key.lstrip('-' ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )} def _snake_case( ) -> Dict: '''simple docstring''' A__ = ArgumentParser( 'HuggingFace Datasets CLI tool' , usage='datasets-cli <command> [<args>]' , allow_abbrev=SCREAMING_SNAKE_CASE__ ) A__ = parser.add_subparsers(help='datasets-cli command helpers' ) set_verbosity_info() # Register commands ConvertCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) EnvironmentCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) TestCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) RunBeamCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) DummyDataCommand.register_subcommand(SCREAMING_SNAKE_CASE__ ) # Parse args A__ , A__ = parser.parse_known_args() if not hasattr(SCREAMING_SNAKE_CASE__ , 'func' ): parser.print_help() exit(1 ) A__ = parse_unknown_args(SCREAMING_SNAKE_CASE__ ) # Run A__ = args.func(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) service.run() if __name__ == "__main__": main()
7
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ): return x + 2 class snake_case_ ( unittest.TestCase ): '''simple docstring''' def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) snake_case_ = '''x = y''' snake_case_ = {'''y''': 5} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 5, '''y''': 5} ) def snake_case__( self : Dict ) ->Optional[int]: snake_case_ = '''y = add_two(x)''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result is None assert "tried to execute add_two" in out.out def snake_case__( self : Union[str, Any] ) ->Dict: snake_case_ = '''x = 3''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3} ) def snake_case__( self : Optional[int] ) ->Optional[int]: snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Dict ) ->str: snake_case_ = '''x = 3\ny = 5''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 5} ) def snake_case__( self : str ) ->Tuple: snake_case_ = '''text = f\'This is x: {x}.\'''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def snake_case__( self : Optional[Any] ) ->List[str]: snake_case_ = '''if x <= 3:\n y = 2\nelse:\n y = 5''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 2} ) snake_case_ = {'''x''': 8} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 8, '''y''': 5} ) def snake_case__( self : str ) ->str: snake_case_ = '''test_list = [x, add_two(x)]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) self.assertListEqual(_UpperCamelCase , [3, 5] ) self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def snake_case__( self : Any ) ->List[Any]: snake_case_ = '''y = x''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {} , state=_UpperCamelCase ) assert result == 3 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''y''': 3} ) def snake_case__( self : Optional[int] ) ->Dict: snake_case_ = '''test_list = [x, add_two(x)]\ntest_list[1]''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_list''': [3, 5]} ) snake_case_ = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' snake_case_ = {'''x''': 3} snake_case_ = evaluate(_UpperCamelCase , {'''add_two''': add_two} , state=_UpperCamelCase ) assert result == 5 self.assertDictEqual(_UpperCamelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def snake_case__( self : Optional[Any] ) ->int: snake_case_ = '''x = 0\nfor i in range(3):\n x = i''' snake_case_ = {} snake_case_ = evaluate(_UpperCamelCase , {'''range''': range} , state=_UpperCamelCase ) assert result == 2 self.assertDictEqual(_UpperCamelCase , {'''x''': 2, '''i''': 2} )
8
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
import torch from diffusers import StableDiffusionPipeline __lowerCAmelCase : Dict ='path-to-your-trained-model' __lowerCAmelCase : int =StableDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.floataa).to('cuda') __lowerCAmelCase : Dict ='A photo of sks dog in a bucket' __lowerCAmelCase : Dict =pipe(prompt, num_inference_steps=5_0, guidance_scale=7.5).images[0] image.save('dog-bucket.png')
9
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' lowercase_ = MODEL_FOR_MASKED_LM_MAPPING lowercase_ = TF_MODEL_FOR_MASKED_LM_MAPPING def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->Tuple: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="tf") lowerCamelCase__: List[Any] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped"}, {"sequence": "My name is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser"}, ] , ) lowerCamelCase__: List[str] =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is grouped", "score": 2.1E-0_5, "token": 38_015, "token_str": " grouped", }, { "sequence": "The largest city in France is accuser", "score": 2.1E-0_5, "token": 25_506, "token_str": " accuser", }, ] , ) lowerCamelCase__: List[str] =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Patrick", "score": 2E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 1.9E-0_5, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: List[str] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , top_k=2 , framework="pt") lowerCamelCase__: Tuple =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul"}, {"sequence": "My name isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ { "sequence": "The largest city in France is Maul", "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", }, {"sequence": "The largest city in France isELS", "score": 2.2E-0_5, "token": 16_416, "token_str": "ELS"}, ] , ) lowerCamelCase__: str =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ {"sequence": "My name is Patrick", "score": 2.1E-0_5, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Te", "score": 2E-0_5, "token": 2_941, "token_str": " Te"}, {"sequence": "My name is Clara", "score": 2E-0_5, "token": 13_606, "token_str": " Clara"}, ] , ) lowerCamelCase__: Dict =unmasker("My name is <mask> <mask>" , top_k=2) self.assertEqual( nested_simplify(UpperCAmelCase_ , decimals=6) , [ [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is Maul<mask></s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name isELS<mask></s>"}, ], [ { "score": 2.2E-0_5, "token": 35_676, "token_str": " Maul", "sequence": "<s>My name is<mask> Maul</s>", }, {"score": 2.2E-0_5, "token": 16_416, "token_str": "ELS", "sequence": "<s>My name is<mask>ELS</s>"}, ], ] , ) @require_torch_gpu def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Union[str, Any] =pipeline("fill-mask" , model="hf-internal-testing/tiny-random-distilbert" , device=0 , framework="pt") # convert model to fp16 pipe.model.half() lowerCamelCase__: str =pipe("Paris is the [MASK] of France.") # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(UpperCAmelCase_ , UpperCAmelCase_) @slow @require_torch def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' lowerCamelCase__: Any =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="pt") self.run_large_test(UpperCAmelCase_) @slow @require_tf def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Dict: '''simple docstring''' lowerCamelCase__: List[Any] =pipeline(task="fill-mask" , model="distilroberta-base" , top_k=2 , framework="tf") self.run_large_test(UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : List[str] , UpperCAmelCase_ : str) ->List[Any]: '''simple docstring''' lowerCamelCase__: Optional[int] =unmasker("My name is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is John", "score": 0.008, "token": 610, "token_str": " John"}, {"sequence": "My name is Chris", "score": 0.007, "token": 1_573, "token_str": " Chris"}, ] , ) lowerCamelCase__: Tuple =unmasker("The largest city in France is <mask>") self.assertEqual( nested_simplify(UpperCAmelCase_) , [ { "sequence": "The largest city in France is Paris", "score": 0.251, "token": 2_201, "token_str": " Paris", }, { "sequence": "The largest city in France is Lyon", "score": 0.214, "token": 12_790, "token_str": " Lyon", }, ] , ) lowerCamelCase__: int =unmasker("My name is <mask>" , targets=[" Patrick", " Clara", " Teven"] , top_k=3) self.assertEqual( nested_simplify(UpperCAmelCase_) , [ {"sequence": "My name is Patrick", "score": 0.005, "token": 3_499, "token_str": " Patrick"}, {"sequence": "My name is Clara", "score": 0.000, "token": 13_606, "token_str": " Clara"}, {"sequence": "My name is Te", "score": 0.000, "token": 2_941, "token_str": " Te"}, ] , ) @require_torch def SCREAMING_SNAKE_CASE_ (self : List[str]) ->Optional[Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="pt") lowerCamelCase__: Dict =None lowerCamelCase__: Dict =None self.run_pipeline_test(UpperCAmelCase_ , []) @require_tf def SCREAMING_SNAKE_CASE_ (self : str) ->str: '''simple docstring''' lowerCamelCase__: Tuple =pipeline(task="fill-mask" , model="sshleifer/tiny-distilroberta-base" , framework="tf") lowerCamelCase__: Any =None lowerCamelCase__: Optional[int] =None self.run_pipeline_test(UpperCAmelCase_ , []) def SCREAMING_SNAKE_CASE_ (self : Any , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Optional[int]) ->Optional[int]: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest("The provided tokenizer has no mask token, (probably reformer or wav2vec2)") lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[int] =[ F"""This is another {tokenizer.mask_token} test""", ] return fill_masker, examples def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int) ->Optional[int]: '''simple docstring''' lowerCamelCase__: int =fill_masker.tokenizer lowerCamelCase__: str =fill_masker.model lowerCamelCase__: Optional[int] =fill_masker( F"""This is a {tokenizer.mask_token}""" , ) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: List[Any] =fill_masker([F"""This is a {tokenizer.mask_token}"""]) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[Any] =fill_masker([F"""This is a {tokenizer.mask_token}""", F"""Another {tokenizer.mask_token} great test."""]) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , ) with self.assertRaises(UpperCAmelCase_): fill_masker([None]) # No mask_token is not supported with self.assertRaises(UpperCAmelCase_): fill_masker("This is") self.run_test_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_targets(UpperCAmelCase_ , UpperCAmelCase_) self.run_test_top_k_targets(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_duplicate_targets_and_top_k(UpperCAmelCase_ , UpperCAmelCase_) self.fill_mask_with_multiple_masks(UpperCAmelCase_ , UpperCAmelCase_) def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Optional[int]) ->Tuple: '''simple docstring''' lowerCamelCase__: Optional[int] =tokenizer.get_vocab() lowerCamelCase__: Optional[int] =sorted(vocab.keys())[:2] # Pipeline argument lowerCamelCase__: Tuple =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , targets=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Tuple ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: List[str] =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Call argument lowerCamelCase__: List[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Optional[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Optional[int] ={vocab[el] for el in targets} self.assertEqual({el["token"] for el in outputs} , UpperCAmelCase_) lowerCamelCase__: str =[tokenizer.decode([x]) for x in target_ids] self.assertEqual({el["token_str"] for el in outputs} , set(UpperCAmelCase_)) # Score equivalence lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: str =[top_mask["token_str"] for top_mask in outputs] lowerCamelCase__: Dict =[top_mask["score"] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_) == set(UpperCAmelCase_): lowerCamelCase__: Union[str, Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=UpperCAmelCase_) lowerCamelCase__: Any =[top_mask["score"] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) # Raises with invalid with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Optional[int] =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[]) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets=[""]) with self.assertRaises(UpperCAmelCase_): lowerCamelCase__: Dict =fill_masker(F"""This is a {tokenizer.mask_token}""" , targets="") def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str]) ->str: '''simple docstring''' lowerCamelCase__: Optional[int] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_ , top_k=2) lowerCamelCase__: List[str] =fill_masker(F"""This is a {tokenizer.mask_token}""") self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) lowerCamelCase__: Dict =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ] , ) self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Tuple , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Any) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Tuple =tokenizer.get_vocab() lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) # top_k=2, ntargets=3 lowerCamelCase__: List[str] =sorted(vocab.keys())[:3] lowerCamelCase__: List[Any] =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=2 , targets=UpperCAmelCase_) # If we use the most probably targets, and filter differently, we should still # have the same results lowerCamelCase__: Union[str, Any] =[el["token_str"] for el in sorted(UpperCAmelCase_ , key=lambda UpperCAmelCase_: x["score"] , reverse=UpperCAmelCase_)] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(UpperCAmelCase_).issubset(UpperCAmelCase_): lowerCamelCase__: int =fill_masker(F"""This is a {tokenizer.mask_token}""" , top_k=3 , targets=UpperCAmelCase_) # They should yield exactly the same result self.assertEqual(nested_simplify(UpperCAmelCase_) , nested_simplify(UpperCAmelCase_)) def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Optional[Any]) ->List[str]: '''simple docstring''' lowerCamelCase__: Any =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.get_vocab() # String duplicates + id duplicates lowerCamelCase__: Optional[Any] =sorted(vocab.keys())[:3] lowerCamelCase__: Optional[Any] =[targets[0], targets[1], targets[0], targets[2], targets[1]] lowerCamelCase__: Union[str, Any] =fill_masker(F"""My name is {tokenizer.mask_token}""" , targets=UpperCAmelCase_ , top_k=10) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(UpperCAmelCase_) , 3) def SCREAMING_SNAKE_CASE_ (self : int , UpperCAmelCase_ : int , UpperCAmelCase_ : str) ->Union[str, Any]: '''simple docstring''' lowerCamelCase__: Optional[Any] =FillMaskPipeline(model=UpperCAmelCase_ , tokenizer=UpperCAmelCase_) lowerCamelCase__: Tuple =fill_masker( F"""This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}""" , top_k=2) self.assertEqual( UpperCAmelCase_ , [ [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], [ {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, {"sequence": ANY(UpperCAmelCase_), "score": ANY(UpperCAmelCase_), "token": ANY(UpperCAmelCase_), "token_str": ANY(UpperCAmelCase_)}, ], ] , )
10
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { 'microsoft/trocr-base-handwritten': ( 'https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json' ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase__ ( a): '''simple docstring''' __SCREAMING_SNAKE_CASE = "trocr" __SCREAMING_SNAKE_CASE = ["past_key_values"] __SCREAMING_SNAKE_CASE = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self , __lowerCamelCase=5_0_2_6_5 , __lowerCamelCase=1_0_2_4 , __lowerCamelCase=1_2 , __lowerCamelCase=1_6 , __lowerCamelCase=4_0_9_6 , __lowerCamelCase="gelu" , __lowerCamelCase=5_1_2 , __lowerCamelCase=0.1 , __lowerCamelCase=0.0 , __lowerCamelCase=0.0 , __lowerCamelCase=2 , __lowerCamelCase=0.0_2 , __lowerCamelCase=0.0 , __lowerCamelCase=True , __lowerCamelCase=False , __lowerCamelCase=True , __lowerCamelCase=True , __lowerCamelCase=1 , __lowerCamelCase=0 , __lowerCamelCase=2 , **__lowerCamelCase , ) -> List[Any]: _A : Tuple = vocab_size _A : int = d_model _A : Optional[Any] = decoder_layers _A : int = decoder_attention_heads _A : List[Any] = decoder_ffn_dim _A : int = activation_function _A : int = max_position_embeddings _A : int = dropout _A : Tuple = attention_dropout _A : Any = activation_dropout _A : List[str] = init_std _A : Optional[int] = decoder_layerdrop _A : Tuple = use_cache _A : str = scale_embedding _A : Any = use_learned_position_embeddings _A : Optional[Any] = layernorm_embedding super().__init__( pad_token_id=__lowerCamelCase , bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , decoder_start_token_id=__lowerCamelCase , **__lowerCamelCase , )
11
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
import argparse import datetime def lowerCamelCase__ ( A__ : str ): '''simple docstring''' __lowerCamelCase = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } __lowerCamelCase = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(A__ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month __lowerCamelCase = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) __lowerCamelCase = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day __lowerCamelCase = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator __lowerCamelCase = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year __lowerCamelCase = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation __lowerCamelCase = datetime.date(int(A__ ) , int(A__ ) , int(A__ ) ) # Start math if m <= 2: __lowerCamelCase = y - 1 __lowerCamelCase = m + 12 # maths var __lowerCamelCase = int(str(A__ )[:2] ) __lowerCamelCase = int(str(A__ )[2:] ) __lowerCamelCase = int(2.6 * m - 5.39 ) __lowerCamelCase = int(c / 4 ) __lowerCamelCase = int(k / 4 ) __lowerCamelCase = int(d + k ) __lowerCamelCase = int(t + u + v + x ) __lowerCamelCase = int(z - (2 * c) ) __lowerCamelCase = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response __lowerCamelCase = f'Your date {date_input}, is a {days[str(A__ )]}!' return response if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ = argparse.ArgumentParser( description=( 'Find out what day of the week nearly any date is or was. Enter ' 'date as a string in the mm-dd-yyyy or mm/dd/yyyy format' ) ) parser.add_argument( 'date_input', type=str, help='Date as a string (mm-dd-yyyy or mm/dd/yyyy)' ) UpperCAmelCase_ = parser.parse_args() zeller(args.date_input)
12
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Any = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Optional[Any] = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
13
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
# Copyright 2022 The HuggingFace Team and The OpenBMB Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCamelCase : Union[str, Any] = { """configuration_cpmant""": ["""CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CpmAntConfig"""], """tokenization_cpmant""": ["""CpmAntTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Optional[Any] = [ """CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST""", """CpmAntForCausalLM""", """CpmAntModel""", """CpmAntPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_cpmant import CPMANT_PRETRAINED_CONFIG_ARCHIVE_MAP, CpmAntConfig from .tokenization_cpmant import CpmAntTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_cpmant import ( CPMANT_PRETRAINED_MODEL_ARCHIVE_LIST, CpmAntForCausalLM, CpmAntModel, CpmAntPreTrainedModel, ) else: import sys _lowerCamelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Sequence, Value from .base import TaskTemplate @dataclass(frozen=__SCREAMING_SNAKE_CASE ) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = field(default="question-answering-extractive" , metadata={"include_in_asdict_even_if_is_default": True} ) snake_case_ = Features({"question": Value("string" ), "context": Value("string" )} ) snake_case_ = Features( { "answers": Sequence( { "text": Value("string" ), "answer_start": Value("int32" ), } ) } ) snake_case_ = "question" snake_case_ = "context" snake_case_ = "answers" @property def UpperCamelCase_ ( self : Dict ): return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"}
15
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available, is_torch_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, SMALL_MODEL_IDENTIFIER, is_pt_tf_cross_test, slow if is_tf_available(): from transformers import ( AutoConfig, BertConfig, GPTaConfig, TaConfig, TFAutoModel, TFAutoModelForCausalLM, TFAutoModelForMaskedLM, TFAutoModelForPreTraining, TFAutoModelForQuestionAnswering, TFAutoModelForSeqaSeqLM, TFAutoModelForSequenceClassification, TFAutoModelWithLMHead, TFBertForMaskedLM, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertModel, TFGPTaLMHeadModel, TFRobertaForMaskedLM, TFTaForConditionalGeneration, ) from transformers.models.bert.modeling_tf_bert import TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.gpta.modeling_tf_gpta import TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST from transformers.models.ta.modeling_tf_ta import TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST if is_torch_available(): from transformers import ( AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForPreTraining, AutoModelForQuestionAnswering, AutoModelForSeqaSeqLM, AutoModelForSequenceClassification, AutoModelWithLMHead, BertForMaskedLM, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertModel, GPTaLMHeadModel, RobertaForMaskedLM, TaForConditionalGeneration, ) @is_pt_tf_cross_test class __A ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Dict = TFAutoModel.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModel.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Union[str, Any] ) -> Tuple: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Dict = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForPreTraining.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = AutoModelForPreTraining.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Dict: """simple docstring""" for model_name in TF_GPT2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForCausalLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = TFAutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForCausalLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[Any] = AutoModelForCausalLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Any ) -> Tuple: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Any = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" for model_name in TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : str = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = TFAutoModelForMaskedLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : str = TFAutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = AutoModelForMaskedLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Any = AutoModelForMaskedLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" for model_name in TF_T5_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase__ : Union[str, Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_pt=_snake_case ) lowercase__ , lowercase__ : List[str] = TFAutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ,from_tf=_snake_case ) lowercase__ , lowercase__ : Optional[int] = AutoModelForSeqaSeqLM.from_pretrained( _snake_case ,output_loading_info=_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : Tuple = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = TFAutoModelForSequenceClassification.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) @slow def UpperCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" for model_name in ["bert-base-uncased"]: lowercase__ : List[Any] = AutoConfig.from_pretrained(_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : str = TFAutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) lowercase__ : Any = AutoModelForQuestionAnswering.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsNotNone(_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) def UpperCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowercase__ : Optional[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : Union[str, Any] = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) def UpperCAmelCase ( self : int ) -> List[Any]: """simple docstring""" lowercase__ : List[Any] = TFAutoModelWithLMHead.from_pretrained(_snake_case ,from_pt=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 ) lowercase__ : int = AutoModelWithLMHead.from_pretrained(_snake_case ,from_tf=_snake_case ) self.assertIsInstance(_snake_case ,_snake_case ) self.assertEqual(model.num_parameters() ,14_410 ) self.assertEqual(model.num_parameters(only_trainable=_snake_case ) ,14_410 )
16
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class _lowerCAmelCase : """simple docstring""" def __init__( self : Any, UpperCAmelCase__ : List[Any], ): __lowercase = parent __lowercase = 1_3 __lowercase = 7 __lowercase = 3_0 __lowercase = self.seq_length + self.mem_len __lowercase = 1_5 __lowercase = True __lowercase = True __lowercase = 9_9 __lowercase = [1_0, 5_0, 8_0] __lowercase = 3_2 __lowercase = 3_2 __lowercase = 4 __lowercase = 8 __lowercase = 1_2_8 __lowercase = 2 __lowercase = 2 __lowercase = None __lowercase = 1 __lowercase = 0 __lowercase = 3 __lowercase = self.vocab_size - 1 __lowercase = 0.01 def _lowercase ( self : List[str] ): __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __lowercase = TransfoXLConfig( vocab_size=self.vocab_size, mem_len=self.mem_len, clamp_len=self.clamp_len, cutoffs=self.cutoffs, d_model=self.hidden_size, d_embed=self.d_embed, n_head=self.num_attention_heads, d_head=self.d_head, d_inner=self.d_inner, div_val=self.div_val, n_layer=self.num_hidden_layers, eos_token_id=self.eos_token_id, pad_token_id=self.vocab_size - 1, init_range=self.init_range, num_labels=self.num_labels, ) return (config, input_ids_a, input_ids_a, lm_labels) def _lowercase ( self : List[Any] ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def _lowercase ( self : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple ): __lowercase = TFTransfoXLModel(UpperCAmelCase__ ) __lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple() __lowercase = {"input_ids": input_ids_a, "mems": mems_a} __lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape, (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def _lowercase ( self : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : List[str] ): __lowercase = TFTransfoXLLMHeadModel(UpperCAmelCase__ ) __lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple() __lowercase = {"input_ids": input_ids_a, "labels": lm_labels} __lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple() __lowercase ,__lowercase = model([input_ids_a, mems_a] ).to_tuple() __lowercase = {"input_ids": input_ids_a, "mems": mems_a, "labels": lm_labels} __lowercase ,__lowercase = model(UpperCAmelCase__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) self.parent.assertEqual(lm_logits_a.shape, (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a], [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers, ) def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : str, UpperCAmelCase__ : Optional[int] ): __lowercase = TFTransfoXLForSequenceClassification(UpperCAmelCase__ ) __lowercase = model(UpperCAmelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _lowercase ( self : Any ): __lowercase = self.prepare_config_and_inputs() ((__lowercase) ,(__lowercase) ,(__lowercase) ,(__lowercase)) = config_and_inputs __lowercase = {"input_ids": input_ids_a} return config, inputs_dict @require_tf class _lowerCAmelCase ( lowercase ,lowercase ,unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Optional[Any] = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) __UpperCAmelCase : Union[str, Any] = () if is_tf_available() else () __UpperCAmelCase : List[str] = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented __UpperCAmelCase : Tuple = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = False __UpperCAmelCase : List[Any] = False def _lowercase ( self : str, UpperCAmelCase__ : List[str], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Any, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : int ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def _lowercase ( self : List[str] ): __lowercase = TFTransfoXLModelTester(self ) __lowercase = ConfigTester(self, config_class=UpperCAmelCase__, d_embed=3_7 ) def _lowercase ( self : int ): self.config_tester.run_common_tests() def _lowercase ( self : Union[str, Any] ): self.model_tester.set_seed() __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*UpperCAmelCase__ ) def _lowercase ( self : Tuple ): self.model_tester.set_seed() __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*UpperCAmelCase__ ) def _lowercase ( self : Optional[int] ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*UpperCAmelCase__ ) def _lowercase ( self : int ): __lowercase ,__lowercase = self.model_tester.prepare_config_and_inputs_for_common() __lowercase = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: __lowercase = model_class(UpperCAmelCase__ ) assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: __lowercase = model.get_output_embeddings() assert isinstance(UpperCAmelCase__, tf.keras.layers.Layer ) __lowercase = model.get_bias() assert name is None else: __lowercase = model.get_output_embeddings() assert x is None __lowercase = model.get_bias() assert name is None def _lowercase ( self : List[str] ): # TODO JP: Make TransfoXL XLA compliant pass @slow def _lowercase ( self : Tuple ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = TFTransfoXLModel.from_pretrained(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skip(reason="This model doesn't play well with fit() due to not returning a single loss." ) def _lowercase ( self : Any ): pass @require_tf class _lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @unittest.skip("Skip test until #12651 is resolved." ) @slow def _lowercase ( self : List[str] ): __lowercase = TFTransfoXLLMHeadModel.from_pretrained("transfo-xl-wt103" ) # fmt: off __lowercase = tf.convert_to_tensor([[3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0]], dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off __lowercase = [3_3,1_2_9_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_2,1_7_0_6,1_7,2_0_0_9_8,5,3_2_1_5,2_1,3_7,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,6_2_2_4,8_3_1,1_6_0_0_2,2,8,6_0_3,7_8_9_6_7,2_9_5_4_6,2_3,8_0_3,2_0,2_5,4_1_6,5,8,2_3_2,4,2_7_7,6,1_8_5_5,4_6_0_1,3,2_9_5_4_6,5_4,8,3_6_0_9,5,5_7_2_1_1,4_9,4,1,2_7_7,1_8,8,1_7_5_5,1_5_6_9_1,3,3_4_1,2_5,4_1_6,6_9_3,4_2_5_7_3,7_1,1_7,4_0_1,9_4,3_1,1_7_9_1_9,2,2_9_5_4_6,7_8_7_3,1_8,1,4_3_5,2_3,1_1_0_1_1,7_5_5,5,5_1_6_7,3,7_9_8_3,9_8,8_4,2,2_9_5_4_6,3_2_6_7,8,3_6_0_9,4,1,4_8_6_5,1_0_7_5,2,6_0_8_7,7_1,6,3_4_6,8,5_8_5_4,3,2_9_5_4_6,8_2_4,1_4_0_0,1_8_6_8,2,1_9,1_6_0,2,3_1_1,8,5_4_9_6,2,2_0_9_2_0,1_7,2_5,1_5_0_9_7,3,2_4,2_4,0,3_3,1,1_8_5_7,2,1,1_0_0_9,4,1_1_0_9,1_1_7_3_9,4_7_6_2,3_5_8,5,2_5,2_4_5,2_8,1_1_1_0,3,1_3,1_0_4_1,4,2_4,6_0_3,4_9_0,2,7_1_4_7_7,2_0_0_9_8,1_0_4_4_4_7,2,2_0_9_6_1,1,2_6_0_4,4,1,3_2_9,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> __lowercase = model.generate(UpperCAmelCase__, max_length=2_0_0, do_sample=UpperCAmelCase__ ) self.assertListEqual(output_ids[0].numpy().tolist(), UpperCAmelCase__ )
17
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
def _snake_case ( lowerCAmelCase : int = 1_0_0 ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0 SCREAMING_SNAKE_CASE_ : Tuple = 0 for i in range(1 , n + 1 ): sum_of_squares += i**2 sum_of_ints += i return sum_of_ints**2 - sum_of_squares if __name__ == "__main__": print(f'''{solution() = }''')
18
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
import random def lowerCamelCase_ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = False ): lowerCamelCase_ = {i: [] for i in range(lowerCamelCase__ )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(lowerCamelCase__ ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(lowerCamelCase__ ): for j in range(i + 1 , lowerCamelCase__ ): if random.random() < probability: graph[i].append(lowerCamelCase__ ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(lowerCamelCase__ ) return graph def lowerCamelCase_ ( lowerCamelCase__ ): return { i: [j for j in range(lowerCamelCase__ ) if i != j] for i in range(lowerCamelCase__ ) } if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
from math import factorial, pi def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) lowercase : List[str] = float(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(SCREAMING_SNAKE_CASE__ ) ) def _snake_case( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 30 ) -> float: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) lowercase : Dict = float(SCREAMING_SNAKE_CASE__ ) lowercase : Optional[int] = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(SCREAMING_SNAKE_CASE__ ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(10)) print(maclaurin_sin(-10)) print(maclaurin_sin(10, 15)) print(maclaurin_sin(-10, 15)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(10, 15)) print(maclaurin_cos(-10, 15))
20
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
from transformers import DistilBertTokenizer, DistilBertTokenizerFast from transformers.testing_utils import require_tokenizers, slow from ..bert.test_tokenization_bert import BertTokenizationTest @require_tokenizers class _lowerCamelCase( _a ): lowercase_ : Optional[Any] = DistilBertTokenizer lowercase_ : Optional[int] = DistilBertTokenizerFast lowercase_ : Any = True @slow def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : int = DistilBertTokenizer.from_pretrained('distilbert-base-uncased') _lowercase : Union[str, Any] = tokenizer.encode('sequence builders', add_special_tokens=lowerCamelCase) _lowercase : Tuple = tokenizer.encode('multi-sequence build', add_special_tokens=lowerCamelCase) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase) _lowercase : List[Any] = tokenizer.build_inputs_with_special_tokens(lowerCamelCase, lowerCamelCase) assert encoded_sentence == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] assert encoded_pair == [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [ tokenizer.sep_token_id ]
21
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
'''simple docstring''' # Usage: # ./gen-card-facebook-wmt19.py import os from pathlib import Path def UpperCAmelCase_ ( __lowercase : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] ) -> str: '''simple docstring''' _UpperCAmelCase = { "en": "Machine learning is great, isn't it?", "ru": "Машинное обучение - это здорово, не так ли?", "de": "Maschinelles Lernen ist großartig, oder?", } # BLUE scores as follows: # "pair": [fairseq, transformers] _UpperCAmelCase = { "ru-en": ["[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)", "39.20"], "en-ru": ["[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)", "33.47"], "en-de": ["[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)", "42.83"], "de-en": ["[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)", "41.35"], } _UpperCAmelCase = f'{src_lang}-{tgt_lang}' _UpperCAmelCase = f'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(__lowercase , exist_ok=__lowercase ) _UpperCAmelCase = os.path.join(__lowercase , "README.md" ) print(f'Generating {path}' ) with open(__lowercase , "w" , encoding="utf-8" ) as f: f.write(__lowercase ) # make sure we are under the root of the project __SCREAMING_SNAKE_CASE :Optional[Any] = Path(__file__).resolve().parent.parent.parent __SCREAMING_SNAKE_CASE :Any = repo_dir / '''model_cards''' for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE :Optional[Any] = model_name.split('''-''') __SCREAMING_SNAKE_CASE :List[str] = model_cards_dir / '''facebook''' / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
22
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
'''simple docstring''' from collections.abc import Callable import numpy as np def snake_case_ ( _lowerCAmelCase : Callable , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ) -> np.ndarray: UpperCAmelCase : Union[str, Any] = int(np.ceil((x_end - xa) / step_size ) ) UpperCAmelCase : Tuple = np.zeros((n + 1,) ) UpperCAmelCase : Optional[int] = ya UpperCAmelCase : Optional[Any] = xa for k in range(_lowerCAmelCase ): UpperCAmelCase : Dict = y[k] + step_size * ode_func(_lowerCAmelCase , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
23
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def __init__(self : Tuple , a__ : int , a__ : Any=7 , a__ : Any=3 , a__ : Union[str, Any]=18 , a__ : str=30 , a__ : Optional[int]=400 , a__ : Any=True , a__ : Tuple=None , a__ : str=True , a__ : str=[0.5, 0.5, 0.5] , a__ : Any=[0.5, 0.5, 0.5] , ): """simple docstring""" __snake_case = size if size is not None else {'''height''': 18, '''width''': 18} __snake_case = parent __snake_case = batch_size __snake_case = num_channels __snake_case = image_size __snake_case = min_resolution __snake_case = max_resolution __snake_case = do_resize __snake_case = size __snake_case = do_normalize __snake_case = image_mean __snake_case = image_std def a (self : str ): """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ): A_ : List[str] = DPTImageProcessor if is_vision_available() else None def a (self : Optional[int] ): """simple docstring""" __snake_case = DPTImageProcessingTester(self ) @property def a (self : int ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a (self : Optional[Any] ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(a__ , '''image_mean''' ) ) self.assertTrue(hasattr(a__ , '''image_std''' ) ) self.assertTrue(hasattr(a__ , '''do_normalize''' ) ) self.assertTrue(hasattr(a__ , '''do_resize''' ) ) self.assertTrue(hasattr(a__ , '''size''' ) ) def a (self : Optional[int] ): """simple docstring""" __snake_case = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) __snake_case = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a (self : Tuple ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ ) for image in image_inputs: self.assertIsInstance(a__ , Image.Image ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a (self : Any ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , numpify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , np.ndarray ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a (self : str ): """simple docstring""" __snake_case = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __snake_case = prepare_image_inputs(self.image_processor_tester , equal_resolution=a__ , torchify=a__ ) for image in image_inputs: self.assertIsInstance(a__ , torch.Tensor ) # Test not batched input __snake_case = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched __snake_case = image_processing(a__ , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
24
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" import inspect import os import unittest from dataclasses import dataclass import torch from accelerate import Accelerator, DistributedDataParallelKwargs, GradScalerKwargs from accelerate.state import AcceleratorState from accelerate.test_utils import execute_subprocess_async, require_cuda, require_multi_gpu from accelerate.utils import KwargsHandler @dataclass class lowerCAmelCase_ (a__ ): """simple docstring""" __UpperCamelCase : int = 0 __UpperCamelCase : bool = False __UpperCamelCase : float = 3.0 class lowerCAmelCase_ (unittest.TestCase ): """simple docstring""" def __magic_name__ (self ) -> List[str]: """simple docstring""" self.assertDictEqual(MockClass().to_kwargs() , {} ) self.assertDictEqual(MockClass(a=2 ).to_kwargs() , {"""a""": 2} ) self.assertDictEqual(MockClass(a=2 , b=SCREAMING_SNAKE_CASE__ ).to_kwargs() , {"""a""": 2, """b""": True} ) self.assertDictEqual(MockClass(a=2 , c=2.25 ).to_kwargs() , {"""a""": 2, """c""": 2.25} ) @require_cuda def __magic_name__ (self ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = GradScalerKwargs(init_scale=10_24 , growth_factor=2 ) AcceleratorState._reset_state() SCREAMING_SNAKE_CASE__ : Tuple = Accelerator(mixed_precision="""fp16""" , kwargs_handlers=[scaler_handler] ) print(accelerator.use_fpaa ) SCREAMING_SNAKE_CASE__ : str = accelerator.scaler # Check the kwargs have been applied self.assertEqual(scaler._init_scale , 1024.0 ) self.assertEqual(scaler._growth_factor , 2.0 ) # Check the other values are at the default self.assertEqual(scaler._backoff_factor , 0.5 ) self.assertEqual(scaler._growth_interval , 20_00 ) self.assertEqual(scaler._enabled , SCREAMING_SNAKE_CASE__ ) @require_multi_gpu def __magic_name__ (self ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : int = ["""torchrun""", F'''--nproc_per_node={torch.cuda.device_count()}''', inspect.getfile(self.__class__ )] execute_subprocess_async(SCREAMING_SNAKE_CASE__ , env=os.environ.copy() ) if __name__ == "__main__": UpperCAmelCase__ : Optional[Any] = DistributedDataParallelKwargs(bucket_cap_mb=1_5, find_unused_parameters=True) UpperCAmelCase__ : Union[str, Any] = Accelerator(kwargs_handlers=[ddp_scaler]) UpperCAmelCase__ : Any = torch.nn.Linear(1_0_0, 2_0_0) UpperCAmelCase__ : Optional[Any] = accelerator.prepare(model) # Check the values changed in kwargs UpperCAmelCase__ : Tuple = '' UpperCAmelCase__ : List[str] = model.bucket_bytes_cap // (1_0_2_4 * 1_0_2_4) if observed_bucket_cap_map != 1_5: error_msg += f"Kwargs badly passed, should have `15` but found {observed_bucket_cap_map}.\n" if model.find_unused_parameters is not True: error_msg += f"Kwargs badly passed, should have `True` but found {model.find_unused_parameters}.\n" # Check the values of the defaults if model.dim != 0: error_msg += f"Default value not respected, should have `0` but found {model.dim}.\n" if model.broadcast_buffers is not True: error_msg += f"Default value not respected, should have `True` but found {model.broadcast_buffers}.\n" if model.gradient_as_bucket_view is not False: error_msg += f"Default value not respected, should have `False` but found {model.gradient_as_bucket_view}.\n" # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
25
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _snake_case = { "configuration_table_transformer": [ "TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "TableTransformerConfig", "TableTransformerOnnxConfig", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ "TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TableTransformerForObjectDetection", "TableTransformerModel", "TableTransformerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
26
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
'''simple docstring''' # XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path __lowercase : List[Any] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(42) __lowercase : Dict = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} __lowercase : int = 'zero2' __lowercase : Dict = 'zero3' __lowercase : List[Any] = [ZEROa, ZEROa] def lowerCamelCase (_SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any ): # customize the test name generator function as we want both params to appear in the sub-test # name, as by default it shows only the first param __a : Dict = parameterized.to_safe_name('_'.join(str(_SCREAMING_SNAKE_CASE ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test __lowercase : List[Any] = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class __UpperCamelCase ( lowerCAmelCase_ ): @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def __UpperCAmelCase ( self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' pass def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ): '''simple docstring''' __a : Any = models[model] __a : Union[str, Any] = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def __UpperCAmelCase ( self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ): '''simple docstring''' __a : Tuple = self.get_auto_remove_tmp_dir('./xxx' , after=__a ) __a : Optional[Any] = f""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(['--fp16'] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files __a : int = f"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() __a : Union[str, Any] = [f"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] __a : Dict = self.get_launcher(__a ) __a : Tuple = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def __UpperCAmelCase ( self , __a=False ): '''simple docstring''' __a : int = min(2 , get_gpu_count() ) if distributed else 1 return f"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
27
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision.transforms import functional as F from transformers import DetrImageProcessor, TableTransformerConfig, TableTransformerForObjectDetection from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : int = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) _lowerCamelCase : int = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of encoder + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.encoder.norm.weight", "encoder.layernorm.weight"), ("transformer.encoder.norm.bias", "encoder.layernorm.bias"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) def __lowerCamelCase ( A__ , A__ , A__ ) -> Dict: """simple docstring""" UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val def __lowerCamelCase ( A__ ) -> int: """simple docstring""" UpperCamelCase = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: UpperCamelCase = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) UpperCamelCase = value else: UpperCamelCase = value return new_state_dict def __lowerCamelCase ( A__ ) -> Dict: """simple docstring""" UpperCamelCase = '' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase = in_proj_weight[:256, :] UpperCamelCase = in_proj_bias[:256] UpperCamelCase = in_proj_weight[256:512, :] UpperCamelCase = in_proj_bias[256:512] UpperCamelCase = in_proj_weight[-256:, :] UpperCamelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention UpperCamelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) UpperCamelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict UpperCamelCase = in_proj_weight_cross_attn[:256, :] UpperCamelCase = in_proj_bias_cross_attn[:256] UpperCamelCase = in_proj_weight_cross_attn[256:512, :] UpperCamelCase = in_proj_bias_cross_attn[256:512] UpperCamelCase = in_proj_weight_cross_attn[-256:, :] UpperCamelCase = in_proj_bias_cross_attn[-256:] def __lowerCamelCase ( A__ , A__ ) -> Optional[int]: """simple docstring""" UpperCamelCase , UpperCamelCase = image.size UpperCamelCase = max(A__ , A__ ) UpperCamelCase = 800 if 'detection' in checkpoint_url else 1_000 UpperCamelCase = target_max_size / current_max_size UpperCamelCase = image.resize((int(round(scale * width ) ), int(round(scale * height ) )) ) return resized_image def __lowerCamelCase ( A__ ) -> List[Any]: """simple docstring""" UpperCamelCase = F.to_tensor(A__ ) UpperCamelCase = F.normalize(A__ , mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ) return image @torch.no_grad() def __lowerCamelCase ( A__ , A__ , A__ ) -> Optional[Any]: """simple docstring""" logger.info('Converting model...' ) # load original state dict UpperCamelCase = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' ) # rename keys for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) UpperCamelCase = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them UpperCamelCase = 'model.' for key in state_dict.copy().keys(): if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): UpperCamelCase = state_dict.pop(A__ ) UpperCamelCase = val # create HuggingFace model and load state dict UpperCamelCase = TableTransformerConfig( backbone='resnet18' , mask_loss_coefficient=1 , dice_loss_coefficient=1 , ce_loss_coefficient=1 , bbox_loss_coefficient=5 , giou_loss_coefficient=2 , eos_coefficient=0.4 , class_cost=1 , bbox_cost=5 , giou_cost=2 , ) if "detection" in checkpoint_url: UpperCamelCase = 15 UpperCamelCase = 2 UpperCamelCase = {0: 'table', 1: 'table rotated'} UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} else: UpperCamelCase = 125 UpperCamelCase = 6 UpperCamelCase = { 0: 'table', 1: 'table column', 2: 'table row', 3: 'table column header', 4: 'table projected row header', 5: 'table spanning cell', } UpperCamelCase = idalabel UpperCamelCase = {v: k for k, v in idalabel.items()} UpperCamelCase = DetrImageProcessor( format='coco_detection' , max_size=800 if 'detection' in checkpoint_url else 1_000 ) UpperCamelCase = TableTransformerForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() # verify our conversion UpperCamelCase = 'example_pdf.png' if 'detection' in checkpoint_url else 'example_table.png' UpperCamelCase = hf_hub_download(repo_id='nielsr/example-pdf' , repo_type='dataset' , filename=A__ ) UpperCamelCase = Image.open(A__ ).convert('RGB' ) UpperCamelCase = normalize(resize(A__ , A__ ) ).unsqueeze(0 ) UpperCamelCase = model(A__ ) if "detection" in checkpoint_url: UpperCamelCase = (1, 15, 3) UpperCamelCase = torch.tensor( [[-6.7_897, -16.9_985, 6.7_937], [-8.0_186, -22.2_192, 6.9_677], [-7.3_117, -21.0_708, 7.4_055]] ) UpperCamelCase = torch.tensor([[0.4_867, 0.1_767, 0.6_732], [0.6_718, 0.4_479, 0.3_830], [0.4_716, 0.1_760, 0.6_364]] ) else: UpperCamelCase = (1, 125, 7) UpperCamelCase = torch.tensor( [[-18.1_430, -8.3_214, 4.8_274], [-18.4_685, -7.1_361, -4.2_667], [-26.3_693, -9.3_429, -4.9_962]] ) UpperCamelCase = torch.tensor([[0.4_983, 0.5_595, 0.9_440], [0.4_916, 0.6_315, 0.5_954], [0.6_108, 0.8_637, 0.1_135]] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, :3, :3] , A__ , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , A__ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if push_to_hub: # Push model to HF hub logger.info('Pushing model to the hub...' ) UpperCamelCase = ( 'microsoft/table-transformer-detection' if 'detection' in checkpoint_url else 'microsoft/table-transformer-structure-recognition' ) model.push_to_hub(A__ ) image_processor.push_to_hub(A__ ) if __name__ == "__main__": _lowerCamelCase : List[str] = argparse.ArgumentParser() parser.add_argument( "--checkpoint_url", default="https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", type=str, choices=[ "https://pubtables1m.blob.core.windows.net/model/pubtables1m_detection_detr_r18.pth", "https://pubtables1m.blob.core.windows.net/model/pubtables1m_structure_detr_r18.pth", ], help="URL of the Table Transformer checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCamelCase : int = parser.parse_args() convert_table_transformer_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
28
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCAmelCase = { 'configuration_timesformer': ['TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TimesformerConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'TimesformerModel', 'TimesformerForVideoClassification', 'TimesformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_timesformer import TIMESFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimesformerConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_timesformer import ( TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimesformerForVideoClassification, TimesformerModel, TimesformerPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
29
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
from typing import Any, Dict, List, Optional, Tuple, Union import torch from torch import nn from torch.utils.data import DistributedSampler, RandomSampler from transformers import PreTrainedModel, Trainer, logging from transformers.integrations import is_fairscale_available from transformers.models.fsmt.configuration_fsmt import FSMTConfig from transformers.optimization import ( Adafactor, AdamW, get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, ) from transformers.trainer_pt_utils import get_tpu_sampler from transformers.training_args import ParallelMode from transformers.utils import is_torch_tpu_available if is_fairscale_available(): from fairscale.optim import OSS __a = logging.get_logger(__name__) __a = { 'linear': get_linear_schedule_with_warmup, 'cosine': get_cosine_schedule_with_warmup, 'cosine_w_restarts': get_cosine_with_hard_restarts_schedule_with_warmup, 'polynomial': get_polynomial_decay_schedule_with_warmup, 'constant': get_constant_schedule, 'constant_w_warmup': get_constant_schedule_with_warmup, } class lowercase__( UpperCAmelCase ): """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Optional[Any]=None , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> List[str]: super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if config is None: assert isinstance(self.model , SCREAMING_SNAKE_CASE_ ), ( "If no `config` is passed the model to be trained has to be of type `PreTrainedModel`, but is" f''' {self.model.__class__}''' ) lowercase_ = self.model.config else: lowercase_ = config lowercase_ = data_args lowercase_ = self.config.tgt_vocab_size if isinstance(self.config , SCREAMING_SNAKE_CASE_ ) else self.config.vocab_size if self.args.label_smoothing != 0 or (self.data_args is not None and self.data_args.ignore_pad_token_for_loss): assert self.config.pad_token_id is not None, ( "Make sure that `config.pad_token_id` is correcly defined when ignoring `pad_token` for loss" " calculation or doing label smoothing." ) if self.config.pad_token_id is None and self.config.eos_token_id is not None: logger.warning( f'''The `config.pad_token_id` is `None`. Using `config.eos_token_id` = {self.config.eos_token_id} for''' ''' padding..''' ) if self.args.label_smoothing == 0: lowercase_ = torch.nn.CrossEntropyLoss(ignore_index=self.config.pad_token_id ) else: # dynamically import label_smoothed_nll_loss from utils import label_smoothed_nll_loss lowercase_ = label_smoothed_nll_loss def _lowercase ( self : int , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]: if self.optimizer is None: lowercase_ = ['''bias''', '''LayerNorm.weight'''] lowercase_ = [ { '''params''': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay )], '''weight_decay''': self.args.weight_decay, }, { '''params''': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay )], '''weight_decay''': 0.0, }, ] lowercase_ = Adafactor if self.args.adafactor else AdamW if self.args.adafactor: lowercase_ = Adafactor lowercase_ = {'''scale_parameter''': False, '''relative_step''': False} else: lowercase_ = AdamW lowercase_ = { '''betas''': (self.args.adam_betaa, self.args.adam_betaa), '''eps''': self.args.adam_epsilon, } lowercase_ = self.args.learning_rate if self.sharded_ddp: lowercase_ = OSS( params=SCREAMING_SNAKE_CASE_ , optim=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) else: lowercase_ = optimizer_cls(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.lr_scheduler is None: lowercase_ = self._get_lr_scheduler(SCREAMING_SNAKE_CASE_ ) else: # ignoring --lr_scheduler logger.warning('''scheduler is passed to `Seq2SeqTrainer`, `--lr_scheduler` arg is ignored.''' ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Dict: lowercase_ = arg_to_scheduler[self.args.lr_scheduler] if self.args.lr_scheduler == "constant": lowercase_ = schedule_func(self.optimizer ) elif self.args.lr_scheduler == "constant_w_warmup": lowercase_ = schedule_func(self.optimizer , num_warmup_steps=self.args.warmup_steps ) else: lowercase_ = schedule_func( self.optimizer , num_warmup_steps=self.args.warmup_steps , num_training_steps=SCREAMING_SNAKE_CASE_ ) return scheduler def _lowercase ( self : Tuple ) -> Optional[torch.utils.data.Sampler]: if isinstance(self.train_dataset , torch.utils.data.IterableDataset ): return None elif is_torch_tpu_available(): return get_tpu_sampler(self.train_dataset ) else: if self.args.sortish_sampler: self.train_dataset.make_sortish_sampler( self.args.per_device_train_batch_size , distributed=(self.args.parallel_mode == ParallelMode.DISTRIBUTED) , ) return ( RandomSampler(self.train_dataset ) if self.args.local_rank == -1 else DistributedSampler(self.train_dataset ) ) def _lowercase ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Any: if self.args.label_smoothing == 0: if self.data_args is not None and self.data_args.ignore_pad_token_for_loss: # force training to ignore pad token lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = self.loss_fn(logits.view(-1 , logits.shape[-1] ) , labels.view(-1 ) ) else: # compute usual loss via models lowercase_ , lowercase_ = model(**SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[:2] else: # compute label smoothed loss lowercase_ = model(**SCREAMING_SNAKE_CASE_ , use_cache=SCREAMING_SNAKE_CASE_ )[0] lowercase_ = torch.nn.functional.log_softmax(SCREAMING_SNAKE_CASE_ , dim=-1 ) lowercase_ , lowercase_ = self.loss_fn(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.args.label_smoothing , ignore_index=self.config.pad_token_id ) return loss, logits def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> List[Any]: lowercase_ = inputs.pop('''labels''' ) lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return loss def _lowercase ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : nn.Module , SCREAMING_SNAKE_CASE_ : Dict[str, Union[torch.Tensor, Any]] , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : Optional[List[str]] = None , ) -> Tuple[Optional[float], Optional[torch.Tensor], Optional[torch.Tensor]]: lowercase_ = self._prepare_inputs(SCREAMING_SNAKE_CASE_ ) lowercase_ = { '''max_length''': self.data_args.val_max_target_length if self.data_args is not None else self.config.max_length, '''num_beams''': self.data_args.eval_beams if self.data_args is not None else self.config.num_beams, } if self.args.predict_with_generate and not self.args.prediction_loss_only: lowercase_ = self.model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , **SCREAMING_SNAKE_CASE_ , ) # in case the batch is shorter than max length, the output should be padded if generated_tokens.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) lowercase_ = inputs.pop('''labels''' ) with torch.no_grad(): # compute loss on predict data lowercase_ , lowercase_ = self._compute_loss(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowercase_ = loss.mean().detach() if self.args.prediction_loss_only: return (loss, None, None) lowercase_ = generated_tokens if self.args.predict_with_generate else logits if labels.shape[-1] < gen_kwargs["max_length"]: lowercase_ = self._pad_tensors_to_max_len(SCREAMING_SNAKE_CASE_ , gen_kwargs['''max_length'''] ) return (loss, logits, labels) def _lowercase ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Tuple: # If PAD token is not defined at least EOS token has to be defined lowercase_ = self.config.pad_token_id if self.config.pad_token_id is not None else self.config.eos_token_id if pad_token_id is None: raise ValueError( '''Make sure that either `config.pad_token_id` or `config.eos_token_id` is defined if tensor has to be''' f''' padded to `max_length`={max_length}''' ) lowercase_ = pad_token_id * torch.ones( (tensor.shape[0], max_length) , dtype=tensor.dtype , device=tensor.device ) lowercase_ = tensor return padded_tensor
30
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def UpperCamelCase_ ( _UpperCAmelCase : str , _UpperCAmelCase : float | Decimal , _UpperCAmelCase : float = 10**-10 ) -> float: """simple docstring""" _UpperCAmelCase : Optional[int] = a while True: _UpperCAmelCase : Optional[int] = Decimal(_UpperCAmelCase ) - ( Decimal(eval(_UpperCAmelCase ) ) / Decimal(eval(str(diff(_UpperCAmelCase ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_UpperCAmelCase ) ) < precision: # noqa: S307 return float(_UpperCAmelCase ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}') # Find root of polynomial print(F'The root of x**2 - 5*x + 2 = 0 is {newton_raphson("x**2 - 5*x + 2", 0.4)}') # Find Square Root of 5 print(F'The root of log(x) - 1 = 0 is {newton_raphson("log(x) - 1", 2)}') # Exponential Roots print(F'The root of exp(x) - 1 = 0 is {newton_raphson("exp(x) - 1", 0)}')
31
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
class SCREAMING_SNAKE_CASE__ : def __init__( self : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: a_ : str = None a_ : Tuple = None a_ : Union[str, Any] = graph self._normalize_graph(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) a_ : Dict = len(SCREAMING_SNAKE_CASE__ ) a_ : Optional[Any] = None def SCREAMING_SNAKE_CASE ( self : int , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: if sources is int: a_ : str = [sources] if sinks is int: a_ : str = [sinks] if len(SCREAMING_SNAKE_CASE__ ) == 0 or len(SCREAMING_SNAKE_CASE__ ) == 0: return a_ : Tuple = sources[0] a_ : Optional[int] = sinks[0] # make fake vertex if there are more # than one source or sink if len(SCREAMING_SNAKE_CASE__ ) > 1 or len(SCREAMING_SNAKE_CASE__ ) > 1: a_ : Tuple = 0 for i in sources: max_input_flow += sum(self.graph[i] ) a_ : Optional[Any] = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: a_ : Optional[int] = max_input_flow a_ : int = 0 a_ : List[str] = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: a_ : Any = max_input_flow a_ : Union[str, Any] = size - 1 def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: if self.maximum_flow_algorithm is None: raise Exception('You need to set maximum flow algorithm before.' ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def SCREAMING_SNAKE_CASE ( self : str , SCREAMING_SNAKE_CASE__ : List[str] ) -> List[Any]: a_ : Union[str, Any] = algorithm(self ) class SCREAMING_SNAKE_CASE__ : def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> int: a_ : Dict = flow_network a_ : Optional[Any] = flow_network.verticesCount a_ : int = flow_network.sourceIndex a_ : Optional[Any] = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that a_ : List[Any] = flow_network.graph a_ : Optional[int] = False def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> int: if not self.executed: self._algorithm() a_ : Any = True def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: pass class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Any: super().__init__(SCREAMING_SNAKE_CASE__ ) # use this to save your result a_ : int = -1 def SCREAMING_SNAKE_CASE ( self : int ) -> Any: if not self.executed: raise Exception('You should execute algorithm before using its result!' ) return self.maximum_flow class SCREAMING_SNAKE_CASE__ ( lowercase__ ): def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Dict ) -> Tuple: super().__init__(SCREAMING_SNAKE_CASE__ ) a_ : Dict = [[0] * self.verticies_count for i in range(self.verticies_count )] a_ : Optional[Any] = [0] * self.verticies_count a_ : Union[str, Any] = [0] * self.verticies_count def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Dict: a_ : List[str] = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule a_ : str = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list a_ : List[str] = 0 while i < len(SCREAMING_SNAKE_CASE__ ): a_ : Any = vertices_list[i] a_ : Dict = self.heights[vertex_index] self.process_vertex(SCREAMING_SNAKE_CASE__ ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(SCREAMING_SNAKE_CASE__ ) ) a_ : List[Any] = 0 else: i += 1 a_ : Union[str, Any] = sum(self.preflow[self.source_index] ) def SCREAMING_SNAKE_CASE ( self : Dict , SCREAMING_SNAKE_CASE__ : str ) -> int: while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) self.relabel(SCREAMING_SNAKE_CASE__ ) def SCREAMING_SNAKE_CASE ( self : List[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Any: a_ : str = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def SCREAMING_SNAKE_CASE ( self : List[str] , SCREAMING_SNAKE_CASE__ : Dict ) -> str: a_ : Optional[Any] = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): a_ : Optional[Any] = self.heights[to_index] if min_height is not None: a_ : List[Any] = min_height + 1 if __name__ == "__main__": UpperCAmelCase_ : Any = [0] UpperCAmelCase_ : Any = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] UpperCAmelCase_ : Any = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network UpperCAmelCase_ : Tuple = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate UpperCAmelCase_ : int = flow_network.find_maximum_flow() print(F'maximum flow is {maximum_flow}')
32
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
"""simple docstring""" import argparse import os import torch from transformers import ( XLNetConfig, XLNetForQuestionAnswering, XLNetForSequenceClassification, XLNetLMHeadModel, load_tf_weights_in_xlnet, ) from transformers.utils import CONFIG_NAME, WEIGHTS_NAME, logging __A : Tuple = { '''cola''': 2, '''mnli''': 3, '''mrpc''': 2, '''sst-2''': 2, '''sts-b''': 1, '''qqp''': 2, '''qnli''': 2, '''rte''': 2, '''wnli''': 2, } logging.set_verbosity_info() def lowercase ( __snake_case : Optional[int] , __snake_case : Dict , __snake_case : int , __snake_case : Optional[int]=None ): # Initialise PyTorch model lowercase_ : List[Any] = XLNetConfig.from_json_file(__snake_case ) lowercase_ : List[str] = finetuning_task.lower() if finetuning_task is not None else '''''' if finetuning_task in GLUE_TASKS_NUM_LABELS: print(F'''Building PyTorch XLNetForSequenceClassification model from configuration: {config}''' ) lowercase_ : Any = finetuning_task lowercase_ : Optional[Any] = GLUE_TASKS_NUM_LABELS[finetuning_task] lowercase_ : Tuple = XLNetForSequenceClassification(__snake_case ) elif "squad" in finetuning_task: lowercase_ : Union[str, Any] = finetuning_task lowercase_ : Optional[int] = XLNetForQuestionAnswering(__snake_case ) else: lowercase_ : Optional[Any] = XLNetLMHeadModel(__snake_case ) # Load weights from tf checkpoint load_tf_weights_in_xlnet(__snake_case , __snake_case , __snake_case ) # Save pytorch-model lowercase_ : Tuple = os.path.join(__snake_case , __snake_case ) lowercase_ : Dict = os.path.join(__snake_case , __snake_case ) print(F'''Save PyTorch model to {os.path.abspath(__snake_case )}''' ) torch.save(model.state_dict() , __snake_case ) print(F'''Save configuration file to {os.path.abspath(__snake_case )}''' ) with open(__snake_case , '''w''' , encoding='''utf-8''' ) as f: f.write(config.to_json_string() ) if __name__ == "__main__": __A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--xlnet_config_file''', default=None, type=str, required=True, help=( '''The config json file corresponding to the pre-trained XLNet model. \n''' '''This specifies the model architecture.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the folder to store the PyTorch model or dataset/vocab.''', ) parser.add_argument( '''--finetuning_task''', default=None, type=str, help='''Name of a task on which the XLNet TensorFlow model was fine-tuned''', ) __A : List[Any] = parser.parse_args() print(args) convert_xlnet_checkpoint_to_pytorch( args.tf_checkpoint_path, args.xlnet_config_file, args.pytorch_dump_folder_path, args.finetuning_task )
33
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
'''simple docstring''' import doctest from collections import deque import numpy as np class _a : def __init__( self : List[Any] ): '''simple docstring''' UpperCAmelCase = [2, 1, 2, -1] UpperCAmelCase = [1, 2, 3, 4] def A ( self : int ): '''simple docstring''' UpperCAmelCase = len(self.first_signal ) UpperCAmelCase = len(self.second_signal ) UpperCAmelCase = max(lowercase , lowercase ) # create a zero matrix of max_length x max_length UpperCAmelCase = [[0] * max_length for i in range(lowercase )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(lowercase ): UpperCAmelCase = deque(self.second_signal ) rotated_signal.rotate(lowercase ) for j, item in enumerate(lowercase ): matrix[i][j] += item # multiply the matrix with the first signal UpperCAmelCase = np.matmul(np.transpose(lowercase ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(lowercase , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
34
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available __a = { "configuration_xlm": ["XLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLMConfig", "XLMOnnxConfig"], "tokenization_xlm": ["XLMTokenizer"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "XLMForMultipleChoice", "XLMForQuestionAnswering", "XLMForQuestionAnsweringSimple", "XLMForSequenceClassification", "XLMForTokenClassification", "XLMModel", "XLMPreTrainedModel", "XLMWithLMHeadModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ "TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLMForMultipleChoice", "TFXLMForQuestionAnsweringSimple", "TFXLMForSequenceClassification", "TFXLMForTokenClassification", "TFXLMMainLayer", "TFXLMModel", "TFXLMPreTrainedModel", "TFXLMWithLMHeadModel", ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys __a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
35
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( a): lowerCamelCase__ = ['image_processor', 'tokenizer'] lowerCamelCase__ = 'ViltImageProcessor' lowerCamelCase__ = ('BertTokenizer', 'BertTokenizerFast') def __init__( self, __a=None, __a=None, **__a): '''simple docstring''' _lowerCAmelCase : int = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead.", __a, ) _lowerCAmelCase : int = kwargs.pop("feature_extractor") _lowerCAmelCase : str = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(__a, __a) _lowerCAmelCase : int = self.image_processor def __call__( self, __a, __a = None, __a = True, __a = False, __a = None, __a = None, __a = 0, __a = None, __a = None, __a = None, __a = False, __a = False, __a = False, __a = False, __a = True, __a = None, **__a, ): '''simple docstring''' _lowerCAmelCase : Dict = self.tokenizer( text=__a, add_special_tokens=__a, padding=__a, truncation=__a, max_length=__a, stride=__a, pad_to_multiple_of=__a, return_token_type_ids=__a, return_attention_mask=__a, return_overflowing_tokens=__a, return_special_tokens_mask=__a, return_offsets_mapping=__a, return_length=__a, verbose=__a, return_tensors=__a, **__a, ) # add pixel_values + pixel_mask _lowerCAmelCase : List[Any] = self.image_processor(__a, return_tensors=__a) encoding.update(__a) return encoding def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.batch_decode(*__a, **__a) def snake_case__ ( self, *__a, **__a): '''simple docstring''' return self.tokenizer.decode(*__a, **__a) @property def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Dict = self.tokenizer.model_input_names _lowerCAmelCase : int = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def snake_case__ ( self): '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", __a, ) return self.image_processor_class @property def snake_case__ ( self): '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", __a, ) return self.image_processor
36
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
'''simple docstring''' # Author: OMKAR PATHAK, Nwachukwu Chidiebere # Use a Python dictionary to construct the graph. from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar _lowerCAmelCase = TypeVar('''T''') class lowerCAmelCase_( Generic[T] ): '''simple docstring''' def __init__( self ,__UpperCAmelCase = True ) -> None: lowerCAmelCase__ : dict[T, list[T]] = {} # dictionary of lists lowerCAmelCase__ : Optional[int] = directed def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> GraphAdjacencyList[T]: if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) self.adj_list[destination_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: lowerCAmelCase__ : List[Any] = [destination_vertex] lowerCAmelCase__ : str = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(__UpperCAmelCase ) lowerCAmelCase__ : List[str] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: lowerCAmelCase__ : List[str] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: lowerCAmelCase__ : Dict = [destination_vertex] lowerCAmelCase__ : Optional[Any] = [] return self def __repr__( self ) -> str: return pformat(self.adj_list )
37
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] UpperCAmelCase_ : int = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right UpperCAmelCase_ : str = tuple[int, int] class _SCREAMING_SNAKE_CASE : def __init__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : Node | None , ): UpperCamelCase :Any = pos_x UpperCamelCase :List[str] = pos_y UpperCamelCase :Any = (pos_y, pos_x) UpperCamelCase :str = goal_x UpperCamelCase :Tuple = goal_y UpperCamelCase :Tuple = g_cost UpperCamelCase :Tuple = parent UpperCamelCase :List[Any] = self.calculate_heuristic() UpperCamelCase :List[str] = self.g_cost + self.h_cost def _A ( self : List[Any] ): UpperCamelCase :List[str] = self.pos_x - self.goal_x UpperCamelCase :Optional[int] = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(__lowerCamelCase ) + abs(__lowerCamelCase ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self : Optional[Any] , __lowerCamelCase : Node ): return self.f_cost < other.f_cost class _SCREAMING_SNAKE_CASE : def __init__( self : List[Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ): UpperCamelCase :str = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , __lowerCamelCase ) UpperCamelCase :int = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99_999 , __lowerCamelCase ) UpperCamelCase :Optional[Any] = [self.start] UpperCamelCase :list[Node] = [] UpperCamelCase :Optional[int] = False def _A ( self : Optional[Any] ): while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase :Dict = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(__lowerCamelCase ) self.closed_nodes.append(__lowerCamelCase ) UpperCamelCase :List[Any] = self.get_successors(__lowerCamelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path UpperCamelCase :List[Any] = self.open_nodes.pop(self.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__lowerCamelCase ) else: self.open_nodes.append(__lowerCamelCase ) return [self.start.pos] def _A ( self : Tuple , __lowerCamelCase : Node ): UpperCamelCase :List[Any] = [] for action in delta: UpperCamelCase :Union[str, Any] = parent.pos_x + action[1] UpperCamelCase :List[Any] = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__lowerCamelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __lowerCamelCase , __lowerCamelCase , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , __lowerCamelCase , ) ) return successors def _A ( self : Any , __lowerCamelCase : Node | None ): UpperCamelCase :Union[str, Any] = node UpperCamelCase :List[str] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase :Optional[Any] = current_node.parent path.reverse() return path class _SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , __lowerCamelCase : TPosition , __lowerCamelCase : TPosition ): UpperCamelCase :Any = AStar(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :List[str] = AStar(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = False def _A ( self : Tuple ): while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase :Dict = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase :Union[str, Any] = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( __lowerCamelCase , __lowerCamelCase ) self.fwd_astar.closed_nodes.append(__lowerCamelCase ) self.bwd_astar.closed_nodes.append(__lowerCamelCase ) UpperCamelCase :int = current_bwd_node UpperCamelCase :str = current_fwd_node UpperCamelCase :List[Any] = { self.fwd_astar: self.fwd_astar.get_successors(__lowerCamelCase ), self.bwd_astar: self.bwd_astar.get_successors(__lowerCamelCase ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(__lowerCamelCase ) else: # retrieve the best current path UpperCamelCase :Optional[int] = astar.open_nodes.pop( astar.open_nodes.index(__lowerCamelCase ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(__lowerCamelCase ) else: astar.open_nodes.append(__lowerCamelCase ) return [self.fwd_astar.start.pos] def _A ( self : List[Any] , __lowerCamelCase : Node , __lowerCamelCase : Node ): UpperCamelCase :List[str] = self.fwd_astar.retrace_path(__lowerCamelCase ) UpperCamelCase :Tuple = self.bwd_astar.retrace_path(__lowerCamelCase ) bwd_path.pop() bwd_path.reverse() UpperCamelCase :List[Any] = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] UpperCAmelCase_ : Optional[int] = (0, 0) UpperCAmelCase_ : str = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) UpperCAmelCase_ : Tuple = time.time() UpperCAmelCase_ : Any = AStar(init, goal) UpperCAmelCase_ : str = a_star.search() UpperCAmelCase_ : Optional[int] = time.time() - start_time print(F'''AStar execution time = {end_time:f} seconds''') UpperCAmelCase_ : Union[str, Any] = time.time() UpperCAmelCase_ : List[str] = BidirectionalAStar(init, goal) UpperCAmelCase_ : Union[str, Any] = time.time() - bd_start_time print(F'''BidirectionalAStar execution time = {bd_end_time:f} seconds''')
38
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _a = { '''configuration_clipseg''': [ '''CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''CLIPSegConfig''', '''CLIPSegTextConfig''', '''CLIPSegVisionConfig''', ], '''processing_clipseg''': ['''CLIPSegProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ '''CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST''', '''CLIPSegModel''', '''CLIPSegPreTrainedModel''', '''CLIPSegTextModel''', '''CLIPSegVisionModel''', '''CLIPSegForImageSegmentation''', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys _a = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
39
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
"""simple docstring""" import warnings from ..trainer import Trainer from ..utils import logging __lowercase = logging.get_logger(__name__) class _A ( _a ): """simple docstring""" def __init__( self : str , __UpperCAmelCase : Union[str, Any]=None , **__UpperCAmelCase : Union[str, Any]): warnings.warn( "`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` " "instead." , __UpperCAmelCase , ) super().__init__(args=__UpperCAmelCase , **__UpperCAmelCase)
40
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
'''simple docstring''' from collections.abc import Sequence def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: return sum(c * (x**i) for i, c in enumerate(UpperCamelCase ) ) def SCREAMING_SNAKE_CASE_ (UpperCamelCase , UpperCamelCase ) -> float: lowerCamelCase__ : str = 0.0 for coeff in reversed(UpperCamelCase ): lowerCamelCase__ : Optional[int] = result * x + coeff return result if __name__ == "__main__": _A : Any =(0.0, 0.0, 5.0, 9.3, 7.0) _A : Optional[Any] =10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
41
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration lowercase : str = pytest.mark.integration lowercase : str = {"comet"} lowercase : List[Any] = importlib.util.find_spec("fairseq") is not None lowercase : str = {"code_eval"} lowercase : Optional[Any] = os.name == "nt" lowercase : Optional[Any] = {"bertscore", "frugalscore", "perplexity"} lowercase : str = importlib.util.find_spec("transformers") is not None def SCREAMING_SNAKE_CASE__ ( __A ) -> int: @wraps(__A ) def wrapper(self , __A ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('"test requires Fairseq"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: @wraps(__A ) def wrapper(self , __A ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('"test requires transformers"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: @wraps(__A ) def wrapper(self , __A ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('"test not supported on Windows"' ) else: test_case(self , __A ) return wrapper def SCREAMING_SNAKE_CASE__ ( ) -> Any: _snake_case = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('./metrics/*/' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) @local class __UpperCAmelCase ( parameterized.TestCase ): __lowercase = {} __lowercase = None @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:load_metric is deprecated:FutureWarning' ) def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = '[...]' _snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path ) _snake_case = datasets.load.import_main_class(metric_module.__name__ , dataset=lowerCAmelCase_ ) # check parameters _snake_case = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(lowerCAmelCase_ , metric_module.__name__ ): with self.use_local_metrics(): try: _snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" _snake_case = '[...]' _snake_case = importlib.import_module( datasets.load.metric_module_factory(os.path.join('metrics' , lowerCAmelCase_ ) ).module_path ) # run doctest with self.use_local_metrics(): _snake_case = doctest.testmod(lowerCAmelCase_ , verbose=lowerCAmelCase_ , raise_on_error=lowerCAmelCase_ ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def lowerCamelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](lowerCAmelCase_ ): yield else: yield @contextmanager def lowerCamelCase ( self ): """simple docstring""" def load_local_metric(lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): return load_metric(os.path.join('metrics' , lowerCAmelCase_ ) , *lowerCAmelCase_ , **lowerCAmelCase_ ) with patch('datasets.load_metric' ) as mock_load_metric: _snake_case = load_local_metric yield @classmethod def lowerCamelCase ( cls , lowerCAmelCase_ ): """simple docstring""" def wrapper(lowerCAmelCase_ ): _snake_case = contextmanager(lowerCAmelCase_ ) _snake_case = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('bleurt' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> List[str]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('sv' , '' , '' ) # handle pytest cli flags class __UpperCAmelCase ( _lowerCamelCase ): def lowerCamelCase ( self , lowerCAmelCase_ ): """simple docstring""" assert len(input_dict['input_ids'] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('bleurt.score._create_predictor' ) as mock_create_predictor: _snake_case = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('bertscore' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Dict: import torch def bert_cos_score_idf(__A , __A , *__A , **__A ): return torch.tensor([[1.0, 1.0, 1.0]] * len(__A ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('bert_score.scorer.get_model' ), patch( 'bert_score.scorer.bert_cos_score_idf' ) as mock_bert_cos_score_idf: _snake_case = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('comet' ) def SCREAMING_SNAKE_CASE__ ( __A ) -> Optional[int]: def load_from_checkpoint(__A ): class __UpperCAmelCase : def lowerCamelCase ( self , lowerCAmelCase_ , *lowerCAmelCase_ , **lowerCAmelCase_ ): """simple docstring""" assert len(lowerCAmelCase_ ) == 2 _snake_case = [0.19, 0.92] return scores, sum(lowerCAmelCase_ ) / len(lowerCAmelCase_ ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('comet.download_model' ) as mock_download_model: _snake_case = None with patch('comet.load_from_checkpoint' ) as mock_load_from_checkpoint: _snake_case = load_from_checkpoint yield def SCREAMING_SNAKE_CASE__ ( ) -> Union[str, Any]: _snake_case = load_metric(os.path.join('metrics' , 'seqeval' ) ) _snake_case = 'ERROR' _snake_case = F'Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}' with pytest.raises(__A , match=re.escape(__A ) ): metric.compute(predictions=[] , references=[] , scheme=__A )
42
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __lowercase = logging.getLogger(__name__) __lowercase = 50 # max width of layer names __lowercase = 70 # max width of quantizer names def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=SCREAMING_SNAKE_CASE , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=SCREAMING_SNAKE_CASE , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=SCREAMING_SNAKE_CASE , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=SCREAMING_SNAKE_CASE , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=SCREAMING_SNAKE_CASE , type=SCREAMING_SNAKE_CASE , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=SCREAMING_SNAKE_CASE , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if args.calibrator == "max": __UpperCamelCase :Union[str, Any] = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) __UpperCamelCase :str = '''histogram''' elif args.calibrator == "mse": __UpperCamelCase :Union[str, Any] = '''histogram''' else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) __UpperCamelCase :List[str] = QuantDescriptor(num_bits=args.aprec , calib_method=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Tuple = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(SCREAMING_SNAKE_CASE ) quant_nn.QuantLinear.set_default_quant_desc_weight(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=False ): '''simple docstring''' logger.info('''Configuring Model for Quantization''' ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(SCREAMING_SNAKE_CASE , ['''embeddings'''] , which='''weight''' , _disabled=SCREAMING_SNAKE_CASE ) if args.quant_disable: set_quantizer_by_name(SCREAMING_SNAKE_CASE , [''''''] , _disabled=SCREAMING_SNAKE_CASE ) if args.quant_disable_keyword: set_quantizer_by_name(SCREAMING_SNAKE_CASE , args.quant_disable_keyword , _disabled=SCREAMING_SNAKE_CASE ) if args.quant_disable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE , [R'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=SCREAMING_SNAKE_CASE ) if args.quant_enable_layer_module: set_quantizer_by_name(SCREAMING_SNAKE_CASE , [R'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=SCREAMING_SNAKE_CASE ) if args.recalibrate_weights: recalibrate_weights(SCREAMING_SNAKE_CASE ) if args.fuse_qkv: fuse_qkv(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if args.clip_gelu: clip_gelu(SCREAMING_SNAKE_CASE , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' def fusea(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for mod in [qq, qk, qv]: if not hasattr(SCREAMING_SNAKE_CASE , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return __UpperCamelCase :Tuple = qq._amax.detach().item() __UpperCamelCase :List[str] = qk._amax.detach().item() __UpperCamelCase :Dict = qv._amax.detach().item() __UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) qq._amax.fill_(SCREAMING_SNAKE_CASE ) qk._amax.fill_(SCREAMING_SNAKE_CASE ) qv._amax.fill_(SCREAMING_SNAKE_CASE ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): __UpperCamelCase :List[str] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[Any] = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: __UpperCamelCase :Dict = mod.weight.shape[0] __UpperCamelCase :Tuple = mod._weight_quantizer._amax.detach() __UpperCamelCase :str = torch.ones(SCREAMING_SNAKE_CASE , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) __UpperCamelCase :Tuple = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) __UpperCamelCase :List[str] = set(range(len(mod.weight.size() ) ) ) - axis_set __UpperCamelCase :Tuple = pytorch_quantization.utils.reduce_amax(mod.weight , axis=SCREAMING_SNAKE_CASE , keepdims=SCREAMING_SNAKE_CASE ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) __UpperCamelCase :List[Any] = amax def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=25 , SCREAMING_SNAKE_CASE=180 , SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if ignore is None: __UpperCamelCase :Optional[int] = [] elif not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :Optional[Any] = [ignore] __UpperCamelCase :str = 0 for name, mod in model.named_modules(): if not hasattr(SCREAMING_SNAKE_CASE , '''weight''' ): continue __UpperCamelCase :Any = max(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) for name, mod in model.named_modules(): __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , '''_input_quantizer''' , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' , SCREAMING_SNAKE_CASE ) if not hasattr(SCREAMING_SNAKE_CASE , '''weight''' ): continue if type(SCREAMING_SNAKE_CASE ) in ignore: continue if [True for s in ignore if type(SCREAMING_SNAKE_CASE ) is str and s in name]: continue __UpperCamelCase :Optional[int] = f"""Act:{input_q.extra_repr()}""" __UpperCamelCase :List[str] = f"""Wgt:{weight_q.extra_repr()}""" __UpperCamelCase :int = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(SCREAMING_SNAKE_CASE ) <= line_width: logger.info(SCREAMING_SNAKE_CASE ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{' ':{name_width}} {wgt_str}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :str = 0 for name, mod in model.named_modules(): if isinstance(SCREAMING_SNAKE_CASE , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Any = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if quantizer_mod is not None: assert hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) else: logger.warning(f"""{name} has no {quantizer}""" ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="both" , **SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_input_quantizer''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if which in ["weight", "both"]: set_quantizer(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , '''_weight_quantizer''' , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) logger.info(SCREAMING_SNAKE_CASE ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ): '''simple docstring''' for name, mod in model.named_modules(): if hasattr(SCREAMING_SNAKE_CASE , '''_input_quantizer''' ) or hasattr(SCREAMING_SNAKE_CASE , '''_weight_quantizer''' ): for n in names: if re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): set_quantizers(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :str = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) logger.info(SCREAMING_SNAKE_CASE )
43
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
"""simple docstring""" import os import time from dataclasses import dataclass, field from enum import Enum from typing import Dict, List, Optional, Union import torch from filelock import FileLock from torch.utils.data import Dataset from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features _a : List[str] = logging.get_logger(__name__) _a : Optional[int] = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys()) _a : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __A : _UpperCamelCase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Model type selected in the list: " + ", ".join(SCREAMING_SNAKE_CASE_ )} ) _UpperCamelCase : str = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "The input data dir. Should contain the .json files for the SQuAD task."} ) _UpperCamelCase : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) _UpperCamelCase : int = field( default=128 , metadata={"help": "When splitting up a long document into chunks, how much stride to take between chunks."} , ) _UpperCamelCase : int = field( default=64 , metadata={ "help": ( "The maximum number of tokens for the question. Questions longer than this will " "be truncated to this length." ) } , ) _UpperCamelCase : int = field( default=30 , metadata={ "help": ( "The maximum length of an answer that can be generated. This is needed because the start " "and end predictions are not conditioned on one another." ) } , ) _UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "Overwrite the cached training and evaluation sets"} ) _UpperCamelCase : bool = field( default=SCREAMING_SNAKE_CASE_ , metadata={"help": "If true, the SQuAD examples contain some that do not have an answer."} ) _UpperCamelCase : float = field( default=0.0 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) _UpperCamelCase : int = field( default=20 , metadata={"help": "If null_score - best_non_null is greater than the threshold predict null."} ) _UpperCamelCase : int = field( default=0 , metadata={ "help": ( "language id of input for language-specific xlm models (see" " tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)" ) } , ) _UpperCamelCase : int = field(default=1 , metadata={"help": "multiple threads for converting example to features"} ) class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : Union[str, Any] = "train" _UpperCamelCase : List[str] = "dev" class __A ( SCREAMING_SNAKE_CASE_ ): _UpperCamelCase : SquadDataTrainingArguments _UpperCamelCase : List[SquadFeatures] _UpperCamelCase : Split _UpperCamelCase : bool def __init__( self , a__ , a__ , a__ = None , a__ = Split.train , a__ = False , a__ = None , a__ = "pt" , ): _lowerCAmelCase : List[Any] = args _lowerCAmelCase : str = is_language_sensitive _lowerCAmelCase : Tuple = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor() if isinstance(a__ , a__ ): try: _lowerCAmelCase : Any = Split[mode] except KeyError: raise KeyError("""mode is not a valid split name""" ) _lowerCAmelCase : Union[str, Any] = mode # Load data features from cache or dataset file _lowerCAmelCase : Optional[int] = """v2""" if args.version_2_with_negative else """v1""" _lowerCAmelCase : Dict = os.path.join( cache_dir if cache_dir is not None else args.data_dir , F"cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}" , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. _lowerCAmelCase : int = cached_features_file + """.lock""" with FileLock(a__ ): if os.path.exists(a__ ) and not args.overwrite_cache: _lowerCAmelCase : Dict = time.time() _lowerCAmelCase : Optional[Any] = torch.load(a__ ) # Legacy cache files have only features, while new cache files # will have dataset and examples also. _lowerCAmelCase : Optional[int] = self.old_features["""features"""] _lowerCAmelCase : Optional[int] = self.old_features.get("""dataset""" , a__ ) _lowerCAmelCase : Optional[int] = self.old_features.get("""examples""" , a__ ) logger.info( F"Loading features from cached file {cached_features_file} [took %.3f s]" , time.time() - start ) if self.dataset is None or self.examples is None: logger.warning( F"Deleting cached file {cached_features_file} will allow dataset and examples to be cached in" """ future run""" ) else: if mode == Split.dev: _lowerCAmelCase : Dict = self.processor.get_dev_examples(args.data_dir ) else: _lowerCAmelCase : int = self.processor.get_train_examples(args.data_dir ) _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = squad_convert_examples_to_features( examples=self.examples , tokenizer=a__ , max_seq_length=args.max_seq_length , doc_stride=args.doc_stride , max_query_length=args.max_query_length , is_training=mode == Split.train , threads=args.threads , return_dataset=a__ , ) _lowerCAmelCase : Optional[Any] = time.time() torch.save( {"""features""": self.features, """dataset""": self.dataset, """examples""": self.examples} , a__ , ) # ^ This seems to take a lot of time so I want to investigate why and how we can improve. logger.info( F"Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]" ) def __len__( self ): return len(self.features ) def __getitem__( self , a__ ): # Convert to Tensors and build dataset _lowerCAmelCase : Union[str, Any] = self.features[i] _lowerCAmelCase : Optional[Any] = torch.tensor(feature.input_ids , dtype=torch.long ) _lowerCAmelCase : List[Any] = torch.tensor(feature.attention_mask , dtype=torch.long ) _lowerCAmelCase : Tuple = torch.tensor(feature.token_type_ids , dtype=torch.long ) _lowerCAmelCase : Union[str, Any] = torch.tensor(feature.cls_index , dtype=torch.long ) _lowerCAmelCase : str = torch.tensor(feature.p_mask , dtype=torch.float ) _lowerCAmelCase : List[Any] = torch.tensor(feature.is_impossible , dtype=torch.float ) _lowerCAmelCase : Tuple = { """input_ids""": input_ids, """attention_mask""": attention_mask, """token_type_ids""": token_type_ids, } if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]: del inputs["token_type_ids"] if self.args.model_type in ["xlnet", "xlm"]: inputs.update({"""cls_index""": cls_index, """p_mask""": p_mask} ) if self.args.version_2_with_negative: inputs.update({"""is_impossible""": is_impossible} ) if self.is_language_sensitive: inputs.update({"""langs""": (torch.ones(input_ids.shape , dtype=torch.intaa ) * self.args.lang_id)} ) if self.mode == Split.train: _lowerCAmelCase : Any = torch.tensor(feature.start_position , dtype=torch.long ) _lowerCAmelCase : Any = torch.tensor(feature.end_position , dtype=torch.long ) inputs.update({"""start_positions""": start_positions, """end_positions""": end_positions} ) return inputs
44
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : int = 'markuplm' def __init__( self , _a=30_522 , _a=768 , _a=12 , _a=12 , _a=3_072 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=2 , _a=0.02 , _a=1E-12 , _a=0 , _a=0 , _a=2 , _a=256 , _a=1_024 , _a=216 , _a=1_001 , _a=32 , _a=50 , _a="absolute" , _a=True , _a=None , **_a , ): super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a , ) __a = vocab_size __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = hidden_act __a = intermediate_size __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = layer_norm_eps __a = position_embedding_type __a = use_cache __a = classifier_dropout # additional properties __a = max_depth __a = max_xpath_tag_unit_embeddings __a = max_xpath_subs_unit_embeddings __a = tag_pad_id __a = subs_pad_id __a = xpath_unit_hidden_size
45
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class lowercase ( _UpperCAmelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE = ShapEPipeline _SCREAMING_SNAKE_CASE = ['prompt'] _SCREAMING_SNAKE_CASE = ['prompt'] _SCREAMING_SNAKE_CASE = [ 'num_images_per_prompt', 'num_inference_steps', 'generator', 'latents', 'guidance_scale', 'frame_size', 'output_type', 'return_dict', ] _SCREAMING_SNAKE_CASE = False @property def _snake_case ( self ) -> Tuple: return 32 @property def _snake_case ( self ) -> Optional[Any]: return 32 @property def _snake_case ( self ) -> Tuple: return self.time_input_dim * 4 @property def _snake_case ( self ) -> str: return 8 @property def _snake_case ( self ) -> Optional[int]: lowerCAmelCase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(lowercase ) @property def _snake_case ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase = { """num_attention_heads""": 2, """attention_head_dim""": 16, """embedding_dim""": self.time_input_dim, """num_embeddings""": 32, """embedding_proj_dim""": self.text_embedder_hidden_size, """time_embed_dim""": self.time_embed_dim, """num_layers""": 1, """clip_embed_dim""": self.time_input_dim * 2, """additional_embeddings""": 0, """time_embed_act_fn""": """gelu""", """norm_in_type""": """layer""", """encoder_hid_proj_type""": None, """added_emb_type""": None, } lowerCAmelCase = PriorTransformer(**lowercase ) return model @property def _snake_case ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase = { """param_shapes""": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), """d_latent""": self.time_input_dim, """d_hidden""": self.renderer_dim, """n_output""": 12, """background""": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase = ShapERenderer(**lowercase ) return model def _snake_case ( self ) -> Tuple: lowerCAmelCase = self.dummy_prior lowerCAmelCase = self.dummy_text_encoder lowerCAmelCase = self.dummy_tokenizer lowerCAmelCase = self.dummy_renderer lowerCAmelCase = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1_024 , prediction_type="""sample""" , use_karras_sigmas=lowercase , clip_sample=lowercase , clip_sample_range=1.0 , ) lowerCAmelCase = { """prior""": prior, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """renderer""": renderer, """scheduler""": scheduler, } return components def _snake_case ( self , lowercase , lowercase=0 ) -> Optional[Any]: if str(lowercase ).startswith("""mps""" ): lowerCAmelCase = torch.manual_seed(lowercase ) else: lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(lowercase ) lowerCAmelCase = { """prompt""": """horse""", """generator""": generator, """num_inference_steps""": 1, """frame_size""": 32, """output_type""": """np""", } return inputs def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = """cpu""" lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = pipe(**self.get_dummy_inputs(lowercase ) ) lowerCAmelCase = output.images[0] lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase = np.array( [ 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, 0.00_039_216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def _snake_case ( self ) -> List[Any]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def _snake_case ( self ) -> Union[str, Any]: lowerCAmelCase = torch_device == """cpu""" lowerCAmelCase = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowercase , relax_max_difference=lowercase , ) def _snake_case ( self ) -> Optional[Any]: lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**lowercase ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = 1 lowerCAmelCase = 2 lowerCAmelCase = self.get_dummy_inputs(lowercase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase = batch_size * [inputs[key]] lowerCAmelCase = pipe(**lowercase , num_images_per_prompt=lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def _snake_case ( self ) -> Optional[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _snake_case ( self ) -> Any: lowerCAmelCase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) lowerCAmelCase = ShapEPipeline.from_pretrained("""openai/shap-e""" ) lowerCAmelCase = pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) lowerCAmelCase = torch.Generator(device=lowercase ).manual_seed(0 ) lowerCAmelCase = pipe( """a shark""" , generator=lowercase , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowercase , lowercase )
46
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class A__ ( A__ ): def A ( self : Any ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =tempfile.mkdtemp() _SCREAMING_SNAKE_CASE =5 # Realm tok _SCREAMING_SNAKE_CASE =[ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(_a , exist_ok=_a ) _SCREAMING_SNAKE_CASE =os.path.join(_a , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) _SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(_a , exist_ok=_a ) def A ( self : Union[str, Any] ) -> RealmTokenizer: '''simple docstring''' return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def A ( self : int ) -> Any: '''simple docstring''' shutil.rmtree(self.tmpdirname ) def A ( self : Optional[int] ) -> List[str]: '''simple docstring''' _SCREAMING_SNAKE_CASE =RealmConfig(num_block_records=self.num_block_records ) return config def A ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def A ( self : int ) -> Optional[int]: '''simple docstring''' _SCREAMING_SNAKE_CASE =np.array( [ b'This is the first record', b'This is the second record', b'This is the third record', b'This is the fourth record', b'This is the fifth record', b'This is a longer longer longer record', ] , dtype=_a , ) return block_records def A ( self : int ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def A ( self : str ) -> int: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_config() _SCREAMING_SNAKE_CASE =self.get_dummy_retriever() _SCREAMING_SNAKE_CASE =retriever.tokenizer _SCREAMING_SNAKE_CASE =np.array([0, 3] , dtype='long' ) _SCREAMING_SNAKE_CASE =tokenizer(['Test question'] ).input_ids _SCREAMING_SNAKE_CASE =tokenizer( ['the fourth'] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _SCREAMING_SNAKE_CASE =config.reader_seq_len _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='np' ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(len(_a ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def A ( self : List[Any] ) -> Tuple: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_config() _SCREAMING_SNAKE_CASE =self.get_dummy_retriever() _SCREAMING_SNAKE_CASE =retriever.tokenizer _SCREAMING_SNAKE_CASE =np.array([0, 3, 5] , dtype='long' ) _SCREAMING_SNAKE_CASE =tokenizer(['Test question'] ).input_ids _SCREAMING_SNAKE_CASE =tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=_a , return_token_type_ids=_a , return_attention_mask=_a , ).input_ids _SCREAMING_SNAKE_CASE =config.reader_seq_len _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =retriever( _a , _a , answer_ids=_a , max_length=_a , return_tensors='np' ) self.assertEqual([False, True, True] , _a ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , _a ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , _a ) def A ( self : Tuple ) -> Union[str, Any]: '''simple docstring''' _SCREAMING_SNAKE_CASE =self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path _SCREAMING_SNAKE_CASE =retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , b'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: _SCREAMING_SNAKE_CASE =os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) _SCREAMING_SNAKE_CASE =RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , b'This is the first record' )
47
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ , UpperCamelCase__=100 , UpperCamelCase__=13 , UpperCamelCase__=30 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=True , UpperCamelCase__=True , UpperCamelCase__=32 , UpperCamelCase__=4 , UpperCamelCase__=4 , UpperCamelCase__=37 , UpperCamelCase__="gelu" , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=10 , UpperCamelCase__=0.02 , UpperCamelCase__=3 , UpperCamelCase__=None , UpperCamelCase__=[0, 1, 2, 3] , ) -> List[Any]: lowerCamelCase : Optional[Any] = parent lowerCamelCase : str = 100 lowerCamelCase : int = batch_size lowerCamelCase : Tuple = image_size lowerCamelCase : List[str] = patch_size lowerCamelCase : Dict = num_channels lowerCamelCase : Optional[int] = is_training lowerCamelCase : int = use_labels lowerCamelCase : Optional[int] = hidden_size lowerCamelCase : Optional[int] = num_hidden_layers lowerCamelCase : List[Any] = num_attention_heads lowerCamelCase : Any = intermediate_size lowerCamelCase : List[Any] = hidden_act lowerCamelCase : str = hidden_dropout_prob lowerCamelCase : Tuple = attention_probs_dropout_prob lowerCamelCase : Dict = type_sequence_label_size lowerCamelCase : int = initializer_range lowerCamelCase : Optional[int] = scope lowerCamelCase : Tuple = out_indices lowerCamelCase : Dict = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase : List[str] = (image_size // patch_size) ** 2 lowerCamelCase : Optional[Any] = num_patches + 1 def _lowercase ( self ) -> List[Any]: lowerCamelCase : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase : Optional[int] = None lowerCamelCase : Dict = None if self.use_labels: lowerCamelCase : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase : Tuple = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _lowercase ( self ) -> str: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=UpperCamelCase__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Any: lowerCamelCase : Dict = BeitModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Optional[int]: lowerCamelCase : int = BeitForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> Tuple: lowerCamelCase : str = self.type_sequence_label_size lowerCamelCase : Optional[Any] = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[Any] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase : List[Any] = 1 lowerCamelCase : Any = BeitForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase : Any = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowercase ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) -> List[str]: lowerCamelCase : Optional[int] = self.num_labels lowerCamelCase : str = BeitForSemanticSegmentation(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCamelCase : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowerCamelCase : Optional[int] = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : int = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase : List[str] = config_and_inputs lowerCamelCase : List[Any] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCamelCase__ (lowerCAmelCase__ , lowerCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ : Optional[int] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCamelCase_ : int = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ : Tuple = False lowerCamelCase_ : List[str] = False lowerCamelCase_ : str = False def _lowercase ( self ) -> List[str]: lowerCamelCase : Dict = BeitModelTester(self ) lowerCamelCase : List[Any] = ConfigTester(self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 ) def _lowercase ( self ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _lowercase ( self ) -> str: pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _lowercase ( self ) -> Any: pass def _lowercase ( self ) -> str: lowerCamelCase , lowerCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : List[str] = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase : List[Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def _lowercase ( self ) -> Tuple: lowerCamelCase , lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase : Optional[Any] = model_class(UpperCamelCase__ ) lowerCamelCase : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase : Optional[Any] = [*signature.parameters.keys()] lowerCamelCase : str = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def _lowercase ( self ) -> int: lowerCamelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def _lowercase ( self ) -> Any: lowerCamelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def _lowercase ( self ) -> List[str]: lowerCamelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) def _lowercase ( self ) -> Optional[Any]: lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCamelCase__ ) def _lowercase ( self ) -> Tuple: if not self.model_tester.is_training: return lowerCamelCase , lowerCamelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling]: continue lowerCamelCase : int = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() lowerCamelCase : Dict = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Any = model(**UpperCamelCase__ ).loss loss.backward() def _lowercase ( self ) -> List[str]: lowerCamelCase , lowerCamelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCamelCase : Optional[Any] = False lowerCamelCase : str = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(UpperCamelCase__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase : Dict = model_class(UpperCamelCase__ ) model.gradient_checkpointing_enable() model.to(UpperCamelCase__ ) model.train() lowerCamelCase : Union[str, Any] = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ , return_labels=UpperCamelCase__ ) lowerCamelCase : Optional[int] = model(**UpperCamelCase__ ).loss loss.backward() def _lowercase ( self ) -> int: lowerCamelCase , lowerCamelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase : str = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCamelCase : Any = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @slow def _lowercase ( self ) -> List[str]: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase : Optional[Any] = BeitModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def A ( ) -> Tuple: lowerCamelCase : int = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCamelCase__ (unittest.TestCase ): '''simple docstring''' @cached_property def _lowercase ( self ) -> Tuple: return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _lowercase ( self ) -> str: lowerCamelCase : List[str] = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(UpperCamelCase__ ) lowerCamelCase : Any = self.default_image_processor lowerCamelCase : Union[str, Any] = prepare_img() lowerCamelCase : str = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).pixel_values.to(UpperCamelCase__ ) # prepare bool_masked_pos lowerCamelCase : List[Any] = torch.ones((1, 196) , dtype=torch.bool ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Dict = model(pixel_values=UpperCamelCase__ , bool_masked_pos=UpperCamelCase__ ) lowerCamelCase : List[str] = outputs.logits # verify the logits lowerCamelCase : Dict = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase : int = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , UpperCamelCase__ , atol=1e-2 ) ) @slow def _lowercase ( self ) -> Dict: lowerCamelCase : int = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(UpperCamelCase__ ) lowerCamelCase : Dict = self.default_image_processor lowerCamelCase : Optional[Any] = prepare_img() lowerCamelCase : int = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : List[str] = model(**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = outputs.logits # verify the logits lowerCamelCase : Optional[int] = torch.Size((1, 1000) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase : str = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) lowerCamelCase : List[str] = 281 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def _lowercase ( self ) -> str: lowerCamelCase : Union[str, Any] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( UpperCamelCase__ ) lowerCamelCase : int = self.default_image_processor lowerCamelCase : Tuple = prepare_img() lowerCamelCase : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Any = model(**UpperCamelCase__ ) lowerCamelCase : Tuple = outputs.logits # verify the logits lowerCamelCase : int = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase : Any = torch.tensor([1.6881, -0.2787, 0.5901] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) lowerCamelCase : str = 2396 self.assertEqual(logits.argmax(-1 ).item() , UpperCamelCase__ ) @slow def _lowercase ( self ) -> int: lowerCamelCase : int = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) lowerCamelCase : str = model.to(UpperCamelCase__ ) lowerCamelCase : Tuple = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ ) lowerCamelCase : Optional[int] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) lowerCamelCase : str = Image.open(ds[0]["file"] ) lowerCamelCase : List[Any] = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Optional[int] = model(**UpperCamelCase__ ) lowerCamelCase : Optional[Any] = outputs.logits # verify the logits lowerCamelCase : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , UpperCamelCase__ ) lowerCamelCase : Any = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: lowerCamelCase : List[str] = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=UpperCamelCase__ , ) else: lowerCamelCase : str = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=UpperCamelCase__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCamelCase__ , atol=1e-4 ) ) @slow def _lowercase ( self ) -> List[str]: lowerCamelCase : List[Any] = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) lowerCamelCase : Optional[int] = model.to(UpperCamelCase__ ) lowerCamelCase : int = BeitImageProcessor(do_resize=UpperCamelCase__ , size=640 , do_center_crop=UpperCamelCase__ ) lowerCamelCase : List[Any] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) lowerCamelCase : str = Image.open(ds[0]["file"] ) lowerCamelCase : Any = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCamelCase : Dict = model(**UpperCamelCase__ ) lowerCamelCase : Optional[int] = outputs.logits.detach().cpu() lowerCamelCase : int = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ , target_sizes=[(500, 300)] ) lowerCamelCase : int = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ ) lowerCamelCase : List[str] = image_processor.post_process_semantic_segmentation(outputs=UpperCamelCase__ ) lowerCamelCase : Optional[Any] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , UpperCamelCase__ )
48
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all feature extractors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...feature_extraction_utils import FeatureExtractionMixin from ...utils import CONFIG_NAME, FEATURE_EXTRACTOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __snake_case :Tuple = logging.get_logger(__name__) __snake_case :Tuple = OrderedDict( [ ('''audio-spectrogram-transformer''', '''ASTFeatureExtractor'''), ('''beit''', '''BeitFeatureExtractor'''), ('''chinese_clip''', '''ChineseCLIPFeatureExtractor'''), ('''clap''', '''ClapFeatureExtractor'''), ('''clip''', '''CLIPFeatureExtractor'''), ('''clipseg''', '''ViTFeatureExtractor'''), ('''conditional_detr''', '''ConditionalDetrFeatureExtractor'''), ('''convnext''', '''ConvNextFeatureExtractor'''), ('''cvt''', '''ConvNextFeatureExtractor'''), ('''data2vec-audio''', '''Wav2Vec2FeatureExtractor'''), ('''data2vec-vision''', '''BeitFeatureExtractor'''), ('''deformable_detr''', '''DeformableDetrFeatureExtractor'''), ('''deit''', '''DeiTFeatureExtractor'''), ('''detr''', '''DetrFeatureExtractor'''), ('''dinat''', '''ViTFeatureExtractor'''), ('''donut-swin''', '''DonutFeatureExtractor'''), ('''dpt''', '''DPTFeatureExtractor'''), ('''encodec''', '''EncodecFeatureExtractor'''), ('''flava''', '''FlavaFeatureExtractor'''), ('''glpn''', '''GLPNFeatureExtractor'''), ('''groupvit''', '''CLIPFeatureExtractor'''), ('''hubert''', '''Wav2Vec2FeatureExtractor'''), ('''imagegpt''', '''ImageGPTFeatureExtractor'''), ('''layoutlmv2''', '''LayoutLMv2FeatureExtractor'''), ('''layoutlmv3''', '''LayoutLMv3FeatureExtractor'''), ('''levit''', '''LevitFeatureExtractor'''), ('''maskformer''', '''MaskFormerFeatureExtractor'''), ('''mctct''', '''MCTCTFeatureExtractor'''), ('''mobilenet_v1''', '''MobileNetV1FeatureExtractor'''), ('''mobilenet_v2''', '''MobileNetV2FeatureExtractor'''), ('''mobilevit''', '''MobileViTFeatureExtractor'''), ('''nat''', '''ViTFeatureExtractor'''), ('''owlvit''', '''OwlViTFeatureExtractor'''), ('''perceiver''', '''PerceiverFeatureExtractor'''), ('''poolformer''', '''PoolFormerFeatureExtractor'''), ('''regnet''', '''ConvNextFeatureExtractor'''), ('''resnet''', '''ConvNextFeatureExtractor'''), ('''segformer''', '''SegformerFeatureExtractor'''), ('''sew''', '''Wav2Vec2FeatureExtractor'''), ('''sew-d''', '''Wav2Vec2FeatureExtractor'''), ('''speech_to_text''', '''Speech2TextFeatureExtractor'''), ('''speecht5''', '''SpeechT5FeatureExtractor'''), ('''swiftformer''', '''ViTFeatureExtractor'''), ('''swin''', '''ViTFeatureExtractor'''), ('''swinv2''', '''ViTFeatureExtractor'''), ('''table-transformer''', '''DetrFeatureExtractor'''), ('''timesformer''', '''VideoMAEFeatureExtractor'''), ('''tvlt''', '''TvltFeatureExtractor'''), ('''unispeech''', '''Wav2Vec2FeatureExtractor'''), ('''unispeech-sat''', '''Wav2Vec2FeatureExtractor'''), ('''van''', '''ConvNextFeatureExtractor'''), ('''videomae''', '''VideoMAEFeatureExtractor'''), ('''vilt''', '''ViltFeatureExtractor'''), ('''vit''', '''ViTFeatureExtractor'''), ('''vit_mae''', '''ViTFeatureExtractor'''), ('''vit_msn''', '''ViTFeatureExtractor'''), ('''wav2vec2''', '''Wav2Vec2FeatureExtractor'''), ('''wav2vec2-conformer''', '''Wav2Vec2FeatureExtractor'''), ('''wavlm''', '''Wav2Vec2FeatureExtractor'''), ('''whisper''', '''WhisperFeatureExtractor'''), ('''xclip''', '''CLIPFeatureExtractor'''), ('''yolos''', '''YolosFeatureExtractor'''), ] ) __snake_case :Dict = _LazyAutoMapping(CONFIG_MAPPING_NAMES, FEATURE_EXTRACTOR_MAPPING_NAMES) def __snake_case ( _UpperCAmelCase ): for module_name, extractors in FEATURE_EXTRACTOR_MAPPING_NAMES.items(): if class_name in extractors: __a = model_type_to_module_name(_UpperCAmelCase ) __a = importlib.import_module(f'.{module_name}' , '''transformers.models''' ) try: return getattr(_UpperCAmelCase , _UpperCAmelCase ) except AttributeError: continue for _, extractor in FEATURE_EXTRACTOR_MAPPING._extra_content.items(): if getattr(_UpperCAmelCase , '''__name__''' , _UpperCAmelCase ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. __a = importlib.import_module('''transformers''' ) if hasattr(_UpperCAmelCase , _UpperCAmelCase ): return getattr(_UpperCAmelCase , _UpperCAmelCase ) return None def __snake_case ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = False , _UpperCAmelCase = False , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = False , **_UpperCAmelCase , ): __a = get_file_from_repo( _UpperCAmelCase , _UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , resume_download=_UpperCAmelCase , proxies=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , local_files_only=_UpperCAmelCase , ) if resolved_config_file is None: logger.info( '''Could not locate the feature extractor configuration file, will try to use the model config instead.''' ) return {} with open(_UpperCAmelCase , encoding='''utf-8''' ) as reader: return json.load(_UpperCAmelCase ) class _A : def __init__( self : int): '''simple docstring''' raise EnvironmentError( '''AutoFeatureExtractor is designed to be instantiated ''' '''using the `AutoFeatureExtractor.from_pretrained(pretrained_model_name_or_path)` method.''') @classmethod @replace_list_option_in_docstrings(__SCREAMING_SNAKE_CASE) def _lowerCamelCase ( cls : Any , __SCREAMING_SNAKE_CASE : str , **__SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' __a = kwargs.pop('''config''' , __SCREAMING_SNAKE_CASE) __a = kwargs.pop('''trust_remote_code''' , __SCREAMING_SNAKE_CASE) __a = True __a , __a = FeatureExtractionMixin.get_feature_extractor_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = config_dict.get('''feature_extractor_type''' , __SCREAMING_SNAKE_CASE) __a = None if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {}): __a = config_dict['''auto_map''']['''AutoFeatureExtractor'''] # If we don't find the feature extractor class in the feature extractor config, let's try the model config. if feature_extractor_class is None and feature_extractor_auto_map is None: if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __a = AutoConfig.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # It could be in `config.feature_extractor_type`` __a = getattr(__SCREAMING_SNAKE_CASE , '''feature_extractor_type''' , __SCREAMING_SNAKE_CASE) if hasattr(__SCREAMING_SNAKE_CASE , '''auto_map''') and "AutoFeatureExtractor" in config.auto_map: __a = config.auto_map['''AutoFeatureExtractor'''] if feature_extractor_class is not None: __a = feature_extractor_class_from_name(__SCREAMING_SNAKE_CASE) __a = feature_extractor_auto_map is not None __a = feature_extractor_class is not None or type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING __a = resolve_trust_remote_code( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) if has_remote_code and trust_remote_code: __a = get_class_from_dynamic_module( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) __a = kwargs.pop('''code_revision''' , __SCREAMING_SNAKE_CASE) if os.path.isdir(__SCREAMING_SNAKE_CASE): feature_extractor_class.register_for_auto_class() return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) elif feature_extractor_class is not None: return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) # Last try: we use the FEATURE_EXTRACTOR_MAPPING. elif type(__SCREAMING_SNAKE_CASE) in FEATURE_EXTRACTOR_MAPPING: __a = FEATURE_EXTRACTOR_MAPPING[type(__SCREAMING_SNAKE_CASE)] return feature_extractor_class.from_dict(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE) raise ValueError( F'Unrecognized feature extractor in {pretrained_model_name_or_path}. Should have a ' F'`feature_extractor_type` key in its {FEATURE_EXTRACTOR_NAME} of {CONFIG_NAME}, or one of the following ' F'`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in FEATURE_EXTRACTOR_MAPPING_NAMES.keys())}') @staticmethod def _lowerCamelCase ( __SCREAMING_SNAKE_CASE : Optional[Any] , __SCREAMING_SNAKE_CASE : Optional[Any]): '''simple docstring''' FEATURE_EXTRACTOR_MAPPING.register(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE)
49
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
import numpy # List of input, output pairs _UpperCAmelCase : Union[str, Any] = ( ((5, 2, 3), 15), ((6, 5, 9), 25), ((11, 12, 13), 41), ((1, 1, 1), 8), ((11, 12, 13), 41), ) _UpperCAmelCase : Dict = (((5_15, 22, 13), 5_55), ((61, 35, 49), 1_50)) _UpperCAmelCase : Tuple = [2, 4, 1, 5] _UpperCAmelCase : Optional[Any] = len(train_data) _UpperCAmelCase : Optional[Any] = 0.009 def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase="train" ) -> List[str]: return calculate_hypothesis_value(_UpperCAmelCase , _UpperCAmelCase ) - output( _UpperCAmelCase , _UpperCAmelCase ) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> int: lowerCamelCase__ : str = 0 for i in range(len(_UpperCAmelCase ) - 1 ): hyp_val += data_input_tuple[i] * parameter_vector[i + 1] hyp_val += parameter_vector[0] return hyp_val def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> int: if data_set == "train": return train_data[example_no][1] elif data_set == "test": return test_data[example_no][1] return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Optional[int]: if data_set == "train": return _hypothesis_value(train_data[example_no][0] ) elif data_set == "test": return _hypothesis_value(test_data[example_no][0] ) return None def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase=m ) -> Dict: lowerCamelCase__ : Union[str, Any] = 0 for i in range(_UpperCAmelCase ): if index == -1: summation_value += _error(_UpperCAmelCase ) else: summation_value += _error(_UpperCAmelCase ) * train_data[i][0][index] return summation_value def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: lowerCamelCase__ : List[Any] = summation_of_cost_derivative(_UpperCAmelCase , _UpperCAmelCase ) / m return cost_derivative_value def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: global parameter_vector # Tune these values to set a tolerance value for predicted output lowerCamelCase__ : List[str] = 0.000_002 lowerCamelCase__ : Any = 0 lowerCamelCase__ : Tuple = 0 while True: j += 1 lowerCamelCase__ : str = [0, 0, 0, 0] for i in range(0 , len(_UpperCAmelCase ) ): lowerCamelCase__ : Optional[Any] = get_cost_derivative(i - 1 ) lowerCamelCase__ : Tuple = ( parameter_vector[i] - LEARNING_RATE * cost_derivative ) if numpy.allclose( _UpperCAmelCase , _UpperCAmelCase , atol=_UpperCAmelCase , rtol=_UpperCAmelCase , ): break lowerCamelCase__ : str = temp_parameter_vector print(('Number of iterations:', j) ) def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: for i in range(len(_UpperCAmelCase ) ): print(('Actual output value:', output(_UpperCAmelCase , 'test' )) ) print(('Hypothesis output:', calculate_hypothesis_value(_UpperCAmelCase , 'test' )) ) if __name__ == "__main__": run_gradient_descent() print("""\nTesting gradient descent for a linear hypothesis function.\n""") test_gradient_descent()
50
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
import pytest import datasets # Import fixture modules as plugins snake_case_ : Tuple = ["tests.fixtures.files", "tests.fixtures.hub", "tests.fixtures.fsspec"] def A (__A : Optional[int] , __A : Any ) -> Optional[int]: """simple docstring""" for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def A (__A : Optional[Any] ) -> Optional[int]: """simple docstring""" config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=__A ) def A (__A : Optional[int] , __A : Dict ) -> List[Any]: """simple docstring""" UpperCAmelCase_ = tmp_path_factory.getbasetemp() / '''cache''' UpperCAmelCase_ = test_hf_cache_home / '''datasets''' UpperCAmelCase_ = test_hf_cache_home / '''metrics''' UpperCAmelCase_ = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(__A ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(__A ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(__A ) ) UpperCAmelCase_ = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(__A ) ) UpperCAmelCase_ = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(__A ) ) @pytest.fixture(autouse=__A , scope='''session''' ) def A () -> Dict: """simple docstring""" datasets.disable_progress_bar() @pytest.fixture(autouse=__A ) def A (__A : Tuple ) -> str: """simple docstring""" monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , __A ) @pytest.fixture def A (__A : Union[str, Any] ) -> int: """simple docstring""" monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , __A )
51
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
__lowerCamelCase : Dict = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> list[str]: UpperCamelCase : Any = set() # keep track of all the paths to be checked UpperCamelCase : int = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase : List[str] = queue.pop(0 ) # get the last node from the path UpperCamelCase : Tuple = path[-1] if node not in explored: UpperCamelCase : List[str] = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase : str = list(_lowerCAmelCase ) new_path.append(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(_lowerCAmelCase ) # in case there's no path between the 2 nodes return [] def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> int: if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase : List[str] = [start] UpperCamelCase : str = set(_lowerCAmelCase ) # Keep tab on distances from `start` node. UpperCamelCase : Any = {start: 0, target: -1} while queue: UpperCamelCase : Any = queue.pop(0 ) if node == target: UpperCamelCase : int = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(_lowerCAmelCase ) queue.append(_lowerCAmelCase ) UpperCamelCase : str = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, """G""", """D""")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, """G""", """D""")) # returns 4
52
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
'''simple docstring''' import argparse import pytorch_lightning as pl import torch from torch import nn from transformers import LongformerForQuestionAnswering, LongformerModel class snake_case ( pl.LightningModule ): """simple docstring""" def __init__( self : List[str] , __A : List[str] ): super().__init__() __UpperCamelCase = model __UpperCamelCase = 2 __UpperCamelCase = nn.Linear(self.model.config.hidden_size , self.num_labels ) def _lowerCamelCase ( self : Tuple ): pass def lowercase__ ( __lowercase : str , __lowercase : str , __lowercase : str ) -> List[Any]: """simple docstring""" __UpperCamelCase = LongformerModel.from_pretrained(__lowercase ) __UpperCamelCase = LightningModel(__lowercase ) __UpperCamelCase = torch.load(__lowercase , map_location=torch.device('cpu' ) ) lightning_model.load_state_dict(ckpt['state_dict'] ) # init longformer question answering model __UpperCamelCase = LongformerForQuestionAnswering.from_pretrained(__lowercase ) # transfer weights longformer_for_qa.longformer.load_state_dict(lightning_model.model.state_dict() ) longformer_for_qa.qa_outputs.load_state_dict(lightning_model.qa_outputs.state_dict() ) longformer_for_qa.eval() # save model longformer_for_qa.save_pretrained(__lowercase ) print(F'''Conversion successful. Model saved under {pytorch_dump_folder_path}''' ) if __name__ == "__main__": a__ : Any =argparse.ArgumentParser() # Required parameters parser.add_argument( '''--longformer_model''', default=None, type=str, required=True, help='''model identifier of longformer. Should be either `longformer-base-4096` or `longformer-large-4096`.''', ) parser.add_argument( '''--longformer_question_answering_ckpt_path''', default=None, type=str, required=True, help='''Path the official PyTorch Lightning Checkpoint.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) a__ : Union[str, Any] =parser.parse_args() convert_longformer_qa_checkpoint_to_pytorch( args.longformer_model, args.longformer_question_answering_ckpt_path, args.pytorch_dump_folder_path )
53
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class UpperCamelCase_ ( UpperCamelCase): """simple docstring""" snake_case__ : Optional[int] = "philschmid/bart-large-cnn-samsum" snake_case__ : str = ( "This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, " "and returns a summary of the text." ) snake_case__ : Union[str, Any] = "summarizer" snake_case__ : Optional[Any] = AutoTokenizer snake_case__ : Optional[int] = AutoModelForSeqaSeqLM snake_case__ : Any = ["text"] snake_case__ : Tuple = ["text"] def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : Optional[Any] ) -> int: return self.pre_processor(UpperCAmelCase__ , return_tensors="pt" , truncation=UpperCAmelCase__ ) def UpperCAmelCase_ ( self : str , UpperCAmelCase__ : int ) -> Any: return self.model.generate(**UpperCAmelCase__ )[0] def UpperCAmelCase_ ( self : Any , UpperCAmelCase__ : List[Any] ) -> List[Any]: return self.pre_processor.decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ , clean_up_tokenization_spaces=UpperCAmelCase__ )
54
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
'''simple docstring''' class snake_case : """simple docstring""" def __init__( self ): """simple docstring""" lowerCamelCase_ = {} # Mapping from char to TrieNode lowerCamelCase_ = False def snake_case ( self , UpperCamelCase ): """simple docstring""" for word in words: self.insert(UpperCamelCase ) def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self for char in word: if char not in curr.nodes: lowerCamelCase_ = TrieNode() lowerCamelCase_ = curr.nodes[char] lowerCamelCase_ = True def snake_case ( self , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = self for char in word: if char not in curr.nodes: return False lowerCamelCase_ = curr.nodes[char] return curr.is_leaf def snake_case ( self , UpperCamelCase ): """simple docstring""" def _delete(UpperCamelCase , UpperCamelCase , UpperCamelCase ) -> bool: if index == len(UpperCamelCase ): # If word does not exist if not curr.is_leaf: return False lowerCamelCase_ = False return len(curr.nodes ) == 0 lowerCamelCase_ = word[index] lowerCamelCase_ = curr.nodes.get(UpperCamelCase ) # If char not in current trie node if not char_node: return False # Flag to check if node can be deleted lowerCamelCase_ = _delete(UpperCamelCase , UpperCamelCase , index + 1 ) if delete_curr: del curr.nodes[char] return len(curr.nodes ) == 0 return delete_curr _delete(self , UpperCamelCase , 0 ) def __snake_case ( UpperCAmelCase_ : TrieNode , UpperCAmelCase_ : str ): if node.is_leaf: print(UpperCAmelCase_ , end=" " ) for key, value in node.nodes.items(): print_words(UpperCAmelCase_ , word + key ) def __snake_case ( ): lowerCamelCase_ = "banana bananas bandana band apple all beast".split() lowerCamelCase_ = TrieNode() root.insert_many(UpperCAmelCase_ ) # print_words(root, "") assert all(root.find(UpperCAmelCase_ ) for word in words ) assert root.find("banana" ) assert not root.find("bandanas" ) assert not root.find("apps" ) assert root.find("apple" ) assert root.find("all" ) root.delete("all" ) assert not root.find("all" ) root.delete("banana" ) assert not root.find("banana" ) assert root.find("bananas" ) return True def __snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : bool ): print(str(UpperCAmelCase_ ) , "works!" if passes else "doesn't work :(" ) def __snake_case ( ): assert test_trie() def __snake_case ( ): print_results("Testing trie functionality" , test_trie() ) if __name__ == "__main__": main()
55
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets a : Tuple = '\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n' a : Optional[int] = '\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n' a : Optional[Any] = '\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: \'auto\' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default \'gpt2-large\' Use one of [\'gpt2\', \'gpt2-medium\', \'gpt2-large\', \'gpt2-xl\'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: "c" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric(\'mauve\')\n >>> predictions = ["hello there", "general kenobi"]\n >>> references = ["hello there", "general kenobi"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def A_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def A_ ( self : List[Any] , lowercase_ : Union[str, Any] , lowercase_ : Union[str, Any] , lowercase_ : str=None , lowercase_ : Dict=None , lowercase_ : int=None , lowercase_ : str=None , lowercase_ : Any="auto" , lowercase_ : Union[str, Any]=-1 , lowercase_ : Dict=0.9 , lowercase_ : Optional[int]=5 , lowercase_ : Tuple=500 , lowercase_ : Union[str, Any]="gpt2-large" , lowercase_ : Optional[int]=-1 , lowercase_ : Any=1024 , lowercase_ : List[str]=25 , lowercase_ : Any=5 , lowercase_ : Union[str, Any]=True , lowercase_ : str=25 , ): snake_case_ = compute_mauve( p_text=lowercase_ , q_text=lowercase_ , p_features=lowercase_ , q_features=lowercase_ , p_tokens=lowercase_ , q_tokens=lowercase_ , num_buckets=lowercase_ , pca_max_data=lowercase_ , kmeans_explained_var=lowercase_ , kmeans_num_redo=lowercase_ , kmeans_max_iter=lowercase_ , featurize_model_name=lowercase_ , device_id=lowercase_ , max_text_length=lowercase_ , divergence_curve_discretization_size=lowercase_ , mauve_scaling_factor=lowercase_ , verbose=lowercase_ , seed=lowercase_ , ) return out
56
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
"""simple docstring""" import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() A : Optional[Any] = logging.get_logger(__name__) def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = original_name.split("." )[0] __lowerCAmelCase = key.split("." ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 2] ) __lowerCAmelCase = int(key_list[key_list.index(_UpperCamelCase ) - 1] ) __lowerCAmelCase = orig_block_num - offset __lowerCAmelCase = key.replace(f"{orig_block_num}.{layer_num}.{original_name}" , f"block.{new_block_num}.{layer_num}.{new_name}" ) return key def _lowerCamelCase ( _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = OrderedDict() __lowerCAmelCase , __lowerCAmelCase = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): __lowerCAmelCase = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 __lowerCAmelCase = key[: key.find("proj" )] __lowerCAmelCase = key.replace(_UpperCamelCase , f"patch_embeddings.{total_embed_found}." ) __lowerCAmelCase = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: __lowerCAmelCase = "poolformer.encoder." + key if "mlp.fc1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm1" , "before_norm" ) if "norm2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: __lowerCAmelCase = replace_key_with_offset(_UpperCamelCase , _UpperCamelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: __lowerCAmelCase = key.replace("head" , "classifier" ) __lowerCAmelCase = value return new_state_dict def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(_UpperCamelCase , stream=_UpperCamelCase ).raw ) return image @torch.no_grad() def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = PoolFormerConfig() # set attributes based on model_name __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = model_name[-3:] __lowerCAmelCase = 1000 __lowerCAmelCase = "imagenet-1k-id2label.json" __lowerCAmelCase = (1, 1000) # set config attributes __lowerCAmelCase = json.load(open(hf_hub_download(_UpperCamelCase , _UpperCamelCase , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(_UpperCamelCase ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} if size == "s12": __lowerCAmelCase = [2, 2, 6, 2] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s24": __lowerCAmelCase = [4, 4, 12, 4] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 0.9 elif size == "s36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [64, 128, 320, 512] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.9 elif size == "m36": __lowerCAmelCase = [6, 6, 18, 6] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 elif size == "m48": __lowerCAmelCase = [8, 8, 24, 8] __lowerCAmelCase = [96, 192, 384, 768] __lowerCAmelCase = 4.0 __lowerCAmelCase = 1e-6 __lowerCAmelCase = 0.95 else: raise ValueError(f"Size {size} not supported" ) # load image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) # Prepare image __lowerCAmelCase = prepare_img() __lowerCAmelCase = image_processor(images=_UpperCamelCase , return_tensors="pt" ).pixel_values logger.info(f"Converting model {model_name}..." ) # load original state dict __lowerCAmelCase = torch.load(_UpperCamelCase , map_location=torch.device("cpu" ) ) # rename keys __lowerCAmelCase = rename_keys(_UpperCamelCase ) # create HuggingFace model and load state dict __lowerCAmelCase = PoolFormerForImageClassification(_UpperCamelCase ) model.load_state_dict(_UpperCamelCase ) model.eval() # Define image processor __lowerCAmelCase = PoolFormerImageProcessor(crop_pct=_UpperCamelCase ) __lowerCAmelCase = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass __lowerCAmelCase = model(_UpperCamelCase ) __lowerCAmelCase = outputs.logits # define expected logit slices for different models if size == "s12": __lowerCAmelCase = torch.tensor([-0.30_45, -0.67_58, -0.48_69] ) elif size == "s24": __lowerCAmelCase = torch.tensor([0.44_02, -0.13_74, -0.80_45] ) elif size == "s36": __lowerCAmelCase = torch.tensor([-0.60_80, -0.51_33, -0.58_98] ) elif size == "m36": __lowerCAmelCase = torch.tensor([0.39_52, 0.22_63, -1.26_68] ) elif size == "m48": __lowerCAmelCase = torch.tensor([0.11_67, -0.06_56, -0.34_23] ) else: raise ValueError(f"Size {size} not supported" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _UpperCamelCase , atol=1e-2 ) # finally, save model and image processor logger.info(f"Saving PyTorch model and image processor to {pytorch_dump_folder_path}..." ) Path(_UpperCamelCase ).mkdir(exist_ok=_UpperCamelCase ) model.save_pretrained(_UpperCamelCase ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_UpperCamelCase ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() parser.add_argument( "--model_name", default="poolformer_s12", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--checkpoint_path", default=None, type=str, help="Path to the original PyTorch checkpoint (.pth file)." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the folder to output PyTorch model." ) A : int = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
57
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
'''simple docstring''' import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 16 lowercase_ = 32 def lowerCamelCase ( __lowerCamelCase : Accelerator , __lowerCamelCase : int = 16 ) ->int: _SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained("""bert-base-cased""" ) _SCREAMING_SNAKE_CASE = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(__lowerCamelCase : int ): # max_length=None => use the model max length (it's actually the default) _SCREAMING_SNAKE_CASE = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=__lowerCamelCase , max_length=__lowerCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): _SCREAMING_SNAKE_CASE = datasets.map( __lowerCamelCase , batched=__lowerCamelCase , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library _SCREAMING_SNAKE_CASE = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(__lowerCamelCase : Any ): # On TPU it's best to pad everything to the same length or training will be very slow. _SCREAMING_SNAKE_CASE = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": _SCREAMING_SNAKE_CASE = 16 elif accelerator.mixed_precision != "no": _SCREAMING_SNAKE_CASE = 8 else: _SCREAMING_SNAKE_CASE = None return tokenizer.pad( __lowerCamelCase , padding="""longest""" , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_tensors="""pt""" , ) # Instantiate dataloaders. _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""train"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) _SCREAMING_SNAKE_CASE = DataLoader( tokenized_datasets["""validation"""] , shuffle=__lowerCamelCase , collate_fn=__lowerCamelCase , batch_size=__lowerCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def lowerCamelCase ( __lowerCamelCase : str , __lowerCamelCase : Any ) ->Optional[Any]: # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""" , __lowerCamelCase ) == "1": _SCREAMING_SNAKE_CASE = 2 # Initialize accelerator _SCREAMING_SNAKE_CASE = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs _SCREAMING_SNAKE_CASE = config["""lr"""] _SCREAMING_SNAKE_CASE = int(config["""num_epochs"""] ) _SCREAMING_SNAKE_CASE = int(config["""seed"""] ) _SCREAMING_SNAKE_CASE = int(config["""batch_size"""] ) _SCREAMING_SNAKE_CASE = evaluate.load("""glue""" , """mrpc""" ) # If the batch size is too big we use gradient accumulation _SCREAMING_SNAKE_CASE = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: _SCREAMING_SNAKE_CASE = batch_size // MAX_GPU_BATCH_SIZE _SCREAMING_SNAKE_CASE = MAX_GPU_BATCH_SIZE set_seed(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = get_dataloaders(__lowerCamelCase , __lowerCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) _SCREAMING_SNAKE_CASE = AutoModelForSequenceClassification.from_pretrained("""bert-base-cased""" , return_dict=__lowerCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). _SCREAMING_SNAKE_CASE = model.to(accelerator.device ) # Instantiate optimizer _SCREAMING_SNAKE_CASE = AdamW(params=model.parameters() , lr=__lowerCamelCase ) # Instantiate scheduler _SCREAMING_SNAKE_CASE = get_linear_schedule_with_warmup( optimizer=__lowerCamelCase , num_warmup_steps=100 , num_training_steps=(len(__lowerCamelCase ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.prepare( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # Now we train the model for epoch in range(__lowerCamelCase ): model.train() for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.loss _SCREAMING_SNAKE_CASE = loss / gradient_accumulation_steps accelerator.backward(__lowerCamelCase ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() _SCREAMING_SNAKE_CASE = 0 for step, batch in enumerate(__lowerCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**__lowerCamelCase ) _SCREAMING_SNAKE_CASE = outputs.logits.argmax(dim=-1 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = accelerator.gather((predictions, batch["""labels"""]) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(__lowerCamelCase ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples _SCREAMING_SNAKE_CASE = predictions[: len(eval_dataloader.dataset ) - samples_seen] _SCREAMING_SNAKE_CASE = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=__lowerCamelCase , references=__lowerCamelCase , ) _SCREAMING_SNAKE_CASE = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'epoch {epoch}:' , __lowerCamelCase ) def lowerCamelCase ( ) ->List[str]: _SCREAMING_SNAKE_CASE = argparse.ArgumentParser(description="""Simple example of training script.""" ) parser.add_argument( """--mixed_precision""" , type=__lowerCamelCase , default=__lowerCamelCase , choices=["""no""", """fp16""", """bf16""", """fp8"""] , help="""Whether to use mixed precision. Choose""" """between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.""" """and an Nvidia Ampere GPU.""" , ) parser.add_argument("""--cpu""" , action="""store_true""" , help="""If passed, will train on the CPU.""" ) _SCREAMING_SNAKE_CASE = parser.parse_args() _SCREAMING_SNAKE_CASE = {"""lr""": 2e-5, """num_epochs""": 3, """seed""": 42, """batch_size""": 16} training_function(__lowerCamelCase , __lowerCamelCase ) if __name__ == "__main__": main()
58
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = {"""configuration_xglm""": ["""XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XGLMConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ["""XGLMTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """XGLMForCausalLM""", """XGLMModel""", """XGLMPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """FlaxXGLMForCausalLM""", """FlaxXGLMModel""", """FlaxXGLMPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ """TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXGLMForCausalLM""", """TFXGLMModel""", """TFXGLMPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xglm import XGLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XGLMConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm import XGLMTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xglm_fast import XGLMTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xglm import XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, XGLMForCausalLM, XGLMModel, XGLMPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_xglm import FlaxXGLMForCausalLM, FlaxXGLMModel, FlaxXGLMPreTrainedModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, TFXGLMPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
59
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class snake_case_( a__ , unittest.TestCase ): __UpperCamelCase = GPTSanJapaneseTokenizer __UpperCamelCase = False __UpperCamelCase = {'''do_clean_text''': False, '''add_prefix_space''': False} def lowerCamelCase__ ( self : Optional[int] ): super().setUp() # fmt: off lowerCAmelCase : List[str] = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on lowerCAmelCase : int = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 lowerCAmelCase : List[str] = {'''unk_token''': '''<unk>'''} lowerCAmelCase : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) lowerCAmelCase : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''emoji_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.emoji_file , '''w''' ) as emoji_writer: emoji_writer.write(json.dumps(UpperCamelCase_ ) ) def lowerCamelCase__ ( self : Union[str, Any] , **UpperCamelCase_ : Optional[Any] ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCamelCase__ ( self : str , UpperCamelCase_ : Optional[int] ): lowerCAmelCase : int = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' lowerCAmelCase : List[Any] = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def lowerCamelCase__ ( self : Dict , UpperCamelCase_ : Dict ): lowerCAmelCase, lowerCAmelCase : List[Any] = self.get_input_output_texts(UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ , clean_up_tokenization_spaces=UpperCamelCase_ ) return text, ids def lowerCamelCase__ ( self : Any ): pass # TODO add if relevant def lowerCamelCase__ ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase__ ( self : Union[str, Any] ): pass # TODO add if relevant def lowerCamelCase__ ( self : Optional[Any] ): lowerCAmelCase : Any = self.get_tokenizer() # Testing tokenization lowerCAmelCase : int = '''こんにちは、世界。 こんばんは、㔺界。''' lowerCAmelCase : Union[str, Any] = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] lowerCAmelCase : Dict = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing conversion to ids without special tokens lowerCAmelCase : int = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] lowerCAmelCase : Tuple = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # Testing conversion to ids with special tokens lowerCAmelCase : Tuple = tokens + [tokenizer.unk_token] lowerCAmelCase : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 1_9] lowerCAmelCase : List[str] = tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : List[Any] = self.get_tokenizer() # Testing tokenization lowerCAmelCase : str = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' lowerCAmelCase : List[Any] = '''こんにちは、、、、世界。こんばんは、、、、世界。''' lowerCAmelCase : Dict = tokenizer.encode(UpperCamelCase_ ) lowerCAmelCase : Dict = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : str ): lowerCAmelCase : str = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase : Optional[int] = '''こんにちは、世界。''' lowerCAmelCase : Dict = '''こんばんは、㔺界。😀''' lowerCAmelCase : int = '''こんにちは、世界。こんばんは、世界。😀''' lowerCAmelCase : Any = tokenizer.encode(prefix_text + input_text ) lowerCAmelCase : List[str] = tokenizer.encode('''''' , prefix_text=prefix_text + input_text ) lowerCAmelCase : Any = tokenizer.encode(UpperCamelCase_ , prefix_text=UpperCamelCase_ ) lowerCAmelCase : Tuple = tokenizer.decode(UpperCamelCase_ ) lowerCAmelCase : List[str] = tokenizer.decode(UpperCamelCase_ ) lowerCAmelCase : Optional[int] = tokenizer.decode(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) # Testing tokenization lowerCAmelCase : Optional[int] = '''こんにちは、世界。''' lowerCAmelCase : Union[str, Any] = '''こんばんは、㔺界。😀''' lowerCAmelCase : Dict = len(tokenizer.encode(UpperCamelCase_ ) ) - 2 lowerCAmelCase : List[Any] = len(tokenizer.encode(UpperCamelCase_ ) ) - 2 lowerCAmelCase : List[Any] = [1] + [0] * (len_prefix + len_text + 1) lowerCAmelCase : Tuple = [1] * (len_prefix + len_text + 1) + [0] lowerCAmelCase : int = [1] + [1] * (len_prefix) + [0] * (len_text + 1) lowerCAmelCase : Dict = tokenizer(prefix_text + input_text ).token_type_ids lowerCAmelCase : Optional[int] = tokenizer('''''' , prefix_text=prefix_text + input_text ).token_type_ids lowerCAmelCase : Dict = tokenizer(UpperCamelCase_ , prefix_text=UpperCamelCase_ ).token_type_ids self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def lowerCamelCase__ ( self : Dict ): lowerCAmelCase : Optional[Any] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''あンいワ''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''''' , prefix_text='''あンいワ''' ) lowerCAmelCase : List[Any] = tokenizer.encode('''いワ''' , prefix_text='''あン''' ) self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) ) self.assertEqual(tokenizer.decode(UpperCamelCase_ ) , tokenizer.decode(UpperCamelCase_ ) ) self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertNotEqual(UpperCamelCase_ , UpperCamelCase_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def lowerCamelCase__ ( self : Union[str, Any] ): lowerCAmelCase : Optional[int] = self.tokenizer_class.from_pretrained('''Tanrei/GPTSAN-japanese''' ) lowerCAmelCase : List[Any] = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] lowerCAmelCase : List[str] = tokenizer(UpperCamelCase_ , padding=UpperCamelCase_ ) lowerCAmelCase : Optional[Any] = tokenizer.batch_encode_plus(UpperCamelCase_ , padding=UpperCamelCase_ ) # fmt: off lowerCAmelCase : Optional[Any] = [[3_5_9_9_3, 8_6_4_0, 2_5_9_4_8, 3_5_9_9_8, 3_0_6_4_7, 3_5_6_7_5, 3_5_9_9_9, 3_5_9_9_9], [3_5_9_9_3, 1_0_3_8_2, 9_8_6_8, 3_5_9_9_8, 3_0_6_4_6, 9_4_5_9, 3_0_6_4_6, 3_5_6_7_5]] lowerCAmelCase : Tuple = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] lowerCAmelCase : int = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , UpperCamelCase_ ) self.assertListEqual(x_token.token_type_ids , UpperCamelCase_ ) self.assertListEqual(x_token.attention_mask , UpperCamelCase_ ) self.assertListEqual(x_token_a.input_ids , UpperCamelCase_ ) self.assertListEqual(x_token_a.token_type_ids , UpperCamelCase_ ) self.assertListEqual(x_token_a.attention_mask , UpperCamelCase_ ) def lowerCamelCase__ ( self : Optional[int] ): # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def lowerCamelCase__ ( self : int ): # tokenizer has no padding token pass
60
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
"""simple docstring""" import numpy as np class A_ : '''simple docstring''' def __init__( self ): """simple docstring""" UpperCAmelCase_ : List[str] = (0, 0) UpperCAmelCase_ : int = None UpperCAmelCase_ : Tuple = 0 UpperCAmelCase_ : List[str] = 0 UpperCAmelCase_ : Optional[int] = 0 def __eq__( self , lowercase_ ): """simple docstring""" return self.position == cell.position def UpperCamelCase__ ( self ): """simple docstring""" print(self.position ) class A_ : '''simple docstring''' def __init__( self , lowercase_=(5, 5) ): """simple docstring""" UpperCAmelCase_ : List[str] = np.zeros(lowercase_ ) UpperCAmelCase_ : str = world_size[0] UpperCAmelCase_ : str = world_size[1] def UpperCamelCase__ ( self ): """simple docstring""" print(self.w ) def UpperCamelCase__ ( self , lowercase_ ): """simple docstring""" UpperCAmelCase_ : Dict = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] UpperCAmelCase_ : List[Any] = cell.position[0] UpperCAmelCase_ : Dict = cell.position[1] UpperCAmelCase_ : List[Any] = [] for n in neughbour_cord: UpperCAmelCase_ : List[str] = current_x + n[0] UpperCAmelCase_ : Optional[Any] = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: UpperCAmelCase_ : Tuple = Cell() UpperCAmelCase_ : List[str] = (x, y) UpperCAmelCase_ : Union[str, Any] = cell neighbours.append(lowercase_ ) return neighbours def __a ( __lowerCamelCase, __lowerCamelCase, __lowerCamelCase ): UpperCAmelCase_ : Any = [] UpperCAmelCase_ : int = [] _open.append(__lowerCamelCase ) while _open: UpperCAmelCase_ : Optional[Any] = np.argmin([n.f for n in _open] ) UpperCAmelCase_ : Tuple = _open[min_f] _closed.append(_open.pop(__lowerCamelCase ) ) if current == goal: break for n in world.get_neigbours(__lowerCamelCase ): for c in _closed: if c == n: continue UpperCAmelCase_ : int = current.g + 1 UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = n.position UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = goal.position UpperCAmelCase_ : Dict = (ya - ya) ** 2 + (xa - xa) ** 2 UpperCAmelCase_ : str = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(__lowerCamelCase ) UpperCAmelCase_ : Tuple = [] while current.parent is not None: path.append(current.position ) UpperCAmelCase_ : Union[str, Any] = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": _a = Gridworld() # Start position and goal _a = Cell() _a = (0, 0) _a = Cell() _a = (4, 4) print(f"""path from {start.position} to {goal.position}""") _a = astar(world, start, goal) # Just for visual reasons. for i in s: _a = 1 print(world.w)
61
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer _A = logging.get_logger(__name__) _A = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _A = { 'vocab_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt' ), }, 'tokenizer_file': { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json' ), }, } _A = { 'yjernite/retribert-base-uncased': 512, } _A = { 'yjernite/retribert-base-uncased': {'do_lower_case': True}, } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Any = VOCAB_FILES_NAMES UpperCAmelCase__ : Dict = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : Tuple = PRETRAINED_INIT_CONFIGURATION UpperCAmelCase__ : Optional[int] = RetriBertTokenizer UpperCAmelCase__ : int = ["input_ids", "attention_mask"] def __init__( self , A_=None , A_=None , A_=True , A_="[UNK]" , A_="[SEP]" , A_="[PAD]" , A_="[CLS]" , A_="[MASK]" , A_=True , A_=None , **A_ , ) -> Any: super().__init__( A_ , tokenizer_file=A_ , do_lower_case=A_ , unk_token=A_ , sep_token=A_ , pad_token=A_ , cls_token=A_ , mask_token=A_ , tokenize_chinese_chars=A_ , strip_accents=A_ , **A_ , ) __UpperCamelCase =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , A_ ) != do_lower_case or normalizer_state.get('strip_accents' , A_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , A_ ) != tokenize_chinese_chars ): __UpperCamelCase =getattr(A_ , normalizer_state.pop('type' ) ) __UpperCamelCase =do_lower_case __UpperCamelCase =strip_accents __UpperCamelCase =tokenize_chinese_chars __UpperCamelCase =normalizer_class(**A_ ) __UpperCamelCase =do_lower_case def _a ( self , A_ , A_=None ) -> Optional[Any]: __UpperCamelCase =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _a ( self , A_ , A_ = None ) -> List[int]: __UpperCamelCase =[self.sep_token_id] __UpperCamelCase =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =self._tokenizer.model.save(A_ , name=A_ ) return tuple(A_ )
62
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
'''simple docstring''' from __future__ import annotations from collections import deque from collections.abc import Sequence from dataclasses import dataclass from typing import Any @dataclass class __SCREAMING_SNAKE_CASE : """simple docstring""" __a =42 __a =None __a =None def _lowerCamelCase ( ) -> Node | None: _a = Node(1 ) _a = Node(2 ) _a = Node(3 ) _a = Node(4 ) _a = Node(5 ) return tree def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return [root.data, *preorder(root.left ), *preorder(root.right )] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return postorder(root.left ) + postorder(root.right ) + [root.data] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> list[int]: return [*inorder(root.left ), root.data, *inorder(root.right )] if root else [] def _lowerCamelCase ( lowercase : Node | None ) -> int: return (max(height(root.left ) , height(root.right ) ) + 1) if root else 0 def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None]: _a = [] if root is None: return output _a = deque([root] ) while process_queue: _a = process_queue.popleft() output.append(node.data ) if node.left: process_queue.append(node.left ) if node.right: process_queue.append(node.right ) return output def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]: _a = [] def populate_output(lowercase : Node | None , lowercase : int ) -> None: if not root: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.left , level - 1 ) populate_output(root.right , level - 1 ) populate_output(lowercase , lowercase ) return output def _lowerCamelCase ( lowercase : Node | None , lowercase : int ) -> Sequence[Node | None]: _a = [] def populate_output(lowercase : Node | None , lowercase : int ) -> None: if root is None: return if level == 1: output.append(root.data ) elif level > 1: populate_output(root.right , level - 1 ) populate_output(root.left , level - 1 ) populate_output(lowercase , lowercase ) return output def _lowerCamelCase ( lowercase : Node | None ) -> Sequence[Node | None] | list[Any]: if root is None: return [] _a = [] _a = 0 _a = height(lowercase ) for h in range(1 , height_tree + 1 ): if not flag: output.append(get_nodes_from_left_to_right(lowercase , lowercase ) ) _a = 1 else: output.append(get_nodes_from_right_to_left(lowercase , lowercase ) ) _a = 0 return output def _lowerCamelCase ( ) -> None: # Main function for testing. _a = make_tree() print(F'In-order Traversal: {inorder(lowercase )}' ) print(F'Pre-order Traversal: {preorder(lowercase )}' ) print(F'Post-order Traversal: {postorder(lowercase )}' , "\n" ) print(F'Height of Tree: {height(lowercase )}' , "\n" ) print("Complete Level Order Traversal: " ) print(level_order(lowercase ) , "\n" ) print("Level-wise order Traversal: " ) for level in range(1 , height(lowercase ) + 1 ): print(F'Level {level}:' , get_nodes_from_left_to_right(lowercase , level=lowercase ) ) print("\nZigZag order Traversal: " ) print(zigzag(lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
63
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class lowercase( __a ): '''simple docstring''' def __init__( self: str, a_: List[Any], a_: Optional[Any] ): '''simple docstring''' super().__init__() # make sure scheduler can always be converted to DDIM _snake_case : int = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=a_, scheduler=a_ ) @torch.no_grad() def __call__( self: Optional[int], a_: int = 1, a_: Optional[Union[torch.Generator, List[torch.Generator]]] = None, a_: float = 0.0, a_: int = 50, a_: Optional[bool] = None, a_: Optional[str] = "pil", a_: bool = True, ): '''simple docstring''' if isinstance(self.unet.config.sample_size, a_ ): _snake_case : Optional[Any] = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: _snake_case : Dict = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(a_, a_ ) and len(a_ ) != batch_size: raise ValueError( f"You have passed a list of generators of length {len(a_ )}, but requested an effective batch" f" size of {batch_size}. Make sure the batch size matches the length of the generators." ) _snake_case : Dict = randn_tensor(a_, generator=a_, device=self.device, dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(a_ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output _snake_case : List[Any] = self.unet(a_, a_ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case : Optional[int] = self.scheduler.step( a_, a_, a_, eta=a_, use_clipped_model_output=a_, generator=a_ ).prev_sample _snake_case : List[Any] = (image / 2 + 0.5).clamp(0, 1 ) _snake_case : Union[str, Any] = image.cpu().permute(0, 2, 3, 1 ).numpy() if output_type == "pil": _snake_case : str = self.numpy_to_pil(a_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=a_ )
64
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
import math from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass # Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP class A ( UpperCAmelCase_ ): __UpperCAmelCase : torch.FloatTensor __UpperCAmelCase : Optional[torch.FloatTensor] = None def lowerCAmelCase_ ( __A, __A=0.999, __A="cosine", ) -> Tuple: '''simple docstring''' if alpha_transform_type == "cosine": def alpha_bar_fn(__A ): return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2 elif alpha_transform_type == "exp": def alpha_bar_fn(__A ): return math.exp(t * -12.0 ) else: raise ValueError(f"""Unsupported alpha_tranform_type: {alpha_transform_type}""" ) UpperCAmelCase__ = [] for i in range(__A ): UpperCAmelCase__ = i / num_diffusion_timesteps UpperCAmelCase__ = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar_fn(__A ) / alpha_bar_fn(__A ), __A ) ) return torch.tensor(__A, dtype=torch.floataa ) class A ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__(self : List[str] , __UpperCAmelCase : int = 1_0_0_0 , __UpperCAmelCase : str = "fixed_small_log" , __UpperCAmelCase : bool = True , __UpperCAmelCase : Optional[float] = 1.0 , __UpperCAmelCase : str = "epsilon" , __UpperCAmelCase : str = "squaredcos_cap_v2" , ) -> Optional[int]: """simple docstring""" if beta_schedule != "squaredcos_cap_v2": raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" ) UpperCAmelCase__ = betas_for_alpha_bar(__UpperCAmelCase ) UpperCAmelCase__ = 1.0 - self.betas UpperCAmelCase__ = torch.cumprod(self.alphas , dim=0 ) UpperCAmelCase__ = torch.tensor(1.0 ) # standard deviation of the initial noise distribution UpperCAmelCase__ = 1.0 # setable values UpperCAmelCase__ = None UpperCAmelCase__ = torch.from_numpy(np.arange(0 , __UpperCAmelCase )[::-1].copy() ) UpperCAmelCase__ = variance_type def lowercase_ (self : List[str] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase_ (self : int , __UpperCAmelCase : int , __UpperCAmelCase : Union[str, torch.device] = None ) -> Any: """simple docstring""" UpperCAmelCase__ = num_inference_steps UpperCAmelCase__ = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1) UpperCAmelCase__ = (np.arange(0 , __UpperCAmelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa ) UpperCAmelCase__ = torch.from_numpy(__UpperCAmelCase ).to(__UpperCAmelCase ) def lowercase_ (self : Any , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Tuple=None , __UpperCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev # For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf) # and sample from it to get previous sample # x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample UpperCAmelCase__ = beta_prod_t_prev / beta_prod_t * beta if variance_type is None: UpperCAmelCase__ = self.config.variance_type # hacks - were probably added for training stability if variance_type == "fixed_small_log": UpperCAmelCase__ = torch.log(torch.clamp(__UpperCAmelCase , min=1E-20 ) ) UpperCAmelCase__ = torch.exp(0.5 * variance ) elif variance_type == "learned_range": # NOTE difference with DDPM scheduler UpperCAmelCase__ = variance.log() UpperCAmelCase__ = beta.log() UpperCAmelCase__ = (predicted_variance + 1) / 2 UpperCAmelCase__ = frac * max_log + (1 - frac) * min_log return variance def lowercase_ (self : Optional[int] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : int , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : Optional[int] = None , __UpperCAmelCase : List[str]=None , __UpperCAmelCase : bool = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]: """simple docstring""" UpperCAmelCase__ = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range": UpperCAmelCase__ , UpperCAmelCase__ = torch.split(__UpperCAmelCase , sample.shape[1] , dim=1 ) else: UpperCAmelCase__ = None # 1. compute alphas, betas if prev_timestep is None: UpperCAmelCase__ = t - 1 UpperCAmelCase__ = self.alphas_cumprod[t] UpperCAmelCase__ = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one UpperCAmelCase__ = 1 - alpha_prod_t UpperCAmelCase__ = 1 - alpha_prod_t_prev if prev_timestep == t - 1: UpperCAmelCase__ = self.betas[t] UpperCAmelCase__ = self.alphas[t] else: UpperCAmelCase__ = 1 - alpha_prod_t / alpha_prod_t_prev UpperCAmelCase__ = 1 - beta # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if self.config.prediction_type == "epsilon": UpperCAmelCase__ = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif self.config.prediction_type == "sample": UpperCAmelCase__ = model_output else: raise ValueError( f"""prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`""" " for the UnCLIPScheduler." ) # 3. Clip "predicted x_0" if self.config.clip_sample: UpperCAmelCase__ = torch.clamp( __UpperCAmelCase , -self.config.clip_sample_range , self.config.clip_sample_range ) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t UpperCAmelCase__ = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf UpperCAmelCase__ = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise UpperCAmelCase__ = 0 if t > 0: UpperCAmelCase__ = randn_tensor( model_output.shape , dtype=model_output.dtype , generator=__UpperCAmelCase , device=model_output.device ) UpperCAmelCase__ = self._get_variance( __UpperCAmelCase , predicted_variance=__UpperCAmelCase , prev_timestep=__UpperCAmelCase , ) if self.variance_type == "fixed_small_log": UpperCAmelCase__ = variance elif self.variance_type == "learned_range": UpperCAmelCase__ = (0.5 * variance).exp() else: raise ValueError( f"""variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`""" " for the UnCLIPScheduler." ) UpperCAmelCase__ = variance * variance_noise UpperCAmelCase__ = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return UnCLIPSchedulerOutput(prev_sample=__UpperCAmelCase , pred_original_sample=__UpperCAmelCase ) def lowercase_ (self : Union[str, Any] , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.FloatTensor , __UpperCAmelCase : torch.IntTensor , ) -> torch.FloatTensor: """simple docstring""" UpperCAmelCase__ = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype ) UpperCAmelCase__ = timesteps.to(original_samples.device ) UpperCAmelCase__ = alphas_cumprod[timesteps] ** 0.5 UpperCAmelCase__ = sqrt_alpha_prod.flatten() while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = (1 - alphas_cumprod[timesteps]) ** 0.5 UpperCAmelCase__ = sqrt_one_minus_alpha_prod.flatten() while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ): UpperCAmelCase__ = sqrt_one_minus_alpha_prod.unsqueeze(-1 ) UpperCAmelCase__ = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples
65
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
"""simple docstring""" import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowerCamelCase ( _lowerCAmelCase ): '''simple docstring''' _A : Tuple = (UniPCMultistepScheduler,) _A : Any = (("""num_inference_steps""", 2_5),) def lowerCAmelCase_ ( self: Any , **snake_case: Optional[Any] ) -> Optional[int]: snake_case_ :Tuple = { """num_train_timesteps""": 1_000, """beta_start""": 0.0_0_0_1, """beta_end""": 0.0_2, """beta_schedule""": """linear""", """solver_order""": 2, """solver_type""": """bh2""", } config.update(**snake_case ) return config def lowerCAmelCase_ ( self: List[Any] , snake_case: Dict=0 , **snake_case: List[str] ) -> Union[str, Any]: snake_case_ :Any = dict(self.forward_default_kwargs ) snake_case_ :str = kwargs.pop("""num_inference_steps""" , snake_case ) snake_case_ :Optional[int] = self.dummy_sample snake_case_ :Tuple = 0.1 * sample snake_case_ :str = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case_ :Union[str, Any] = self.get_scheduler_config(**snake_case ) snake_case_ :Tuple = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals snake_case_ :Optional[int] = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) snake_case_ :int = scheduler_class.from_pretrained(snake_case ) new_scheduler.set_timesteps(snake_case ) # copy over dummy past residuals snake_case_ :Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_, snake_case_ :Union[str, Any] = sample, sample for t in range(snake_case , time_step + scheduler.config.solver_order + 1 ): snake_case_ :Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample snake_case_ :Dict = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self: Tuple , snake_case: List[Any]=0 , **snake_case: Union[str, Any] ) -> Union[str, Any]: snake_case_ :Dict = dict(self.forward_default_kwargs ) snake_case_ :List[Any] = kwargs.pop("""num_inference_steps""" , snake_case ) snake_case_ :Optional[int] = self.dummy_sample snake_case_ :Any = 0.1 * sample snake_case_ :Union[str, Any] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] for scheduler_class in self.scheduler_classes: snake_case_ :Tuple = self.get_scheduler_config() snake_case_ :Dict = scheduler_class(**snake_case ) scheduler.set_timesteps(snake_case ) # copy over dummy past residuals (must be after setting timesteps) snake_case_ :Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(snake_case ) snake_case_ :Tuple = scheduler_class.from_pretrained(snake_case ) # copy over dummy past residuals new_scheduler.set_timesteps(snake_case ) # copy over dummy past residual (must be after setting timesteps) snake_case_ :List[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] snake_case_ :List[Any] = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample snake_case_ :List[Any] = new_scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self: Any , snake_case: List[str]=None , **snake_case: int ) -> Any: if scheduler is None: snake_case_ :Optional[int] = self.scheduler_classes[0] snake_case_ :Optional[int] = self.get_scheduler_config(**snake_case ) snake_case_ :int = scheduler_class(**snake_case ) snake_case_ :Optional[int] = self.scheduler_classes[0] snake_case_ :List[str] = self.get_scheduler_config(**snake_case ) snake_case_ :Optional[int] = scheduler_class(**snake_case ) snake_case_ :Dict = 10 snake_case_ :List[str] = self.dummy_model() snake_case_ :str = self.dummy_sample_deter scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): snake_case_ :Dict = model(snake_case , snake_case ) snake_case_ :int = scheduler.step(snake_case , snake_case , snake_case ).prev_sample return sample def lowerCAmelCase_ ( self: Optional[Any] ) -> Optional[int]: snake_case_ :Dict = dict(self.forward_default_kwargs ) snake_case_ :List[Any] = kwargs.pop("""num_inference_steps""" , snake_case ) for scheduler_class in self.scheduler_classes: snake_case_ :Union[str, Any] = self.get_scheduler_config() snake_case_ :List[str] = scheduler_class(**snake_case ) snake_case_ :int = self.dummy_sample snake_case_ :Tuple = 0.1 * sample if num_inference_steps is not None and hasattr(snake_case , """set_timesteps""" ): scheduler.set_timesteps(snake_case ) elif num_inference_steps is not None and not hasattr(snake_case , """set_timesteps""" ): snake_case_ :Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) snake_case_ :Optional[int] = [residual + 0.2, residual + 0.1_5, residual + 0.1_0] snake_case_ :int = dummy_past_residuals[: scheduler.config.solver_order] snake_case_ :int = scheduler.timesteps[5] snake_case_ :List[str] = scheduler.timesteps[6] snake_case_ :Dict = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample snake_case_ :Any = scheduler.step(snake_case , snake_case , snake_case , **snake_case ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self: int ) -> List[Any]: # make sure that iterating over schedulers with same config names gives same results # for defaults snake_case_ :str = UniPCMultistepScheduler(**self.get_scheduler_config() ) snake_case_ :List[Any] = self.full_loop(scheduler=snake_case ) snake_case_ :Optional[int] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 snake_case_ :Optional[int] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) snake_case_ :Union[str, Any] = DEISMultistepScheduler.from_config(scheduler.config ) snake_case_ :int = DPMSolverMultistepScheduler.from_config(scheduler.config ) snake_case_ :Optional[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) snake_case_ :str = self.full_loop(scheduler=snake_case ) snake_case_ :Dict = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def lowerCAmelCase_ ( self: Any ) -> List[str]: for timesteps in [25, 50, 100, 999, 1_000]: self.check_over_configs(num_train_timesteps=snake_case ) def lowerCAmelCase_ ( self: Tuple ) -> Tuple: self.check_over_configs(thresholding=snake_case ) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=snake_case , prediction_type=snake_case , sample_max_value=snake_case , solver_order=snake_case , solver_type=snake_case , ) def lowerCAmelCase_ ( self: Dict ) -> List[str]: for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=snake_case ) def lowerCAmelCase_ ( self: str ) -> Optional[int]: for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , ) snake_case_ :str = self.full_loop( solver_order=snake_case , solver_type=snake_case , prediction_type=snake_case , ) assert not torch.isnan(snake_case ).any(), "Samples have nan numbers" def lowerCAmelCase_ ( self: List[Any] ) -> Union[str, Any]: self.check_over_configs(lower_order_final=snake_case ) self.check_over_configs(lower_order_final=snake_case ) def lowerCAmelCase_ ( self: List[str] ) -> int: for num_inference_steps in [1, 2, 3, 5, 10, 50, 100, 999, 1_000]: self.check_over_forward(num_inference_steps=snake_case , time_step=0 ) def lowerCAmelCase_ ( self: str ) -> Optional[int]: snake_case_ :Tuple = self.full_loop() snake_case_ :List[Any] = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.2_4_6_4 ) < 1E-3 def lowerCAmelCase_ ( self: Tuple ) -> Optional[int]: snake_case_ :Dict = self.full_loop(prediction_type="""v_prediction""" ) snake_case_ :Any = torch.mean(torch.abs(snake_case ) ) assert abs(result_mean.item() - 0.1_0_1_4 ) < 1E-3 def lowerCAmelCase_ ( self: Any ) -> List[str]: snake_case_ :Dict = self.scheduler_classes[0] snake_case_ :Tuple = self.get_scheduler_config(thresholding=snake_case , dynamic_thresholding_ratio=0 ) snake_case_ :List[Any] = scheduler_class(**snake_case ) snake_case_ :Any = 10 snake_case_ :int = self.dummy_model() snake_case_ :Union[str, Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(snake_case ) for i, t in enumerate(scheduler.timesteps ): snake_case_ :int = model(snake_case , snake_case ) snake_case_ :List[Any] = scheduler.step(snake_case , snake_case , snake_case ).prev_sample assert sample.dtype == torch.floataa def lowerCAmelCase_ ( self: Tuple , **snake_case: List[Any] ) -> Dict: for scheduler_class in self.scheduler_classes: snake_case_ :int = self.get_scheduler_config(**snake_case ) snake_case_ :Tuple = scheduler_class(**snake_case ) scheduler.set_timesteps(scheduler.config.num_train_timesteps ) assert len(scheduler.timesteps.unique() ) == scheduler.num_inference_steps
66
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
'''simple docstring''' from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union import numpy as np import PIL from PIL import Image from ...utils import BaseOutput, is_torch_available, is_transformers_available @dataclass class a__ ( UpperCAmelCase__ ): lowerCamelCase : Union[List[PIL.Image.Image], np.ndarray] lowerCamelCase : Optional[List[bool]] if is_transformers_available() and is_torch_available(): from .pipeline_semantic_stable_diffusion import SemanticStableDiffusionPipeline
67
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
lowerCAmelCase__ = """ # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git """ lowerCAmelCase__ = [{"""type""": """code""", """content""": INSTALL_CONTENT}] lowerCAmelCase__ = { """{processor_class}""": """FakeProcessorClass""", """{model_class}""": """FakeModelClass""", """{object_class}""": """FakeObjectClass""", }
68
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase = 1000 ) -> int: return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
69
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
'''simple docstring''' A__ : Optional[int] =''' # Transformers 설치 방법 ! pip install transformers datasets # 마지막 릴리스 대신 소스에서 설치하려면, 위 명령을 주석으로 바꾸고 아래 명령을 해제하세요. # ! pip install git+https://github.com/huggingface/transformers.git ''' A__ : int =[{'''type''': '''code''', '''content''': INSTALL_CONTENT}] A__ : str ={ '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
70
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
def A ( a_ ,a_ ) -> int: return int((input_a, input_a).count(1 ) != 0 ) def A ( ) -> None: assert or_gate(0 ,0 ) == 0 assert or_gate(0 ,1 ) == 1 assert or_gate(1 ,0 ) == 1 assert or_gate(1 ,1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
71
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
"""simple docstring""" from manim import * class __snake_case ( _lowercase): def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" _lowerCamelCase : List[Any] = Rectangle(height=0.5 , width=0.5 ) _lowerCamelCase : List[Any] = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _lowerCamelCase : List[Any] = Rectangle(height=0.25 , width=0.25 ) _lowerCamelCase : int = [mem.copy() for i in range(6 )] _lowerCamelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCamelCase : Any = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Dict = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Any = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : List[str] = Text('''CPU''' , font_size=2_4 ) _lowerCamelCase : Any = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : Optional[int] = [mem.copy() for i in range(4 )] _lowerCamelCase : List[str] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : List[str] = Text('''GPU''' , font_size=2_4 ) _lowerCamelCase : Optional[int] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : List[str] = [mem.copy() for i in range(6 )] _lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[Any] = Text('''Model''' , font_size=2_4 ) _lowerCamelCase : Tuple = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(__lowerCAmelCase ) _lowerCamelCase : List[str] = [] _lowerCamelCase : List[str] = [] for i, rect in enumerate(__lowerCAmelCase ): _lowerCamelCase : List[str] = fill.copy().set_fill(__lowerCAmelCase , opacity=0.8 ) target.move_to(__lowerCAmelCase ) model_arr.append(__lowerCAmelCase ) _lowerCamelCase : Tuple = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(__lowerCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(__lowerCAmelCase ) self.add(*__lowerCAmelCase , *__lowerCAmelCase ) _lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] _lowerCamelCase : Dict = [meta_mem.copy() for i in range(6 )] _lowerCamelCase : Optional[Any] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[int] = VGroup(*__lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : Optional[Any] = VGroup(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0 ) _lowerCamelCase : str = Text('''Disk''' , font_size=2_4 ) _lowerCamelCase : List[Any] = Group(__lowerCAmelCase , __lowerCAmelCase ).arrange(__lowerCAmelCase , buff=0.5 , aligned_edge=__lowerCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : Optional[int] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _lowerCamelCase : List[Any] = MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(__lowerCAmelCase , __lowerCAmelCase ) _lowerCamelCase : List[Any] = MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=1_8 , ) blue_text.next_to(__lowerCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(__lowerCAmelCase ) _lowerCamelCase : Tuple = MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase ) ) _lowerCamelCase : Union[str, Any] = Square(0.3 ) input.set_fill(__lowerCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , __lowerCAmelCase , buff=0.5 ) self.play(Write(__lowerCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=__lowerCAmelCase , buff=0.02 ) self.play(MoveToTarget(__lowerCAmelCase ) ) self.play(FadeOut(__lowerCAmelCase ) ) _lowerCamelCase : List[Any] = Arrow(start=__lowerCAmelCase , end=__lowerCAmelCase , color=__lowerCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , __lowerCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _lowerCamelCase : Any = MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) ) _lowerCamelCase : List[str] = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(__lowerCAmelCase ) , Circumscribe(model_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _lowerCamelCase : Optional[int] = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , __lowerCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _lowerCamelCase : int = AnimationGroup( FadeOut(__lowerCAmelCase , run_time=0.5 ) , MoveToTarget(__lowerCAmelCase , run_time=0.5 ) , FadeIn(__lowerCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(__lowerCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _lowerCamelCase : Dict = 0.7 self.play( Circumscribe(model_arr[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(model_arr[i + 1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=__lowerCAmelCase , **__lowerCAmelCase ) , Circumscribe(gpu_rect[0] , color=__lowerCAmelCase , **__lowerCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _lowerCamelCase : Dict = a_c _lowerCamelCase : List[str] = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(__lowerCAmelCase ) , FadeOut(__lowerCAmelCase , run_time=0.5 ) , ) _lowerCamelCase : int = MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(__lowerCAmelCase , run_time=3 ) , MoveToTarget(__lowerCAmelCase ) ) self.wait()
72
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Any: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: __lowerCamelCase : str = tmp_path / 'cache' __lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Any: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : Dict = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Union[str, Any] = features.copy() if features else default_expected_features __lowerCamelCase : Union[str, Any] = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> str: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : Optional[int] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Tuple = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ , split=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize('path_type' , [str, list] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: if issubclass(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Optional[int] = parquet_path elif issubclass(lowerCamelCase__ , lowerCamelCase__ ): __lowerCamelCase : Dict = [parquet_path] __lowerCamelCase : List[Any] = tmp_path / 'cache' __lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Dict = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_dataset(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=("train",) ) -> List[str]: assert isinstance(lowerCamelCase__ , lowerCamelCase__ ) for split in splits: __lowerCamelCase : Dict = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize('keep_in_memory' , [False, True] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Union[str, Any] = tmp_path / 'cache' __lowerCamelCase : int = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase : List[str] = ParquetDatasetReader( {'train': parquet_path} , cache_dir=lowerCamelCase__ , keep_in_memory=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize( 'features' , [ None, {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'}, {'col_1': 'string', 'col_2': 'string', 'col_3': 'string'}, {'col_1': 'int32', 'col_2': 'int32', 'col_3': 'int32'}, {'col_1': 'float32', 'col_2': 'float32', 'col_3': 'float32'}, ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Tuple = tmp_path / 'cache' __lowerCamelCase : List[Any] = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : List[str] = features.copy() if features else default_expected_features __lowerCamelCase : str = ( Features({feature: Value(lowerCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase : Union[str, Any] = ParquetDatasetReader({'train': parquet_path} , features=lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ ) @pytest.mark.parametrize('split' , [None, NamedSplit('train' ), 'train', 'test'] ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]: if split: __lowerCamelCase : List[str] = {split: parquet_path} else: __lowerCamelCase : List[str] = 'train' __lowerCamelCase : List[Any] = {'train': parquet_path, 'test': parquet_path} __lowerCamelCase : Tuple = tmp_path / 'cache' __lowerCamelCase : Any = {'col_1': 'string', 'col_2': 'int64', 'col_3': 'float64'} __lowerCamelCase : Optional[Any] = ParquetDatasetReader(lowerCamelCase__ , cache_dir=lowerCamelCase__ ).read() _check_parquet_datasetdict(lowerCamelCase__ , lowerCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: __lowerCamelCase : Union[str, Any] = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : Union[str, Any] = pq.ParquetFile(tmp_path / 'foo.parquet' ) __lowerCamelCase : List[str] = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[Any]: __lowerCamelCase : List[str] = str(shared_datadir / 'test_image_rgb.jpg' ) __lowerCamelCase : Optional[int] = {'image': [image_path]} __lowerCamelCase : int = Features({'image': Image()} ) __lowerCamelCase : Union[str, Any] = Dataset.from_dict(lowerCamelCase__ , features=lowerCamelCase__ ) __lowerCamelCase : Any = ParquetDatasetWriter(lowerCamelCase__ , tmp_path / 'foo.parquet' ) assert writer.write() > 0 __lowerCamelCase : int = Dataset.from_parquet(str(tmp_path / 'foo.parquet' ) ) assert dataset.features == reloaded_dataset.features __lowerCamelCase : Dict = ParquetDatasetReader(str(tmp_path / 'foo.parquet' ) , streaming=lowerCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( 'feature, expected' , [ (Features({'foo': Value('int32' )} ), None), (Features({'image': Image(), 'foo': Value('int32' )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({'nested': Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List[str]: assert get_writer_batch_size(lowerCamelCase__ ) == expected
73
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json''' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class lowerCAmelCase_ ( _lowercase ): '''simple docstring''' _lowerCamelCase: Optional[Any] = '''speech_to_text''' _lowerCamelCase: Union[str, Any] = ['''past_key_values'''] _lowerCamelCase: Optional[Any] = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Union[str, Any] ,A_ : Tuple=1_0000 ,A_ : Union[str, Any]=12 ,A_ : int=2048 ,A_ : List[Any]=4 ,A_ : int=6 ,A_ : List[Any]=2048 ,A_ : List[str]=4 ,A_ : Optional[Any]=0.0 ,A_ : str=0.0 ,A_ : Dict=True ,A_ : List[Any]=True ,A_ : int="relu" ,A_ : List[str]=256 ,A_ : Dict=0.1 ,A_ : List[Any]=0.0 ,A_ : List[Any]=0.0 ,A_ : Union[str, Any]=0.02 ,A_ : str=2 ,A_ : Union[str, Any]=True ,A_ : List[str]=1 ,A_ : Union[str, Any]=0 ,A_ : int=2 ,A_ : int=6000 ,A_ : Dict=1024 ,A_ : str=2 ,A_ : Tuple=(5, 5) ,A_ : List[str]=1024 ,A_ : str=80 ,A_ : int=1 ,**A_ : Union[str, Any] ,) -> Optional[Any]: A = vocab_size A = d_model A = encoder_ffn_dim A = encoder_layers A = encoder_attention_heads A = decoder_ffn_dim A = decoder_layers A = decoder_attention_heads A = dropout A = attention_dropout A = activation_dropout A = activation_function A = init_std A = encoder_layerdrop A = decoder_layerdrop A = use_cache A = encoder_layers A = scale_embedding # scale factor will be sqrt(d_model) if True A = max_source_positions A = max_target_positions A = num_conv_layers A = list(A_ ) A = conv_channels A = input_feat_per_channel A = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' F'but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, ' F'`config.num_conv_layers = {self.num_conv_layers}`.' ) super().__init__( pad_token_id=A_ ,bos_token_id=A_ ,eos_token_id=A_ ,is_encoder_decoder=A_ ,decoder_start_token_id=A_ ,**A_ ,)
74
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def a_ ( __snake_case : Dict=None ) -> Dict: """simple docstring""" if subparsers is not None: lowerCamelCase_ =subparsers.add_parser('''test''' ) else: lowerCamelCase_ =argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=__snake_case , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__snake_case ) return parser def a_ ( __snake_case : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ =os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowerCamelCase_ =script_name else: lowerCamelCase_ =F'''--config_file={args.config_file} {script_name}''' lowerCamelCase_ =['''accelerate-launch'''] + test_args.split() lowerCamelCase_ =execute_subprocess_async(__snake_case , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def a_ ( ) -> List[Any]: """simple docstring""" lowerCamelCase_ =test_command_parser() lowerCamelCase_ =parser.parse_args() test_command(__snake_case ) if __name__ == "__main__": main()
75
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'microsoft/git-base': 'https://huggingface.co/microsoft/git-base/resolve/main/config.json', } class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git_vision_model' def __init__( self : Dict , a : Optional[Any]=768 , a : Union[str, Any]=3072 , a : Tuple=12 , a : int=12 , a : List[str]=3 , a : str=224 , a : List[str]=16 , a : List[Any]="quick_gelu" , a : Any=1e-5 , a : str=0.0 , a : Optional[int]=0.02 , **a : Optional[int] , ) -> Any: """simple docstring""" super().__init__(**a ) SCREAMING_SNAKE_CASE : List[str] = hidden_size SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : List[Any] = num_channels SCREAMING_SNAKE_CASE : List[Any] = patch_size SCREAMING_SNAKE_CASE : List[str] = image_size SCREAMING_SNAKE_CASE : Tuple = initializer_range SCREAMING_SNAKE_CASE : List[Any] = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act @classmethod def __UpperCamelCase ( cls : int , a : Union[str, os.PathLike] , **a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(a ) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = cls.get_config_dict(a , **a ) # get the vision config dict if we are loading from GITConfig if config_dict.get("model_type" ) == "git": SCREAMING_SNAKE_CASE : Dict = config_dict["vision_config"] if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(a , **a ) class _UpperCamelCase ( __A ): '''simple docstring''' lowerCamelCase__ ='git' def __init__( self : Optional[Any] , a : Optional[Any]=None , a : str=3_0522 , a : Dict=768 , a : int=6 , a : Optional[int]=12 , a : List[str]=3072 , a : int="gelu" , a : List[str]=0.1 , a : int=0.1 , a : List[Any]=1024 , a : Union[str, Any]=0.02 , a : Dict=1e-12 , a : Any=0 , a : Any="absolute" , a : List[Any]=True , a : Optional[Any]=False , a : Any=101 , a : Union[str, Any]=102 , a : Optional[Any]=None , **a : Any , ) -> str: """simple docstring""" super().__init__(bos_token_id=a , eos_token_id=a , pad_token_id=a , **a ) if vision_config is None: SCREAMING_SNAKE_CASE : Any = {} logger.info("vision_config is None. initializing the GitVisionConfig with default values." ) SCREAMING_SNAKE_CASE : Optional[Any] = GitVisionConfig(**a ) SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : Optional[int] = num_hidden_layers SCREAMING_SNAKE_CASE : Union[str, Any] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : int = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : int = position_embedding_type SCREAMING_SNAKE_CASE : Any = use_cache SCREAMING_SNAKE_CASE : Optional[Any] = tie_word_embeddings SCREAMING_SNAKE_CASE : Tuple = num_image_with_embedding SCREAMING_SNAKE_CASE : int = bos_token_id SCREAMING_SNAKE_CASE : Any = eos_token_id def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = copy.deepcopy(self.__dict__ ) SCREAMING_SNAKE_CASE : Tuple = self.vision_config.to_dict() SCREAMING_SNAKE_CASE : Tuple = self.__class__.model_type return output
76
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
"""simple docstring""" from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import Features, Value from .base import TaskTemplate @dataclass(frozen=_a) class UpperCAmelCase_ ( _a): lowerCamelCase__ : str = field(default="language-modeling" , metadata={"include_in_asdict_even_if_is_default": True}) lowerCamelCase__ : ClassVar[Features] = Features({"text": Value("string")}) lowerCamelCase__ : ClassVar[Features] = Features({}) lowerCamelCase__ : str = "text" @property def _UpperCAmelCase ( self ) -> Dict[str, str]: return {self.text_column: "text"}
77
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( lowercase_ , lowercase_ , lowercase_ , ): if (stress, tangential_force, area).count(0 ) != 1: raise ValueError('You cannot supply more or less than 2 values' ) elif stress < 0: raise ValueError('Stress cannot be negative' ) elif tangential_force < 0: raise ValueError('Tangential Force cannot be negative' ) elif area < 0: raise ValueError('Area cannot be negative' ) elif stress == 0: return ( "stress", tangential_force / area, ) elif tangential_force == 0: return ( "tangential_force", stress * area, ) else: return ( "area", tangential_force / stress, ) if __name__ == "__main__": import doctest doctest.testmod()
78
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
'''simple docstring''' # flake8: noqa # Lint as: python3 lowerCamelCase_ = [ '''VerificationMode''', '''Version''', '''disable_progress_bar''', '''enable_progress_bar''', '''is_progress_bar_enabled''', '''experimental''', ] from .info_utils import VerificationMode from .logging import disable_progress_bar, enable_progress_bar, is_progress_bar_enabled from .version import Version from .experimental import experimental
79
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def _UpperCamelCase ( ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = "https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png" UpperCamelCase__ = Image.open(requests.get(__A , stream=__A ).raw ).convert("RGB" ) return image def _UpperCamelCase ( __A ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = [] # fmt: off # vision encoder rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") ) rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") ) rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") ) rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") ) rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") ) rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) ) rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') ) rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') ) # QFormer rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.layernorm.weight") ) rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.layernorm.bias") ) # fmt: on return rename_keys def _UpperCamelCase ( __A , __A , __A ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = dct.pop(__A ) UpperCamelCase__ = val def _UpperCamelCase ( __A , __A ) -> Optional[Any]: '''simple docstring''' for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' ) UpperCamelCase__ = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' ) # next, set bias in the state dict UpperCamelCase__ = torch.cat((q_bias, torch.zeros_like(__A , requires_grad=__A ), v_bias) ) UpperCamelCase__ = qkv_bias def _UpperCamelCase ( __A , __A ) -> Any: '''simple docstring''' UpperCamelCase__ = 364 if "coco" in model_name else 224 UpperCamelCase__ = BlipaVisionConfig(image_size=__A ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: UpperCamelCase__ = OPTConfig.from_pretrained("facebook/opt-2.7b" , eos_token_id=__A ).to_dict() elif "opt-6.7b" in model_name: UpperCamelCase__ = OPTConfig.from_pretrained("facebook/opt-6.7b" , eos_token_id=__A ).to_dict() elif "t5-xl" in model_name: UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: UpperCamelCase__ = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict() UpperCamelCase__ = BlipaConfig(vision_config=__A , text_config=__A ) return config, image_size @torch.no_grad() def _UpperCamelCase ( __A , __A=None , __A=False ) -> Any: '''simple docstring''' UpperCamelCase__ = ( AutoTokenizer.from_pretrained("facebook/opt-2.7b" ) if "opt" in model_name else AutoTokenizer.from_pretrained("google/flan-t5-xl" ) ) UpperCamelCase__ = tokenizer("\n" , add_special_tokens=__A ).input_ids[0] UpperCamelCase__ , UpperCamelCase__ = get_blipa_config(__A , eos_token_id=__A ) UpperCamelCase__ = BlipaForConditionalGeneration(__A ).eval() UpperCamelCase__ = { "blip2-opt-2.7b": ("blip2_opt", "pretrain_opt2.7b"), "blip2-opt-6.7b": ("blip2_opt", "pretrain_opt6.7b"), "blip2-opt-2.7b-coco": ("blip2_opt", "caption_coco_opt2.7b"), "blip2-opt-6.7b-coco": ("blip2_opt", "caption_coco_opt6.7b"), "blip2-flan-t5-xl": ("blip2_t5", "pretrain_flant5xl"), "blip2-flan-t5-xl-coco": ("blip2_t5", "caption_coco_flant5xl"), "blip2-flan-t5-xxl": ("blip2_t5", "pretrain_flant5xxl"), } UpperCamelCase__ , UpperCamelCase__ = model_name_to_original[model_name] # load original model print("Loading original model..." ) UpperCamelCase__ = "cuda" if torch.cuda.is_available() else "cpu" UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = load_model_and_preprocess( name=__A , model_type=__A , is_eval=__A , device=__A ) original_model.eval() print("Done!" ) # update state dict keys UpperCamelCase__ = original_model.state_dict() UpperCamelCase__ = create_rename_keys(__A ) for src, dest in rename_keys: rename_key(__A , __A , __A ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): UpperCamelCase__ = state_dict.pop(__A ) if key.startswith("Qformer.bert" ): UpperCamelCase__ = key.replace("Qformer.bert" , "qformer" ) if "attention.self" in key: UpperCamelCase__ = key.replace("self" , "attention" ) if "opt_proj" in key: UpperCamelCase__ = key.replace("opt_proj" , "language_projection" ) if "t5_proj" in key: UpperCamelCase__ = key.replace("t5_proj" , "language_projection" ) if key.startswith("opt" ): UpperCamelCase__ = key.replace("opt" , "language" ) if key.startswith("t5" ): UpperCamelCase__ = key.replace("t5" , "language" ) UpperCamelCase__ = val # read in qv biases read_in_q_v_bias(__A , __A ) UpperCamelCase__ , UpperCamelCase__ = hf_model.load_state_dict(__A , strict=__A ) assert len(__A ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] UpperCamelCase__ = load_demo_image() UpperCamelCase__ = vis_processors["eval"](__A ).unsqueeze(0 ).to(__A ) UpperCamelCase__ = tokenizer(["\n"] , return_tensors="pt" ).input_ids.to(__A ) # create processor UpperCamelCase__ = BlipImageProcessor( size={"height": image_size, "width": image_size} , image_mean=__A , image_std=__A ) UpperCamelCase__ = BlipaProcessor(image_processor=__A , tokenizer=__A ) UpperCamelCase__ = processor(images=__A , return_tensors="pt" ).pixel_values.to(__A ) # make sure processor creates exact same pixel values assert torch.allclose(__A , __A ) original_model.to(__A ) hf_model.to(__A ) with torch.no_grad(): if "opt" in model_name: UpperCamelCase__ = original_model({"image": original_pixel_values, "text_input": [""]} ).logits UpperCamelCase__ = hf_model(__A , __A ).logits else: UpperCamelCase__ = original_model( {"image": original_pixel_values, "text_input": ["\n"], "text_output": ["\n"]} ).logits UpperCamelCase__ = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -100 ) UpperCamelCase__ = hf_model(__A , __A , labels=__A ).logits assert original_logits.shape == logits.shape print("First values of original logits:" , original_logits[0, :3, :3] ) print("First values of HF logits:" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": UpperCamelCase__ = torch.tensor( [[-41.5850, -4.4440, -8.9922], [-47.4322, -5.9143, -1.7340]] , device=__A ) assert torch.allclose(logits[0, :3, :3] , __A , atol=1E-4 ) elif model_name == "blip2-flan-t5-xl-coco": UpperCamelCase__ = torch.tensor( [[-57.0109, -9.8967, -12.6280], [-68.6578, -12.7191, -10.5065]] , device=__A ) else: # cast to same type UpperCamelCase__ = logits.dtype assert torch.allclose(original_logits.to(__A ) , __A , atol=1E-2 ) print("Looks ok!" ) print("Generating a caption..." ) UpperCamelCase__ = "" UpperCamelCase__ = tokenizer(__A , return_tensors="pt" ).input_ids.to(__A ) UpperCamelCase__ = original_model.generate({"image": original_pixel_values} ) UpperCamelCase__ = hf_model.generate( __A , __A , do_sample=__A , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("Original generation:" , __A ) UpperCamelCase__ = input_ids.shape[1] UpperCamelCase__ = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=__A ) UpperCamelCase__ = [text.strip() for text in output_text] print("HF generation:" , __A ) if pytorch_dump_folder_path is not None: processor.save_pretrained(__A ) hf_model.save_pretrained(__A ) if push_to_hub: processor.push_to_hub(F'''nielsr/{model_name}''' ) hf_model.push_to_hub(F'''nielsr/{model_name}''' ) if __name__ == "__main__": a__ : Dict = argparse.ArgumentParser() a__ : List[Any] = [ 'blip2-opt-2.7b', 'blip2-opt-6.7b', 'blip2-opt-2.7b-coco', 'blip2-opt-6.7b-coco', 'blip2-flan-t5-xl', 'blip2-flan-t5-xl-coco', 'blip2-flan-t5-xxl', ] parser.add_argument( '--model_name', default='blip2-opt-2.7b', choices=choices, type=str, help='Path to hf config.json of model to convert', ) parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether to push the model and processor to the hub after converting', ) a__ : Union[str, Any] = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
80
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0