code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class __A ( _SCREAMING_SNAKE_CASE ): """simple docstring""" @staticmethod @abstractmethod def SCREAMING_SNAKE_CASE ( __A ) -> int: raise NotImplementedError() @abstractmethod def SCREAMING_SNAKE_CASE ( self ) -> str: raise NotImplementedError()
81
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image A__ = ["""text""", """image""", """audio"""] def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [] for input_type in input_types: if input_type == "text": inputs.append("""Text input""" ) elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("""fixtures/tests_samples/COCO""" ) ) / """000000039769.png""" ).resize((5_12, 5_12) ) ) elif input_type == "audio": inputs.append(torch.ones(30_00 ) ) elif isinstance(snake_case , snake_case ): inputs.append(create_inputs(snake_case ) ) else: raise ValueError(F'Invalid type requested: {input_type}' ) return inputs def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = [] for output in outputs: if isinstance(snake_case , (str, AgentText) ): output_types.append("""text""" ) elif isinstance(snake_case , (Image.Image, AgentImage) ): output_types.append("""image""" ) elif isinstance(snake_case , (torch.Tensor, AgentAudio) ): output_types.append("""audio""" ) else: raise ValueError(F'Invalid output: {output}' ) return output_types @is_tool_test class __lowerCAmelCase : def snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """inputs""" ) ) self.assertTrue(hasattr(self.tool , """outputs""" ) ) _lowerCAmelCase = self.tool.inputs for _input in inputs: if isinstance(_input , _snake_case ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) _lowerCAmelCase = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = self.tool(*_snake_case ) # There is a single output if len(self.tool.outputs ) == 1: _lowerCAmelCase = [outputs] self.assertListEqual(output_types(_snake_case ) , self.tool.outputs ) def snake_case ( self ): """simple docstring""" self.assertTrue(hasattr(self.tool , """description""" ) ) self.assertTrue(hasattr(self.tool , """default_checkpoint""" ) ) self.assertTrue(self.tool.description.startswith("""This is a tool that""" ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = self.tool(*_snake_case ) if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = [outputs] self.assertEqual(len(_snake_case ) , len(self.tool.outputs ) ) for output, output_type in zip(_snake_case , self.tool.outputs ): _lowerCAmelCase = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(_snake_case , _snake_case ) ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = create_inputs(self.tool.inputs ) _lowerCAmelCase = [] for _input, input_type in zip(_snake_case , self.tool.inputs ): if isinstance(_snake_case , _snake_case ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error _lowerCAmelCase = self.tool(*_snake_case ) if not isinstance(_snake_case , _snake_case ): _lowerCAmelCase = [outputs] self.assertEqual(len(_snake_case ) , len(self.tool.outputs ) )
82
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / 'utils')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down _UpperCamelCase : Optional[int] = mock.Mock() _UpperCamelCase : str = 500 _UpperCamelCase : str = {} _UpperCamelCase : Tuple = HTTPError _UpperCamelCase : Tuple = {} # Download this model to make sure it's in the cache. _UpperCamelCase : List[str] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=lowerCamelCase__ ) as mock_head: _UpperCamelCase : Optional[int] = BertTokenizer.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # A mock response for an HTTP head request to emulate server down _UpperCamelCase : List[Any] = mock.Mock() _UpperCamelCase : int = 500 _UpperCamelCase : Any = {} _UpperCamelCase : Dict = HTTPError _UpperCamelCase : int = {} # Download this model to make sure it's in the cache. _UpperCamelCase : List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch('requests.Session.request' ,return_value=lowerCamelCase__ ) as mock_head: _UpperCamelCase : List[str] = GPTaTokenizerFast.from_pretrained('gpt2' ) # This check we did call the fake head request mock_head.assert_called() def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: _UpperCamelCase : Optional[Any] = tempfile.mktemp() with open(lowerCamelCase__ ,'wb' ) as f: http_get('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ,lowerCamelCase__ ) _UpperCamelCase : str = AlbertTokenizer.from_pretrained(lowerCamelCase__ ) finally: os.remove(lowerCamelCase__ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile('tokenizer.json' ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open('tokenizer.json' ,'wb' ) as f: http_get('https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json' ,lowerCamelCase__ ) _UpperCamelCase : str = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size ,1000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove('tokenizer.json' ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 _UpperCamelCase : List[Any] = AlbertTokenizer.from_pretrained('https://huggingface.co/albert-base-v1/resolve/main/spiece.model' ) @is_staging_test class lowercase__ ( unittest.TestCase ): lowercase__ = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def UpperCamelCase_ ( cls : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : Tuple = TOKEN HfFolder.save_token(lowerCamelCase__ ) @classmethod def UpperCamelCase_ ( cls : str ): '''simple docstring''' try: delete_repo(token=cls._token ,repo_id='test-tokenizer' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='valid_org/test-tokenizer-org' ) except HTTPError: pass try: delete_repo(token=cls._token ,repo_id='test-dynamic-tokenizer' ) except HTTPError: pass def UpperCamelCase_ ( self : int ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Tuple = os.path.join(lowerCamelCase__ ,'vocab.txt' ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _UpperCamelCase : List[str] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('test-tokenizer' ,use_auth_token=self._token ) _UpperCamelCase : List[Any] = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='test-tokenizer' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(lowerCamelCase__ ,repo_id='test-tokenizer' ,push_to_hub=lowerCamelCase__ ,use_auth_token=self._token ) _UpperCamelCase : int = BertTokenizer.from_pretrained(F'{USER}/test-tokenizer' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) def UpperCamelCase_ ( self : Any ): '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Tuple = os.path.join(lowerCamelCase__ ,'vocab.txt' ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _UpperCamelCase : List[str] = BertTokenizer(lowerCamelCase__ ) tokenizer.push_to_hub('valid_org/test-tokenizer-org' ,use_auth_token=self._token ) _UpperCamelCase : str = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) # Reset repo delete_repo(token=self._token ,repo_id='valid_org/test-tokenizer-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( lowerCamelCase__ ,repo_id='valid_org/test-tokenizer-org' ,push_to_hub=lowerCamelCase__ ,use_auth_token=self._token ) _UpperCamelCase : Dict = BertTokenizer.from_pretrained('valid_org/test-tokenizer-org' ) self.assertDictEqual(new_tokenizer.vocab ,tokenizer.vocab ) @require_tokenizers def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : str = os.path.join(lowerCamelCase__ ,'vocab.txt' ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _UpperCamelCase : List[Any] = CustomTokenizer(lowerCamelCase__ ) # No fast custom tokenizer tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _UpperCamelCase : Tuple = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' ,trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: _UpperCamelCase : Optional[int] = os.path.join(lowerCamelCase__ ,'vocab.txt' ) with open(lowerCamelCase__ ,'w' ,encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in self.vocab_tokens] ) ) _UpperCamelCase : Union[str, Any] = BertTokenizerFast.from_pretrained(lowerCamelCase__ ) bert_tokenizer.save_pretrained(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = CustomTokenizerFast.from_pretrained(lowerCamelCase__ ) tokenizer.push_to_hub('test-dynamic-tokenizer' ,use_auth_token=self._token ) _UpperCamelCase : Union[str, Any] = AutoTokenizer.from_pretrained(F'{USER}/test-dynamic-tokenizer' ,trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizerFast' ) _UpperCamelCase : Dict = AutoTokenizer.from_pretrained( F'{USER}/test-dynamic-tokenizer' ,use_fast=lowerCamelCase__ ,trust_remote_code=lowerCamelCase__ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ ,'CustomTokenizer' ) class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : Optional[Any] = Trie() trie.add('Hello 友達' ) self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {' ': {'友': {'達': {'': 1}}}}}}}}} ) trie.add('Hello' ) trie.data self.assertEqual(trie.data ,{'H': {'e': {'l': {'l': {'o': {'': 1, ' ': {'友': {'達': {'': 1}}}}}}}}} ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = Trie() self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS] This is a extra_id_100'] ) trie.add('[CLS]' ) trie.add('extra_id_1' ) trie.add('extra_id_100' ) self.assertEqual(trie.split('[CLS] This is a extra_id_100' ) ,['[CLS]', ' This is a ', 'extra_id_100'] ) def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : str = Trie() trie.add('A' ) self.assertEqual(trie.split('ABC' ) ,['A', 'BC'] ) self.assertEqual(trie.split('BCA' ) ,['BC', 'A'] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : int = Trie() trie.add('TOKEN]' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase_ ( self : Tuple ): '''simple docstring''' _UpperCamelCase : Optional[int] = Trie() trie.add('A' ) trie.add('P' ) trie.add('[SPECIAL_TOKEN]' ) self.assertEqual(trie.split('This is something [SPECIAL_TOKEN]' ) ,['This is something ', '[SPECIAL_TOKEN]'] ) def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = Trie() trie.add('AB' ) trie.add('B' ) trie.add('C' ) self.assertEqual(trie.split('ABC' ) ,['AB', 'C'] ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : Any = Trie() trie.add('ABC' ) trie.add('B' ) trie.add('CD' ) self.assertEqual(trie.split('ABCD' ) ,['ABC', 'D'] ) def UpperCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' # Even if the offsets are wrong, we necessarily output correct string # parts. _UpperCamelCase : Dict = Trie() _UpperCamelCase : Optional[Any] = trie.cut_text('ABC' ,[0, 0, 2, 1, 2, 3] ) self.assertEqual(lowerCamelCase__ ,['AB', 'C'] )
83
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { 'facebook/levit-128S': 'https://huggingface.co/facebook/levit-128S/resolve/main/config.json', # See all LeViT models at https://huggingface.co/models?filter=levit } class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :str = "levit" def __init__( self , __A=224 , __A=3 , __A=3 , __A=2 , __A=1 , __A=16 , __A=[128, 256, 384] , __A=[4, 8, 12] , __A=[4, 4, 4] , __A=[16, 16, 16] , __A=0 , __A=[2, 2, 2] , __A=[2, 2, 2] , __A=0.0_2 , **__A , ) -> Any: super().__init__(**__A ) lowerCAmelCase_ :Tuple = image_size lowerCAmelCase_ :Optional[int] = num_channels lowerCAmelCase_ :Union[str, Any] = kernel_size lowerCAmelCase_ :Optional[Any] = stride lowerCAmelCase_ :Optional[int] = padding lowerCAmelCase_ :Optional[Any] = hidden_sizes lowerCAmelCase_ :Optional[int] = num_attention_heads lowerCAmelCase_ :int = depths lowerCAmelCase_ :List[str] = key_dim lowerCAmelCase_ :str = drop_path_rate lowerCAmelCase_ :Optional[int] = patch_size lowerCAmelCase_ :Union[str, Any] = attention_ratio lowerCAmelCase_ :Dict = mlp_ratio lowerCAmelCase_ :Any = initializer_range lowerCAmelCase_ :Optional[int] = [ ["""Subsample""", key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ["""Subsample""", key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class _SCREAMING_SNAKE_CASE ( A__ ): UpperCAmelCase_ :Tuple = version.parse("1.11" ) @property def __lowerCAmelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def __lowerCAmelCase ( self ) -> float: return 1E-4
84
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING, TextGenerationPipeline, logging, pipeline, ) from transformers.testing_utils import ( CaptureLogger, is_pipeline_test, require_accelerate, require_tf, require_torch, require_torch_gpu, require_torch_or_tf, ) from .test_pipelines_common import ANY @is_pipeline_test @require_torch_or_tf class _snake_case ( unittest.TestCase ): lowerCAmelCase_ : Optional[Any] = MODEL_FOR_CAUSAL_LM_MAPPING lowerCAmelCase_ : Optional[Any] = TF_MODEL_FOR_CAUSAL_LM_MAPPING @require_torch def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="pt" ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator("This is a test" , do_sample=a__ ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ] , ) snake_case_ = text_generator(["This is a test", "This is a second test"] ) self.assertEqual( a__ , [ [ { "generated_text": ( "This is a test ☃ ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy oscope." " oscope. FiliFili@@" ) } ], [ { "generated_text": ( "This is a second test ☃ segmental segmental segmental 议议eski eski flutter flutter Lacy" " oscope. oscope. FiliFili@@" ) } ], ] , ) snake_case_ = text_generator("This is a test" , do_sample=a__ , num_return_sequences=2 , return_tensors=a__ ) self.assertEqual( a__ , [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ] , ) snake_case_ = text_generator.model.config.eos_token_id snake_case_ = "<pad>" snake_case_ = text_generator( ["This is a test", "This is a second test"] , do_sample=a__ , num_return_sequences=2 , batch_size=2 , return_tensors=a__ , ) self.assertEqual( a__ , [ [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ], [ {"generated_token_ids": ANY(a__ )}, {"generated_token_ids": ANY(a__ )}, ], ] , ) @require_tf def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = pipeline(task="text-generation" , model="sshleifer/tiny-ctrl" , framework="tf" ) # Using `do_sample=False` to force deterministic output snake_case_ = text_generator("This is a test" , do_sample=a__ ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ] , ) snake_case_ = text_generator(["This is a test", "This is a second test"] , do_sample=a__ ) self.assertEqual( a__ , [ [ { "generated_text": ( "This is a test FeyFeyFey(Croatis.), s.), Cannes Cannes Cannes 閲閲Cannes Cannes Cannes 攵" " please," ) } ], [ { "generated_text": ( "This is a second test Chieftain Chieftain prefecture prefecture prefecture Cannes Cannes" " Cannes 閲閲Cannes Cannes Cannes 攵 please," ) } ], ] , ) def lowerCAmelCase__ ( self , a__ , a__ , a__ ) -> str: '''simple docstring''' snake_case_ = TextGenerationPipeline(model=a__ , tokenizer=a__ ) return text_generator, ["This is a test", "Another test"] def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' snake_case_ = "Hello I believe in" snake_case_ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) snake_case_ = text_generator(a__ ) self.assertEqual( a__ , [{"generated_text": "Hello I believe in fe fe fe fe fe fe fe fe fe fe fe fe"}] , ) snake_case_ = text_generator(a__ , stop_sequence=" fe" ) self.assertEqual(a__ , [{"generated_text": "Hello I believe in fe"}] ) def lowerCAmelCase__ ( self , a__ , a__ ) -> Tuple: '''simple docstring''' snake_case_ = text_generator.model snake_case_ = text_generator.tokenizer snake_case_ = text_generator("This is a test" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) snake_case_ = text_generator("This is a test" , return_full_text=a__ ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) snake_case_ = pipeline(task="text-generation" , model=a__ , tokenizer=a__ , return_full_text=a__ ) snake_case_ = text_generator("This is a test" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertNotIn("This is a test" , outputs[0]["generated_text"] ) snake_case_ = text_generator("This is a test" , return_full_text=a__ ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) self.assertTrue(outputs[0]["generated_text"].startswith("This is a test" ) ) snake_case_ = text_generator(["This is great !", "Something else"] , num_return_sequences=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], ] , ) if text_generator.tokenizer.pad_token is not None: snake_case_ = text_generator( ["This is great !", "Something else"] , num_return_sequences=2 , batch_size=2 , do_sample=a__ ) self.assertEqual( a__ , [ [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], [{"generated_text": ANY(a__ )}, {"generated_text": ANY(a__ )}], ] , ) with self.assertRaises(a__ ): snake_case_ = text_generator("test" , return_full_text=a__ , return_text=a__ ) with self.assertRaises(a__ ): snake_case_ = text_generator("test" , return_full_text=a__ , return_tensors=a__ ) with self.assertRaises(a__ ): snake_case_ = text_generator("test" , return_text=a__ , return_tensors=a__ ) # Empty prompt is slighly special # it requires BOS token to exist. # Special case for Pegasus which will always append EOS so will # work even without BOS. if ( text_generator.tokenizer.bos_token_id is not None or "Pegasus" in tokenizer.__class__.__name__ or "Git" in model.__class__.__name__ ): snake_case_ = text_generator("" ) self.assertEqual(a__ , [{"generated_text": ANY(a__ )}] ) else: with self.assertRaises((ValueError, AssertionError) ): snake_case_ = text_generator("" ) if text_generator.framework == "tf": # TF generation does not support max_new_tokens, and it's impossible # to control long generation with only max_length without # fancy calculation, dismissing tests for now. return # We don't care about infinite range models. # They already work. # Skip this test for XGLM, since it uses sinusoidal positional embeddings which are resized on-the-fly. snake_case_ = ["RwkvForCausalLM", "XGLMForCausalLM", "GPTNeoXForCausalLM"] if ( tokenizer.model_max_length < 10_000 and text_generator.model.__class__.__name__ not in EXTRA_MODELS_CAN_HANDLE_LONG_INPUTS ): # Handling of large generations with self.assertRaises((RuntimeError, IndexError, ValueError, AssertionError) ): text_generator("This is a test" * 500 , max_new_tokens=20 ) snake_case_ = text_generator("This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=20 ) # Hole strategy cannot work with self.assertRaises(a__ ): text_generator( "This is a test" * 500 , handle_long_generation="hole" , max_new_tokens=tokenizer.model_max_length + 10 , ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase__ ( self ) -> Optional[Any]: '''simple docstring''' import torch # Classic `model_kwargs` snake_case_ = pipeline( model="hf-internal-testing/tiny-random-bloom" , model_kwargs={"device_map": "auto", "torch_dtype": torch.bfloataa} , ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # Upgraded those two to real pipeline arguments (they just get sent for the model as they're unlikely to mean anything else.) snake_case_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.bfloataa ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.bfloataa ) snake_case_ = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) # torch_dtype will be automatically set to float32 if not provided - check: https://github.com/huggingface/transformers/pull/20602 snake_case_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" ) self.assertEqual(pipe.model.device , torch.device(0 ) ) self.assertEqual(pipe.model.lm_head.weight.dtype , torch.floataa ) snake_case_ = pipe("This is a test" ) self.assertEqual( a__ , [ { "generated_text": ( "This is a test test test test test test test test test test test test test test test test" " test" ) } ] , ) @require_torch @require_torch_gpu def lowerCAmelCase__ ( self ) -> Union[str, Any]: '''simple docstring''' import torch snake_case_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device=0 , torch_dtype=torch.floataa ) pipe("This is a test" ) @require_torch @require_accelerate @require_torch_gpu def lowerCAmelCase__ ( self ) -> Dict: '''simple docstring''' import torch snake_case_ = pipeline(model="hf-internal-testing/tiny-random-bloom" , device_map="auto" , torch_dtype=torch.floataa ) pipe("This is a test" , do_sample=a__ , top_p=0.5 ) def lowerCAmelCase__ ( self ) -> Tuple: '''simple docstring''' snake_case_ = "Hello world" snake_case_ = pipeline("text-generation" , model="hf-internal-testing/tiny-random-gpt2" ) if text_generator.model.framework == "tf": snake_case_ = logging.get_logger("transformers.generation.tf_utils" ) else: snake_case_ = logging.get_logger("transformers.generation.utils" ) snake_case_ = "Both `max_new_tokens`" # The beggining of the message to be checked in this test # Both are set by the user -> log warning with CaptureLogger(a__ ) as cl: snake_case_ = text_generator(a__ , max_length=10 , max_new_tokens=1 ) self.assertIn(a__ , cl.out ) # The user only sets one -> no warning with CaptureLogger(a__ ) as cl: snake_case_ = text_generator(a__ , max_new_tokens=1 ) self.assertNotIn(a__ , cl.out ) with CaptureLogger(a__ ) as cl: snake_case_ = text_generator(a__ , max_length=10 ) self.assertNotIn(a__ , cl.out )
85
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
"""simple docstring""" lowerCamelCase__ = """0.18.2""" from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
86
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
import time import warnings from abc import ABC from copy import deepcopy from typing import Optional import torch from ..utils import add_start_docstrings, logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = R''' Args: input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are input IDs?](../glossary#input-ids) scores (`torch.FloatTensor` of shape `(batch_size, config.vocab_size)`): Prediction scores of a language modeling head. These can be scores for each vocabulary token before SoftMax or scores for each vocabulary token after SoftMax. kwargs (`Dict[str, Any]`, *optional*): Additional stopping criteria specific kwargs. Return: `bool`. `False` indicates we should continue, `True` indicates we should stop. ''' class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : Optional[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: raise NotImplementedError("StoppingCriteria needs to be subclassed" ) class snake_case_ ( __A ): def __init__( self : Dict , lowercase_ : int , lowercase_ : Optional[int] = None ) -> List[str]: lowercase__ : str = max_length lowercase__ : Optional[int] = max_position_embeddings @add_start_docstrings(lowercase_ ) def __call__( self : Tuple , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: lowercase__ : str = input_ids.shape[-1] lowercase__ : Any = cur_len >= self.max_length if self.max_position_embeddings is not None and not is_done and cur_len >= self.max_position_embeddings: logger.warning_once( "This is a friendly reminder - the current text generation call will exceed the model's predefined " F'''maximum length ({self.max_position_embeddings}). Depending on the model, you may observe ''' "exceptions, performance degradation, or nothing at all." ) return is_done class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : int , lowercase_ : int ) -> List[str]: warnings.warn( "The class `MaxNewTokensCriteria` is deprecated. " F'''Please use `MaxLengthCriteria(max_length={start_length + max_new_tokens})` ''' "with `max_length = start_length + max_new_tokens` instead." , lowercase_ , ) lowercase__ : Optional[int] = start_length lowercase__ : str = max_new_tokens lowercase__ : Tuple = start_length + max_new_tokens @add_start_docstrings(lowercase_ ) def __call__( self : List[Any] , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Dict ) -> bool: return input_ids.shape[-1] >= self.max_length class snake_case_ ( __A ): def __init__( self : Tuple , lowercase_ : float , lowercase_ : Optional[float] = None ) -> Dict: lowercase__ : List[str] = max_time lowercase__ : Tuple = time.time() if initial_timestamp is None else initial_timestamp @add_start_docstrings(lowercase_ ) def __call__( self : int , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : Union[str, Any] ) -> bool: return time.time() - self.initial_timestamp > self.max_time class snake_case_ ( __A ): @add_start_docstrings(lowercase_ ) def __call__( self : str , lowercase_ : torch.LongTensor , lowercase_ : torch.FloatTensor , **lowercase_ : List[str] ) -> bool: return any(criteria(lowercase_ , lowercase_ ) for criteria in self ) @property def __UpperCamelCase ( self : Optional[Any] ) -> Optional[int]: for stopping_criterium in self: if isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length elif isinstance(lowercase_ , lowercase_ ): return stopping_criterium.max_length return None def lowercase_ ( _lowerCamelCase : StoppingCriteriaList , _lowerCamelCase : int): lowercase__ : Optional[int] = stopping_criteria.max_length lowercase__ : str = deepcopy(_lowerCamelCase) if stopping_max_length is not None and stopping_max_length != max_length: warnings.warn("You set different `max_length` for stopping criteria and `max_length` parameter" , _lowerCamelCase) elif stopping_max_length is None: new_stopping_criteria.append(MaxLengthCriteria(max_length=_lowerCamelCase)) return new_stopping_criteria
87
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _lowercase ( self : Optional[Any] ) -> List[str]: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0101, 0.1218, -0.0803, 0.0801, 0.1327, 0.0776, -0.1215, 0.2383, 0.3338, 0.3106, 0.0300, 0.0252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) ) @slow def _lowercase ( self : Optional[Any] ) -> Any: """simple docstring""" __magic_name__ = XLMRobertaModel.from_pretrained("""xlm-roberta-large""" ) __magic_name__ = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house __magic_name__ = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim __magic_name__ = torch.tensor( [[-0.0699, -0.0318, 0.0705, -0.1241, 0.0999, -0.0520, 0.1004, -0.1838, -0.4704, 0.1437, 0.0821, 0.0126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __magic_name__ = model(UpperCamelCase__ )["""last_hidden_state"""].detach() self.assertEqual(output.shape , UpperCamelCase__ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , UpperCamelCase__ , atol=1E-3 ) )
88
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
'''simple docstring''' from math import ceil from typing import List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import BatchFeature, SequenceFeatureExtractor from ...utils import TensorType, logging __lowerCAmelCase = logging.get_logger(__name__) class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = ['audio_values', 'audio_mask'] def __init__( self : Tuple ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : List[str]=1 ,_UpperCAmelCase : Any=[16, 16] ,_UpperCAmelCase : Dict=128 ,_UpperCAmelCase : Tuple=44100 ,_UpperCAmelCase : Optional[Any]=86 ,_UpperCAmelCase : str=2048 ,_UpperCAmelCase : Union[str, Any]=0.0 ,**_UpperCAmelCase : List[str] ,): super().__init__( feature_size=_UpperCAmelCase ,sampling_rate=_UpperCAmelCase ,padding_value=_UpperCAmelCase ,**_UpperCAmelCase ,) _a : List[Any] = spectrogram_length _a : Tuple = num_channels _a : Dict = patch_size _a : Optional[Any] = feature_size // self.patch_size[1] _a : Tuple = n_fft _a : List[Any] = sampling_rate // hop_length_to_sampling_rate _a : List[str] = sampling_rate _a : Union[str, Any] = padding_value _a : Any = mel_filter_bank( num_frequency_bins=1 + n_fft // 2 ,num_mel_filters=_UpperCAmelCase ,min_frequency=0.0 ,max_frequency=2_20_50.0 ,sampling_rate=_UpperCAmelCase ,norm='slaney' ,mel_scale='slaney' ,).T def __lowercase ( self : Tuple ,_UpperCAmelCase : np.array ): _a : List[str] = spectrogram( _UpperCAmelCase ,window_function(self.n_fft ,'hann' ) ,frame_length=self.n_fft ,hop_length=self.hop_length ,power=2.0 ,mel_filters=self.mel_filters.T ,log_mel='dB' ,db_range=80.0 ,) _a : List[Any] = log_spec[:, :-1] _a : Optional[Any] = log_spec - 20.0 _a : Dict = np.clip(log_spec / 40.0 ,-2.0 ,0.0 ) + 1.0 return log_spec def __call__( self : int ,_UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] ,_UpperCAmelCase : Optional[Union[str, TensorType]] = None ,_UpperCAmelCase : Optional[bool] = True ,_UpperCAmelCase : Optional[int] = None ,_UpperCAmelCase : bool = False ,_UpperCAmelCase : bool = False ,**_UpperCAmelCase : Any ,): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( 'This feature extractor is set to support sampling rate' F""" of {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled""" F""" with {self.sampling_rate} and not {sampling_rate}.""" ) else: logger.warning( 'It is strongly recommended to pass the `sampling_rate` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) _a : Optional[Any] = isinstance(_UpperCAmelCase ,np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F"""Only mono-channel audio is supported for input to {self}""" ) _a : Optional[int] = is_batched_numpy or ( isinstance(_UpperCAmelCase ,(list, tuple) ) and (isinstance(raw_speech[0] ,(np.ndarray, tuple, list) )) ) if is_batched: _a : Union[str, Any] = [np.asarray([speech] ,dtype=np.floataa ).T for speech in raw_speech] elif not is_batched and not isinstance(_UpperCAmelCase ,np.ndarray ): _a : Optional[int] = np.asarray(_UpperCAmelCase ,dtype=np.floataa ) elif isinstance(_UpperCAmelCase ,np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): _a : Optional[Any] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: _a : Dict = [np.asarray([raw_speech] ).T] # Convert audio signals to log mel spectrograms, truncate by time axis _a : Any = [ self._np_extract_fbank_features(waveform.squeeze() ).T[: self.spectrogram_length] for waveform in raw_speech ] if isinstance(audio_features[0] ,_UpperCAmelCase ): _a : Tuple = [np.asarray(_UpperCAmelCase ,dtype=np.floataa ) for feature in audio_features] # Create audio attention mask _a : List[Any] = max( [ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len for feature in audio_features] ) # The maximum number of audio patches in a batch if return_attention_mask: _a : Dict = [ (ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [1] + (max_patch_len - ceil(feature.shape[0] / self.patch_size[0] ) * self.freq_len) * [0] for feature in audio_features ] _a : Union[str, Any] = np.array(_UpperCAmelCase ).astype(np.floataa ) # convert into correct format for padding _a : Dict = max_patch_len // self.freq_len * self.patch_size[0] # The maximum audio size in a batch _a : Union[str, Any] = np.ones([len(_UpperCAmelCase ), 1, max_time_len, self.feature_size] ).astype(np.floataa ) _a : List[Any] = padded_audio_features * self.padding_value for i in range(len(_UpperCAmelCase ) ): _a : Any = audio_features[i] _a : List[Any] = feature # return as BatchFeature if return_attention_mask: _a : Tuple = {'audio_values': padded_audio_features, 'audio_mask': audio_mask} else: _a : Tuple = {'audio_values': padded_audio_features} _a : Optional[Any] = BatchFeature(data=_UpperCAmelCase ,tensor_type=_UpperCAmelCase ) return encoded_inputs
89
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
import unittest from transformers import BarthezTokenizer, BarthezTokenizerFast, BatchEncoding from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers @require_sentencepiece @slow # see https://github.com/huggingface/transformers/issues/11457 class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = BarthezTokenizer snake_case_ = BarthezTokenizerFast snake_case_ = True snake_case_ = True def lowercase_ ( self ) -> int: '''simple docstring''' super().setUp() __lowerCamelCase = BarthezTokenizerFast.from_pretrained('moussaKam/mbarthez' ) tokenizer.save_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname , legacy_format=lowerCamelCase__ ) __lowerCamelCase = tokenizer def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = '<pad>' __lowerCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ) , lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ) , lowerCamelCase__ ) def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(lowerCamelCase__ ) , 101_122 ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 101_122 ) @require_torch def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCamelCase = [0, 57, 3_018, 70_307, 91, 2] __lowerCamelCase = self.tokenizer( lowerCamelCase__ , max_length=len(lowerCamelCase__ ) , padding=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='pt' ) self.assertIsInstance(lowerCamelCase__ , lowerCamelCase__ ) self.assertEqual((2, 6) , batch.input_ids.shape ) self.assertEqual((2, 6) , batch.attention_mask.shape ) __lowerCamelCase = batch.input_ids.tolist()[0] self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' if not self.test_rust_tokenizer: return __lowerCamelCase = self.get_tokenizer() __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = 'I was born in 92000, and this is falsé.' __lowerCamelCase = tokenizer.tokenize(lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) __lowerCamelCase = self.get_rust_tokenizer() __lowerCamelCase = tokenizer.encode(lowerCamelCase__ ) __lowerCamelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) @slow def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' # fmt: off __lowerCamelCase = {'input_ids': [[0, 490, 14_328, 4_507, 354, 47, 43_669, 95, 25, 78_117, 20_215, 19_779, 190, 22, 400, 4, 35_343, 80_310, 603, 86, 24_937, 105, 33_438, 94_762, 196, 39_642, 7, 15, 15_933, 173, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 10_534, 87, 25, 66, 3_358, 196, 55_289, 8, 82_961, 81, 2_204, 75_203, 7, 15, 763, 12_956, 216, 178, 14_328, 9_595, 1_377, 69_693, 7, 448, 71_021, 196, 18_106, 1_437, 13_974, 108, 9_083, 4, 49_315, 7, 39, 86, 1_326, 2_793, 46_333, 4, 448, 196, 74_588, 7, 49_315, 7, 39, 21, 822, 38_470, 74, 21, 66_723, 62_480, 8, 22_050, 5, 2]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # moussaKam/mbarthez is a french model. So we also use french texts. __lowerCamelCase = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__ , model_name='moussaKam/mbarthez' , revision='c2e4ecbca5e3cd2c37fe1ac285ca4fbdf1366fb6' , sequences=lowerCamelCase__ , )
90
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar UpperCAmelCase_ : int = TypeVar("""T""") class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int] , lowercase_ : T): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = data SCREAMING_SNAKE_CASE_ : Node[T] | None = None def __str__( self : Union[str, Any]): '''simple docstring''' return F'{self.data}' class lowerCAmelCase__ ( Generic[T] ): '''simple docstring''' def __init__( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Node[T] | None = None def __iter__( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Tuple = self.top while node: yield node.data SCREAMING_SNAKE_CASE_ : Union[str, Any] = node.next def __str__( self : Union[str, Any]): '''simple docstring''' return "->".join([str(lowercase_) for item in self]) def __len__( self : Union[str, Any]): '''simple docstring''' return len(tuple(iter(self))) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): '''simple docstring''' return self.top is None def _SCREAMING_SNAKE_CASE ( self : Tuple , lowercase_ : T): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = Node(lowercase_) if not self.is_empty(): SCREAMING_SNAKE_CASE_ : Optional[int] = self.top SCREAMING_SNAKE_CASE_ : Optional[Any] = node def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' if self.is_empty(): raise IndexError('''pop from empty stack''') assert isinstance(self.top , lowercase_) SCREAMING_SNAKE_CASE_ : int = self.top SCREAMING_SNAKE_CASE_ : int = self.top.next return pop_node.data def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' if self.is_empty(): raise IndexError('''peek from empty stack''') assert self.top is not None return self.top.data def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = None if __name__ == "__main__": from doctest import testmod testmod()
91
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
import platform from argparse import ArgumentParser import huggingface_hub from .. import __version__ as version from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available from . import BaseDiffusersCLICommand def _a ( SCREAMING_SNAKE_CASE_ : List[Any] ): return EnvironmentCommand() class a__ ( snake_case__ ): @staticmethod def __SCREAMING_SNAKE_CASE( _A ): """simple docstring""" __lowerCAmelCase = parser.add_parser("env" ) download_parser.set_defaults(func=_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = huggingface_hub.__version__ __lowerCAmelCase = "not installed" __lowerCAmelCase = "NA" if is_torch_available(): import torch __lowerCAmelCase = torch.__version__ __lowerCAmelCase = torch.cuda.is_available() __lowerCAmelCase = "not installed" if is_transformers_available(): import transformers __lowerCAmelCase = transformers.__version__ __lowerCAmelCase = "not installed" if is_accelerate_available(): import accelerate __lowerCAmelCase = accelerate.__version__ __lowerCAmelCase = "not installed" if is_xformers_available(): import xformers __lowerCAmelCase = xformers.__version__ __lowerCAmelCase = { "`diffusers` version": version, "Platform": platform.platform(), "Python version": platform.python_version(), "PyTorch version (GPU?)": f"""{pt_version} ({pt_cuda_available})""", "Huggingface_hub version": hub_version, "Transformers version": transformers_version, "Accelerate version": accelerate_version, "xFormers version": xformers_version, "Using GPU in script?": "<fill in>", "Using distributed or parallel set-up in script?": "<fill in>", } print("\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n" ) print(self.format_dict(_A ) ) return info @staticmethod def __SCREAMING_SNAKE_CASE( _A ): """simple docstring""" return "\n".join([f"""- {prop}: {val}""" for prop, val in d.items()] ) + "\n"
92
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
'''simple docstring''' import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowercase : Union[str, Any] = logging.get_logger(__name__) _lowercase : Optional[Any] = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"} _lowercase : str = { "vocab_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/vocab.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/vocab.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/vocab.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/vocab.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/vocab.json", }, "merges_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/merges.txt", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/merges.txt", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/merges.txt", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/merges.txt", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/merges.txt", }, "tokenizer_file": { "gpt2": "https://huggingface.co/gpt2/resolve/main/tokenizer.json", "gpt2-medium": "https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json", "gpt2-large": "https://huggingface.co/gpt2-large/resolve/main/tokenizer.json", "gpt2-xl": "https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json", "distilgpt2": "https://huggingface.co/distilgpt2/resolve/main/tokenizer.json", }, } _lowercase : Dict = { "gpt2": 1_0_2_4, "gpt2-medium": 1_0_2_4, "gpt2-large": 1_0_2_4, "gpt2-xl": 1_0_2_4, "distilgpt2": 1_0_2_4, } class lowerCAmelCase__ ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ['''input_ids''', '''attention_mask'''] lowerCAmelCase_ = GPTaTokenizer def __init__( self , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE="<|endoftext|>" , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): """simple docstring""" super().__init__( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , add_prefix_space=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) lowercase_ : int = kwargs.pop('''add_bos_token''' , __SCREAMING_SNAKE_CASE ) lowercase_ : Union[str, Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , __SCREAMING_SNAKE_CASE ) != add_prefix_space: lowercase_ : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE , pre_tok_state.pop('''type''' ) ) lowercase_ : List[Any] = add_prefix_space lowercase_ : Optional[int] = pre_tok_class(**__SCREAMING_SNAKE_CASE ) lowercase_ : List[str] = add_prefix_space def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : List[str] = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : str = kwargs.get('''is_split_into_words''' , __SCREAMING_SNAKE_CASE ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): """simple docstring""" lowercase_ : str = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE , name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def _snake_case ( self , __SCREAMING_SNAKE_CASE ): """simple docstring""" lowercase_ : Any = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) + [self.eos_token_id] ) if len(__SCREAMING_SNAKE_CASE ) > self.model_max_length: lowercase_ : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
93
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) if is_sentencepiece_available(): from ..ta.tokenization_ta import TaTokenizer else: from ...utils.dummy_sentencepiece_objects import TaTokenizer snake_case : Dict = TaTokenizer if is_tokenizers_available(): from ..ta.tokenization_ta_fast import TaTokenizerFast else: from ...utils.dummy_tokenizers_objects import TaTokenizerFast snake_case : Dict = TaTokenizerFast snake_case : str = {'''configuration_mt5''': ['''MT5Config''', '''MT5OnnxConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = [ '''MT5EncoderModel''', '''MT5ForConditionalGeneration''', '''MT5ForQuestionAnswering''', '''MT5Model''', '''MT5PreTrainedModel''', '''MT5Stack''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : List[str] = ['''TFMT5EncoderModel''', '''TFMT5ForConditionalGeneration''', '''TFMT5Model'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case : Dict = ['''FlaxMT5EncoderModel''', '''FlaxMT5ForConditionalGeneration''', '''FlaxMT5Model'''] if TYPE_CHECKING: from .configuration_mta import MTaConfig, MTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mta import ( MTaEncoderModel, MTaForConditionalGeneration, MTaForQuestionAnswering, MTaModel, MTaPreTrainedModel, MTaStack, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mta import TFMTaEncoderModel, TFMTaForConditionalGeneration, TFMTaModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mta import FlaxMTaEncoderModel, FlaxMTaForConditionalGeneration, FlaxMTaModel else: import sys snake_case : Any = _LazyModule( __name__, globals()['''__file__'''], _import_structure, extra_objects={'''MT5Tokenizer''': MTaTokenizer, '''MT5TokenizerFast''': MTaTokenizerFast}, module_spec=__spec__, )
94
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
import collections from typing import List, Optional, Union from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging from ..bert.tokenization_bert_fast import BertTokenizerFast from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer UpperCAmelCase : int = logging.get_logger(__name__) UpperCAmelCase : str = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCAmelCase : Optional[Any] = { """vocab_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-ctx_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-ctx_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : Optional[Any] = { """vocab_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-question_encoder-single-nq-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-question_encoder-multiset-base""": ( """https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : Union[str, Any] = { """vocab_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/vocab.txt""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """facebook/dpr-reader-single-nq-base""": ( """https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/tokenizer.json""" ), """facebook/dpr-reader-multiset-base""": ( """https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/tokenizer.json""" ), }, } UpperCAmelCase : str = { """facebook/dpr-ctx_encoder-single-nq-base""": 512, """facebook/dpr-ctx_encoder-multiset-base""": 512, } UpperCAmelCase : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": 512, """facebook/dpr-question_encoder-multiset-base""": 512, } UpperCAmelCase : str = { """facebook/dpr-reader-single-nq-base""": 512, """facebook/dpr-reader-multiset-base""": 512, } UpperCAmelCase : Optional[Any] = { """facebook/dpr-ctx_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-ctx_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase : Union[str, Any] = { """facebook/dpr-question_encoder-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-question_encoder-multiset-base""": {"""do_lower_case""": True}, } UpperCAmelCase : Dict = { """facebook/dpr-reader-single-nq-base""": {"""do_lower_case""": True}, """facebook/dpr-reader-multiset-base""": {"""do_lower_case""": True}, } class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Dict = VOCAB_FILES_NAMES _lowercase : List[Any] = CONTEXT_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : Optional[Any] = CONTEXT_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : str = CONTEXT_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase : Dict = DPRContextEncoderTokenizer class __lowerCAmelCase ( UpperCamelCase__): _lowercase : List[str] = VOCAB_FILES_NAMES _lowercase : Any = QUESTION_ENCODER_PRETRAINED_VOCAB_FILES_MAP _lowercase : int = QUESTION_ENCODER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : Dict = QUESTION_ENCODER_PRETRAINED_INIT_CONFIGURATION _lowercase : str = DPRQuestionEncoderTokenizer UpperCAmelCase : List[str] = collections.namedtuple( """DPRSpanPrediction""", ["""span_score""", """relevance_score""", """doc_id""", """start_index""", """end_index""", """text"""] ) UpperCAmelCase : List[str] = collections.namedtuple("""DPRReaderOutput""", ["""start_logits""", """end_logits""", """relevance_logits"""]) UpperCAmelCase : Tuple = r""" Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`. It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers), using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)` with the format: [CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids> Args: questions (`str` or `List[str]`): The questions to be encoded. You can specify one question for many passages. In this case, the question will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in `titles` or `texts`. titles (`str` or `List[str]`): The passages titles to be encoded. This can be a string or a list of strings if there are several passages. texts (`str` or `List[str]`): The passages texts to be encoded. This can be a string or a list of strings if there are several passages. padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): Activates and controls padding. Accepts the following values: - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence if provided). - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different lengths). truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): Activates and controls truncation. Accepts the following values: - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will truncate token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch of pairs) is provided. - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum acceptable input length for the model if that argument is not provided. This will only truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater than the model maximum admissible input size). max_length (`int`, *optional*): Controls the maximum length to use by one of the truncation/padding parameters. If left unset or set to `None`, this will use the predefined model maximum length if a maximum length is required by one of the truncation/padding parameters. If the model has no specific maximum input length (like XLNet) truncation/padding to a maximum length will be deactivated. return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors instead of list of python integers. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return Numpy `np.ndarray` objects. return_attention_mask (`bool`, *optional*): Whether or not to return the attention mask. If not set, will return the attention mask according to the specific tokenizer's default, defined by the `return_outputs` attribute. [What are attention masks?](../glossary#attention-mask) Return: `Dict[str, List[List[int]]]`: A dictionary with the following keys: - `input_ids`: List of token ids to be fed to a model. - `attention_mask`: List of indices specifying which tokens should be attended to by the model. """ @add_start_docstrings(UpperCamelCase__) class __lowerCAmelCase : def __call__( self , lowerCAmelCase__ , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = False , lowerCAmelCase__ = False , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__ = None , **lowerCAmelCase__ , ) -> BatchEncoding: '''simple docstring''' if titles is None and texts is None: return super().__call__( lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) elif titles is None or texts is None: a__ : Optional[Any] =titles if texts is None else texts return super().__call__( lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ : Union[str, Any] =titles if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [titles] a__ : List[str] =texts if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [texts] a__ : int =len(lowerCAmelCase__ ) a__ : str =questions if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else [questions] * n_passages assert len(lowerCAmelCase__ ) == len( lowerCAmelCase__ ), F'''There should be as many titles than texts but got {len(lowerCAmelCase__ )} titles and {len(lowerCAmelCase__ )} texts.''' a__ : int =super().__call__(lowerCAmelCase__ , lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["input_ids"] a__ : str =super().__call__(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , padding=lowerCAmelCase__ , truncation=lowerCAmelCase__ )["input_ids"] a__ : Optional[Any] ={ "input_ids": [ (encoded_question_and_title + encoded_text)[:max_length] if max_length is not None and truncation else encoded_question_and_title + encoded_text for encoded_question_and_title, encoded_text in zip(lowerCAmelCase__ , lowerCAmelCase__ ) ] } if return_attention_mask is not False: a__ : List[Any] =[] for input_ids in encoded_inputs["input_ids"]: attention_mask.append([int(input_id != self.pad_token_id ) for input_id in input_ids] ) a__ : Tuple =attention_mask return self.pad(lowerCAmelCase__ , padding=lowerCAmelCase__ , max_length=lowerCAmelCase__ , return_tensors=lowerCAmelCase__ ) def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ = 1_6 , lowerCAmelCase__ = 6_4 , lowerCAmelCase__ = 4 , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__ : Optional[Any] =reader_input["input_ids"] a__ , a__ , a__ : Union[str, Any] =reader_output[:3] a__ : Optional[int] =len(lowerCAmelCase__ ) a__ : Optional[Any] =sorted(range(lowerCAmelCase__ ) , reverse=lowerCAmelCase__ , key=relevance_logits.__getitem__ ) a__ : List[DPRReaderOutput] =[] for doc_id in sorted_docs: a__ : List[str] =list(input_ids[doc_id] ) # assuming question & title information is at the beginning of the sequence a__ : Union[str, Any] =sequence_ids.index(self.sep_token_id , 2 ) + 1 # second sep id if sequence_ids[-1] == self.pad_token_id: a__ : int =sequence_ids.index(self.pad_token_id ) else: a__ : Optional[Any] =len(lowerCAmelCase__ ) a__ : Any =self._get_best_spans( start_logits=start_logits[doc_id][passage_offset:sequence_len] , end_logits=end_logits[doc_id][passage_offset:sequence_len] , max_answer_length=lowerCAmelCase__ , top_spans=lowerCAmelCase__ , ) for start_index, end_index in best_spans: start_index += passage_offset end_index += passage_offset nbest_spans_predictions.append( DPRSpanPrediction( span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index] , relevance_score=relevance_logits[doc_id] , doc_id=lowerCAmelCase__ , start_index=lowerCAmelCase__ , end_index=lowerCAmelCase__ , text=self.decode(sequence_ids[start_index : end_index + 1] ) , ) ) if len(lowerCAmelCase__ ) >= num_spans: break return nbest_spans_predictions[:num_spans] def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , ) -> List[DPRSpanPrediction]: '''simple docstring''' a__ : Optional[int] =[] for start_index, start_score in enumerate(lowerCAmelCase__ ): for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length] ): scores.append(((start_index, start_index + answer_length), start_score + end_score) ) a__ : str =sorted(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : x[1] , reverse=lowerCAmelCase__ ) a__ : Any =[] for (start_index, end_index), score in scores: assert start_index <= end_index, F'''Wrong span indices: [{start_index}:{end_index}]''' a__ : List[Any] =end_index - start_index + 1 assert length <= max_answer_length, F'''Span is too long: {length} > {max_answer_length}''' if any( start_index <= prev_start_index <= prev_end_index <= end_index or prev_start_index <= start_index <= end_index <= prev_end_index for (prev_start_index, prev_end_index) in chosen_span_intervals ): continue chosen_span_intervals.append((start_index, end_index) ) if len(lowerCAmelCase__ ) == top_spans: break return chosen_span_intervals @add_end_docstrings(UpperCamelCase__) class __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__): _lowercase : List[Any] = VOCAB_FILES_NAMES _lowercase : List[str] = READER_PRETRAINED_VOCAB_FILES_MAP _lowercase : str = READER_PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _lowercase : List[str] = READER_PRETRAINED_INIT_CONFIGURATION _lowercase : str = ["""input_ids""", """attention_mask"""] _lowercase : List[str] = DPRReaderTokenizer
95
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { """Salesforce/blip-vqa-base""": """https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json""", """Salesforce/blip-vqa-capfit-large""": ( """https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-base""": ( """https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json""" ), """Salesforce/blip-image-captioning-large""": ( """https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json""" ), """Salesforce/blip-itm-base-coco""": """https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json""", """Salesforce/blip-itm-large-coco""": """https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json""", """Salesforce/blip-itm-base-flikr""": """https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json""", """Salesforce/blip-itm-large-flikr""": ( """https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json""" ), } class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """blip_text_model""" def __init__( self , lowercase=30524 , lowercase=768 , lowercase=768 , lowercase=3072 , lowercase=768 , lowercase=12 , lowercase=8 , lowercase=512 , lowercase="gelu" , lowercase=1E-12 , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=30522 , lowercase=2 , lowercase=0 , lowercase=102 , lowercase=True , lowercase=True , **lowercase , ): super().__init__( pad_token_id=lowercase , bos_token_id=lowercase , eos_token_id=lowercase , sep_token_id=lowercase , **lowercase , ) _lowerCamelCase : List[str] = vocab_size _lowerCamelCase : Tuple = hidden_size _lowerCamelCase : Optional[int] = encoder_hidden_size _lowerCamelCase : List[Any] = intermediate_size _lowerCamelCase : Optional[Any] = projection_dim _lowerCamelCase : Tuple = hidden_dropout_prob _lowerCamelCase : Tuple = num_hidden_layers _lowerCamelCase : int = num_attention_heads _lowerCamelCase : Optional[Any] = max_position_embeddings _lowerCamelCase : Optional[int] = layer_norm_eps _lowerCamelCase : List[Any] = hidden_act _lowerCamelCase : Tuple = initializer_range _lowerCamelCase : int = attention_probs_dropout_prob _lowerCamelCase : List[str] = is_decoder _lowerCamelCase : Optional[Any] = use_cache @classmethod def A_ ( cls , lowercase , **lowercase ): cls._set_token_in_kwargs(lowercase ) _lowerCamelCase, _lowerCamelCase : int = cls.get_config_dict(lowercase , **lowercase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _lowerCamelCase : Union[str, Any] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase , **lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """blip_vision_model""" def __init__( self , lowercase=768 , lowercase=3072 , lowercase=512 , lowercase=12 , lowercase=12 , lowercase=384 , lowercase=16 , lowercase="gelu" , lowercase=1E-5 , lowercase=0.0 , lowercase=1E-10 , **lowercase , ): super().__init__(**lowercase ) _lowerCamelCase : Union[str, Any] = hidden_size _lowerCamelCase : List[str] = intermediate_size _lowerCamelCase : Any = projection_dim _lowerCamelCase : List[Any] = num_hidden_layers _lowerCamelCase : Any = num_attention_heads _lowerCamelCase : List[Any] = patch_size _lowerCamelCase : Union[str, Any] = image_size _lowerCamelCase : Optional[int] = initializer_range _lowerCamelCase : Optional[int] = attention_dropout _lowerCamelCase : List[Any] = layer_norm_eps _lowerCamelCase : Tuple = hidden_act @classmethod def A_ ( cls , lowercase , **lowercase ): cls._set_token_in_kwargs(lowercase ) _lowerCamelCase, _lowerCamelCase : List[Any] = cls.get_config_dict(lowercase , **lowercase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": _lowerCamelCase : List[Any] = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(lowercase , **lowercase ) class lowerCAmelCase__ ( lowercase ): '''simple docstring''' lowerCamelCase__ = """blip""" lowerCamelCase__ = True def __init__( self , lowercase=None , lowercase=None , lowercase=512 , lowercase=2.65_92 , lowercase=256 , **lowercase , ): super().__init__(**lowercase ) if text_config is None: _lowerCamelCase : int = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: _lowerCamelCase : Tuple = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) _lowerCamelCase : Dict = BlipTextConfig(**lowercase ) _lowerCamelCase : Optional[Any] = BlipVisionConfig(**lowercase ) _lowerCamelCase : int = self.vision_config.hidden_size _lowerCamelCase : List[str] = projection_dim _lowerCamelCase : List[Any] = logit_scale_init_value _lowerCamelCase : str = 1.0 _lowerCamelCase : List[Any] = 0.02 _lowerCamelCase : List[Any] = image_text_hidden_size @classmethod def A_ ( cls , lowercase , lowercase , **lowercase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **lowercase ) def A_ ( self ): _lowerCamelCase : Dict = copy.deepcopy(self.__dict__ ) _lowerCamelCase : Optional[Any] = self.text_config.to_dict() _lowerCamelCase : str = self.vision_config.to_dict() _lowerCamelCase : Optional[Any] = self.__class__.model_type return output
96
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES, BertTokenizer from transformers.testing_utils import require_tokenizers, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor, ViTImageProcessor @require_tokenizers @require_vision class lowercase ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[Any] = tempfile.mkdtemp() # fmt: off UpperCamelCase__ :List[str] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest'''] # fmt: on UpperCamelCase__ :Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) UpperCamelCase__ :int = { '''do_resize''': True, '''size''': {'''height''': 18, '''width''': 18}, '''do_normalize''': True, '''image_mean''': [0.5, 0.5, 0.5], '''image_std''': [0.5, 0.5, 0.5], } UpperCamelCase__ :Union[str, Any] = os.path.join(self.tmpdirname , UpperCamelCase_ ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return BertTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): '''simple docstring''' return ViTImageProcessor.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' shutil.rmtree(self.tmpdirname ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] UpperCamelCase__ :List[Any] = [Image.fromarray(np.moveaxis(UpperCamelCase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = self.get_tokenizer() UpperCamelCase__ :Dict = self.get_image_processor() UpperCamelCase__ :str = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Union[str, Any] = VisionTextDualEncoderProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Any = VisionTextDualEncoderProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) UpperCamelCase__ :Tuple = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) UpperCamelCase__ :Union[str, Any] = self.get_image_processor(do_normalize=UpperCamelCase_ , padding_value=1.0 ) UpperCamelCase__ :Any = VisionTextDualEncoderProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=UpperCamelCase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , (BertTokenizer, BertTokenizerFast) ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :Dict = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Optional[Any] = self.prepare_image_inputs() UpperCamelCase__ :List[str] = image_processor(UpperCamelCase_ , return_tensors='''np''' ) UpperCamelCase__ :Optional[int] = processor(images=UpperCamelCase_ , return_tensors='''np''' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :List[str] = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :List[Any] = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :Any = '''lower newer''' UpperCamelCase__ :Optional[Any] = processor(text=UpperCamelCase_ ) UpperCamelCase__ :Tuple = tokenizer(UpperCamelCase_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :str = self.get_image_processor() UpperCamelCase__ :str = self.get_tokenizer() UpperCamelCase__ :Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = '''lower newer''' UpperCamelCase__ :Optional[int] = self.prepare_image_inputs() UpperCamelCase__ :Optional[int] = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with self.assertRaises(UpperCamelCase_ ): processor() def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Tuple = self.get_image_processor() UpperCamelCase__ :List[str] = self.get_tokenizer() UpperCamelCase__ :Tuple = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] UpperCamelCase__ :List[str] = processor.batch_decode(UpperCamelCase_ ) UpperCamelCase__ :Any = tokenizer.batch_decode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def lowerCAmelCase__ ( self ): '''simple docstring''' UpperCamelCase__ :Optional[int] = self.get_image_processor() UpperCamelCase__ :List[Any] = self.get_tokenizer() UpperCamelCase__ :int = VisionTextDualEncoderProcessor(tokenizer=UpperCamelCase_ , image_processor=UpperCamelCase_ ) UpperCamelCase__ :List[str] = '''lower newer''' UpperCamelCase__ :Tuple = self.prepare_image_inputs() UpperCamelCase__ :Dict = processor(text=UpperCamelCase_ , images=UpperCamelCase_ ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
97
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def a_ ( lowerCamelCase , lowerCamelCase ): UpperCAmelCase__ = args.log_outputs UpperCAmelCase__ = '_'.join(args.dataset.split('/' ) + [args.config, args.split] ) # load metric UpperCAmelCase__ = load_metric('wer' ) UpperCAmelCase__ = load_metric('cer' ) # compute metrics UpperCAmelCase__ = wer.compute(references=result['target'] , predictions=result['prediction'] ) UpperCAmelCase__ = cer.compute(references=result['target'] , predictions=result['prediction'] ) # print & log results UpperCAmelCase__ = f'''WER: {wer_result}\nCER: {cer_result}''' print(lowerCamelCase ) with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f: f.write(lowerCamelCase ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: UpperCAmelCase__ = f'''log_{dataset_id}_predictions.txt''' UpperCAmelCase__ = f'''log_{dataset_id}_targets.txt''' with open(lowerCamelCase , 'w' ) as p, open(lowerCamelCase , 'w' ) as t: # mapping function to write output def write_to_file(lowerCamelCase , lowerCamelCase ): p.write(f'''{i}''' + '\n' ) p.write(batch['prediction'] + '\n' ) t.write(f'''{i}''' + '\n' ) t.write(batch['target'] + '\n' ) result.map(lowerCamelCase , with_indices=lowerCamelCase ) def a_ ( lowerCamelCase ): UpperCAmelCase__ = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training UpperCAmelCase__ = re.sub(lowerCamelCase , '' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! UpperCAmelCase__ = ['\n\n', '\n', ' ', ' '] for t in token_sequences_to_ignore: UpperCAmelCase__ = ' '.join(text.split(lowerCamelCase ) ) return text def a_ ( lowerCamelCase ): # load dataset UpperCAmelCase__ = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowerCamelCase ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor UpperCAmelCase__ = AutoFeatureExtractor.from_pretrained(args.model_id ) UpperCAmelCase__ = feature_extractor.sampling_rate # resample audio UpperCAmelCase__ = dataset.cast_column('audio' , Audio(sampling_rate=lowerCamelCase ) ) # load eval pipeline if args.device is None: UpperCAmelCase__ = 0 if torch.cuda.is_available() else -1 UpperCAmelCase__ = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(lowerCamelCase ): UpperCAmelCase__ = asr( batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) UpperCAmelCase__ = prediction['text'] UpperCAmelCase__ = normalize_text(batch['sentence'] ) return batch # run inference on all examples UpperCAmelCase__ = dataset.map(lowerCamelCase , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": lowerCAmelCase__ : Dict = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) lowerCAmelCase__ : Dict = parser.parse_args() main(args)
98
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
from manim import * class A__ ( __UpperCAmelCase ): """simple docstring""" def __lowercase ( self) -> Tuple: '''simple docstring''' a__ : List[Any] = Rectangle(height=0.5 , width=0.5) a__ : str = Rectangle(height=0.46 , width=0.46).set_stroke(width=0) a__ : Any = Rectangle(height=0.25 , width=0.25) a__ : List[Any] = [mem.copy() for i in range(6)] a__ : Optional[Any] = [mem.copy() for i in range(6)] a__ : Tuple = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : Dict = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : List[Any] = VGroup(lowercase , lowercase).arrange(lowercase , buff=0) a__ : List[str] = Text('CPU' , font_size=24) a__ : Optional[Any] = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase) cpu.move_to([-2.5, -0.5, 0]) self.add(lowercase) a__ : Dict = [mem.copy() for i in range(4)] a__ : Optional[Any] = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : str = Text('GPU' , font_size=24) a__ : Any = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase) gpu.move_to([-1, -1, 0]) self.add(lowercase) a__ : Any = [mem.copy() for i in range(6)] a__ : List[str] = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : int = Text('Model' , font_size=24) a__ : List[Any] = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase) model.move_to([3, -1.0, 0]) self.add(lowercase) a__ : Dict = [] a__ : str = [] for i, rect in enumerate(lowercase): a__ : Tuple = fill.copy().set_fill(lowercase , opacity=0.8) target.move_to(lowercase) model_arr.append(lowercase) a__ : int = Rectangle(height=0.46 , width=0.46).set_stroke(width=0.0).set_fill(lowercase , opacity=0.8) cpu_target.move_to(cpu_left_col_base[i]) model_cpu_arr.append(lowercase) self.add(*lowercase , *lowercase) a__ : Dict = [meta_mem.copy() for i in range(6)] a__ : List[Any] = [meta_mem.copy() for i in range(6)] a__ : Union[str, Any] = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : Dict = VGroup(*lowercase).arrange(lowercase , buff=0) a__ : List[Any] = VGroup(lowercase , lowercase).arrange(lowercase , buff=0) a__ : Dict = Text('Disk' , font_size=24) a__ : Optional[int] = Group(lowercase , lowercase).arrange(lowercase , buff=0.5 , aligned_edge=lowercase) disk.move_to([-4, -1.25, 0]) self.add(lowercase , lowercase) a__ : List[str] = Square(side_length=2.2) key.move_to([-5, 2, 0]) a__ : List[Any] = MarkupText( F'<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model' , font_size=18 , ) key_text.move_to([-5, 2.4, 0]) self.add(lowercase , lowercase) a__ : Dict = MarkupText( F'<span fgcolor=\'{BLUE}\'>●</span> Checkpoint' , font_size=18 , ) blue_text.next_to(lowercase , DOWN * 2.4 , aligned_edge=key_text.get_left()) self.add(lowercase) a__ : Dict = MarkupText( F'Now watch as an input is passed through the model\nand how the memory is utilized and handled.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase)) a__ : int = Square(0.3) input.set_fill(lowercase , opacity=1.0) input.set_stroke(width=0.0) input.next_to(model_base[0] , lowercase , buff=0.5) self.play(Write(lowercase)) input.generate_target() input.target.next_to(model_arr[0] , direction=lowercase , buff=0.02) self.play(MoveToTarget(lowercase)) self.play(FadeOut(lowercase)) a__ : str = Arrow(start=lowercase , end=lowercase , color=lowercase , buff=0.5) a.next_to(model_arr[0].get_left() , lowercase , buff=0.2) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0]) a__ : Union[str, Any] = MarkupText( F'As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.' , font_size=24 , ) step_a.move_to([2, 2, 0]) self.play(Write(lowercase , run_time=3)) a__ : Union[str, Any] = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(lowercase) , Circumscribe(model_arr[0] , color=lowercase , **lowercase) , Circumscribe(model_cpu_arr[0] , color=lowercase , **lowercase) , Circumscribe(gpu_rect[0] , color=lowercase , **lowercase) , ) self.play(MoveToTarget(model_cpu_arr[0])) a__ : List[Any] = a.copy() for i in range(6): a_c.next_to(model_arr[i].get_right() + 0.02 , lowercase , buff=0.2) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02) a__ : Any = AnimationGroup( FadeOut(lowercase , run_time=0.5) , MoveToTarget(lowercase , run_time=0.5) , FadeIn(lowercase , run_time=0.5) , lag_ratio=0.2) self.play(lowercase) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i]) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0]) if i >= 1: a__ : Tuple = 0.7 self.play( Circumscribe(model_arr[i] , **lowercase) , Circumscribe(cpu_left_col_base[i] , **lowercase) , Circumscribe(cpu_left_col_base[i + 1] , color=lowercase , **lowercase) , Circumscribe(gpu_rect[0] , color=lowercase , **lowercase) , Circumscribe(model_arr[i + 1] , color=lowercase , **lowercase) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i]) , MoveToTarget(model_cpu_arr[i + 1]) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1]) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2) self.play( Circumscribe(model_arr[-1] , color=lowercase , **lowercase) , Circumscribe(cpu_left_col_base[-1] , color=lowercase , **lowercase) , Circumscribe(gpu_rect[0] , color=lowercase , **lowercase) , ) self.play(MoveToTarget(model_cpu_arr[i])) a__ : Optional[int] = a_c a__ : str = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5) self.play( FadeOut(lowercase) , FadeOut(lowercase , run_time=0.5) , ) a__ : List[Any] = MarkupText(F'Inference on a model too large for GPU memory\nis successfully completed.' , font_size=24) step_a.move_to([2, 2, 0]) self.play(Write(lowercase , run_time=3) , MoveToTarget(lowercase)) self.wait()
99
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
"""simple docstring""" import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=1024 , UpperCamelCase_=1024 , UpperCamelCase_=False , **UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="""train""" , **UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = tok.pad_token_id def get_lens(UpperCamelCase_ ): __SCREAMING_SNAKE_CASE = tqdm( DataLoader(UpperCamelCase_ , batch_size=512 , num_workers=8 , shuffle=UpperCamelCase_ , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) __SCREAMING_SNAKE_CASE = [] for batch in dl: __SCREAMING_SNAKE_CASE = batch["""input_ids"""].ne(UpperCamelCase_ ).sum(1 ).tolist() __SCREAMING_SNAKE_CASE = batch["""labels"""].ne(UpperCamelCase_ ).sum(1 ).tolist() if consider_target: for src, tgt in zip(UpperCamelCase_ , UpperCamelCase_ ): max_lens.append(max(UpperCamelCase_ , UpperCamelCase_ ) ) else: max_lens.extend(UpperCamelCase_ ) return max_lens __SCREAMING_SNAKE_CASE = get_lens(UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = SeqaSeqDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , type_path="""val""" , **UpperCamelCase_ ) __SCREAMING_SNAKE_CASE = get_lens(UpperCamelCase_ ) pickle_save(UpperCamelCase_ , train_ds.len_file ) pickle_save(UpperCamelCase_ , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
100
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
lowercase__ :Tuple = { "A": ["B", "C", "E"], "B": ["A", "D", "E"], "C": ["A", "F", "G"], "D": ["B"], "E": ["A", "B", "D"], "F": ["C"], "G": ["C"], } def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' lowercase = set() # keep track of all the paths to be checked lowercase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue lowercase = queue.pop(0 ) # get the last node from the path lowercase = path[-1] if node not in explored: lowercase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: lowercase = list(lowerCAmelCase__ ) new_path.append(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(lowerCAmelCase__ ) # in case there's no path between the 2 nodes return [] def UpperCamelCase ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 lowercase = [start] lowercase = set(lowerCAmelCase__ ) # Keep tab on distances from `start` node. lowercase = {start: 0, target: -1} while queue: lowercase = queue.pop(0 ) if node == target: lowercase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node] ) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(lowerCAmelCase__ ) queue.append(lowerCAmelCase__ ) lowercase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, "G", "D")) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, "G", "D")) # returns 4
101
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Optional[int] = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _UpperCAmelCase ( __snake_case ): '''simple docstring''' lowerCamelCase__ ='donut-swin' lowerCamelCase__ ={ 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__(self , a_=2_24 , a_=4 , a_=3 , a_=96 , a_=[2, 2, 6, 2] , a_=[3, 6, 12, 24] , a_=7 , a_=4.0 , a_=True , a_=0.0 , a_=0.0 , a_=0.1 , a_="gelu" , a_=False , a_=0.02 , a_=1E-5 , **a_ , ): '''simple docstring''' super().__init__(**a_ ) __snake_case : int = image_size __snake_case : Optional[Any] = patch_size __snake_case : Any = num_channels __snake_case : List[Any] = embed_dim __snake_case : List[str] = depths __snake_case : str = len(a_ ) __snake_case : Optional[Any] = num_heads __snake_case : str = window_size __snake_case : int = mlp_ratio __snake_case : Any = qkv_bias __snake_case : Union[str, Any] = hidden_dropout_prob __snake_case : Dict = attention_probs_dropout_prob __snake_case : Optional[int] = drop_path_rate __snake_case : Any = hidden_act __snake_case : List[Any] = use_absolute_embeddings __snake_case : List[str] = layer_norm_eps __snake_case : Optional[int] = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model __snake_case : Any = int(embed_dim * 2 ** (len(a_ ) - 1) )
102
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
from ..utils import DummyObject, requires_backends class __snake_case ( metaclass=UpperCamelCase_ ): _a = ['''onnx'''] def __init__( self : str , *A_ : Dict , **A_ : Union[str, Any]): requires_backends(self , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : Optional[int] , *A_ : List[str] , **A_ : Optional[Any]): requires_backends(cls , ['''onnx''']) @classmethod def UpperCAmelCase__ ( cls : List[Any] , *A_ : Dict , **A_ : List[str]): requires_backends(cls , ['''onnx'''])
103
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
'''simple docstring''' from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_torch_available from ...utils import OptionalDependencyNotAvailable lowerCAmelCase__ = { '''configuration_gpt_neox_japanese''': ['''GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GPTNeoXJapaneseConfig'''], '''tokenization_gpt_neox_japanese''': ['''GPTNeoXJapaneseTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GPTNeoXJapaneseForCausalLM''', '''GPTNeoXJapaneseLayer''', '''GPTNeoXJapaneseModel''', '''GPTNeoXJapanesePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_gpt_neox_japanese import GPT_NEOX_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTNeoXJapaneseConfig from .tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_neox_japanese import ( GPT_NEOX_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseLayer, GPTNeoXJapaneseModel, GPTNeoXJapanesePreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
104
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[int] ) ->List[str]: '''simple docstring''' if ( (cp >= 0X4E00 and cp <= 0X9FFF) or (cp >= 0X3400 and cp <= 0X4DBF) # or (cp >= 0X2_0000 and cp <= 0X2_A6DF) # or (cp >= 0X2_A700 and cp <= 0X2_B73F) # or (cp >= 0X2_B740 and cp <= 0X2_B81F) # or (cp >= 0X2_B820 and cp <= 0X2_CEAF) # or (cp >= 0XF900 and cp <= 0XFAFF) or (cp >= 0X2_F800 and cp <= 0X2_FA1F) # ): # return True return False def _SCREAMING_SNAKE_CASE ( _lowercase : str ) ->Dict: '''simple docstring''' for char in word: a : int = ord(_lowercase ) if not _is_chinese_char(_lowercase ): return 0 return 1 def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] ) ->Tuple: '''simple docstring''' a : int = set() for token in tokens: a : Union[str, Any] = len(_lowercase ) > 1 and is_chinese(_lowercase ) if chinese_word: word_set.add(_lowercase ) a : Union[str, Any] = list(_lowercase ) return word_list def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : set() ) ->Tuple: '''simple docstring''' if not chinese_word_set: return bert_tokens a : str = max([len(_lowercase ) for w in chinese_word_set] ) a : List[str] = bert_tokens a, a : Optional[Any] = 0, len(_lowercase ) while start < end: a : Optional[int] = True if is_chinese(bert_word[start] ): a : List[Any] = min(end - start , _lowercase ) for i in range(_lowercase , 1 , -1 ): a : Optional[int] = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): a : Optional[int] = "##" + bert_word[j] a : List[Any] = start + i a : Dict = False break if single_word: start += 1 return bert_word def _SCREAMING_SNAKE_CASE ( _lowercase : List[str] , _lowercase : LTP , _lowercase : BertTokenizer ) ->Optional[int]: '''simple docstring''' a : Optional[int] = [] for i in range(0 , len(_lowercase ) , 100 ): a : List[Any] = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws a : Tuple = [get_chinese_word(_lowercase ) for r in res] ltp_res.extend(_lowercase ) assert len(_lowercase ) == len(_lowercase ) a : Optional[int] = [] for i in range(0 , len(_lowercase ) , 100 ): a : Any = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowercase , truncation=_lowercase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_lowercase ) == len(_lowercase ) a : int = [] for input_ids, chinese_word in zip(_lowercase , _lowercase ): a : Dict = [] for id in input_ids: a : Optional[int] = bert_tokenizer._convert_id_to_token(_lowercase ) input_tokens.append(_lowercase ) a : List[Any] = add_sub_symbol(_lowercase , _lowercase ) a : Union[str, Any] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_lowercase ): if token[:2] == "##": a : List[Any] = token[2:] # save chinese tokens' pos if len(_lowercase ) == 1 and _is_chinese_char(ord(_lowercase ) ): ref_id.append(_lowercase ) ref_ids.append(_lowercase ) assert len(_lowercase ) == len(_lowercase ) return ref_ids def _SCREAMING_SNAKE_CASE ( _lowercase : Optional[Any] ) ->Union[str, Any]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: a : str = f.readlines() a : Optional[int] = [line.strip() for line in data if len(_lowercase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' a : Optional[int] = LTP(args.ltp ) # faster in GPU device a : str = BertTokenizer.from_pretrained(args.bert ) a : Optional[int] = prepare_ref(_lowercase , _lowercase , _lowercase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: a : Optional[Any] = [json.dumps(_lowercase ) + "\n" for ref in ref_ids] f.writelines(_lowercase ) if __name__ == "__main__": a : Optional[Any] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', required=False, type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', required=False, type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''', ) parser.add_argument( '''--bert''', required=False, type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''', ) parser.add_argument( '''--save_path''', required=False, type=str, default='''./resources/ref.txt''', help='''path to save res''', ) a : List[str] = parser.parse_args() main(args)
105
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
"""simple docstring""" # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib __UpperCamelCase : str = get_logger() __UpperCamelCase : Optional[dict] = None class SCREAMING_SNAKE_CASE ( TensorFormatter[Mapping, "jax.Array", Mapping] ): """simple docstring""" def __init__( self : Any ,lowercase_ : str=None ,lowercase_ : Union[str, Any]=None ,**lowercase_ : List[Any] ): super().__init__(features=lowercase_ ) import jax from jaxlib.xla_client import Device if isinstance(lowercase_ ,lowercase_ ): raise ValueError( F'Expected {device} to be a `str` not {type(lowercase_ )}, as `jaxlib.xla_extension.Device` ' '''is not serializable neither with `pickle` nor with `dill`. Instead you can surround ''' '''the device with `str()` to get its string identifier that will be internally mapped ''' '''to the actual `jaxlib.xla_extension.Device`.''' ) lowerCAmelCase__ : Optional[Any] = device if isinstance(lowercase_ ,lowercase_ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : Dict = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F'Device with string identifier {self.device} not listed among the available ' F'devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default ' F'device: {str(jax.devices()[0] )}.' ) lowerCAmelCase__ : List[str] = str(jax.devices()[0] ) lowerCAmelCase__ : Optional[int] = jnp_array_kwargs @staticmethod def __lowerCAmelCase ( ): import jax return {str(lowercase_ ): device for device in jax.devices()} def __lowerCAmelCase ( self : Optional[Any] ,lowercase_ : Optional[Any] ): import jax import jax.numpy as jnp if isinstance(lowercase_ ,lowercase_ ) and column: if all( isinstance(lowercase_ ,jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(lowercase_ ,axis=0 ) return column def __lowerCAmelCase ( self : int ,lowercase_ : str ): import jax import jax.numpy as jnp if isinstance(lowercase_ ,(str, bytes, type(lowercase_ )) ): return value elif isinstance(lowercase_ ,(np.character, np.ndarray) ) and np.issubdtype(value.dtype ,np.character ): return value.tolist() lowerCAmelCase__ : List[Any] = {} if isinstance(lowercase_ ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: lowerCAmelCase__ : int = {'''dtype''': jnp.intaa} else: lowerCAmelCase__ : Optional[Any] = {'''dtype''': jnp.intaa} elif isinstance(lowercase_ ,(np.number, np.ndarray) ) and np.issubdtype(value.dtype ,np.floating ): lowerCAmelCase__ : List[Any] = {'''dtype''': jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(lowercase_ ,PIL.Image.Image ): lowerCAmelCase__ : Union[str, Any] = np.asarray(lowercase_ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: lowerCAmelCase__ : int = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(lowercase_ ,**{**default_dtype, **self.jnp_array_kwargs} ) def __lowerCAmelCase ( self : int ,lowercase_ : Tuple ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(lowercase_ ,torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(lowercase_ ,'''__array__''' ) and not isinstance(lowercase_ ,jax.Array ): lowerCAmelCase__ : Optional[int] = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(lowercase_ ,np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) elif isinstance(lowercase_ ,(list, tuple) ): return self._consolidate([self.recursive_tensorize(lowercase_ ) for substruct in data_struct] ) return self._tensorize(lowercase_ ) def __lowerCAmelCase ( self : Tuple ,lowercase_ : dict ): return map_nested(self._recursive_tensorize ,lowercase_ ,map_list=lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : pa.Table ): lowerCAmelCase__ : Tuple = self.numpy_arrow_extractor().extract_row(lowercase_ ) lowerCAmelCase__ : int = self.python_features_decoder.decode_row(lowercase_ ) return self.recursive_tensorize(lowercase_ ) def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : pa.Table ): lowerCAmelCase__ : Any = self.numpy_arrow_extractor().extract_column(lowercase_ ) lowerCAmelCase__ : List[Any] = self.python_features_decoder.decode_column(lowercase_ ,pa_table.column_names[0] ) lowerCAmelCase__ : Optional[Any] = self.recursive_tensorize(lowercase_ ) lowerCAmelCase__ : int = self._consolidate(lowercase_ ) return column def __lowerCAmelCase ( self : Union[str, Any] ,lowercase_ : pa.Table ): lowerCAmelCase__ : List[Any] = self.numpy_arrow_extractor().extract_batch(lowercase_ ) lowerCAmelCase__ : Dict = self.python_features_decoder.decode_batch(lowercase_ ) lowerCAmelCase__ : int = self.recursive_tensorize(lowercase_ ) for column_name in batch: lowerCAmelCase__ : Tuple = self._consolidate(batch[column_name] ) return batch
106
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : str = logging.get_logger(__name__) def __magic_name__ ( A : int ): '''simple docstring''' a = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: a = 128 elif "12-12" in model_name: a = 12 a = 12 elif "14-14" in model_name: a = 14 a = 14 elif "16-16" in model_name: a = 16 a = 16 else: raise ValueError("Model not supported" ) a = "huggingface/label-files" if "speech-commands" in model_name: a = 35 a = "speech-commands-v2-id2label.json" else: a = 527 a = "audioset-id2label.json" a = json.load(open(hf_hub_download(A, A, repo_type="dataset" ), "r" ) ) a = {int(A ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} return config def __magic_name__ ( A : Dict ): '''simple docstring''' if "module.v" in name: a = name.replace("module.v", "audio_spectrogram_transformer" ) if "cls_token" in name: a = name.replace("cls_token", "embeddings.cls_token" ) if "dist_token" in name: a = name.replace("dist_token", "embeddings.distillation_token" ) if "pos_embed" in name: a = name.replace("pos_embed", "embeddings.position_embeddings" ) if "patch_embed.proj" in name: a = name.replace("patch_embed.proj", "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: a = name.replace("blocks", "encoder.layer" ) if "attn.proj" in name: a = name.replace("attn.proj", "attention.output.dense" ) if "attn" in name: a = name.replace("attn", "attention.self" ) if "norm1" in name: a = name.replace("norm1", "layernorm_before" ) if "norm2" in name: a = name.replace("norm2", "layernorm_after" ) if "mlp.fc1" in name: a = name.replace("mlp.fc1", "intermediate.dense" ) if "mlp.fc2" in name: a = name.replace("mlp.fc2", "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: a = name.replace("audio_spectrogram_transformer.norm", "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: a = name.replace("module.mlp_head.0", "classifier.layernorm" ) if "module.mlp_head.1" in name: a = name.replace("module.mlp_head.1", "classifier.dense" ) return name def __magic_name__ ( A : Tuple, A : Optional[Any] ): '''simple docstring''' for key in orig_state_dict.copy().keys(): a = orig_state_dict.pop(A ) if "qkv" in key: a = key.split("." ) a = int(key_split[3] ) a = config.hidden_size if "weight" in key: a = val[:dim, :] a = val[dim : dim * 2, :] a = val[-dim:, :] else: a = val[:dim] a = val[dim : dim * 2] a = val[-dim:] else: a = val return orig_state_dict def __magic_name__ ( A : Optional[int] ): '''simple docstring''' a = [ "module.v.head.weight", "module.v.head.bias", "module.v.head_dist.weight", "module.v.head_dist.bias", ] for k in ignore_keys: state_dict.pop(A, A ) @torch.no_grad() def __magic_name__ ( A : List[str], A : Optional[int], A : Any=False ): '''simple docstring''' a = get_audio_spectrogram_transformer_config(A ) a = { "ast-finetuned-audioset-10-10-0.4593": ( "https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.450": ( "https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448": ( "https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1" ), "ast-finetuned-audioset-10-10-0.448-v2": ( "https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1" ), "ast-finetuned-audioset-12-12-0.447": ( "https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1" ), "ast-finetuned-audioset-14-14-0.443": ( "https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1" ), "ast-finetuned-audioset-16-16-0.442": ( "https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1" ), "ast-finetuned-speech-commands-v2": ( "https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1" ), } # load original state_dict a = model_name_to_url[model_name] a = torch.hub.load_state_dict_from_url(A, map_location="cpu" ) # remove some keys remove_keys(A ) # rename some keys a = convert_state_dict(A, A ) # load 🤗 model a = ASTForAudioClassification(A ) model.eval() model.load_state_dict(A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 a = -4.2_67_73_93 if "speech-commands" not in model_name else -6.84_59_78 a = 4.5_68_99_74 if "speech-commands" not in model_name else 5.5_65_45_26 a = 1024 if "speech-commands" not in model_name else 128 a = ASTFeatureExtractor(mean=A, std=A, max_length=A ) if "speech-commands" in model_name: a = load_dataset("speech_commands", "v0.02", split="validation" ) a = dataset[0]["audio"]["array"] else: a = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint", filename="sample_audio.flac", repo_type="dataset", ) a , a = torchaudio.load(A ) a = waveform.squeeze().numpy() a = feature_extractor(A, sampling_rate=16000, return_tensors="pt" ) # forward pass a = model(**A ) a = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": a = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": a = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": a = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": a = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": a = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": a = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": a = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": a = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3], A, atol=1E-4 ): raise ValueError("Logits don't match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(A ).mkdir(exist_ok=A ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A ) print(F"""Saving feature extractor to {pytorch_dump_folder_path}""" ) feature_extractor.save_pretrained(A ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F"""MIT/{model_name}""" ) feature_extractor.push_to_hub(F"""MIT/{model_name}""" ) if __name__ == "__main__": __lowerCAmelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : Dict = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
107
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
"""simple docstring""" from math import sqrt def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" lowerCAmelCase : Any = True # 0 and 1 are none primes. if number <= 1: lowerCAmelCase : Any = False for divisor in range(2 , int(round(sqrt(SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: lowerCAmelCase : Optional[Any] = False break # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N lowerCAmelCase : Tuple = list(range(2 , n + 1 ) ) lowerCAmelCase : List[Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): lowerCAmelCase : Tuple = 0 # filters actual prime numbers. lowerCAmelCase : str = [x for x in begin_list if x != 0] # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" lowerCAmelCase : str = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(SCREAMING_SNAKE_CASE ): ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" lowerCAmelCase : Optional[Any] = [] # this list will be returns of the function. # potential prime number factors. lowerCAmelCase : Optional[Any] = 2 lowerCAmelCase : Optional[Any] = number if number == 0 or number == 1: ans.append(SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : List[Any] = 0 # prime factorization of 'number' lowerCAmelCase : Union[str, Any] = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Any = max(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" lowerCAmelCase : Any = 0 # prime factorization of 'number' lowerCAmelCase : str = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : List[Any] = min(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def a__ ( SCREAMING_SNAKE_CASE : int ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" lowerCAmelCase : str = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' lowerCAmelCase : Any = get_prime_numbers(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = len(SCREAMING_SNAKE_CASE ) # run variable for while-loops. lowerCAmelCase : Dict = 0 lowerCAmelCase : Optional[int] = None # exit variable. for break up the loops lowerCAmelCase : Optional[int] = True while i < len_pn and loop: lowerCAmelCase : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: lowerCAmelCase : Dict = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (len(SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def a__ ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : int = 0 while numbera != 0: lowerCAmelCase : Dict = numbera % numbera lowerCAmelCase : int = numbera lowerCAmelCase : Optional[Any] = rest # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def a__ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." lowerCAmelCase : List[str] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' lowerCAmelCase : Dict = prime_factorization(SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = prime_factorization(SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: lowerCAmelCase : Any = [] lowerCAmelCase : Tuple = [] lowerCAmelCase : List[str] = max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) lowerCAmelCase : Optional[int] = 0 lowerCAmelCase : Optional[Any] = 0 lowerCAmelCase : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE ) lowerCAmelCase : int = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(max(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ): ans *= n else: lowerCAmelCase : List[str] = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: lowerCAmelCase : Any = prime_fac_a.count(SCREAMING_SNAKE_CASE ) for _ in range(SCREAMING_SNAKE_CASE ): ans *= n done.append(SCREAMING_SNAKE_CASE ) # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" lowerCAmelCase : int = 0 lowerCAmelCase : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and is_prime( SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] ): '''simple docstring''' assert ( is_prime(SCREAMING_SNAKE_CASE ) and is_prime(SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" lowerCAmelCase : List[Any] = p_number_a + 1 # jump to the next number lowerCAmelCase : Tuple = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" lowerCAmelCase : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def a__ ( SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" lowerCAmelCase : Any = get_divisors(SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def a__ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. lowerCAmelCase : Any = gcd(abs(SCREAMING_SNAKE_CASE ) , abs(SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def a__ ( SCREAMING_SNAKE_CASE : Any ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" lowerCAmelCase : Any = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' assert isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" lowerCAmelCase : Union[str, Any] = 0 lowerCAmelCase : Tuple = 1 lowerCAmelCase : Any = 1 # this will be return for _ in range(n - 1 ): lowerCAmelCase : List[str] = ans ans += fiba lowerCAmelCase : Optional[Any] = tmp return ans
108
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
"""simple docstring""" from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def _snake_case ( UpperCamelCase : Namespace ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) A: Union[str, Any] = "\ntransformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires\nTensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions.\n" class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase__ ): @staticmethod def SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE ) -> Dict: '''simple docstring''' UpperCAmelCase : Union[str, Any] = parser.add_parser( """convert""" , help="""CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.""" , ) train_parser.add_argument("""--model_type""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Model's type.""" ) train_parser.add_argument( """--tf_checkpoint""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""TensorFlow checkpoint path or folder.""" ) train_parser.add_argument( """--pytorch_dump_output""" , type=_SCREAMING_SNAKE_CASE , required=_SCREAMING_SNAKE_CASE , help="""Path to the PyTorch saved model output.""" ) train_parser.add_argument("""--config""" , type=_SCREAMING_SNAKE_CASE , default="""""" , help="""Configuration file path or folder.""" ) train_parser.add_argument( """--finetuning_task_name""" , type=_SCREAMING_SNAKE_CASE , default=_SCREAMING_SNAKE_CASE , help="""Optional fine-tuning task name if the TF model was a finetuned model.""" , ) train_parser.set_defaults(func=_SCREAMING_SNAKE_CASE ) def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , ) -> List[str]: '''simple docstring''' UpperCAmelCase : Union[str, Any] = logging.get_logger("""transformers-cli/converting""" ) self._logger.info(F"Loading model {model_type}" ) UpperCAmelCase : List[str] = model_type UpperCAmelCase : List[str] = tf_checkpoint UpperCAmelCase : List[str] = pytorch_dump_output UpperCAmelCase : Any = config UpperCAmelCase : str = finetuning_task_name def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) if "ckpt" in self._tf_checkpoint.lower(): UpperCAmelCase : List[Any] = self._tf_checkpoint UpperCAmelCase : List[str] = """""" else: UpperCAmelCase : str = self._tf_checkpoint UpperCAmelCase : Optional[int] = """""" convert_transfo_xl_checkpoint_to_pytorch( _SCREAMING_SNAKE_CASE , self._config , self._pytorch_dump_output , _SCREAMING_SNAKE_CASE ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(_SCREAMING_SNAKE_CASE ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( """--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]""" )
109
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
'''simple docstring''' import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __lowerCAmelCase , __lowerCAmelCase ): lowerCAmelCase_ = 1 @register_to_config def __init__( self : Optional[int] , __lowercase : Any=2000 , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[Any]=20 , __lowercase : List[str]=1E-3 ): """simple docstring""" __lowercase =None __lowercase =None __lowercase =None def snake_case ( self : str , __lowercase : Dict , __lowercase : Union[str, torch.device] = None ): """simple docstring""" __lowercase =torch.linspace(1 , self.config.sampling_eps , _UpperCAmelCase , device=_UpperCAmelCase ) def snake_case ( self : str , __lowercase : List[Any] , __lowercase : Union[str, Any] , __lowercase : Optional[int] , __lowercase : Optional[Any]=None ): """simple docstring""" if self.timesteps is None: raise ValueError( '`self.timesteps` is not set, you need to run \'set_timesteps\' after creating the scheduler' ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase =( -0.2_5 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase =torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase =std.flatten() while len(std.shape ) < len(score.shape ): __lowercase =std.unsqueeze(-1 ) __lowercase =-score / std # compute __lowercase =-1.0 / len(self.timesteps ) __lowercase =self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase =beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase =beta_t.unsqueeze(-1 ) __lowercase =-0.5 * beta_t * x __lowercase =torch.sqrt(_UpperCAmelCase ) __lowercase =drift - diffusion**2 * score __lowercase =x + drift * dt # add noise __lowercase =randn_tensor(x.shape , layout=x.layout , generator=_UpperCAmelCase , device=x.device , dtype=x.dtype ) __lowercase =x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Optional[int] ): """simple docstring""" return self.config.num_train_timesteps
141
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
import numpy as np import torch from ..models.clipseg import CLIPSegForImageSegmentation from ..utils import is_vision_available, requires_backends from .base import PipelineTool if is_vision_available(): from PIL import Image class _A ( __lowerCAmelCase ): _UpperCamelCase : Dict = ( '''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.''' '''It takes two arguments named `image` which should be the original image, and `label` which should be a text ''' '''describing the elements what should be identified in the segmentation mask. The tool returns the mask.''' ) _UpperCamelCase : Any = '''CIDAS/clipseg-rd64-refined''' _UpperCamelCase : Union[str, Any] = '''image_segmenter''' _UpperCamelCase : List[Any] = CLIPSegForImageSegmentation _UpperCamelCase : str = ['''image''', '''text'''] _UpperCamelCase : Optional[int] = ['''image'''] def __init__( self : List[Any] , *_A : List[Any] , **_A : Tuple ) -> str: """simple docstring""" requires_backends(self , ['''vision'''] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def __a ( self : Tuple , _A : "Image" , _A : str ) -> Optional[int]: """simple docstring""" return self.pre_processor(text=[label] , images=[image] , padding=_UpperCAmelCase , return_tensors='''pt''' ) def __a ( self : str , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" with torch.no_grad(): lowercase : Dict = self.model(**_UpperCAmelCase ).logits return logits def __a ( self : Union[str, Any] , _A : Tuple ) -> Any: """simple docstring""" lowercase : Union[str, Any] = outputs.cpu().detach().numpy() lowercase : Dict = 0 lowercase : Tuple = 1 return Image.fromarray((array * 255).astype(np.uinta ) )
308
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase : List[Any] = logging.get_logger(__name__) UpperCAmelCase : List[str] = { "xlnet-base-cased": "https://huggingface.co/xlnet-base-cased/resolve/main/config.json", "xlnet-large-cased": "https://huggingface.co/xlnet-large-cased/resolve/main/config.json", } class __lowercase ( __lowerCAmelCase ): """simple docstring""" UpperCamelCase : int = '''xlnet''' UpperCamelCase : List[Any] = ['''mems'''] UpperCamelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , A=3_20_00 , A=10_24 , A=24 , A=16 , A=40_96 , A="gelu" , A=True , A="bi" , A=0.02 , A=1e-1_2 , A=0.1 , A=5_12 , A=None , A=True , A=False , A=False , A=-1 , A=False , A="last" , A=True , A="tanh" , A=0.1 , A=5 , A=5 , A=5 , A=1 , A=2 , **A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = vocab_size lowerCamelCase = d_model lowerCamelCase = n_layer lowerCamelCase = n_head if d_model % n_head != 0: raise ValueError(F'\'d_model % n_head\' ({d_model % n_head}) should be equal to 0' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})' ) lowerCamelCase = d_model // n_head lowerCamelCase = ff_activation lowerCamelCase = d_inner lowerCamelCase = untie_r lowerCamelCase = attn_type lowerCamelCase = initializer_range lowerCamelCase = layer_norm_eps lowerCamelCase = dropout lowerCamelCase = mem_len lowerCamelCase = reuse_len lowerCamelCase = bi_data lowerCamelCase = clamp_len lowerCamelCase = same_length lowerCamelCase = summary_type lowerCamelCase = summary_use_proj lowerCamelCase = summary_activation lowerCamelCase = summary_last_dropout lowerCamelCase = start_n_top lowerCamelCase = end_n_top lowerCamelCase = bos_token_id lowerCamelCase = pad_token_id lowerCamelCase = eos_token_id if "use_cache" in kwargs: warnings.warn( """The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`""" """ instead.""" , _UpperCAmelCase , ) lowerCamelCase = kwargs["""use_cache"""] lowerCamelCase = use_mems_eval lowerCamelCase = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def __A ( self ) -> List[Any]: '''simple docstring''' logger.info(F'The model {self.model_type} is one of the few models that has no sequence length limit.' ) return -1 @max_position_embeddings.setter def __A ( self , A ) -> Any: '''simple docstring''' raise NotImplementedError( F'The model {self.model_type} is one of the few models that has no sequence length limit.' )
252
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: int =[[] for _ in range(_snake_case )] lowerCamelCase__: Union[str, Any] =key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1 or len(_snake_case ) <= key: return input_string for position, character in enumerate(_snake_case ): lowerCamelCase__: Union[str, Any] =position % (lowest * 2) # puts it in bounds lowerCamelCase__: List[str] =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append(_snake_case ) lowerCamelCase__: str =["".join(_snake_case ) for row in temp_grid] lowerCamelCase__: List[str] ="".join(_snake_case ) return output_string def lowerCAmelCase_ ( __a , __a ) -> str: """simple docstring""" lowerCamelCase__: str =[] lowerCamelCase__: List[Any] =key - 1 if key <= 0: raise ValueError("Height of grid can\'t be 0 or negative" ) if key == 1: return input_string lowerCamelCase__: Tuple =[[] for _ in range(_snake_case )] # generates template for position in range(len(_snake_case ) ): lowerCamelCase__: str =position % (lowest * 2) # puts it in bounds lowerCamelCase__: int =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern temp_grid[num].append("*" ) lowerCamelCase__: Optional[Any] =0 for row in temp_grid: # fills in the characters lowerCamelCase__: Optional[int] =input_string[counter : counter + len(_snake_case )] grid.append(list(_snake_case ) ) counter += len(_snake_case ) lowerCamelCase__: int ="" # reads as zigzag for position in range(len(_snake_case ) ): lowerCamelCase__: Dict =position % (lowest * 2) # puts it in bounds lowerCamelCase__: List[str] =min(_snake_case , lowest * 2 - num ) # creates zigzag pattern output_string += grid[num][0] grid[num].pop(0 ) return output_string def lowerCAmelCase_ ( __a ) -> dict[int, str]: """simple docstring""" lowerCamelCase__: Optional[int] ={} for key_guess in range(1 , len(_snake_case ) ): # tries every key lowerCamelCase__: List[str] =decrypt(_snake_case , _snake_case ) return results if __name__ == "__main__": import doctest doctest.testmod()
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
from typing import TYPE_CHECKING from ..utils import _LazyModule __UpperCamelCase : str = { "config": [ "EXTERNAL_DATA_FORMAT_SIZE_LIMIT", "OnnxConfig", "OnnxConfigWithPast", "OnnxSeq2SeqConfigWithPast", "PatchingSpec", ], "convert": ["export", "validate_model_outputs"], "features": ["FeaturesManager"], "utils": ["ParameterFormat", "compute_serialized_parameters_size"], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys __UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''camembert-base''': '''https://huggingface.co/camembert-base/resolve/main/config.json''', '''umberto-commoncrawl-cased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json''' ), '''umberto-wikipedia-uncased-v1''': ( '''https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): """simple docstring""" a : Optional[int] ='''camembert''' def __init__( self , snake_case__=30_522 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3_072 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=1 , snake_case__=0 , snake_case__=2 , snake_case__="absolute" , snake_case__=True , snake_case__=None , **snake_case__ , ): """simple docstring""" super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) lowerCAmelCase : str = vocab_size lowerCAmelCase : Dict = hidden_size lowerCAmelCase : Any = num_hidden_layers lowerCAmelCase : Union[str, Any] = num_attention_heads lowerCAmelCase : Optional[int] = hidden_act lowerCAmelCase : List[str] = intermediate_size lowerCAmelCase : Dict = hidden_dropout_prob lowerCAmelCase : Any = attention_probs_dropout_prob lowerCAmelCase : List[Any] = max_position_embeddings lowerCAmelCase : int = type_vocab_size lowerCAmelCase : Optional[int] = initializer_range lowerCAmelCase : Optional[Any] = layer_norm_eps lowerCAmelCase : Union[str, Any] = position_embedding_type lowerCAmelCase : List[str] = use_cache lowerCAmelCase : List[str] = classifier_dropout class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): """simple docstring""" @property def lowercase__ ( self ): """simple docstring""" if self.task == "multiple-choice": lowerCAmelCase : List[str] = {0: "batch", 1: "choice", 2: "sequence"} else: lowerCAmelCase : Union[str, Any] = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
108
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''deepmind/language-perceiver''': '''https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json''', # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class snake_case__(__lowerCAmelCase ): """simple docstring""" lowercase_ = '''perceiver''' def __init__( self : Tuple , SCREAMING_SNAKE_CASE : Optional[int]=256 , SCREAMING_SNAKE_CASE : List[Any]=1_280 , SCREAMING_SNAKE_CASE : int=768 , SCREAMING_SNAKE_CASE : Tuple=1 , SCREAMING_SNAKE_CASE : List[Any]=26 , SCREAMING_SNAKE_CASE : Union[str, Any]=8 , SCREAMING_SNAKE_CASE : Union[str, Any]=8 , SCREAMING_SNAKE_CASE : Optional[int]=None , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : List[Any]="kv" , SCREAMING_SNAKE_CASE : Union[str, Any]=1 , SCREAMING_SNAKE_CASE : Any=1 , SCREAMING_SNAKE_CASE : List[str]="gelu" , SCREAMING_SNAKE_CASE : List[str]=0.1 , SCREAMING_SNAKE_CASE : Dict=0.02 , SCREAMING_SNAKE_CASE : List[str]=1E-1_2 , SCREAMING_SNAKE_CASE : List[str]=True , SCREAMING_SNAKE_CASE : Optional[Any]=262 , SCREAMING_SNAKE_CASE : Tuple=2_048 , SCREAMING_SNAKE_CASE : int=56 , SCREAMING_SNAKE_CASE : Tuple=[368, 496] , SCREAMING_SNAKE_CASE : Tuple=16 , SCREAMING_SNAKE_CASE : Dict=1_920 , SCREAMING_SNAKE_CASE : Union[str, Any]=16 , SCREAMING_SNAKE_CASE : Any=[1, 16, 224, 224] , **SCREAMING_SNAKE_CASE : Dict , ): super().__init__(**_UpperCAmelCase ) lowercase__ : Union[str, Any] = num_latents lowercase__ : str = d_latents lowercase__ : List[str] = d_model lowercase__ : Optional[int] = num_blocks lowercase__ : Union[str, Any] = num_self_attends_per_block lowercase__ : List[str] = num_self_attention_heads lowercase__ : Optional[Any] = num_cross_attention_heads lowercase__ : List[str] = qk_channels lowercase__ : Union[str, Any] = v_channels lowercase__ : Optional[int] = cross_attention_shape_for_attention lowercase__ : Union[str, Any] = self_attention_widening_factor lowercase__ : Any = cross_attention_widening_factor lowercase__ : Dict = hidden_act lowercase__ : List[Any] = attention_probs_dropout_prob lowercase__ : Optional[int] = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : int = use_query_residual # masked language modeling attributes lowercase__ : Optional[int] = vocab_size lowercase__ : Optional[Any] = max_position_embeddings # image classification attributes lowercase__ : Optional[int] = image_size # flow attributes lowercase__ : List[Any] = train_size # multimodal autoencoding attributes lowercase__ : List[str] = num_frames lowercase__ : Dict = audio_samples_per_frame lowercase__ : Tuple = samples_per_patch lowercase__ : str = output_shape class snake_case__(__lowerCAmelCase ): """simple docstring""" @property def snake_case ( self : Any ): if self.task == "multiple-choice": lowercase__ : Optional[Any] = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("inputs", dynamic_axis), ("attention_mask", dynamic_axis), ] ) @property def snake_case ( self : List[str] ): return 1E-4 def snake_case ( self : int , SCREAMING_SNAKE_CASE : Union["PreTrainedTokenizerBase", "FeatureExtractionMixin"] , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : int = -1 , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[TensorType] = None , SCREAMING_SNAKE_CASE : int = 3 , SCREAMING_SNAKE_CASE : int = 40 , SCREAMING_SNAKE_CASE : int = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(_UpperCAmelCase , _UpperCAmelCase ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : Union[str, Any] = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowercase__ : Union[str, Any] = preprocessor.num_special_tokens_to_add(_UpperCAmelCase ) lowercase__ : str = compute_effective_axis_dimension( _UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=_UpperCAmelCase ) # Generate dummy inputs according to compute batch and sequence lowercase__ : int = [" ".join(["a"] ) * seq_length] * batch_size lowercase__ : Any = dict(preprocessor(_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) lowercase__ : List[str] = inputs.pop("input_ids" ) return inputs elif isinstance(_UpperCAmelCase , _UpperCAmelCase ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowercase__ : int = compute_effective_axis_dimension(_UpperCAmelCase , fixed_dimension=OnnxConfig.default_fixed_batch ) lowercase__ : List[Any] = self._generate_dummy_images(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) lowercase__ : int = dict(preprocessor(images=_UpperCAmelCase , return_tensors=_UpperCAmelCase ) ) lowercase__ : str = inputs.pop("pixel_values" ) return inputs else: raise ValueError( "Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor." )
130
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
import math def A_ ( ) -> None: UpperCamelCase : List[Any] = input("Enter message: " ) UpperCamelCase : Optional[Any] = int(input(F"""Enter key [2-{len(_snake_case ) - 1}]: """ ) ) UpperCamelCase : Tuple = input("Encryption/Decryption [e/d]: " ) if mode.lower().startswith("e" ): UpperCamelCase : int = encrypt_message(_snake_case , _snake_case ) elif mode.lower().startswith("d" ): UpperCamelCase : List[Any] = decrypt_message(_snake_case , _snake_case ) # Append pipe symbol (vertical bar) to identify spaces at the end. print(F"""Output:\n{text + "|"}""" ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : Optional[Any] = [""] * key for col in range(_snake_case ): UpperCamelCase : List[Any] = col while pointer < len(_snake_case ): cipher_text[col] += message[pointer] pointer += key return "".join(_snake_case ) def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> str: UpperCamelCase : List[str] = math.ceil(len(_snake_case ) / key ) UpperCamelCase : List[Any] = key UpperCamelCase : Dict = (num_cols * num_rows) - len(_snake_case ) UpperCamelCase : Optional[int] = [""] * num_cols UpperCamelCase : str = 0 UpperCamelCase : Dict = 0 for symbol in message: plain_text[col] += symbol col += 1 if ( (col == num_cols) or (col == num_cols - 1) and (row >= num_rows - num_shaded_boxes) ): UpperCamelCase : Optional[int] = 0 row += 1 return "".join(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
52
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase_ = logging.get_logger(__name__) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase=False ) ->List[Any]: """simple docstring""" a_ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) ->Optional[int]: """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: a_ = "" else: a_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) a_ = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict a_ = in_proj_weight[ : config.hidden_size, : ] a_ = in_proj_bias[: config.hidden_size] a_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a_ = in_proj_weight[ -config.hidden_size :, : ] a_ = in_proj_bias[-config.hidden_size :] def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case , _snake_case ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" a_ = dct.pop(_snake_case ) a_ = val def UpperCamelCase ( ) ->int: """simple docstring""" a_ = "http://images.cocodataset.org/val2017/000000039769.jpg" a_ = Image.open(requests.get(_snake_case , stream=_snake_case ).raw ) return im @torch.no_grad() def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=True ) ->str: """simple docstring""" a_ = ViTConfig() # patch_size if model_name[-1] == "8": a_ = 8 # set labels if required if not base_model: a_ = 1_000 a_ = "huggingface/label-files" a_ = "imagenet-1k-id2label.json" a_ = json.load(open(hf_hub_download(_snake_case , _snake_case , repo_type="dataset" ) , "r" ) ) a_ = {int(_snake_case ): v for k, v in idalabel.items()} a_ = idalabel a_ = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a_ = 384 a_ = 1_536 a_ = 12 a_ = 6 # load original model from torch hub a_ = torch.hub.load("facebookresearch/dino:main" , _snake_case ) original_model.eval() # load state_dict of original model, remove and rename some keys a_ = original_model.state_dict() if base_model: remove_classification_head_(_snake_case ) a_ = create_rename_keys(_snake_case , base_model=_snake_case ) for src, dest in rename_keys: rename_key(_snake_case , _snake_case , _snake_case ) read_in_q_k_v(_snake_case , _snake_case , _snake_case ) # load HuggingFace model if base_model: a_ = ViTModel(_snake_case , add_pooling_layer=_snake_case ).eval() else: a_ = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor a_ = ViTImageProcessor() a_ = image_processor(images=prepare_img() , return_tensors="pt" ) a_ = encoding["pixel_values"] a_ = model(_snake_case ) if base_model: a_ = original_model(_snake_case ) assert torch.allclose(_snake_case , outputs.last_hidden_state[:, 0, :] , atol=1E-1 ) else: a_ = original_model(_snake_case ) assert logits.shape == outputs.logits.shape assert torch.allclose(_snake_case , outputs.logits , atol=1E-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='dino_vitb16', type=str, help='Name of the model trained with DINO you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--base_model', action='store_true', help='Whether to only convert the base model (no projection head weights).', ) parser.set_defaults(base_model=True) UpperCamelCase_ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
243
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class lowercase ( unittest.TestCase ): def __init__( self , _a , _a=7 , _a=3 , _a=18 , _a=30 , _a=400 , _a=True , _a=None , _a=True , _a=None , _a=True , ) -> Optional[Any]: _A : int = size if size is not None else {"""shortest_edge""": 20} _A : int = crop_size if crop_size is not None else {"""height""": 18, """width""": 18} _A : List[str] = parent _A : Optional[Any] = batch_size _A : Dict = num_channels _A : Optional[int] = image_size _A : Tuple = min_resolution _A : List[str] = max_resolution _A : int = do_resize _A : Dict = size _A : str = do_center_crop _A : Dict = crop_size _A : Any = do_flip_channel_order def a__ ( self ) -> Tuple: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_flip_channel_order": self.do_flip_channel_order, } @require_torch @require_vision class lowercase ( __lowerCAmelCase,unittest.TestCase ): _a = MobileViTImageProcessor if is_vision_available() else None def a__ ( self ) -> List[Any]: _A : List[str] = MobileViTImageProcessingTester(self ) @property def a__ ( self ) -> Any: return self.image_processor_tester.prepare_image_processor_dict() def a__ ( self ) -> Tuple: _A : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_UpperCAmelCase , """do_resize""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """size""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_center_crop""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """center_crop""" ) ) self.assertTrue(hasattr(_UpperCAmelCase , """do_flip_channel_order""" ) ) def a__ ( self ) -> Tuple: _A : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 20} ) self.assertEqual(image_processor.crop_size , {"""height""": 18, """width""": 18} ) _A : Optional[int] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {"""shortest_edge""": 42} ) self.assertEqual(image_processor.crop_size , {"""height""": 84, """width""": 84} ) def a__ ( self ) -> List[Any]: pass def a__ ( self ) -> int: # Initialize image_processing _A : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _A : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , Image.Image ) # Test not batched input _A : Any = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : List[Any] = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _A : Union[str, Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , numpify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , np.ndarray ) # Test not batched input _A : int = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : Union[str, Any] = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) def a__ ( self ) -> Union[str, Any]: # Initialize image_processing _A : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_UpperCAmelCase , torchify=_UpperCAmelCase ) for image in image_inputs: self.assertIsInstance(_UpperCAmelCase , torch.Tensor ) # Test not batched input _A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , ) # Test batched _A : List[Any] = image_processing(_UpperCAmelCase , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size["""height"""], self.image_processor_tester.crop_size["""width"""], ) , )
26
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available _lowercase : List[str] ={"tokenization_herbert": ["HerbertTokenizer"]} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Optional[int] =["HerbertTokenizerFast"] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys _lowercase : Optional[Any] =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
170
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
'''simple docstring''' from manim import * class lowerCAmelCase ( __lowerCAmelCase ): def snake_case ( self : Dict ): """simple docstring""" __lowercase =Rectangle(height=0.5 , width=0.5 ) __lowercase =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) __lowercase =Rectangle(height=0.2_5 , width=0.2_5 ) __lowercase =[mem.copy() for i in range(6 )] __lowercase =[mem.copy() for i in range(6 )] __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =Text('CPU' , font_size=24 ) __lowercase =Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) __lowercase =[mem.copy() for i in range(4 )] __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =Text('GPU' , font_size=24 ) __lowercase =Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) __lowercase =[mem.copy() for i in range(6 )] __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =Text('Model' , font_size=24 ) __lowercase =Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) __lowercase =[] __lowercase =[] for i, rect in enumerate(_UpperCAmelCase ): __lowercase =fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) __lowercase =Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) __lowercase =[meta_mem.copy() for i in range(6 )] __lowercase =[meta_mem.copy() for i in range(6 )] __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) __lowercase =Text('Disk' , font_size=24 ) __lowercase =Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.2_5, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) __lowercase =Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __lowercase =MarkupText( f'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) __lowercase =MarkupText( f'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) __lowercase =MarkupText( f'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) __lowercase =Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.0_2 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) __lowercase =Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __lowercase =MarkupText( f'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) __lowercase ={'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.0_2} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __lowercase =a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.0_2 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.0_2 ) __lowercase =AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __lowercase =0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.0_2 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __lowercase =a_c __lowercase =a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.0_2 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) __lowercase =MarkupText(f'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
141
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowerCAmelCase_ = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowerCAmelCase_ = typing.Union[np.floataa, int, float] # noqa: UP007 def snake_case( __magic_name__ , __magic_name__ ) -> VectorOut: '''simple docstring''' return np.sqrt(np.sum((np.asarray(_snake_case ) - np.asarray(_snake_case )) ** 2 ) ) def snake_case( __magic_name__ , __magic_name__ ) -> VectorOut: '''simple docstring''' return sum((va - va) ** 2 for va, va in zip(_snake_case , _snake_case ) ) ** (1 / 2) if __name__ == "__main__": def snake_case( ) -> None: '''simple docstring''' from timeit import timeit print('''Without Numpy''' ) print( timeit( '''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) print('''With Numpy''' ) print( timeit( '''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=1_00_00 , globals=globals() , ) ) benchmark()
308
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
from __future__ import annotations from collections.abc import Sequence from typing import Literal def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str ): '''simple docstring''' lowerCamelCase = list(_snake_case ) lowerCamelCase = list(_snake_case ) lowerCamelCase = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count += 1 lowerCamelCase = """_""" if count > 1: return False else: return "".join(_snake_case ) def __lowerCamelCase ( lowerCamelCase__ : list[str] ): '''simple docstring''' lowerCamelCase = [] while True: lowerCamelCase = ["""$"""] * len(_snake_case ) lowerCamelCase = [] for i in range(len(_snake_case ) ): for j in range(i + 1 , len(_snake_case ) ): lowerCamelCase = compare_string(binary[i] , binary[j] ) if k is False: lowerCamelCase = """*""" lowerCamelCase = """*""" temp.append("""X""" ) for i in range(len(_snake_case ) ): if checka[i] == "$": pi.append(binary[i] ) if len(_snake_case ) == 0: return pi lowerCamelCase = list(set(_snake_case ) ) def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Sequence[float] ): '''simple docstring''' lowerCamelCase = [] for minterm in minterms: lowerCamelCase = """""" for _ in range(_snake_case ): lowerCamelCase = str(minterm % 2 ) + string minterm //= 2 temp.append(_snake_case ) return temp def __lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = list(_snake_case ) lowerCamelCase = list(_snake_case ) lowerCamelCase = 0 for i in range(len(_snake_case ) ): if lista[i] != lista[i]: count_n += 1 return count_n == count def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : list[str] ): '''simple docstring''' lowerCamelCase = [] lowerCamelCase = [0] * len(_snake_case ) for i in range(len(chart[0] ) ): lowerCamelCase = 0 lowerCamelCase = -1 for j in range(len(_snake_case ) ): if chart[j][i] == 1: count += 1 lowerCamelCase = j if count == 1: lowerCamelCase = 1 for i in range(len(_snake_case ) ): if select[i] == 1: for j in range(len(chart[0] ) ): if chart[i][j] == 1: for k in range(len(_snake_case ) ): lowerCamelCase = 0 temp.append(prime_implicants[i] ) while True: lowerCamelCase = 0 lowerCamelCase = -1 lowerCamelCase = 0 for i in range(len(_snake_case ) ): lowerCamelCase = chart[i].count(1 ) if count_n > max_n: lowerCamelCase = count_n lowerCamelCase = i if max_n == 0: return temp temp.append(prime_implicants[rem] ) for i in range(len(chart[0] ) ): if chart[rem][i] == 1: for j in range(len(_snake_case ) ): lowerCamelCase = 0 def __lowerCamelCase ( lowerCamelCase__ : list[str] , lowerCamelCase__ : list[str] ): '''simple docstring''' lowerCamelCase = [[0 for x in range(len(_snake_case ) )] for x in range(len(_snake_case ) )] for i in range(len(_snake_case ) ): lowerCamelCase = prime_implicants[i].count("""_""" ) for j in range(len(_snake_case ) ): if is_for_table(prime_implicants[i] , binary[j] , _snake_case ): lowerCamelCase = 1 return chart def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = int(input("""Enter the no. of variables\n""" ) ) lowerCamelCase = [ float(_snake_case ) for x in input( """Enter the decimal representation of Minterms \'Spaces Separated\'\n""" ).split() ] lowerCamelCase = decimal_to_binary(_snake_case , _snake_case ) lowerCamelCase = check(_snake_case ) print("""Prime Implicants are:""" ) print(_snake_case ) lowerCamelCase = prime_implicant_chart(_snake_case , _snake_case ) lowerCamelCase = selection(_snake_case , _snake_case ) print("""Essential Prime Implicants are:""" ) print(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod() main()
252
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowercase_ = '''visual_bert''' def __init__(self : Union[str, Any] , UpperCAmelCase_ : Optional[Any]=30_522 , UpperCAmelCase_ : List[Any]=768 , UpperCAmelCase_ : Dict=512 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : Optional[int]=12 , UpperCAmelCase_ : Union[str, Any]=3_072 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : str=0.1 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : Union[str, Any]=512 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-1_2 , UpperCAmelCase_ : Tuple=False , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : List[Any]=1 , UpperCAmelCase_ : str=0 , UpperCAmelCase_ : str=2 , **UpperCAmelCase_ : Any , ) ->int: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) lowerCamelCase__: List[Any] =vocab_size lowerCamelCase__: Optional[int] =max_position_embeddings lowerCamelCase__: Any =hidden_size lowerCamelCase__: int =visual_embedding_dim lowerCamelCase__: int =num_hidden_layers lowerCamelCase__: Optional[int] =num_attention_heads lowerCamelCase__: Any =intermediate_size lowerCamelCase__: int =hidden_act lowerCamelCase__: str =hidden_dropout_prob lowerCamelCase__: Any =attention_probs_dropout_prob lowerCamelCase__: List[str] =initializer_range lowerCamelCase__: Union[str, Any] =type_vocab_size lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: int =bypass_transformer lowerCamelCase__: Any =special_visual_initialize
10
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow __UpperCamelCase : int = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ "text-classification", "language-modeling", "summarization", "token-classification", "question-answering", ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) __UpperCamelCase : List[str] = logging.getLogger() def _a ( ): """simple docstring""" UpperCamelCase__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument('''-f''' ) UpperCamelCase__ : List[str] = parser.parse_args() return args.f def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple="eval" ): """simple docstring""" UpperCamelCase__ : Optional[Any] = os.path.join(_snake_case , F"{split}_results.json" ) if os.path.exists(_snake_case ): with open(_snake_case , '''r''' ) as f: return json.load(_snake_case ) raise ValueError(F"can\'t find {path}" ) __UpperCamelCase : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( __lowerCAmelCase): def UpperCAmelCase__ ( self : Dict ) -> List[Any]: '''simple docstring''' UpperCamelCase__ : List[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[Any] = F"\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_flax_glue.main() UpperCamelCase__ : List[str] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def UpperCAmelCase__ ( self : Tuple ) -> int: '''simple docstring''' UpperCamelCase__ : Optional[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] = F"\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_clm_flax.main() UpperCamelCase__ : List[Any] = get_results(_UpperCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 100 ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : str = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Dict = F"\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_summarization_flax.main() UpperCamelCase__ : Optional[Any] = get_results(_UpperCAmelCase , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 10 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def UpperCAmelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : int = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Union[str, Any] = F"\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_mlm_flax.main() UpperCamelCase__ : int = get_results(_UpperCAmelCase ) self.assertLess(result['''eval_perplexity'''] , 42 ) @slow def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' UpperCamelCase__ : Any = self.get_auto_remove_tmp_dir() UpperCamelCase__ : str = F"\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_ta_mlm_flax.main() UpperCamelCase__ : Tuple = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def UpperCAmelCase__ ( self : Tuple ) -> Any: '''simple docstring''' UpperCamelCase__ : str = 7 if get_gpu_count() > 1 else 2 UpperCamelCase__ : List[Any] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : Optional[int] = F"\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_flax_ner.main() UpperCamelCase__ : Optional[Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def UpperCAmelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' UpperCamelCase__ : List[str] = self.get_auto_remove_tmp_dir() UpperCamelCase__ : str = F"\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n ".split() with patch.object(_UpperCAmelCase , '''argv''' , _UpperCAmelCase ): run_qa.main() UpperCamelCase__ : Union[str, Any] = get_results(_UpperCAmelCase ) self.assertGreaterEqual(result['''eval_f1'''] , 30 ) self.assertGreaterEqual(result['''eval_exact'''] , 30 )
146
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
"""simple docstring""" import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 lowerCAmelCase__ = get_tests_dir('''fixtures/dummy-config.json''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = 0 def lowercase__ ( self ): """simple docstring""" self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = AutoConfig.for_model("roberta" ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. lowerCAmelCase : List[str] = os.path.join(_UpperCAmelCase , "fake-roberta" ) os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) with open(os.path.join(_UpperCAmelCase , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) lowerCAmelCase : int = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertEqual(type(_UpperCAmelCase ) , _UpperCAmelCase ) def lowercase__ ( self ): """simple docstring""" try: AutoConfig.register("custom" , _UpperCAmelCase ) # Wrong model type will raise an error with self.assertRaises(_UpperCAmelCase ): AutoConfig.register("model" , _UpperCAmelCase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_UpperCAmelCase ): AutoConfig.register("bert" , _UpperCAmelCase ) # Now that the config is registered, it can be used as any other config with the auto-API lowerCAmelCase : str = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) lowerCAmelCase : Tuple = AutoConfig.from_pretrained(_UpperCAmelCase ) self.assertIsInstance(_UpperCAmelCase , _UpperCAmelCase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , "bert-base is not a local folder and is not a valid model identifier" ): lowerCAmelCase : Dict = AutoConfig.from_pretrained("bert-base" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCAmelCase : Dict = AutoConfig.from_pretrained(_UpperCAmelCase , revision="aaaaaa" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaisesRegex( _UpperCAmelCase , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): lowerCAmelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def lowercase__ ( self ): """simple docstring""" with self.assertRaises(_UpperCAmelCase ): lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_UpperCAmelCase ): lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCAmelCase ) lowerCAmelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(_UpperCAmelCase ) lowerCAmelCase : str = AutoConfig.from_pretrained(_UpperCAmelCase , trust_remote_code=_UpperCAmelCase ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def lowercase__ ( self ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): """simple docstring""" a : Union[str, Any] ='''new-model''' try: AutoConfig.register("new-model" , _UpperCAmelCase ) # If remote code is not set, the default is to use local lowerCAmelCase : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. lowerCAmelCase : Union[str, Any] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub lowerCAmelCase : List[str] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=_UpperCAmelCase ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
108
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
import argparse from typing import Dict import tensorflow as tf import torch from tqdm import tqdm from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration lowerCAmelCase__ = [ # tf -> hf ('''/''', '''.'''), ('''layer_''', '''layers.'''), ('''kernel''', '''weight'''), ('''beta''', '''bias'''), ('''gamma''', '''weight'''), ('''pegasus''', '''model'''), ] lowerCAmelCase__ = [ ('''.output.dense''', '''.fc2'''), ('''intermediate.LayerNorm''', '''final_layer_norm'''), ('''intermediate.dense''', '''fc1'''), ] lowerCAmelCase__ = ( INIT_COMMON + [ ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.out_proj'''), ('''attention.self''', '''self_attn'''), ('''attention.encdec.LayerNorm''', '''encoder_attn_layer_norm'''), ('''attention.encdec_output.dense''', '''encoder_attn.out_proj'''), ('''attention.encdec''', '''encoder_attn'''), ('''key''', '''k_proj'''), ('''value''', '''v_proj'''), ('''query''', '''q_proj'''), ('''decoder.LayerNorm''', '''decoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase__ = ( INIT_COMMON + [ ('''embeddings.word_embeddings''', '''shared.weight'''), ('''embeddings.position_embeddings''', '''embed_positions.weight'''), ('''attention.self.LayerNorm''', '''self_attn_layer_norm'''), ('''attention.output.dense''', '''self_attn.output'''), ('''attention.self''', '''self_attn.self'''), ('''encoder.LayerNorm''', '''encoder.layernorm_embedding'''), ] + END_COMMON ) lowerCAmelCase__ = [ '''encdec/key/bias''', '''encdec/query/bias''', '''encdec/value/bias''', '''self/key/bias''', '''self/query/bias''', '''self/value/bias''', '''encdec_output/dense/bias''', '''attention/output/dense/bias''', ] def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for tf_name, hf_name in patterns: lowercase__ : Dict = k.replace(_snake_case , _snake_case ) return k def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = BigBirdPegasusConfig(**_snake_case ) lowercase__ : Optional[Any] = BigBirdPegasusForConditionalGeneration(_snake_case ) lowercase__ : Dict = torch_model.state_dict() lowercase__ : int = {} # separating decoder weights lowercase__ : Optional[Any] = {k: tf_weights[k] for k in tf_weights if k.startswith("pegasus/decoder" )} lowercase__ : List[Any] = {k: tf_weights[k] for k in tf_weights if not k.startswith("pegasus/decoder" )} for k, v in tqdm(decoder_weights.items() , "tf -> hf conversion" ): lowercase__ : Optional[int] = [k.endswith(_snake_case ) for ending in KEYS_TO_IGNORE] if any(_snake_case ): continue lowercase__ : Dict = DECODER_PATTERNS lowercase__ : Dict = rename_state_dict_key(_snake_case , _snake_case ) if new_k not in state_dict: raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase__ : str = v.T lowercase__ : Tuple = torch.from_numpy(_snake_case ) assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" for k, v in tqdm(remaining_weights.items() , "tf -> hf conversion" ): lowercase__ : Any = [k.endswith(_snake_case ) for ending in KEYS_TO_IGNORE] if any(_snake_case ): continue lowercase__ : Tuple = REMAINING_PATTERNS lowercase__ : Union[str, Any] = rename_state_dict_key(_snake_case , _snake_case ) if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings": raise ValueError(F"""could not find new key {new_k} in state dict. (converted from {k})""" ) if any(True if i in k else False for i in ["dense", "query", "key", "value"] ): lowercase__ : List[str] = v.T lowercase__ : Optional[int] = torch.from_numpy(_snake_case ) if k != "pegasus/embeddings/position_embeddings": assert v.shape == state_dict[new_k].shape, F"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}""" lowercase__ : int = mapping["model.embed_positions.weight"] lowercase__ : List[Any] = mapping.pop("model.embed_positions.weight" ) lowercase__ , lowercase__ : Union[str, Any] = torch_model.load_state_dict(_snake_case , strict=_snake_case ) lowercase__ : List[str] = [ k for k in missing if k not in [ "final_logits_bias", "model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight", ] ] assert unexpected_missing == [], F"""no matches found for the following torch keys {unexpected_missing}""" assert extra == [], F"""no matches found for the following tf keys {extra}""" return torch_model def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = tf.train.list_variables(_snake_case ) lowercase__ : List[str] = {} lowercase__ : Tuple = ["global_step"] for name, shape in tqdm(_snake_case , desc="converting tf checkpoint to dict" ): lowercase__ : Union[str, Any] = any(pat in name for pat in ignore_name ) if skip_key: continue lowercase__ : Any = tf.train.load_variable(_snake_case , _snake_case ) lowercase__ : str = array return tf_weights def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : int = get_tf_weights_as_numpy(_snake_case ) lowercase__ : str = convert_bigbird_pegasus(_snake_case , _snake_case ) torch_model.save_pretrained(_snake_case ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('''--tf_ckpt_path''', type=str, help='''passed to tf.train.list_variables''') parser.add_argument('''--save_dir''', default=None, type=str, help='''Path to the output PyTorch model.''') lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = {} convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
130
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
import copy import re class A__ : _UpperCAmelCase :Union[str, Any] = '''hp''' _UpperCAmelCase :str = {} _UpperCAmelCase :List[Any] = None @classmethod def __UpperCamelCase( cls , A_ , A_ ): '''simple docstring''' UpperCamelCase : str = prefix UpperCamelCase : List[str] = defaults cls.build_naming_info() @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' if len(_UpperCAmelCase ) == 0: return "" UpperCamelCase : List[str] = None if any(char.isdigit() for char in word ): raise Exception(F"""Parameters should not contain numbers: \'{word}\' contains a number""" ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1 , len(_UpperCAmelCase ) + 1 ): UpperCamelCase : Dict = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: UpperCamelCase : List[Any] = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(A_ ): UpperCamelCase : int = "" while integer != 0: UpperCamelCase : Union[str, Any] = chr(ord("A" ) + integer % 10 ) + s integer //= 10 return s UpperCamelCase : List[Any] = 0 while True: UpperCamelCase : int = word + "#" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: UpperCamelCase : List[Any] = sword break UpperCamelCase : Dict = short_word UpperCamelCase : Optional[int] = word return short_word @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' UpperCamelCase : Dict = param_name.split("_" ) UpperCamelCase : int = [TrialShortNamer.shortname_for_word(_UpperCAmelCase , _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name UpperCamelCase : int = ["", "_"] for separator in separators: UpperCamelCase : str = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: UpperCamelCase : List[Any] = shortname UpperCamelCase : str = param_name return shortname return param_name @staticmethod def __UpperCamelCase( A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = TrialShortNamer.shortname_for_key(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase : str = short_name UpperCamelCase : int = param_name @classmethod def __UpperCamelCase( cls ): '''simple docstring''' if cls.NAMING_INFO is not None: return UpperCamelCase : Dict = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } UpperCamelCase : Tuple = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase , _UpperCAmelCase ) UpperCamelCase : int = info @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' cls.build_naming_info() assert cls.PREFIX is not None UpperCamelCase : Optional[int] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F"""You should provide a default value for the param name {k} with value {v}""" ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue UpperCamelCase : Any = cls.NAMING_INFO["short_param"][k] if isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase : str = 1 if v else 0 UpperCamelCase : str = "" if isinstance(_UpperCAmelCase , (int, float) ) else "-" UpperCamelCase : int = F"""{key}{sep}{v}""" name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def __UpperCamelCase( cls , A_ ): '''simple docstring''' UpperCamelCase : int = repr[len(cls.PREFIX ) + 1 :] if repr == "": UpperCamelCase : List[Any] = [] else: UpperCamelCase : Dict = repr.split("_" ) UpperCamelCase : List[str] = {} for value in values: if "-" in value: UpperCamelCase , UpperCamelCase : Union[str, Any] = value.split("-" ) else: UpperCamelCase : Optional[int] = re.sub("[0-9.]" , "" , _UpperCAmelCase ) UpperCamelCase : Union[str, Any] = float(re.sub("[^0-9.]" , "" , _UpperCAmelCase ) ) UpperCamelCase : List[Any] = cls.NAMING_INFO["reverse_short_param"][p_k] UpperCamelCase : Any = p_v for k in cls.DEFAULTS: if k not in parameters: UpperCamelCase : Any = cls.DEFAULTS[k] return parameters
52
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
"""simple docstring""" import heapq as hq import math from collections.abc import Iterator class snake_case : def __init__( self , __UpperCAmelCase) ->List[str]: a_ = str(id_) a_ = None a_ = None a_ = [] a_ = {} # {vertex:distance} def __lt__( self , __UpperCAmelCase) ->int: return self.key < other.key def __repr__( self) ->str: return self.id def UpperCAmelCase__ ( self , __UpperCAmelCase) ->int: self.neighbors.append(_UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = weight def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ->int: """simple docstring""" graph[a - 1].add_neighbor(graph[b - 1] ) graph[b - 1].add_neighbor(graph[a - 1] ) # add the edges: graph[a - 1].add_edge(graph[b - 1] , _snake_case ) graph[b - 1].add_edge(graph[a - 1] , _snake_case ) def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->list: """simple docstring""" a_ = [] for u in graph: a_ = math.inf a_ = None a_ = 0 a_ = graph[:] while q: a_ = min(_snake_case ) q.remove(_snake_case ) for v in u.neighbors: if (v in q) and (u.edges[v.id] < v.key): a_ = u a_ = u.edges[v.id] for i in range(1 , len(_snake_case ) ): a.append((int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) ) return a def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ) ->Iterator[tuple]: """simple docstring""" for u in graph: a_ = math.inf a_ = None a_ = 0 a_ = list(_snake_case ) hq.heapify(_snake_case ) while h: a_ = hq.heappop(_snake_case ) for v in u.neighbors: if (v in h) and (u.edges[v.id] < v.key): a_ = u a_ = u.edges[v.id] hq.heapify(_snake_case ) for i in range(1 , len(_snake_case ) ): yield (int(graph[i].id ) + 1, int(graph[i].pi.id ) + 1) def UpperCamelCase ( ) ->None: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
243
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
from __future__ import annotations import collections import pprint from pathlib import Path def lowerCAmelCase_ ( snake_case_ ): return "".join(sorted(_snake_case ) ) def lowerCAmelCase_ ( snake_case_ ): return word_by_signature[signature(_snake_case )] _snake_case = Path(__file__).parent.joinpath("words.txt").read_text(encoding="utf-8") _snake_case = sorted({word.strip().lower() for word in data.splitlines()}) _snake_case = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": _snake_case = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open("anagrams.txt", "w") as file: file.write("all_anagrams = \n ") file.write(pprint.pformat(all_anagrams))
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
import logging import os from typing import Dict, List, Optional, Union import torch import torch.nn as nn from accelerate.utils.imports import ( is_abit_bnb_available, is_abit_bnb_available, is_bnb_available, ) from ..big_modeling import dispatch_model, init_empty_weights from .dataclasses import BnbQuantizationConfig from .modeling import ( find_tied_parameters, get_balanced_memory, infer_auto_device_map, load_checkpoint_in_model, offload_weight, set_module_tensor_to_device, ) if is_bnb_available(): import bitsandbytes as bnb from copy import deepcopy _lowercase : Union[str, Any] =logging.getLogger(__name__) def lowerCAmelCase_ ( _lowercase : torch.nn.Module , _lowercase : BnbQuantizationConfig , _lowercase : Union[str, os.PathLike] = None , _lowercase : Optional[Dict[str, Union[int, str, torch.device]]] = None , _lowercase : Optional[List[str]] = None , _lowercase : Optional[Dict[Union[int, str], Union[int, str]]] = None , _lowercase : Optional[Union[str, os.PathLike]] = None , _lowercase : bool = False , ) -> int: """simple docstring""" a__ : Tuple = bnb_quantization_config.load_in_abit a__ : Optional[Any] = bnb_quantization_config.load_in_abit if load_in_abit and not is_abit_bnb_available(): raise ImportError( """You have a version of `bitsandbytes` that is not compatible with 8bit quantization,""" """ make sure you have the latest version of `bitsandbytes` installed.""") if load_in_abit and not is_abit_bnb_available(): raise ValueError( """You have a version of `bitsandbytes` that is not compatible with 4bit quantization,""" """make sure you have the latest version of `bitsandbytes` installed.""") a__ : str = [] # custom device map if isinstance(_snake_case , _snake_case) and len(device_map.keys()) > 1: a__ : int = [key for key, value in device_map.items() if value in ["""disk""", """cpu"""]] # We keep some modules such as the lm_head in their original dtype for numerical stability reasons if bnb_quantization_config.skip_modules is None: a__ : Optional[Any] = get_keys_to_not_convert(_snake_case) # add cpu modules to skip modules only for 4-bit modules if load_in_abit: bnb_quantization_config.skip_modules.extend(_snake_case) a__ : Any = bnb_quantization_config.skip_modules # We add the modules we want to keep in full precision if bnb_quantization_config.keep_in_fpaa_modules is None: a__ : str = [] a__ : List[Any] = bnb_quantization_config.keep_in_fpaa_modules modules_to_not_convert.extend(_snake_case) # compatibility with peft a__ : Tuple = load_in_abit a__ : List[Any] = load_in_abit a__ : List[str] = get_parameter_device(_snake_case) if model_device.type != "meta": # quantization of an already loaded model logger.warning( """It is not recommended to quantize a loaded model. """ """The model should be instantiated under the `init_empty_weights` context manager.""") a__ : Optional[Any] = replace_with_bnb_layers(_snake_case , _snake_case , modules_to_not_convert=_snake_case) # convert param to the right dtype a__ : List[Any] = bnb_quantization_config.torch_dtype for name, param in model.state_dict().items(): if any(module_to_keep_in_fpaa in name for module_to_keep_in_fpaa in keep_in_fpaa_modules): param.to(torch.floataa) if param.dtype != torch.floataa: a__ : Dict = name.replace(""".weight""" , """""").replace(""".bias""" , """""") a__ : Dict = getattr(_snake_case , _snake_case , _snake_case) if param is not None: param.to(torch.floataa) elif torch.is_floating_point(_snake_case): param.to(_snake_case) if model_device.type == "cuda": # move everything to cpu in the first place because we can't do quantization if the weights are already on cuda model.cuda(torch.cuda.current_device()) torch.cuda.empty_cache() elif torch.cuda.is_available(): model.to(torch.cuda.current_device()) else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""") logger.info( F'''The model device type is {model_device.type}. However, cuda is needed for quantization.''' """We move the model to cuda.""") return model elif weights_location is None: raise RuntimeError( F'''`weights_location` needs to be the folder path containing the weights of the model, but we found {weights_location} ''') else: with init_empty_weights(): a__ : List[Any] = replace_with_bnb_layers( _snake_case , _snake_case , modules_to_not_convert=_snake_case) a__ : List[Any] = get_quantized_model_device_map( _snake_case , _snake_case , _snake_case , max_memory=_snake_case , no_split_module_classes=_snake_case , ) if offload_state_dict is None and device_map is not None and "disk" in device_map.values(): a__ : str = True a__ : Tuple = any(x in list(device_map.values()) for x in ["""cpu""", """disk"""]) load_checkpoint_in_model( _snake_case , _snake_case , _snake_case , dtype=bnb_quantization_config.torch_dtype , offload_folder=_snake_case , offload_state_dict=_snake_case , keep_in_fpaa_modules=bnb_quantization_config.keep_in_fpaa_modules , offload_abit_bnb=load_in_abit and offload , ) return dispatch_model(_snake_case , device_map=_snake_case , offload_dir=_snake_case) def lowerCAmelCase_ ( _lowercase : List[str] , _lowercase : List[str] , _lowercase : Any=None , _lowercase : Dict=None , _lowercase : int=None) -> Any: """simple docstring""" if device_map is None: if torch.cuda.is_available(): a__ : Optional[int] = {"""""": torch.cuda.current_device()} else: raise RuntimeError("""No GPU found. A GPU is needed for quantization.""") logger.info("""The device_map was not initialized.""" """Setting device_map to `{\'\':torch.cuda.current_device()}`.""") if isinstance(_snake_case , _snake_case): if device_map not in ["auto", "balanced", "balanced_low_0", "sequential"]: raise ValueError( """If passing a string for `device_map`, please choose \'auto\', \'balanced\', \'balanced_low_0\' or """ """\'sequential\'.""") a__ : int = {} special_dtypes.update( { name: bnb_quantization_config.torch_dtype for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.skip_modules) }) special_dtypes.update( { name: torch.floataa for name, _ in model.named_parameters() if any(m in name for m in bnb_quantization_config.keep_in_fpaa_modules) }) a__ : Dict = {} a__ : Optional[Any] = special_dtypes a__ : List[str] = no_split_module_classes a__ : Union[str, Any] = bnb_quantization_config.target_dtype # get max_memory for each device. if device_map != "sequential": a__ : Dict = get_balanced_memory( _snake_case , low_zero=(device_map == """balanced_low_0""") , max_memory=_snake_case , **_snake_case , ) a__ : Any = max_memory a__ : Optional[Any] = infer_auto_device_map(_snake_case , **_snake_case) if isinstance(_snake_case , _snake_case): # check if don't have any quantized module on the cpu a__ : List[str] = bnb_quantization_config.skip_modules + bnb_quantization_config.keep_in_fpaa_modules a__ : Any = { key: device_map[key] for key in device_map.keys() if key not in modules_not_to_convert } for device in ["cpu", "disk"]: if device in device_map_without_some_modules.values(): if bnb_quantization_config.load_in_abit: raise ValueError( """\n Some modules are dispatched on the CPU or the disk. Make sure you have enough GPU RAM to fit\n the quantized model. If you want to dispatch the model on the CPU or the disk while keeping\n these modules in `torch_dtype`, you need to pass a custom `device_map` to\n `load_and_quantize_model`. Check\n https://huggingface.co/docs/accelerate/main/en/usage_guides/quantization#offload-modules-to-cpu-and-disk\n for more details.\n """) else: logger.info( """Some modules are are offloaded to the CPU or the disk. Note that these modules will be converted to 8-bit""") del device_map_without_some_modules return device_map def lowerCAmelCase_ ( _lowercase : Optional[Any] , _lowercase : Any , _lowercase : Union[str, Any]=None , _lowercase : Tuple=None) -> Tuple: """simple docstring""" if modules_to_not_convert is None: a__ : str = [] a__ , a__ : Optional[Any] = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case) if not has_been_replaced: logger.warning( """You are loading your model in 8bit or 4bit but no linear modules were found in your model.""" """ this can happen for some architectures such as gpt2 that uses Conv1D instead of Linear layers.""" """ Please double check your model architecture, or submit an issue on github if you think this is""" """ a bug.""") return model def lowerCAmelCase_ ( _lowercase : int , _lowercase : str , _lowercase : str=None , _lowercase : Optional[int]=None , ) -> str: """simple docstring""" a__ : Any = False for name, module in model.named_children(): if current_key_name is None: a__ : Union[str, Any] = [] current_key_name.append(_snake_case) if isinstance(_snake_case , nn.Linear) and name not in modules_to_not_convert: # Check if the current key is not in the `modules_to_not_convert` a__ : List[Any] = """.""".join(_snake_case) a__ : Optional[int] = True for key in modules_to_not_convert: if ( (key in current_key_name_str) and (key + "." in current_key_name_str) ) or key == current_key_name_str: a__ : Optional[int] = False break if proceed: # Load bnb module with empty weight and replace ``nn.Linear` module if bnb_quantization_config.load_in_abit: a__ : List[str] = bnb.nn.LinearabitLt( module.in_features , module.out_features , module.bias is not None , has_fpaa_weights=_snake_case , threshold=bnb_quantization_config.llm_inta_threshold , ) elif bnb_quantization_config.load_in_abit: a__ : Tuple = bnb.nn.Linearabit( module.in_features , module.out_features , module.bias is not None , bnb_quantization_config.bnb_abit_compute_dtype , compress_statistics=bnb_quantization_config.bnb_abit_use_double_quant , quant_type=bnb_quantization_config.bnb_abit_quant_type , ) else: raise ValueError("""load_in_8bit and load_in_4bit can\'t be both False""") a__ : Optional[Any] = module.weight.data if module.bias is not None: a__ : Any = module.bias.data bnb_module.requires_grad_(_snake_case) setattr(_snake_case , _snake_case , _snake_case) a__ : str = True if len(list(module.children())) > 0: a__ , a__ : int = _replace_with_bnb_layers( _snake_case , _snake_case , _snake_case , _snake_case) a__ : Optional[int] = has_been_replaced | _has_been_replaced # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced def lowerCAmelCase_ ( _lowercase : Any) -> Optional[int]: """simple docstring""" with init_empty_weights(): a__ : Tuple = deepcopy(_snake_case) # this has 0 cost since it is done inside `init_empty_weights` context manager` a__ : Tuple = find_tied_parameters(_snake_case) # For compatibility with Accelerate < 0.18 if isinstance(_snake_case , _snake_case): a__ : Union[str, Any] = sum(list(tied_params.values()) , []) + list(tied_params.keys()) else: a__ : Optional[Any] = sum(_snake_case , []) a__ : Dict = len(_snake_case) > 0 # Check if it is a base model a__ : Optional[Any] = False if hasattr(_snake_case , """base_model_prefix"""): a__ : int = not hasattr(_snake_case , model.base_model_prefix) # Ignore this for base models (BertModel, GPT2Model, etc.) if (not has_tied_params) and is_base_model: return [] # otherwise they have an attached head a__ : List[str] = list(model.named_children()) a__ : Optional[Any] = [list_modules[-1][0]] # add last module together with tied weights a__ : Optional[int] = set(_snake_case) - set(_snake_case) a__ : str = list(set(_snake_case)) + list(_snake_case) # remove ".weight" from the keys a__ : List[str] = [""".weight""", """.bias"""] a__ : List[Any] = [] for name in list_untouched: for name_to_remove in names_to_remove: if name_to_remove in name: a__ : Any = name.replace(_snake_case , """""") filtered_module_names.append(_snake_case) return filtered_module_names def lowerCAmelCase_ ( _lowercase : Tuple) -> Tuple: """simple docstring""" for m in model.modules(): if isinstance(_snake_case , bnb.nn.Linearabit): return True return False def lowerCAmelCase_ ( _lowercase : nn.Module) -> Optional[Any]: """simple docstring""" return next(parameter.parameters()).device def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Optional[Any] , _lowercase : int , _lowercase : Union[str, Any] , _lowercase : Any , _lowercase : Any , _lowercase : str) -> Any: """simple docstring""" if fpaa_statistics is None: set_module_tensor_to_device(_snake_case , _snake_case , 0 , dtype=_snake_case , value=_snake_case) a__ : Any = param_name a__ : Tuple = model if "." in tensor_name: a__ : List[str] = tensor_name.split(""".""") for split in splits[:-1]: a__ : Optional[Any] = getattr(_snake_case , _snake_case) if new_module is None: raise ValueError(F'''{module} has no attribute {split}.''') a__ : List[Any] = new_module a__ : Any = splits[-1] # offload weights a__ : Optional[int] = False offload_weight(module._parameters[tensor_name] , _snake_case , _snake_case , index=_snake_case) if hasattr(module._parameters[tensor_name] , """SCB"""): offload_weight( module._parameters[tensor_name].SCB , param_name.replace("""weight""" , """SCB""") , _snake_case , index=_snake_case , ) else: offload_weight(_snake_case , _snake_case , _snake_case , index=_snake_case) offload_weight(_snake_case , param_name.replace("""weight""" , """SCB""") , _snake_case , index=_snake_case) set_module_tensor_to_device(_snake_case , _snake_case , """meta""" , dtype=_snake_case , value=torch.empty(*param.size()))
170
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
'''simple docstring''' from argparse import ArgumentParser from .env import EnvironmentCommand def __UpperCamelCase ( ): '''simple docstring''' __lowercase =ArgumentParser('Diffusers CLI tool', usage='diffusers-cli <command> [<args>]' ) __lowercase =parser.add_subparsers(help='diffusers-cli command helpers' ) # Register commands EnvironmentCommand.register_subcommand(_snake_case ) # Let's go __lowercase =parser.parse_args() if not hasattr(_snake_case, 'func' ): parser.print_help() exit(1 ) # Run __lowercase =args.func(_snake_case ) service.run() if __name__ == "__main__": main()
141
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase_ = logging.getLogger(__name__) @dataclass class _A : _UpperCamelCase : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) _UpperCamelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) _UpperCamelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) _UpperCamelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) _UpperCamelCase : bool = field(default=__lowerCAmelCase , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _A : _UpperCamelCase : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) _UpperCamelCase : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) _UpperCamelCase : Optional[int] = field( default=1_0_2_4 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_2_8 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) _UpperCamelCase : Optional[int] = field( default=1_4_2 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) _UpperCamelCase : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) _UpperCamelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Source language id for translation.'''} ) _UpperCamelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''Target language id for translation.'''} ) _UpperCamelCase : Optional[int] = field(default=__lowerCAmelCase , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) _UpperCamelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ ) -> str: '''simple docstring''' logger.info(F"""***** {split} metrics *****""" ) for key in sorted(metrics.keys() ): logger.info(F""" {key} = {metrics[key]}""" ) save_json(_snake_case , os.path.join(_snake_case , F"""{split}_results.json""" ) ) def snake_case( ) -> Optional[int]: '''simple docstring''' lowercase : Dict = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. lowercase , lowercase , lowercase : List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: lowercase , lowercase , lowercase : str = parser.parse_args_into_dataclasses() check_output_dir(_snake_case ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) , training_args.fpaa , ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('''Training/evaluation parameters %s''' , _snake_case ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowercase : Tuple = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : Tuple = ('''encoder_layerdrop''', '''decoder_layerdrop''', '''dropout''', '''attention_dropout''') for p in extra_model_params: if getattr(_snake_case , _snake_case , _snake_case ): assert hasattr(_snake_case , _snake_case ), F"""({config.__class__.__name__}) doesn\'t have a `{p}` attribute""" setattr(_snake_case , _snake_case , getattr(_snake_case , _snake_case ) ) lowercase : str = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , ) lowercase : List[Any] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path , from_tf='''.ckpt''' in model_args.model_name_or_path , config=_snake_case , cache_dir=model_args.cache_dir , ) # use task specific params use_task_specific_params(_snake_case , data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: lowercase : Optional[Any] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(_snake_case , (MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(_snake_case , _snake_case ): lowercase : Optional[int] = tokenizer.lang_code_to_id[data_args.tgt_lang] else: lowercase : str = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(_snake_case ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) lowercase : Any = SeqaSeqDataset # Get datasets lowercase : str = ( dataset_class( _snake_case , type_path='''train''' , data_dir=data_args.data_dir , n_obs=data_args.n_train , max_target_length=data_args.max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_train else None ) lowercase : Union[str, Any] = ( dataset_class( _snake_case , type_path='''val''' , data_dir=data_args.data_dir , n_obs=data_args.n_val , max_target_length=data_args.val_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) lowercase : Optional[int] = ( dataset_class( _snake_case , type_path='''test''' , data_dir=data_args.data_dir , n_obs=data_args.n_test , max_target_length=data_args.test_max_target_length , max_source_length=data_args.max_source_length , prefix=model.config.prefix or '''''' , ) if training_args.do_predict else None ) # Initialize our Trainer lowercase : List[Any] = ( build_compute_metrics_fn(data_args.task , _snake_case ) if training_args.predict_with_generate else None ) lowercase : List[Any] = SeqaSeqTrainer( model=_snake_case , args=_snake_case , data_args=_snake_case , train_dataset=_snake_case , eval_dataset=_snake_case , data_collator=SeqaSeqDataCollator( _snake_case , _snake_case , model.config.decoder_start_token_id , training_args.tpu_num_cores ) , compute_metrics=_snake_case , tokenizer=_snake_case , ) lowercase : Tuple = {} # Training if training_args.do_train: logger.info('''*** Train ***''' ) lowercase : Optional[int] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) lowercase : Union[str, Any] = train_result.metrics lowercase : Any = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('''train''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('''*** Evaluate ***''' ) lowercase : str = trainer.evaluate(metric_key_prefix='''val''' ) lowercase : str = data_args.n_val lowercase : int = round(metrics['''val_loss'''] , 4 ) if trainer.is_world_process_zero(): handle_metrics('''val''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.do_predict: logger.info('''*** Predict ***''' ) lowercase : Optional[int] = trainer.predict(test_dataset=_snake_case , metric_key_prefix='''test''' ) lowercase : Optional[Any] = test_output.metrics lowercase : Tuple = data_args.n_test if trainer.is_world_process_zero(): lowercase : Any = round(metrics['''test_loss'''] , 4 ) handle_metrics('''test''' , _snake_case , training_args.output_dir ) all_metrics.update(_snake_case ) if training_args.predict_with_generate: lowercase : Dict = tokenizer.batch_decode( test_output.predictions , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) lowercase : Any = lmap(str.strip , _snake_case ) write_txt_file(_snake_case , os.path.join(training_args.output_dir , '''test_generations.txt''' ) ) if trainer.is_world_process_zero(): save_json(_snake_case , os.path.join(training_args.output_dir , '''all_results.json''' ) ) return all_metrics def snake_case( __magic_name__ ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
308
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
from __future__ import annotations import unittest from transformers import EsmConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers.models.esm.modeling_tf_esm import ( TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, TFEsmModel, ) class __lowercase : """simple docstring""" def __init__( self , A , ) -> Dict: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = 13 lowerCamelCase = 7 lowerCamelCase = True lowerCamelCase = True lowerCamelCase = True lowerCamelCase = 99 lowerCamelCase = 32 lowerCamelCase = 2 lowerCamelCase = 4 lowerCamelCase = 37 lowerCamelCase = """gelu""" lowerCamelCase = 0.1 lowerCamelCase = 0.1 lowerCamelCase = 5_12 lowerCamelCase = 16 lowerCamelCase = 2 lowerCamelCase = 0.02 lowerCamelCase = 3 lowerCamelCase = 4 lowerCamelCase = None def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase = None if self.use_input_mask: lowerCamelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase = None lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase = EsmConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __A ( self ) -> Optional[int]: '''simple docstring''' ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = self.prepare_config_and_inputs() lowerCamelCase = True lowerCamelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCamelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __A ( self , A , A , A , A , A , A ) -> str: '''simple docstring''' lowerCamelCase = TFEsmModel(config=_UpperCAmelCase ) lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase = model(_UpperCAmelCase ) lowerCamelCase = [input_ids, input_mask] lowerCamelCase = model(_UpperCAmelCase ) lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , A , A , A , A , ) -> Optional[int]: '''simple docstring''' lowerCamelCase = True lowerCamelCase = TFEsmModel(config=_UpperCAmelCase ) lowerCamelCase = { """input_ids""": input_ids, """attention_mask""": input_mask, """encoder_hidden_states""": encoder_hidden_states, """encoder_attention_mask""": encoder_attention_mask, } lowerCamelCase = model(_UpperCAmelCase ) lowerCamelCase = [input_ids, input_mask] lowerCamelCase = model(_UpperCAmelCase , encoder_hidden_states=_UpperCAmelCase ) # Also check the case where encoder outputs are not passed lowerCamelCase = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __A ( self , A , A , A , A , A , A ) -> int: '''simple docstring''' lowerCamelCase = TFEsmForMaskedLM(config=_UpperCAmelCase ) lowerCamelCase = model([input_ids, input_mask] ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __A ( self , A , A , A , A , A , A ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = TFEsmForTokenClassification(config=_UpperCAmelCase ) lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() ( ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ( lowerCamelCase ) , ) = config_and_inputs lowerCamelCase = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class __lowercase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase : Optional[int] = ( ( TFEsmModel, TFEsmForMaskedLM, TFEsmForSequenceClassification, TFEsmForTokenClassification, ) if is_tf_available() else () ) UpperCamelCase : int = ( { '''feature-extraction''': TFEsmModel, '''fill-mask''': TFEsmForMaskedLM, '''text-classification''': TFEsmForSequenceClassification, '''token-classification''': TFEsmForTokenClassification, '''zero-shot''': TFEsmForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase : int = False UpperCamelCase : Tuple = False def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = TFEsmModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def __A ( self ) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(*_UpperCAmelCase ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = TFEsmModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @unittest.skip("""Protein models do not support embedding resizing.""" ) def __A ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip("""Protein models do not support embedding resizing.""" ) def __A ( self ) -> List[str]: '''simple docstring''' pass def __A ( self ) -> Tuple: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_UpperCAmelCase ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class is TFEsmForMaskedLM: # Output embedding test differs from the main test because they're a matrix, not a layer lowerCamelCase = model.get_bias() assert isinstance(_UpperCAmelCase , _UpperCAmelCase ) for k, v in name.items(): assert isinstance(_UpperCAmelCase , tf.Variable ) else: lowerCamelCase = model.get_output_embeddings() assert x is None lowerCamelCase = model.get_bias() assert name is None @require_tf class __lowercase ( unittest.TestCase ): """simple docstring""" @slow def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = TFEsmForMaskedLM.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase = model(_UpperCAmelCase )[0] lowerCamelCase = [1, 6, 33] self.assertEqual(list(output.numpy().shape ) , _UpperCAmelCase ) # compare the actual values for a slice. lowerCamelCase = tf.constant( [ [ [8.921518, -10.589814, -6.4671307], [-6.3967156, -13.911377, -1.1211915], [-7.781247, -13.951557, -3.740592], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-2 ) ) @slow def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = TFEsmModel.from_pretrained("""facebook/esm2_t6_8M_UR50D""" ) lowerCamelCase = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) lowerCamelCase = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowerCamelCase = tf.constant( [ [ [0.14443092, 0.54125327, 0.3247739], [0.30340484, 0.00526676, 0.31077722], [0.32278043, -0.24987096, 0.3414628], ] ] ) self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
252
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import re import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowercase_ = ['''image_processor''', '''tokenizer'''] lowercase_ = '''AutoImageProcessor''' lowercase_ = '''AutoTokenizer''' def __init__(self : Optional[int] , UpperCAmelCase_ : Optional[Any]=None , UpperCAmelCase_ : Union[str, Any]=None , **UpperCAmelCase_ : int) ->Dict: '''simple docstring''' lowerCamelCase__: str =None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _UpperCAmelCase , ) lowerCamelCase__: str =kwargs.pop("feature_extractor") lowerCamelCase__: str =image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(_UpperCAmelCase , _UpperCAmelCase) lowerCamelCase__: Tuple =self.image_processor lowerCamelCase__: List[Any] =False def __call__(self : int , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Any) ->Tuple: '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*_UpperCAmelCase , **_UpperCAmelCase) lowerCamelCase__: Dict =kwargs.pop("images" , _UpperCAmelCase) lowerCamelCase__: Union[str, Any] =kwargs.pop("text" , _UpperCAmelCase) if len(_UpperCAmelCase) > 0: lowerCamelCase__: int =args[0] lowerCamelCase__: Optional[Any] =args[1:] if images is None and text is None: raise ValueError("You need to specify either an `images` or `text` input to process.") if images is not None: lowerCamelCase__: List[str] =self.image_processor(_UpperCAmelCase , *_UpperCAmelCase , **_UpperCAmelCase) if text is not None: lowerCamelCase__: List[Any] =self.tokenizer(_UpperCAmelCase , **_UpperCAmelCase) if text is None: return inputs elif images is None: return encodings else: lowerCamelCase__: str =encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_ (self : Union[str, Any] , *UpperCAmelCase_ : Any , **UpperCAmelCase_ : int) ->str: '''simple docstring''' return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE_ (self : List[Any] , *UpperCAmelCase_ : int , **UpperCAmelCase_ : Dict) ->Tuple: '''simple docstring''' return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase) @contextmanager def SCREAMING_SNAKE_CASE_ (self : int) ->Any: '''simple docstring''' warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your images inputs, or in a separate call.") lowerCamelCase__: str =True lowerCamelCase__: Any =self.tokenizer yield lowerCamelCase__: Union[str, Any] =self.image_processor lowerCamelCase__: Union[str, Any] =False def SCREAMING_SNAKE_CASE_ (self : str , UpperCAmelCase_ : Dict , UpperCAmelCase_ : Dict=False , UpperCAmelCase_ : int=None) ->Union[str, Any]: '''simple docstring''' if added_vocab is None: lowerCamelCase__: int =self.tokenizer.get_added_vocab() lowerCamelCase__: List[Any] ={} while tokens: lowerCamelCase__: Dict =re.search(R"<s_(.*?)>" , _UpperCAmelCase , re.IGNORECASE) if start_token is None: break lowerCamelCase__: List[str] =start_token.group(1) lowerCamelCase__: Optional[int] =re.search(RF"""</s_{key}>""" , _UpperCAmelCase , re.IGNORECASE) lowerCamelCase__: Union[str, Any] =start_token.group() if end_token is None: lowerCamelCase__: int =tokens.replace(_UpperCAmelCase , "") else: lowerCamelCase__: str =end_token.group() lowerCamelCase__: Tuple =re.escape(_UpperCAmelCase) lowerCamelCase__: Union[str, Any] =re.escape(_UpperCAmelCase) lowerCamelCase__: str =re.search(F"""{start_token_escaped}(.*?){end_token_escaped}""" , _UpperCAmelCase , re.IGNORECASE) if content is not None: lowerCamelCase__: Any =content.group(1).strip() if r"<s_" in content and r"</s_" in content: # non-leaf node lowerCamelCase__: List[str] =self.tokenajson(_UpperCAmelCase , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase) if value: if len(_UpperCAmelCase) == 1: lowerCamelCase__: Any =value[0] lowerCamelCase__: List[Any] =value else: # leaf nodes lowerCamelCase__: List[Any] =[] for leaf in content.split(R"<sep/>"): lowerCamelCase__: List[Any] =leaf.strip() if leaf in added_vocab and leaf[0] == "<" and leaf[-2:] == "/>": lowerCamelCase__: Tuple =leaf[1:-2] # for categorical special tokens output[key].append(_UpperCAmelCase) if len(output[key]) == 1: lowerCamelCase__: str =output[key][0] lowerCamelCase__: str =tokens[tokens.find(_UpperCAmelCase) + len(_UpperCAmelCase) :].strip() if tokens[:6] == r"<sep/>": # non-leaf nodes return [output] + self.tokenajson(tokens[6:] , is_inner_value=_UpperCAmelCase , added_vocab=_UpperCAmelCase) if len(_UpperCAmelCase): return [output] if is_inner_value else output else: return [] if is_inner_value else {"text_sequence": tokens} @property def SCREAMING_SNAKE_CASE_ (self : Optional[Any]) ->int: '''simple docstring''' warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _UpperCAmelCase , ) return self.image_processor_class @property def SCREAMING_SNAKE_CASE_ (self : List[Any]) ->Optional[Any]: '''simple docstring''' warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _UpperCAmelCase , ) return self.image_processor
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_barthez import BarthezTokenizer else: __UpperCamelCase : Union[str, Any] = None __UpperCamelCase : List[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} __UpperCamelCase : Union[str, Any] = { "vocab_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/sentencepiece.bpe.model", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/sentencepiece.bpe.model" ), }, "tokenizer_file": { "moussaKam/mbarthez": "https://huggingface.co/moussaKam/mbarthez/resolve/main/tokenizer.json", "moussaKam/barthez": "https://huggingface.co/moussaKam/barthez/resolve/main/tokenizer.json", "moussaKam/barthez-orangesum-title": ( "https://huggingface.co/moussaKam/barthez-orangesum-title/resolve/main/tokenizer.json" ), }, } __UpperCamelCase : Optional[Any] = { "moussaKam/mbarthez": 1024, "moussaKam/barthez": 1024, "moussaKam/barthez-orangesum-title": 1024, } __UpperCamelCase : List[str] = "▁" class __magic_name__ ( __lowerCAmelCase): A: Union[str, Any] = VOCAB_FILES_NAMES A: List[str] = PRETRAINED_VOCAB_FILES_MAP A: str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A: int = ['''input_ids''', '''attention_mask'''] A: Tuple = BarthezTokenizer def __init__( self : Optional[Any] , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : int=None , lowerCamelCase__ : str="<s>" , lowerCamelCase__ : Optional[Any]="</s>" , lowerCamelCase__ : str="</s>" , lowerCamelCase__ : int="<s>" , lowerCamelCase__ : Union[str, Any]="<unk>" , lowerCamelCase__ : List[Any]="<pad>" , lowerCamelCase__ : List[str]="<mask>" , **lowerCamelCase__ : Optional[int] , ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ : Dict = AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) UpperCamelCase__ : List[str] = vocab_file UpperCamelCase__ : Optional[Any] = False if not self.vocab_file else True def UpperCAmelCase__ ( self : Dict , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> int: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCamelCase__ : Optional[int] = [self.cls_token_id] UpperCamelCase__ : Optional[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : List[int] , lowerCamelCase__ : Optional[List[int]] = None ) -> Optional[int]: '''simple docstring''' UpperCamelCase__ : Tuple = [self.sep_token_id] UpperCamelCase__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase__ ( self : Optional[Any] , lowerCamelCase__ : str , lowerCamelCase__ : Optional[str] = None ) -> Any: '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(_UpperCAmelCase ): logger.error(F"Vocabulary path ({save_directory}) should be a directory" ) return UpperCamelCase__ : Any = os.path.join( _UpperCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
146
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" import collections import os import re from pathlib import Path lowerCAmelCase__ = '''src/transformers''' # Matches is_xxx_available() lowerCAmelCase__ = re.compile(r'''is\_([a-z_]*)_available()''') # Catches a one-line _import_struct = {xxx} lowerCAmelCase__ = re.compile(r'''^_import_structure\s+=\s+\{([^\}]+)\}''') # Catches a line with a key-values pattern: "bla": ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''\s+"\S*":\s+\[([^\]]*)\]''') # Catches a line if not is_foo_available lowerCAmelCase__ = re.compile(r'''^\s*if\s+not\s+is\_[a-z_]*\_available\(\)''') # Catches a line _import_struct["bla"].append("foo") lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\["\S*"\]\.append\("(\S*)"\)''') # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] lowerCAmelCase__ = re.compile(r'''^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]''') # Catches a line with an object between quotes and a comma: "MyModel", lowerCAmelCase__ = re.compile(r'''^\s+"([^"]+)",''') # Catches a line with objects between brackets only: ["foo", "bar"], lowerCAmelCase__ = re.compile(r'''^\s+\[([^\]]+)\]''') # Catches a line with from foo import bar, bla, boo lowerCAmelCase__ = re.compile(r'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') # Catches a line with try: lowerCAmelCase__ = re.compile(r'''^\s*try:''') # Catches a line with else: lowerCAmelCase__ = re.compile(r'''^\s*else:''') def a__ ( SCREAMING_SNAKE_CASE : Optional[int] ): '''simple docstring''' if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase : Union[str, Any] = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def a__ ( SCREAMING_SNAKE_CASE : str ): '''simple docstring''' with open(_snake_case , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase : str = f.readlines() lowerCAmelCase : Union[str, Any] = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith("_import_structure = {" ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase : Any = [] while not lines[line_index].startswith("if TYPE_CHECKING" ) and find_backend(lines[line_index] ) is None: lowerCAmelCase : List[str] = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase : List[Any] = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase : Any = re.findall(r"\[([^\]]+)\]" , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(", " )] ) line_index += 1 continue lowerCAmelCase : Optional[Any] = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase : str = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(", " ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase : Optional[Any] = {"none": objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith("if TYPE_CHECKING" ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase : str = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : Optional[int] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : Any = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 4 ): lowerCAmelCase : Any = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase : Union[str, Any] = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(", " ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase : List[str] = _re_between_brackets.search(_snake_case ).groups()[0].split(", " ) lowerCAmelCase : Union[str, Any] = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(" " * 8 + "\"" ): objects.append(line[9:-3] ) elif line.startswith(" " * 1_2 + "\"" ): objects.append(line[1_3:-3] ) line_index += 1 lowerCAmelCase : Dict = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase : Optional[int] = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith("else" ) ): lowerCAmelCase : List[Any] = lines[line_index] lowerCAmelCase : List[str] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase : Union[str, Any] = {"none": objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase : Any = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase : List[Any] = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase : int = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(" " * 8 ): lowerCAmelCase : List[Any] = lines[line_index] lowerCAmelCase : List[Any] = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 1_2 ): objects.append(line[1_2:-2] ) line_index += 1 lowerCAmelCase : Optional[Any] = objects else: line_index += 1 return import_dict_objects, type_hint_objects def a__ ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): '''simple docstring''' def find_duplicates(SCREAMING_SNAKE_CASE : List[str] ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase : List[Any] = [] for key in import_dict_objects.keys(): lowerCAmelCase : int = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(f"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase : int = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(f"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase : int = "base imports" if key == "none" else f"""{key} backend""" errors.append(f"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(f""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(f""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def a__ ( ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase : Tuple = os.path.join(_snake_case , "__init__.py" ) lowerCAmelCase : Dict = parse_init(_snake_case ) if objects is not None: lowerCAmelCase : Any = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase : Union[str, Any] = f"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append("\n".join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError("\n\n".join(_snake_case ) ) def a__ ( ): '''simple docstring''' lowerCAmelCase : List[str] = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith("_" ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob("*.py" ) ) ) == 0: continue lowerCAmelCase : int = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase : str = short_path.replace(os.path.sep , "." ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase : Any = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase : str = short_path.replace(".py" , "" ).replace(os.path.sep , "." ) if len(submodule.split("." ) ) == 1: submodules.append(_snake_case ) return submodules lowerCAmelCase__ = [ '''convert_pytorch_checkpoint_to_tf2''', '''modeling_flax_pytorch_utils''', '''models.esm.openfold_utils''', ] def a__ ( ): '''simple docstring''' from transformers.utils import direct_transformers_import lowerCAmelCase : Dict = direct_transformers_import(_snake_case ) lowerCAmelCase : Any = set(transformers._import_structure.keys() ) # This contains all the base keys of the _import_structure object defined in the init, but if the user is missing # some optional dependencies, they may not have all of them. Thus we read the init to read all additions and # (potentiall re-) add them. with open(os.path.join(_snake_case , "__init__.py" ) , "r" ) as f: lowerCAmelCase : int = f.read() import_structure_keys.update(set(re.findall(r"import_structure\[\"([^\"]*)\"\]" , _snake_case ) ) ) lowerCAmelCase : Tuple = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in import_structure_keys ] if len(_snake_case ) > 0: lowerCAmelCase : int = "\n".join(f"""- {module}""" for module in module_not_registered ) raise ValueError( "The following submodules are not properly registed in the main init of Transformers:\n" f"""{list_of_modules}\n""" "Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value." ) if __name__ == "__main__": check_all_inits() check_submodules()
108
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ , lowercase__ : List[Any] = image.size lowercase__ , lowercase__ : Dict = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowercase__ : Optional[int] = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) lowercase__ : List[str] = np.array(_snake_case ).astype(np.floataa ) / 255.0 lowercase__ : str = image[None].transpose(0 , 3 , 1 , 2 ) lowercase__ : Optional[int] = torch.from_numpy(_snake_case ) return 2.0 * image - 1.0 class snake_case__(__lowerCAmelCase ): """simple docstring""" def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE : VQModel , SCREAMING_SNAKE_CASE : UNetaDModel , SCREAMING_SNAKE_CASE : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ): super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self : str , SCREAMING_SNAKE_CASE : Union[torch.Tensor, PIL.Image.Image] = None , SCREAMING_SNAKE_CASE : Optional[int] = 1 , SCREAMING_SNAKE_CASE : Optional[int] = 100 , SCREAMING_SNAKE_CASE : Optional[float] = 0.0 , SCREAMING_SNAKE_CASE : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE : Optional[str] = "pil" , SCREAMING_SNAKE_CASE : bool = True , ): if isinstance(_UpperCAmelCase , PIL.Image.Image ): lowercase__ : Tuple = 1 elif isinstance(_UpperCAmelCase , torch.Tensor ): lowercase__ : Union[str, Any] = image.shape[0] else: raise ValueError(f"""`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(_UpperCAmelCase )}""" ) if isinstance(_UpperCAmelCase , PIL.Image.Image ): lowercase__ : Optional[int] = preprocess(_UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image lowercase__ : Tuple = (batch_size, self.unet.config.in_channels // 2, height, width) lowercase__ : Dict = next(self.unet.parameters() ).dtype lowercase__ : Tuple = randn_tensor(_UpperCAmelCase , generator=_UpperCAmelCase , device=self.device , dtype=_UpperCAmelCase ) lowercase__ : int = image.to(device=self.device , dtype=_UpperCAmelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(_UpperCAmelCase , device=self.device ) lowercase__ : int = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler lowercase__ : List[Any] = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowercase__ : Dict = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowercase__ : Union[str, Any] = {} if accepts_eta: lowercase__ : str = eta for t in self.progress_bar(_UpperCAmelCase ): # concat latents and low resolution image in the channel dimension. lowercase__ : Tuple = torch.cat([latents, image] , dim=1 ) lowercase__ : List[str] = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual lowercase__ : Union[str, Any] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 lowercase__ : Optional[Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VQVAE lowercase__ : Any = self.vqvae.decode(_UpperCAmelCase ).sample lowercase__ : List[str] = torch.clamp(_UpperCAmelCase , -1.0 , 1.0 ) lowercase__ : List[str] = image / 2 + 0.5 lowercase__ : str = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase__ : int = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
130
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
def A_ ( _lowerCAmelCase ) -> list[list[float]]: UpperCamelCase : Optional[Any] = [] for data in source_data: for i, el in enumerate(_snake_case ): if len(_snake_case ) < i + 1: data_lists.append([] ) data_lists[i].append(float(_snake_case ) ) return data_lists def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[list[float]]: UpperCamelCase : Tuple = [] for dlist, weight in zip(_snake_case , _snake_case ): UpperCamelCase : Optional[Any] = min(_snake_case ) UpperCamelCase : Union[str, Any] = max(_snake_case ) UpperCamelCase : Union[str, Any] = [] # for weight 0 score is 1 - actual score if weight == 0: for item in dlist: try: score.append(1 - ((item - mind) / (maxd - mind)) ) except ZeroDivisionError: score.append(1 ) elif weight == 1: for item in dlist: try: score.append((item - mind) / (maxd - mind) ) except ZeroDivisionError: score.append(0 ) # weight not 0 or 1 else: UpperCamelCase : List[str] = F"""Invalid weight of {weight:f} provided""" raise ValueError(_snake_case ) score_lists.append(_snake_case ) return score_lists def A_ ( _lowerCAmelCase ) -> list[float]: UpperCamelCase : Union[str, Any] = [0 for i in range(len(score_lists[0] ) )] for slist in score_lists: for j, ele in enumerate(_snake_case ): UpperCamelCase : Optional[int] = final_scores[j] + ele return final_scores def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> list[list[float]]: UpperCamelCase : int = get_data(_snake_case ) UpperCamelCase : List[str] = calculate_each_score(_snake_case , _snake_case ) UpperCamelCase : Optional[Any] = generate_final_scores(_snake_case ) # append scores to source data for i, ele in enumerate(_snake_case ): source_data[i].append(_snake_case ) return source_data
52
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class snake_case ( unittest.TestCase ): @slow def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = XLMRobertaModel.from_pretrained("xlm-roberta-base") a_ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house a_ = torch.Size((1, 12, 7_68)) # batch_size, sequence_length, embedding_vector_dim a_ = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a_ = model(_UpperCAmelCase)["last_hidden_state"].detach() self.assertEqual(output.shape , _UpperCAmelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1E-3)) @slow def UpperCAmelCase__ ( self) ->List[str]: a_ = XLMRobertaModel.from_pretrained("xlm-roberta-large") a_ = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]]) # The dog is cute and lives in the garden house a_ = torch.Size((1, 12, 10_24)) # batch_size, sequence_length, embedding_vector_dim a_ = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]]) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): a_ = model(_UpperCAmelCase)["last_hidden_state"].detach() self.assertEqual(output.shape , _UpperCAmelCase) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , _UpperCAmelCase , atol=1E-3))
243
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class lowercase : def __init__( self , _a , _a=13 , _a=7 , _a=True , _a=True , _a=True , _a=True , _a=99 , _a=32 , _a=2 , _a=4 , _a=37 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=16 , _a=2 , _a=0.02 , _a=3 , _a=4 , _a=None , _a=0 , ) -> int: _A : Tuple = parent _A : List[str] = batch_size _A : Any = seq_length _A : Dict = is_training _A : int = use_input_mask _A : Dict = use_token_type_ids _A : Union[str, Any] = use_labels _A : Union[str, Any] = vocab_size _A : Union[str, Any] = hidden_size _A : List[Any] = num_hidden_layers _A : Dict = num_attention_heads _A : int = intermediate_size _A : Dict = hidden_act _A : Dict = hidden_dropout_prob _A : Dict = attention_probs_dropout_prob _A : Union[str, Any] = max_position_embeddings _A : List[Any] = type_vocab_size _A : Tuple = type_sequence_label_size _A : List[Any] = initializer_range _A : str = num_labels _A : Optional[Any] = num_choices _A : Tuple = scope _A : int = projection_dim def a__ ( self ) -> Optional[Any]: _A : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A : str = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py _A : int = random_attention_mask([self.batch_size, self.seq_length] ) _A : Union[str, Any] = None if self.use_token_type_ids: _A : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A : Dict = None _A : Tuple = None _A : Optional[int] = None if self.use_labels: _A : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A : str = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A : Optional[int] = ids_tensor([self.batch_size] , self.num_choices ) _A : Union[str, Any] = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) _A : Any = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _A : List[str] = TFDPRContextEncoder(config=_UpperCAmelCase ) _A : Union[str, Any] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A : List[Any] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A : str = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> Tuple: _A : Any = TFDPRQuestionEncoder(config=_UpperCAmelCase ) _A : List[str] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A : Union[str, Any] = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase ) _A : List[Any] = model(_UpperCAmelCase ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def a__ ( self , _a , _a , _a , _a , _a , _a , _a ) -> str: _A : str = TFDPRReader(config=_UpperCAmelCase ) _A : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def a__ ( self ) -> List[Any]: _A : str = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) : List[str] = config_and_inputs _A : Optional[int] = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class lowercase ( __lowerCAmelCase,__lowerCAmelCase,unittest.TestCase ): _a = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) _a = {'''feature-extraction''': TFDPRQuestionEncoder} if is_tf_available() else {} _a = False _a = False _a = False _a = False _a = False def a__ ( self ) -> Any: _A : int = TFDPRModelTester(self ) _A : List[str] = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def a__ ( self ) -> Optional[Any]: self.config_tester.run_common_tests() def a__ ( self ) -> Any: _A : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*_UpperCAmelCase ) def a__ ( self ) -> List[str]: _A : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*_UpperCAmelCase ) def a__ ( self ) -> Any: _A : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*_UpperCAmelCase ) @slow def a__ ( self ) -> Optional[Any]: for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : Union[str, Any] = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : str = TFDPRContextEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : List[str] = TFDPRQuestionEncoder.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A : List[str] = TFDPRReader.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) @require_tf class lowercase ( unittest.TestCase ): @slow def a__ ( self ) -> int: _A : Any = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) _A : Tuple = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 1_0140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] _A : Tuple = model(_UpperCAmelCase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. _A : str = tf.constant( [ [ 0.03236253, 0.12753335, 0.16818509, 0.00279786, 0.3896933, 0.24264945, 0.2178971, -0.02335227, -0.08481959, -0.14324117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1e-4 ) )
26
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def lowerCAmelCase_ ( ) -> List[Any]: """simple docstring""" a__ : Dict = HfArgumentParser(_snake_case) a__ : Any = parser.parse_args_into_dataclasses()[0] a__ : List[str] = TensorFlowBenchmark(args=_snake_case) try: a__ : List[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: a__ : Dict = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" a__ : Dict = """ """.join(str(_snake_case).split(""" """)[:-1]) a__ : Any = """""" a__ : Optional[int] = eval(str(_snake_case).split(""" """)[-1]) a__ : Tuple = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:]) else: wrong_args.append(_snake_case) if len(_snake_case) > 0: a__ : List[str] = full_error_msg + begin_error_msg + str(_snake_case) raise ValueError(_snake_case) benchmark.run() if __name__ == "__main__": main()
170
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
'''simple docstring''' UpperCAmelCase = '''Tobias Carryer''' from time import time class lowerCAmelCase : def __init__( self : Union[str, Any] , __lowercase : Tuple , __lowercase : Any , __lowercase : Union[str, Any] , __lowercase : Tuple=int(time() ) ): # noqa: B008 """simple docstring""" __lowercase =multiplier __lowercase =increment __lowercase =modulo __lowercase =seed def snake_case ( self : Dict ): """simple docstring""" __lowercase =(self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. UpperCAmelCase = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
141
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
import argparse import os import platform import numpy as np import psutil import torch from accelerate import __version__ as version from accelerate.commands.config import default_config_file, load_config_from_file from ..utils import is_npu_available, is_xpu_available def snake_case( __magic_name__=None ) -> int: '''simple docstring''' if subparsers is not None: lowercase : Union[str, Any] = subparsers.add_parser('''env''' ) else: lowercase : Optional[Any] = argparse.ArgumentParser('''Accelerate env command''' ) parser.add_argument( '''--config_file''' , default=_snake_case , help='''The config file to use for the default values in the launching script.''' ) if subparsers is not None: parser.set_defaults(func=_snake_case ) return parser def snake_case( __magic_name__ ) -> str: '''simple docstring''' lowercase : int = torch.__version__ lowercase : str = torch.cuda.is_available() lowercase : Union[str, Any] = is_xpu_available() lowercase : Optional[int] = is_npu_available() lowercase : Any = '''Not found''' # Get the default from the config file. if args.config_file is not None or os.path.isfile(_snake_case ): lowercase : Any = load_config_from_file(args.config_file ).to_dict() lowercase : Union[str, Any] = { '''`Accelerate` version''': version, '''Platform''': platform.platform(), '''Python version''': platform.python_version(), '''Numpy version''': np.__version__, '''PyTorch version (GPU?)''': F"""{pt_version} ({pt_cuda_available})""", '''PyTorch XPU available''': str(_snake_case ), '''PyTorch NPU available''': str(_snake_case ), '''System RAM''': F"""{psutil.virtual_memory().total / 10_24 ** 3:.2f} GB""", } if pt_cuda_available: lowercase : str = torch.cuda.get_device_name() print('''\nCopy-and-paste the text below in your GitHub issue\n''' ) print('''\n'''.join([F"""- {prop}: {val}""" for prop, val in info.items()] ) ) print('''- `Accelerate` default config:''' if args.config_file is None else '''- `Accelerate` config passed:''' ) lowercase : Any = ( '''\n'''.join([F"""\t- {prop}: {val}""" for prop, val in accelerate_config.items()] ) if isinstance(_snake_case , _snake_case ) else F"""\t{accelerate_config}""" ) print(_snake_case ) lowercase : Dict = accelerate_config return info def snake_case( ) -> int: '''simple docstring''' lowercase : Optional[Any] = env_command_parser() lowercase : Optional[Any] = parser.parse_args() env_command(_snake_case ) return 0 if __name__ == "__main__": raise SystemExit(main())
308
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
from collections.abc import Callable import numpy as np def __lowerCamelCase ( lowerCamelCase__ : Callable , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ): '''simple docstring''' lowerCamelCase = int(np.ceil((x_end - xa) / step_size ) ) lowerCamelCase = np.zeros((n + 1,) ) lowerCamelCase = ya lowerCamelCase = xa for k in range(_snake_case ): lowerCamelCase = y[k] + step_size * ode_func(_snake_case , y[k] ) lowerCamelCase = y[k] + ( (step_size / 2) * (ode_func(_snake_case , y[k] ) + ode_func(x + step_size , _snake_case )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
252
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
from ... import PretrainedConfig __A = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowercase_ = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP lowercase_ = '''nezha''' def __init__(self : str , UpperCAmelCase_ : List[Any]=21_128 , UpperCAmelCase_ : Tuple=768 , UpperCAmelCase_ : Any=12 , UpperCAmelCase_ : List[str]=12 , UpperCAmelCase_ : List[Any]=3_072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : Tuple=0.1 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Tuple=512 , UpperCAmelCase_ : int=64 , UpperCAmelCase_ : Any=2 , UpperCAmelCase_ : List[str]=0.02 , UpperCAmelCase_ : Union[str, Any]=1E-1_2 , UpperCAmelCase_ : List[str]=0.1 , UpperCAmelCase_ : Optional[Any]=0 , UpperCAmelCase_ : Union[str, Any]=2 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Tuple=True , **UpperCAmelCase_ : List[Any] , ) ->List[str]: '''simple docstring''' super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase) lowerCamelCase__: Tuple =vocab_size lowerCamelCase__: str =hidden_size lowerCamelCase__: Optional[int] =num_hidden_layers lowerCamelCase__: Union[str, Any] =num_attention_heads lowerCamelCase__: Optional[int] =hidden_act lowerCamelCase__: Tuple =intermediate_size lowerCamelCase__: List[Any] =hidden_dropout_prob lowerCamelCase__: List[str] =attention_probs_dropout_prob lowerCamelCase__: str =max_position_embeddings lowerCamelCase__: Optional[Any] =max_relative_position lowerCamelCase__: Optional[int] =type_vocab_size lowerCamelCase__: str =initializer_range lowerCamelCase__: Optional[int] =layer_norm_eps lowerCamelCase__: Union[str, Any] =classifier_dropout lowerCamelCase__: Any =use_cache
10
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) __UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) __UpperCamelCase : List[Any] = OrderedDict( [ ("align", "EfficientNetImageProcessor"), ("beit", "BeitImageProcessor"), ("bit", "BitImageProcessor"), ("blip", "BlipImageProcessor"), ("blip-2", "BlipImageProcessor"), ("bridgetower", "BridgeTowerImageProcessor"), ("chinese_clip", "ChineseCLIPImageProcessor"), ("clip", "CLIPImageProcessor"), ("clipseg", "ViTImageProcessor"), ("conditional_detr", "ConditionalDetrImageProcessor"), ("convnext", "ConvNextImageProcessor"), ("convnextv2", "ConvNextImageProcessor"), ("cvt", "ConvNextImageProcessor"), ("data2vec-vision", "BeitImageProcessor"), ("deformable_detr", "DeformableDetrImageProcessor"), ("deit", "DeiTImageProcessor"), ("deta", "DetaImageProcessor"), ("detr", "DetrImageProcessor"), ("dinat", "ViTImageProcessor"), ("donut-swin", "DonutImageProcessor"), ("dpt", "DPTImageProcessor"), ("efficientformer", "EfficientFormerImageProcessor"), ("efficientnet", "EfficientNetImageProcessor"), ("flava", "FlavaImageProcessor"), ("focalnet", "BitImageProcessor"), ("git", "CLIPImageProcessor"), ("glpn", "GLPNImageProcessor"), ("groupvit", "CLIPImageProcessor"), ("imagegpt", "ImageGPTImageProcessor"), ("instructblip", "BlipImageProcessor"), ("layoutlmv2", "LayoutLMv2ImageProcessor"), ("layoutlmv3", "LayoutLMv3ImageProcessor"), ("levit", "LevitImageProcessor"), ("mask2former", "Mask2FormerImageProcessor"), ("maskformer", "MaskFormerImageProcessor"), ("mgp-str", "ViTImageProcessor"), ("mobilenet_v1", "MobileNetV1ImageProcessor"), ("mobilenet_v2", "MobileNetV2ImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevit", "MobileViTImageProcessor"), ("mobilevitv2", "MobileViTImageProcessor"), ("nat", "ViTImageProcessor"), ("oneformer", "OneFormerImageProcessor"), ("owlvit", "OwlViTImageProcessor"), ("perceiver", "PerceiverImageProcessor"), ("pix2struct", "Pix2StructImageProcessor"), ("poolformer", "PoolFormerImageProcessor"), ("regnet", "ConvNextImageProcessor"), ("resnet", "ConvNextImageProcessor"), ("sam", "SamImageProcessor"), ("segformer", "SegformerImageProcessor"), ("swiftformer", "ViTImageProcessor"), ("swin", "ViTImageProcessor"), ("swin2sr", "Swin2SRImageProcessor"), ("swinv2", "ViTImageProcessor"), ("table-transformer", "DetrImageProcessor"), ("timesformer", "VideoMAEImageProcessor"), ("tvlt", "TvltImageProcessor"), ("upernet", "SegformerImageProcessor"), ("van", "ConvNextImageProcessor"), ("videomae", "VideoMAEImageProcessor"), ("vilt", "ViltImageProcessor"), ("vit", "ViTImageProcessor"), ("vit_hybrid", "ViTHybridImageProcessor"), ("vit_mae", "ViTImageProcessor"), ("vit_msn", "ViTImageProcessor"), ("xclip", "CLIPImageProcessor"), ("yolos", "YolosImageProcessor"), ] ) __UpperCamelCase : Optional[Any] = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _a ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: UpperCamelCase__ : List[str] = model_type_to_module_name(_snake_case ) UpperCamelCase__ : Any = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(_snake_case , _snake_case ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(_snake_case , '''__name__''' , _snake_case ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. UpperCamelCase__ : Optional[Any] = importlib.import_module('''transformers''' ) if hasattr(_snake_case , _snake_case ): return getattr(_snake_case , _snake_case ) return None def _a ( SCREAMING_SNAKE_CASE : Union[str, os.PathLike] , SCREAMING_SNAKE_CASE : Optional[Union[str, os.PathLike]] = None , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : bool = False , SCREAMING_SNAKE_CASE : Optional[Dict[str, str]] = None , SCREAMING_SNAKE_CASE : Optional[Union[bool, str]] = None , SCREAMING_SNAKE_CASE : Optional[str] = None , SCREAMING_SNAKE_CASE : bool = False , **SCREAMING_SNAKE_CASE : Tuple , ): """simple docstring""" UpperCamelCase__ : Optional[int] = get_file_from_repo( _snake_case , _snake_case , cache_dir=_snake_case , force_download=_snake_case , resume_download=_snake_case , proxies=_snake_case , use_auth_token=_snake_case , revision=_snake_case , local_files_only=_snake_case , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(_snake_case , encoding='''utf-8''' ) as reader: return json.load(_snake_case ) class __magic_name__ : def __init__( self : List[Any] ) -> Optional[int]: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(_UpperCAmelCase ) def UpperCAmelCase__ ( cls : Any , lowerCamelCase__ : str , **lowerCamelCase__ : Any ) -> List[str]: '''simple docstring''' UpperCamelCase__ : int = kwargs.pop('''config''' , _UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = kwargs.pop('''trust_remote_code''' , _UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = True UpperCamelCase__ , UpperCamelCase__ : Tuple = ImageProcessingMixin.get_image_processor_dict(_UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase__ : Optional[Any] = config_dict.get('''image_processor_type''' , _UpperCAmelCase ) UpperCamelCase__ : List[Any] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): UpperCamelCase__ : Dict = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: UpperCamelCase__ : Dict = config_dict.pop('''feature_extractor_type''' , _UpperCAmelCase ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) UpperCamelCase__ : List[Any] = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): UpperCamelCase__ : Optional[Any] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] UpperCamelCase__ : int = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): UpperCamelCase__ : Optional[int] = AutoConfig.from_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) # It could be in `config.image_processor_type`` UpperCamelCase__ : List[str] = getattr(_UpperCAmelCase , '''image_processor_type''' , _UpperCAmelCase ) if hasattr(_UpperCAmelCase , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: UpperCamelCase__ : Optional[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: UpperCamelCase__ : Optional[int] = image_processor_class_from_name(_UpperCAmelCase ) UpperCamelCase__ : Optional[int] = image_processor_auto_map is not None UpperCamelCase__ : Optional[Any] = image_processor_class is not None or type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING UpperCamelCase__ : Dict = resolve_trust_remote_code( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) if has_remote_code and trust_remote_code: UpperCamelCase__ : List[str] = get_class_from_dynamic_module( _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ) UpperCamelCase__ : Optional[int] = kwargs.pop('''code_revision''' , _UpperCAmelCase ) if os.path.isdir(_UpperCAmelCase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) elif image_processor_class is not None: return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_UpperCAmelCase ) in IMAGE_PROCESSOR_MAPPING: UpperCamelCase__ : Optional[Any] = IMAGE_PROCESSOR_MAPPING[type(_UpperCAmelCase )] return image_processor_class.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def UpperCAmelCase__ ( lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] ) -> str: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_UpperCAmelCase , _UpperCAmelCase )
146
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
"""simple docstring""" import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=512 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=4 , ): """simple docstring""" lowerCAmelCase : Dict = parent lowerCAmelCase : Dict = batch_size lowerCAmelCase : Union[str, Any] = seq_length lowerCAmelCase : str = is_training lowerCAmelCase : Optional[int] = use_attention_mask lowerCAmelCase : List[Any] = use_token_type_ids lowerCAmelCase : Union[str, Any] = use_labels lowerCAmelCase : Optional[int] = vocab_size lowerCAmelCase : List[Any] = hidden_size lowerCAmelCase : Tuple = num_hidden_layers lowerCAmelCase : int = num_attention_heads lowerCAmelCase : Tuple = intermediate_size lowerCAmelCase : List[str] = hidden_act lowerCAmelCase : str = hidden_dropout_prob lowerCAmelCase : Tuple = attention_probs_dropout_prob lowerCAmelCase : Dict = max_position_embeddings lowerCAmelCase : Optional[int] = type_vocab_size lowerCAmelCase : Dict = type_sequence_label_size lowerCAmelCase : Any = initializer_range lowerCAmelCase : Any = num_choices def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase : Dict = None if self.use_attention_mask: lowerCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase : str = None if self.use_token_type_ids: lowerCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase : str = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCAmelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Union[str, Any] = config_and_inputs lowerCAmelCase : str = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": attention_mask} return config, inputs_dict def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : List[Any] = config_and_inputs lowerCAmelCase : Optional[int] = True lowerCAmelCase : Optional[int] = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" a : List[str] =True a : Dict =( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = FlaxRobertaPreLayerNormModelTester(self ) @slow def lowercase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase : List[Any] = model_class_name.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCAmelCase ) lowerCAmelCase : str = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCAmelCase ) lowerCAmelCase : Optional[int] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) lowerCAmelCase : Any = model(_UpperCAmelCase )[0] lowerCAmelCase : Dict = [1, 11, 50_265] self.assertEqual(list(output.shape ) , _UpperCAmelCase ) # compare the actual values for a slice. lowerCAmelCase : Any = np.array( [[[40.4880, 18.0199, -5.2367], [-1.8877, -4.0885, 10.7085], [-2.2613, -5.6110, 7.2665]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = FlaxRobertaPreLayerNormModel.from_pretrained("andreasmadsen/efficient_mlm_m0.40" , from_pt=_UpperCAmelCase ) lowerCAmelCase : Union[str, Any] = np.array([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] , dtype=jnp.intaa ) lowerCAmelCase : Any = model(_UpperCAmelCase )[0] # compare the actual values for a slice. lowerCAmelCase : Optional[Any] = np.array( [[[0.0208, -0.0356, 0.0237], [-0.1569, -0.0411, -0.2626], [0.1879, 0.0125, -0.0089]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
108
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCAmelCase__ = { '''configuration_mobilebert''': [ '''MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileBertConfig''', '''MobileBertOnnxConfig''', ], '''tokenization_mobilebert''': ['''MobileBertTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = ['''MobileBertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileBertForMaskedLM''', '''MobileBertForMultipleChoice''', '''MobileBertForNextSentencePrediction''', '''MobileBertForPreTraining''', '''MobileBertForQuestionAnswering''', '''MobileBertForSequenceClassification''', '''MobileBertForTokenClassification''', '''MobileBertLayer''', '''MobileBertModel''', '''MobileBertPreTrainedModel''', '''load_tf_weights_in_mobilebert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ '''TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileBertForMaskedLM''', '''TFMobileBertForMultipleChoice''', '''TFMobileBertForNextSentencePrediction''', '''TFMobileBertForPreTraining''', '''TFMobileBertForQuestionAnswering''', '''TFMobileBertForSequenceClassification''', '''TFMobileBertForTokenClassification''', '''TFMobileBertMainLayer''', '''TFMobileBertModel''', '''TFMobileBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
130
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
import qiskit def A_ ( _lowerCAmelCase , _lowerCAmelCase ) -> qiskit.result.counts.Counts: UpperCamelCase : Optional[Any] = qiskit.Aer.get_backend("aer_simulator" ) UpperCamelCase : List[str] = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator UpperCamelCase : Any = qiskit.execute(_snake_case , _snake_case , shots=1000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(_snake_case ) if __name__ == "__main__": __lowerCamelCase : Dict = half_adder(1, 1) print(f"""Half Adder Output Qubit Counts: {counts}""")
52
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase_ = { 'configuration_mgp_str': ['MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MgpstrConfig'], 'processing_mgp_str': ['MgpstrProcessor'], 'tokenization_mgp_str': ['MgpstrTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ 'MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST', 'MgpstrModel', 'MgpstrPreTrainedModel', 'MgpstrForSceneTextRecognition', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
243
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = "▁" _snake_case = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } _snake_case = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } _snake_case = { "facebook/s2t-small-librispeech-asr": 1024, } _snake_case = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] _snake_case = {"mustc": MUSTC_LANGS} class lowercase ( __lowerCAmelCase ): _a = VOCAB_FILES_NAMES _a = PRETRAINED_VOCAB_FILES_MAP _a = MAX_MODEL_INPUT_SIZES _a = ['''input_ids''', '''attention_mask'''] _a = [] def __init__( self , _a , _a , _a="<s>" , _a="</s>" , _a="<pad>" , _a="<unk>" , _a=False , _a=False , _a=None , _a=None , _a = None , **_a , ) -> str: _A : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , do_upper_case=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , tgt_lang=_UpperCAmelCase , lang_codes=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A : Tuple = do_upper_case _A : Tuple = do_lower_case _A : int = load_json(_UpperCAmelCase ) _A : Any = {v: k for k, v in self.encoder.items()} _A : Optional[int] = spm_file _A : Optional[Any] = load_spm(_UpperCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: _A : List[str] = lang_codes _A : List[str] = LANGUAGES[lang_codes] _A : List[Any] = [F'''<lang:{lang}>''' for lang in self.langs] _A : int = {lang: self.sp_model.PieceToId(F'''<lang:{lang}>''' ) for lang in self.langs} _A : Optional[Any] = self.lang_tokens _A : Union[str, Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: _A : Dict = {} @property def a__ ( self ) -> List[str]: return len(self.encoder ) @property def a__ ( self ) -> Dict: return self._tgt_lang @tgt_lang.setter def a__ ( self , _a ) -> str: _A : str = new_tgt_lang self.set_tgt_lang_special_tokens(_UpperCAmelCase ) def a__ ( self , _a ) -> List[str]: _A : Union[str, Any] = self.lang_code_to_id[tgt_lang] _A : List[str] = [lang_code_id] def a__ ( self , _a ) -> str: return self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) def a__ ( self , _a ) -> int: return self.encoder.get(_UpperCAmelCase , self.encoder[self.unk_token] ) def a__ ( self , _a ) -> Dict: return self.decoder.get(_UpperCAmelCase , self.unk_token ) def a__ ( self , _a ) -> str: _A : List[str] = [] _A : List[str] = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: _A : Optional[int] = self.sp_model.decode(_UpperCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " _A : str = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A : Union[str, Any] = self.sp_model.decode(_UpperCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def a__ ( self , _a , _a=None ) -> Any: if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def a__ ( self , _a , _a = None , _a = False ) -> Union[str, Any]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) _A : int = [1] * len(self.prefix_tokens ) _A : Any = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_UpperCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(_UpperCAmelCase )) + ([0] * len(_UpperCAmelCase )) + suffix_ones def a__ ( self ) -> List[Any]: _A : List[str] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Optional[int]: _A : Union[str, Any] = self.__dict__.copy() _A : Union[str, Any] = None return state def __setstate__( self , _a ) -> Union[str, Any]: _A : List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): _A : Dict = {} _A : List[Any] = load_spm(self.spm_file , self.sp_model_kwargs ) def a__ ( self , _a , _a = None ) -> List[str]: _A : Optional[int] = Path(_UpperCAmelCase ) assert save_dir.is_dir(), F'''{save_directory} should be a directory''' _A : Union[str, Any] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) _A : List[str] = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , _UpperCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _UpperCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(_UpperCAmelCase , """wb""" ) as fi: _A : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (str(_UpperCAmelCase ), str(_UpperCAmelCase )) def lowerCAmelCase_ ( snake_case_,snake_case_ ): _A : List[str] = sentencepiece.SentencePieceProcessor(**_snake_case ) spm.Load(str(_snake_case ) ) return spm def lowerCAmelCase_ ( snake_case_ ): with open(_snake_case,"""r""" ) as f: return json.load(_snake_case ) def lowerCAmelCase_ ( snake_case_,snake_case_ ): with open(_snake_case,"""w""" ) as f: json.dump(_snake_case,_snake_case,indent=2 )
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
from typing import Optional, Tuple, Union import torch from einops import rearrange, reduce from diffusers import DDIMScheduler, DDPMScheduler, DiffusionPipeline, ImagePipelineOutput, UNetaDConditionModel from diffusers.schedulers.scheduling_ddim import DDIMSchedulerOutput from diffusers.schedulers.scheduling_ddpm import DDPMSchedulerOutput _lowercase : Union[str, Any] =8 def lowerCAmelCase_ ( _lowercase : int , _lowercase : Union[str, Any]=BITS) -> Dict: """simple docstring""" a__ : str = x.device a__ : List[str] = (x * 255).int().clamp(0 , 255) a__ : Tuple = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_snake_case) a__ : List[str] = rearrange(_snake_case , """d -> d 1 1""") a__ : Tuple = rearrange(_snake_case , """b c h w -> b c 1 h w""") a__ : Optional[int] = ((x & mask) != 0).float() a__ : str = rearrange(_snake_case , """b c d h w -> b (c d) h w""") a__ : Union[str, Any] = bits * 2 - 1 return bits def lowerCAmelCase_ ( _lowercase : int , _lowercase : Optional[int]=BITS) -> Any: """simple docstring""" a__ : Union[str, Any] = x.device a__ : Optional[Any] = (x > 0).int() a__ : Optional[int] = 2 ** torch.arange(bits - 1 , -1 , -1 , device=_snake_case , dtype=torch.intaa) a__ : Any = rearrange(_snake_case , """d -> d 1 1""") a__ : List[Any] = rearrange(_snake_case , """b (c d) h w -> b c d h w""" , d=8) a__ : int = reduce(x * mask , """b c d h w -> b c h w""" , """sum""") return (dec / 255).clamp(0.0 , 1.0) def lowerCAmelCase_ ( self : List[Any] , _lowercase : torch.FloatTensor , _lowercase : int , _lowercase : torch.FloatTensor , _lowercase : float = 0.0 , _lowercase : bool = True , _lowercase : int=None , _lowercase : bool = True , ) -> Union[DDIMSchedulerOutput, Tuple]: """simple docstring""" if self.num_inference_steps is None: raise ValueError( """Number of inference steps is \'None\', you need to run \'set_timesteps\' after creating the scheduler""") # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation (<variable name> -> <name in paper> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_sample -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_sample_direction -> "direction pointing to x_t" # - pred_prev_sample -> "x_t-1" # 1. get previous step value (=t-1) a__ : Optional[Any] = timestep - self.config.num_train_timesteps // self.num_inference_steps # 2. compute alphas, betas a__ : int = self.alphas_cumprod[timestep] a__ : int = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod a__ : Any = 1 - alpha_prod_t # 3. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ : List[str] = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 # 4. Clip "predicted x_0" a__ : int = self.bit_scale if self.config.clip_sample: a__ : List[Any] = torch.clamp(_snake_case , -scale , _snake_case) # 5. compute variance: "sigma_t(η)" -> see formula (16) # σ_t = sqrt((1 − α_t−1)/(1 − α_t)) * sqrt(1 − α_t/α_t−1) a__ : List[Any] = self._get_variance(_snake_case , _snake_case) a__ : Tuple = eta * variance ** 0.5 if use_clipped_model_output: # the model_output is always re-derived from the clipped x_0 in Glide a__ : int = (sample - alpha_prod_t ** 0.5 * pred_original_sample) / beta_prod_t ** 0.5 # 6. compute "direction pointing to x_t" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ : Union[str, Any] = (1 - alpha_prod_t_prev - std_dev_t**2) ** 0.5 * model_output # 7. compute x_t without "random noise" of formula (12) from https://arxiv.org/pdf/2010.02502.pdf a__ : Optional[Any] = alpha_prod_t_prev ** 0.5 * pred_original_sample + pred_sample_direction if eta > 0: # randn_like does not support generator https://github.com/pytorch/pytorch/issues/27072 a__ : Union[str, Any] = model_output.device if torch.is_tensor(_snake_case) else """cpu""" a__ : Any = torch.randn(model_output.shape , dtype=model_output.dtype , generator=_snake_case).to(_snake_case) a__ : List[Any] = self._get_variance(_snake_case , _snake_case) ** 0.5 * eta * noise a__ : Tuple = prev_sample + variance if not return_dict: return (prev_sample,) return DDIMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case) def lowerCAmelCase_ ( self : Any , _lowercase : torch.FloatTensor , _lowercase : int , _lowercase : torch.FloatTensor , _lowercase : int="epsilon" , _lowercase : Union[str, Any]=None , _lowercase : bool = True , ) -> Union[DDPMSchedulerOutput, Tuple]: """simple docstring""" a__ : str = timestep if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]: a__ , a__ : List[str] = torch.split(_snake_case , sample.shape[1] , dim=1) else: a__ : List[str] = None # 1. compute alphas, betas a__ : Tuple = self.alphas_cumprod[t] a__ : Dict = self.alphas_cumprod[t - 1] if t > 0 else self.one a__ : Any = 1 - alpha_prod_t a__ : str = 1 - alpha_prod_t_prev # 2. compute predicted original sample from predicted noise also called # "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf if prediction_type == "epsilon": a__ : Any = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 elif prediction_type == "sample": a__ : Union[str, Any] = model_output else: raise ValueError(F'''Unsupported prediction_type {prediction_type}.''') # 3. Clip "predicted x_0" a__ : Tuple = self.bit_scale if self.config.clip_sample: a__ : Optional[Any] = torch.clamp(_snake_case , -scale , _snake_case) # 4. Compute coefficients for pred_original_sample x_0 and current sample x_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__ : Any = (alpha_prod_t_prev ** 0.5 * self.betas[t]) / beta_prod_t a__ : Union[str, Any] = self.alphas[t] ** 0.5 * beta_prod_t_prev / beta_prod_t # 5. Compute predicted previous sample µ_t # See formula (7) from https://arxiv.org/pdf/2006.11239.pdf a__ : Dict = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample # 6. Add noise a__ : Optional[int] = 0 if t > 0: a__ : Dict = torch.randn( model_output.size() , dtype=model_output.dtype , layout=model_output.layout , generator=_snake_case).to(model_output.device) a__ : List[str] = (self._get_variance(_snake_case , predicted_variance=_snake_case) ** 0.5) * noise a__ : int = pred_prev_sample + variance if not return_dict: return (pred_prev_sample,) return DDPMSchedulerOutput(prev_sample=_snake_case , pred_original_sample=_snake_case) class snake_case__ (__lowerCAmelCase ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase = 1.0 , ) -> List[Any]: """simple docstring""" super().__init__() a__ : str = bit_scale a__ : Optional[Any] = ( ddim_bit_scheduler_step if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else ddpm_bit_scheduler_step ) self.register_modules(unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , __lowercase = 2_5_6 , __lowercase = 2_5_6 , __lowercase = 5_0 , __lowercase = None , __lowercase = 1 , __lowercase = "pil" , __lowercase = True , **__lowercase , ) -> Any: """simple docstring""" a__ : Dict = torch.randn( (batch_size, self.unet.config.in_channels, height, width) , generator=_UpperCAmelCase , ) a__ : Dict = decimal_to_bits(_UpperCAmelCase ) * self.bit_scale a__ : List[Any] = latents.to(self.device ) self.scheduler.set_timesteps(_UpperCAmelCase ) for t in self.progress_bar(self.scheduler.timesteps ): # predict the noise residual a__ : Dict = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : Optional[int] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ).prev_sample a__ : Any = bits_to_decimal(_UpperCAmelCase ) if output_type == "pil": a__ : Optional[Any] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
170
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
'''simple docstring''' from typing import TYPE_CHECKING from ..models.auto import AutoModelForVisionaSeq from ..utils import requires_backends from .base import PipelineTool if TYPE_CHECKING: from PIL import Image class lowerCAmelCase ( __lowerCAmelCase ): lowerCAmelCase_ = '''Salesforce/blip-image-captioning-base''' lowerCAmelCase_ = ( '''This is a tool that generates a description of an image. It takes an input named `image` which should be the ''' '''image to caption, and returns a text that contains the description in English.''' ) lowerCAmelCase_ = '''image_captioner''' lowerCAmelCase_ = AutoModelForVisionaSeq lowerCAmelCase_ = ['''image'''] lowerCAmelCase_ = ['''text'''] def __init__( self : str , *__lowercase : Dict , **__lowercase : Optional[Any] ): """simple docstring""" requires_backends(self , ['vision'] ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) def snake_case ( self : Tuple , __lowercase : "Image" ): """simple docstring""" return self.pre_processor(images=_UpperCAmelCase , return_tensors='pt' ) def snake_case ( self : Dict , __lowercase : Any ): """simple docstring""" return self.model.generate(**_UpperCAmelCase ) def snake_case ( self : int , __lowercase : Tuple ): """simple docstring""" return self.pre_processor.batch_decode(_UpperCAmelCase , skip_special_tokens=_UpperCAmelCase )[0].strip()
141
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { 'sayakpaul/vit-msn-base': 'https://huggingface.co/sayakpaul/vit-msn-base/resolve/main/config.json', # See all ViT MSN models at https://huggingface.co/models?filter=vit_msn } class _A ( __lowerCAmelCase ): _UpperCamelCase : str = '''vit_msn''' def __init__( self : Optional[Any] , _A : List[str]=768 , _A : List[str]=12 , _A : Union[str, Any]=12 , _A : List[str]=3_072 , _A : int="gelu" , _A : List[str]=0.0 , _A : str=0.0 , _A : Optional[int]=0.02 , _A : int=1E-06 , _A : Tuple=224 , _A : Union[str, Any]=16 , _A : List[str]=3 , _A : Dict=True , **_A : Any , ) -> Dict: """simple docstring""" super().__init__(**_UpperCAmelCase ) lowercase : List[Any] = hidden_size lowercase : Tuple = num_hidden_layers lowercase : Dict = num_attention_heads lowercase : Dict = intermediate_size lowercase : List[str] = hidden_act lowercase : Any = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : str = initializer_range lowercase : Union[str, Any] = layer_norm_eps lowercase : str = image_size lowercase : int = patch_size lowercase : Union[str, Any] = num_channels lowercase : List[str] = qkv_bias
308
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
import inspect import unittest from transformers import MobileNetVaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel from transformers.models.mobilenet_va.modeling_mobilenet_va import MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class __lowercase ( __lowerCAmelCase ): """simple docstring""" def __A ( self ) -> Dict: '''simple docstring''' lowerCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """tf_padding""" ) ) self.parent.assertTrue(hasattr(_UpperCAmelCase , """depth_multiplier""" ) ) class __lowercase : """simple docstring""" def __init__( self , A , A=13 , A=3 , A=32 , A=0.25 , A=8 , A=8 , A=6 , A=32 , A=True , A=True , A=True , A="relu6" , A=12_80 , A=0.1 , A=0.02 , A=True , A=True , A=10 , A=None , ) -> str: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = num_channels lowerCamelCase = image_size lowerCamelCase = depth_multiplier lowerCamelCase = depth_divisible_by lowerCamelCase = min_depth lowerCamelCase = expand_ratio lowerCamelCase = tf_padding lowerCamelCase = output_stride lowerCamelCase = first_layer_is_expansion lowerCamelCase = finegrained_output lowerCamelCase = hidden_act lowerCamelCase = last_hidden_size if finegrained_output else int(last_hidden_size * depth_multiplier ) lowerCamelCase = classifier_dropout_prob lowerCamelCase = use_labels lowerCamelCase = is_training lowerCamelCase = num_labels lowerCamelCase = initializer_range lowerCamelCase = scope def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def __A ( self ) -> Dict: '''simple docstring''' return MobileNetVaConfig( num_channels=self.num_channels , image_size=self.image_size , depth_multiplier=self.depth_multiplier , depth_divisible_by=self.depth_divisible_by , min_depth=self.min_depth , expand_ratio=self.expand_ratio , output_stride=self.output_stride , first_layer_is_expansion=self.first_layer_is_expansion , finegrained_output=self.finegrained_output , hidden_act=self.hidden_act , tf_padding=self.tf_padding , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def __A ( self , A , A , A , A ) -> Tuple: '''simple docstring''' lowerCamelCase = MobileNetVaModel(config=_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) self.parent.assertEqual( result.pooler_output.shape , (self.batch_size, self.last_hidden_size) , ) def __A ( self , A , A , A , A ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = MobileNetVaForImageClassification(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self , A , A , A , A ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.num_labels lowerCamelCase = MobileNetVaForSemanticSegmentation(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() lowerCamelCase = model(_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase = model(_UpperCAmelCase , labels=_UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __lowercase ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): """simple docstring""" UpperCamelCase : Any = ( (MobileNetVaModel, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase : List[Any] = ( { '''feature-extraction''': MobileNetVaModel, '''image-classification''': MobileNetVaForImageClassification, '''image-segmentation''': MobileNetVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase : Optional[int] = False UpperCamelCase : Dict = False UpperCamelCase : Optional[int] = False UpperCamelCase : str = False def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = MobileNetVaModelTester(self ) lowerCamelCase = MobileNetVaConfigTester(self , config_class=_UpperCAmelCase , has_text_modality=_UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason="""MobileNetV2 does not use inputs_embeds""" ) def __A ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not support input and output embeddings""" ) def __A ( self ) -> Any: '''simple docstring''' pass @unittest.skip(reason="""MobileNetV2 does not output attentions""" ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' pass def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(_UpperCAmelCase ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCAmelCase ) def __A ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def __A ( self ) -> List[str]: '''simple docstring''' def check_hidden_states_output(A , A , A ): lowerCamelCase = model_class(_UpperCAmelCase ) model.to(_UpperCAmelCase ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) lowerCamelCase = outputs.hidden_states lowerCamelCase = 16 self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True check_hidden_states_output(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_UpperCAmelCase ) def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*_UpperCAmelCase ) @slow def __A ( self ) -> Optional[int]: '''simple docstring''' for model_name in MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = MobileNetVaModel.from_pretrained(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase ) def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __lowercase ( unittest.TestCase ): """simple docstring""" @cached_property def __A ( self ) -> List[Any]: '''simple docstring''' return ( MobileNetVaImageProcessor.from_pretrained("""google/mobilenet_v2_1.0_224""" ) if is_vision_available() else None ) @slow def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = MobileNetVaForImageClassification.from_pretrained("""google/mobilenet_v2_1.0_224""" ).to(_UpperCAmelCase ) lowerCamelCase = self.default_image_processor lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_UpperCAmelCase ) # verify the logits lowerCamelCase = torch.Size((1, 10_01) ) self.assertEqual(outputs.logits.shape , _UpperCAmelCase ) lowerCamelCase = torch.tensor([0.2445, -1.1993, 0.1905] ).to(_UpperCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) ) @slow def __A ( self ) -> str: '''simple docstring''' lowerCamelCase = MobileNetVaForSemanticSegmentation.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowerCamelCase = model.to(_UpperCAmelCase ) lowerCamelCase = MobileNetVaImageProcessor.from_pretrained("""google/deeplabv3_mobilenet_v2_1.0_513""" ) lowerCamelCase = prepare_img() lowerCamelCase = image_processor(images=_UpperCAmelCase , return_tensors="""pt""" ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): lowerCamelCase = model(**_UpperCAmelCase ) lowerCamelCase = outputs.logits # verify the logits lowerCamelCase = torch.Size((1, 21, 65, 65) ) self.assertEqual(logits.shape , _UpperCAmelCase ) lowerCamelCase = torch.tensor( [ [[17.5790, 17.7581, 18.3355], [18.3257, 18.4230, 18.8973], [18.6169, 18.8650, 19.2187]], [[-2.1595, -2.0977, -2.3741], [-2.4226, -2.3028, -2.6835], [-2.7819, -2.5991, -2.7706]], [[4.2058, 4.8317, 4.7638], [4.4136, 5.0361, 4.9383], [4.5028, 4.9644, 4.8734]], ] , device=_UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , _UpperCAmelCase , atol=1e-4 ) )
252
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger __A = get_logger(__name__) __A = Path(__file__).parent / "model_card_template.md" __A = uuida().hex __A = os.getenv("HF_HUB_OFFLINE", "").upper() in ENV_VARS_TRUE_VALUES __A = os.getenv("DISABLE_TELEMETRY", "").upper() in ENV_VARS_TRUE_VALUES __A = HUGGINGFACE_CO_RESOLVE_ENDPOINT + "/api/telemetry/" def lowerCAmelCase_ ( __a = None ) -> str: """simple docstring""" lowerCamelCase__: Tuple =F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get("DIFFUSERS_IS_CI" , "" ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(_snake_case , _snake_case ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(_snake_case , _snake_case ): ua += "; " + user_agent return ua def lowerCAmelCase_ ( __a , __a = None , __a = None ) -> str: """simple docstring""" if token is None: lowerCamelCase__: Dict =HfFolder.get_token() if organization is None: lowerCamelCase__: Optional[Any] =whoami(_snake_case )["name"] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def lowerCAmelCase_ ( __a , __a ) -> int: """simple docstring""" if not is_jinja_available(): raise ValueError( "Modelcard rendering is based on Jinja templates." " Please make sure to have `jinja` installed before using `create_model_card`." " To install it, please run `pip install Jinja2`." ) if hasattr(_snake_case , "local_rank" ) and args.local_rank not in [-1, 0]: return lowerCamelCase__: Tuple =args.hub_token if hasattr(_snake_case , "hub_token" ) else None lowerCamelCase__: Tuple =get_full_repo_name(_snake_case , token=_snake_case ) lowerCamelCase__: Dict =ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language="en" , license="apache-2.0" , library_name="diffusers" , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=_snake_case , model_name=_snake_case , repo_name=_snake_case , dataset_name=args.dataset_name if hasattr(_snake_case , "dataset_name" ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(_snake_case , "gradient_accumulation_steps" ) else None ) , adam_betaa=args.adam_betaa if hasattr(_snake_case , "adam_beta1" ) else None , adam_betaa=args.adam_betaa if hasattr(_snake_case , "adam_beta2" ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(_snake_case , "adam_weight_decay" ) else None , adam_epsilon=args.adam_epsilon if hasattr(_snake_case , "adam_epsilon" ) else None , lr_scheduler=args.lr_scheduler if hasattr(_snake_case , "lr_scheduler" ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(_snake_case , "lr_warmup_steps" ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(_snake_case , "ema_inv_gamma" ) else None , ema_power=args.ema_power if hasattr(_snake_case , "ema_power" ) else None , ema_max_decay=args.ema_max_decay if hasattr(_snake_case , "ema_max_decay" ) else None , mixed_precision=args.mixed_precision , ) lowerCamelCase__: Optional[Any] =os.path.join(args.output_dir , "README.md" ) model_card.save(_snake_case ) def lowerCAmelCase_ ( __a , __a = None ) -> List[Any]: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash lowerCamelCase__: Tuple =str(Path(_snake_case ).as_posix() ) lowerCamelCase__: Any =re.search(R"snapshots/([^/]+)/" , _snake_case ) if search is None: return None lowerCamelCase__: Optional[int] =search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(_snake_case ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. __A = os.path.expanduser( os.getenv("HF_HOME", os.path.join(os.getenv("XDG_CACHE_HOME", "~/.cache"), "huggingface")) ) __A = os.path.join(hf_cache_home, "diffusers") def lowerCAmelCase_ ( __a = None , __a = None ) -> None: """simple docstring""" if new_cache_dir is None: lowerCamelCase__: Any =DIFFUSERS_CACHE if old_cache_dir is None: lowerCamelCase__: Optional[int] =old_diffusers_cache lowerCamelCase__: List[str] =Path(_snake_case ).expanduser() lowerCamelCase__: Optional[Any] =Path(_snake_case ).expanduser() for old_blob_path in old_cache_dir.glob("**/blobs/*" ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): lowerCamelCase__: str =new_cache_dir / old_blob_path.relative_to(_snake_case ) new_blob_path.parent.mkdir(parents=_snake_case , exist_ok=_snake_case ) os.replace(_snake_case , _snake_case ) try: os.symlink(_snake_case , _snake_case ) except OSError: logger.warning( "Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded." ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). __A = os.path.join(DIFFUSERS_CACHE, "version_diffusers_cache.txt") if not os.path.isfile(cache_version_file): __A = 0 else: with open(cache_version_file) as f: try: __A = int(f.read()) except ValueError: __A = 0 if cache_version < 1: __A = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( "The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your " "existing cached models. This is a one-time operation, you can interrupt it or run it " "later by calling `diffusers.utils.hub_utils.move_cache()`." ) try: move_cache() except Exception as e: __A = "\n".join(traceback.format_tb(e.__traceback__)) logger.error( f'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' "file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole " "message and we will do our best to help." ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, "w") as f: f.write("1") except Exception: logger.warning( f'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' "the directory exists and can be written to." ) def lowerCAmelCase_ ( __a , __a = None ) -> str: """simple docstring""" if variant is not None: lowerCamelCase__: List[Any] =weights_name.split("." ) lowerCamelCase__: int =splits[:-1] + [variant] + splits[-1:] lowerCamelCase__: int =".".join(_snake_case ) return weights_name def lowerCAmelCase_ ( __a , *, __a , __a , __a , __a , __a , __a , __a , __a , __a , __a , __a=None , ) -> str: """simple docstring""" lowerCamelCase__: Tuple =str(_snake_case ) if os.path.isfile(_snake_case ): return pretrained_model_name_or_path elif os.path.isdir(_snake_case ): if os.path.isfile(os.path.join(_snake_case , _snake_case ) ): # Load from a PyTorch checkpoint lowerCamelCase__: int =os.path.join(_snake_case , _snake_case ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(_snake_case , _snake_case , _snake_case ) ): lowerCamelCase__: Optional[int] =os.path.join(_snake_case , _snake_case , _snake_case ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(_snake_case ).base_version ) >= version.parse("0.20.0" ) ): try: lowerCamelCase__: List[str] =hf_hub_download( _snake_case , filename=_add_variant(_snake_case , _snake_case ) , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.""" , _snake_case , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(_snake_case , _snake_case )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(_snake_case , _snake_case )}\' so that the correct variant file can be added.""" , _snake_case , ) try: # 2. Load model file as usual lowerCamelCase__: Dict =hf_hub_download( _snake_case , filename=_snake_case , cache_dir=_snake_case , force_download=_snake_case , proxies=_snake_case , resume_download=_snake_case , local_files_only=_snake_case , use_auth_token=_snake_case , user_agent=_snake_case , subfolder=_snake_case , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ "listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a " "token having permission to this repo with `use_auth_token` or log in with `huggingface-cli " "login`." ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ "this model name. Check the model page at " F"""\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" " \nCheckout your internet connection or see how to run the library in" " offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'." ) except EnvironmentError: raise EnvironmentError( F"""Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from """ "\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. " F"""Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
def _a ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase__ : str = set() # Replace all the whitespace in our sentence UpperCamelCase__ : Any = input_str.replace(''' ''' , '''''' ) for alpha in input_str: if "a" <= alpha.lower() <= "z": frequency.add(alpha.lower() ) return len(_snake_case ) == 26 def _a ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" UpperCamelCase__ : int = [False] * 26 for char in input_str: if char.islower(): UpperCamelCase__ : List[Any] = True elif char.isupper(): UpperCamelCase__ : int = True return all(_snake_case ) def _a ( SCREAMING_SNAKE_CASE : str = "The quick brown fox jumps over the lazy dog" , ): """simple docstring""" return len({char for char in input_str.lower() if char.isalpha()} ) == 26 def _a ( ): """simple docstring""" from timeit import timeit UpperCamelCase__ : Tuple = '''from __main__ import is_pangram, is_pangram_faster, is_pangram_fastest''' print(timeit('''is_pangram()''' , setup=_snake_case ) ) print(timeit('''is_pangram_faster()''' , setup=_snake_case ) ) print(timeit('''is_pangram_fastest()''' , setup=_snake_case ) ) # 5.348480500048026, 2.6477354579837993, 1.8470395830227062 # 5.036091582966037, 2.644472333951853, 1.8869528750656173 if __name__ == "__main__": import doctest doctest.testmod() benchmark()
146
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase , unittest.TestCase ): """simple docstring""" a : List[str] =ShapEImgaImgPipeline a : Dict =['''image'''] a : List[Any] =['''image'''] a : Optional[Any] =[ '''num_images_per_prompt''', '''num_inference_steps''', '''generator''', '''latents''', '''guidance_scale''', '''frame_size''', '''output_type''', '''return_dict''', ] a : Union[str, Any] =False @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return 32 @property def lowercase__ ( self ): """simple docstring""" return self.time_input_dim * 4 @property def lowercase__ ( self ): """simple docstring""" return 8 @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : List[Any] = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) lowerCAmelCase : Optional[int] = CLIPVisionModel(_UpperCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Any = CLIPImageProcessor( crop_size=224 , do_center_crop=_UpperCAmelCase , do_normalize=_UpperCAmelCase , do_resize=_UpperCAmelCase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=224 , ) return image_processor @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "embedding_proj_norm_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } lowerCAmelCase : int = PriorTransformer(**_UpperCAmelCase ) return model @property def lowercase__ ( self ): """simple docstring""" torch.manual_seed(0 ) lowerCAmelCase : str = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } lowerCAmelCase : List[str] = ShapERenderer(**_UpperCAmelCase ) return model def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = self.dummy_prior lowerCAmelCase : List[str] = self.dummy_image_encoder lowerCAmelCase : Optional[int] = self.dummy_image_processor lowerCAmelCase : Optional[Any] = self.dummy_renderer lowerCAmelCase : Dict = HeunDiscreteScheduler( beta_schedule="exp" , num_train_timesteps=1_024 , prediction_type="sample" , use_karras_sigmas=_UpperCAmelCase , clip_sample=_UpperCAmelCase , clip_sample_range=1.0 , ) lowerCAmelCase : List[Any] = { "prior": prior, "image_encoder": image_encoder, "image_processor": image_processor, "renderer": renderer, "scheduler": scheduler, } return components def lowercase__ ( self , snake_case__ , snake_case__=0 ): """simple docstring""" lowerCAmelCase : Optional[int] = floats_tensor((1, 3, 64, 64) , rng=random.Random(_UpperCAmelCase ) ).to(_UpperCAmelCase ) if str(_UpperCAmelCase ).startswith("mps" ): lowerCAmelCase : Union[str, Any] = torch.manual_seed(_UpperCAmelCase ) else: lowerCAmelCase : int = torch.Generator(device=_UpperCAmelCase ).manual_seed(_UpperCAmelCase ) lowerCAmelCase : Any = { "image": input_image, "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = "cpu" lowerCAmelCase : List[Any] = self.get_dummy_components() lowerCAmelCase : str = self.pipeline_class(**_UpperCAmelCase ) lowerCAmelCase : List[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase : Dict = pipe(**self.get_dummy_inputs(_UpperCAmelCase ) ) lowerCAmelCase : List[str] = output.images[0] lowerCAmelCase : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) lowerCAmelCase : List[str] = np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase__ ( self ): """simple docstring""" self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = torch_device == "cpu" lowerCAmelCase : Union[str, Any] = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=_UpperCAmelCase , relax_max_difference=_UpperCAmelCase , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.get_dummy_components() lowerCAmelCase : Tuple = self.pipeline_class(**_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase : str = 1 lowerCAmelCase : Any = 2 lowerCAmelCase : int = self.get_dummy_inputs(_UpperCAmelCase ) for key in inputs.keys(): if key in self.batch_params: lowerCAmelCase : int = batch_size * [inputs[key]] lowerCAmelCase : List[str] = pipe(**_UpperCAmelCase , num_images_per_prompt=_UpperCAmelCase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def lowercase__ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/corgi.png" ) lowerCAmelCase : Any = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/shap_e/test_shap_e_img2img_out.npy" ) lowerCAmelCase : str = ShapEImgaImgPipeline.from_pretrained("openai/shap-e-img2img" ) lowerCAmelCase : Union[str, Any] = pipe.to(_UpperCAmelCase ) pipe.set_progress_bar_config(disable=_UpperCAmelCase ) lowerCAmelCase : Optional[Any] = torch.Generator(device=_UpperCAmelCase ).manual_seed(0 ) lowerCAmelCase : Optional[Any] = pipe( _UpperCAmelCase , generator=_UpperCAmelCase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type="np" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(_UpperCAmelCase , _UpperCAmelCase )
108
"""simple docstring""" import unittest from .lib import ( Matrix, Vector, axpy, square_zero_matrix, unit_basis_vector, zero_vector, ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) self.assertEqual(x.component(0 ) , 1 ) self.assertEqual(x.component(2 ) , 3 ) _A = Vector() def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([0, 0, 0, 0, 0, 1] ) self.assertEqual(str(_UpperCAmelCase ) , '(0,0,0,0,0,1)' ) def lowerCAmelCase_ ( self : Optional[int] ): _A = Vector([1, 2, 3, 4] ) self.assertEqual(len(_UpperCAmelCase ) , 4 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2] ) _A = Vector([1, 2, 3, 4, 5] ) _A = Vector([0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ) _A = Vector([1, -1, 1, -1, 2, -3, 4, -5] ) self.assertAlmostEqual(x.euclidean_length() , 2.236 , 3 ) self.assertAlmostEqual(y.euclidean_length() , 7.416 , 3 ) self.assertEqual(z.euclidean_length() , 0 ) self.assertAlmostEqual(w.euclidean_length() , 7.616 , 3 ) def lowerCAmelCase_ ( self : str ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x + y).component(0 ) , 2 ) self.assertEqual((x + y).component(1 ) , 3 ) self.assertEqual((x + y).component(2 ) , 4 ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 1, 1] ) self.assertEqual((x - y).component(0 ) , 0 ) self.assertEqual((x - y).component(1 ) , 1 ) self.assertEqual((x - y).component(2 ) , 2 ) def lowerCAmelCase_ ( self : int ): _A = Vector([1, 2, 3] ) _A = Vector([2, -1, 4] ) # for test of dot product _A = Vector([1, -2, -1] ) self.assertEqual(str(x * 3.0 ) , '(3.0,6.0,9.0)' ) self.assertEqual((a * b) , 0 ) def lowerCAmelCase_ ( self : Dict ): self.assertEqual(str(zero_vector(10 ) ).count('0' ) , 10 ) def lowerCAmelCase_ ( self : Tuple ): self.assertEqual(str(unit_basis_vector(3 , 1 ) ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 2, 3] ) _A = Vector([1, 0, 1] ) self.assertEqual(str(axpy(2 , _UpperCAmelCase , _UpperCAmelCase ) ) , '(3,4,7)' ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Vector([1, 0, 0, 0, 0, 0] ) _A = x.copy() self.assertEqual(str(_UpperCAmelCase ) , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Vector([1, 0, 0] ) x.change_component(0 , 0 ) x.change_component(1 , 1 ) self.assertEqual(str(_UpperCAmelCase ) , '(0,1,0)' ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual('|1,2,3|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, -14, -10], [-5, -10, -5], [-2, -1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(minors[x][y] , a.minor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = [[-3, 14, -10], [5, -10, 5], [-2, 1, 0]] for x in range(a.height() ): for y in range(a.width() ): self.assertEqual(cofactors[x][y] , a.cofactor(_UpperCAmelCase , _UpperCAmelCase ) ) def lowerCAmelCase_ ( self : str ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(-5 , a.determinant() ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [4, 5, 6], [7, 8, 9]] , 3 , 3 ) _A = Vector([1, 2, 3] ) self.assertEqual('(14,32,50)' , str(a * x ) ) self.assertEqual('|2,4,6|\n|8,10,12|\n|14,16,18|\n' , str(a * 2 ) ) def lowerCAmelCase_ ( self : Any ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) a.change_component(0 , 2 , 5 ) self.assertEqual('|1,2,5|\n|2,4,5|\n|6,7,8|\n' , str(_UpperCAmelCase ) ) def lowerCAmelCase_ ( self : List[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) self.assertEqual(7 , a.component(2 , 1 ) , 0.01 ) def lowerCAmelCase_ ( self : Tuple ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|2,4,10|\n|4,8,10|\n|12,14,18|\n' , str(a + b ) ) def lowerCAmelCase_ ( self : Optional[Any] ): _A = Matrix([[1, 2, 3], [2, 4, 5], [6, 7, 8]] , 3 , 3 ) _A = Matrix([[1, 2, 7], [2, 4, 5], [6, 7, 10]] , 3 , 3 ) self.assertEqual('|0,0,-4|\n|0,0,0|\n|0,0,-2|\n' , str(a - b ) ) def lowerCAmelCase_ ( self : int ): self.assertEqual( '|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n|0,0,0,0,0|\n' , str(square_zero_matrix(5 ) ) , ) if __name__ == "__main__": unittest.main()
315
0
import numpy as np from transformers import Pipeline def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Union[str, Any] = np.max(_snake_case , axis=-1 , keepdims=_snake_case ) lowercase__ : Union[str, Any] = np.exp(outputs - maxes ) return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=_snake_case ) class snake_case__(__lowerCAmelCase ): """simple docstring""" def snake_case ( self : Tuple , **SCREAMING_SNAKE_CASE : Any ): lowercase__ : Any = {} if "second_text" in kwargs: lowercase__ : List[Any] = kwargs["second_text"] return preprocess_kwargs, {}, {} def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : int=None ): return self.tokenizer(_UpperCAmelCase , text_pair=_UpperCAmelCase , return_tensors=self.framework ) def snake_case ( self : str , SCREAMING_SNAKE_CASE : Union[str, Any] ): return self.model(**_UpperCAmelCase ) def snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE : Optional[int] ): lowercase__ : List[str] = model_outputs.logits[0].numpy() lowercase__ : List[str] = softmax(_UpperCAmelCase ) lowercase__ : List[Any] = np.argmax(_UpperCAmelCase ) lowercase__ : Optional[int] = self.model.config.idalabel[best_class] lowercase__ : Union[str, Any] = probabilities[best_class].item() lowercase__ : int = logits.tolist() return {"label": label, "score": score, "logits": logits}
130
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging a = logging.get_logger(__name__) a = { '''xlnet-base-cased''': '''https://huggingface.co/xlnet-base-cased/resolve/main/config.json''', '''xlnet-large-cased''': '''https://huggingface.co/xlnet-large-cased/resolve/main/config.json''', } class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = '''xlnet''' UpperCAmelCase : List[Any] = ['''mems'''] UpperCAmelCase : Any = { '''n_token''': '''vocab_size''', # Backward compatibility '''hidden_size''': '''d_model''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Union[str, Any] , _UpperCAmelCase : Dict=32_000 , _UpperCAmelCase : List[str]=1_024 , _UpperCAmelCase : Any=24 , _UpperCAmelCase : Union[str, Any]=16 , _UpperCAmelCase : Union[str, Any]=4_096 , _UpperCAmelCase : Tuple="gelu" , _UpperCAmelCase : Any=True , _UpperCAmelCase : str="bi" , _UpperCAmelCase : int=0.02 , _UpperCAmelCase : Optional[Any]=1E-1_2 , _UpperCAmelCase : Optional[int]=0.1 , _UpperCAmelCase : Any=512 , _UpperCAmelCase : Dict=None , _UpperCAmelCase : int=True , _UpperCAmelCase : int=False , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : int=-1 , _UpperCAmelCase : Optional[int]=False , _UpperCAmelCase : Union[str, Any]="last" , _UpperCAmelCase : int=True , _UpperCAmelCase : str="tanh" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : Dict=5 , _UpperCAmelCase : Optional[Any]=5 , _UpperCAmelCase : Union[str, Any]=5 , _UpperCAmelCase : List[str]=1 , _UpperCAmelCase : Dict=2 , **_UpperCAmelCase : int , ): _A = vocab_size _A = d_model _A = n_layer _A = n_head if d_model % n_head != 0: raise ValueError(F'''\'d_model % n_head\' ({d_model % n_head}) should be equal to 0''' ) if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F'''`d_head` ({kwargs["d_head"]}) should be equal to `d_model // n_head` ({d_model // n_head})''' ) _A = d_model // n_head _A = ff_activation _A = d_inner _A = untie_r _A = attn_type _A = initializer_range _A = layer_norm_eps _A = dropout _A = mem_len _A = reuse_len _A = bi_data _A = clamp_len _A = same_length _A = summary_type _A = summary_use_proj _A = summary_activation _A = summary_last_dropout _A = start_n_top _A = end_n_top _A = bos_token_id _A = pad_token_id _A = eos_token_id if "use_cache" in kwargs: warnings.warn( 'The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`' ' instead.' , _UpperCAmelCase , ) _A = kwargs['use_cache'] _A = use_mems_eval _A = use_mems_train super().__init__(pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Tuple ): logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[Any] ): # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
315
0
import argparse from tax import checkpoints from transformers import AutoConfig, FlaxAutoModelForSeqaSeqLM def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> List[Any]: UpperCamelCase : Optional[int] = AutoConfig.from_pretrained(_snake_case ) UpperCamelCase : Optional[Any] = FlaxAutoModelForSeqaSeqLM.from_config(config=_snake_case ) UpperCamelCase : List[str] = checkpoints.load_tax_checkpoint(_snake_case ) UpperCamelCase : List[str] = "wi_0" in tax_model["target"]["encoder"]["layers_0"]["mlp"] if config.model_type == "t5": UpperCamelCase : Optional[Any] = "SelfAttention" if config.model_type == "longt5" and config.encoder_attention_type == "local": UpperCamelCase : Dict = "LocalSelfAttention" elif config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Dict = "TransientGlobalSelfAttention" else: raise ValueError( "Given config is expected to have `model_type=\'t5\'`, or `model_type=\'longt5` with `encoder_attention_type`" " attribute with a value from [\'local\', \'transient-global]." ) # Encoder for layer_index in range(config.num_layers ): UpperCamelCase : List[str] = F"""layers_{str(_snake_case )}""" # Self-Attention UpperCamelCase : Tuple = tax_model["target"]["encoder"][layer_name]["attention"]["key"]["kernel"] UpperCamelCase : Any = tax_model["target"]["encoder"][layer_name]["attention"]["out"]["kernel"] UpperCamelCase : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["query"]["kernel"] UpperCamelCase : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["attention"]["value"]["kernel"] # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["attention"]["T5LayerNorm_0"]["scale"] # Layer Normalization UpperCamelCase : Any = tax_model["target"]["encoder"][layer_name]["pre_attention_layer_norm"]["scale"] if split_mlp_wi: UpperCamelCase : Optional[int] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase : Dict = tax_model["target"]["encoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase : Optional[Any] = tax_model["target"]["encoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase : Union[str, Any] = tax_model["target"]["encoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase : List[Any] = flax_model.params["encoder"]["block"][str(_snake_case )]["layer"] UpperCamelCase : List[Any] = tax_attention_key UpperCamelCase : Any = tax_attention_out UpperCamelCase : Optional[Any] = tax_attention_query UpperCamelCase : Any = tax_attention_value UpperCamelCase : Dict = tax_attention_layer_norm # Global input layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Union[str, Any] = tax_global_layer_norm if split_mlp_wi: UpperCamelCase : Optional[Any] = tax_mlp_wi_a UpperCamelCase : List[str] = tax_mlp_wi_a else: UpperCamelCase : Optional[int] = tax_mlp_wi UpperCamelCase : int = tax_mlp_wo UpperCamelCase : Dict = tax_mlp_layer_norm UpperCamelCase : str = flax_model_encoder_layer_block # Only for layer 0: UpperCamelCase : Tuple = tax_model["target"]["encoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase : List[str] = tax_encoder_rel_embedding # Side/global relative position_bias + layer norm if config.model_type == "longt5" and config.encoder_attention_type == "transient-global": UpperCamelCase : Optional[Any] = tax_model["target"]["encoder"]["side_relpos_bias"]["rel_embedding"].T UpperCamelCase : Any = tax_encoder_global_rel_embedding # Assigning UpperCamelCase : str = tax_model["target"]["encoder"]["encoder_norm"]["scale"] UpperCamelCase : int = tax_encoder_norm # Decoder for layer_index in range(config.num_layers ): UpperCamelCase : Dict = F"""layers_{str(_snake_case )}""" # Self-Attention UpperCamelCase : Tuple = tax_model["target"]["decoder"][layer_name]["self_attention"]["key"]["kernel"] UpperCamelCase : Dict = tax_model["target"]["decoder"][layer_name]["self_attention"]["out"]["kernel"] UpperCamelCase : str = tax_model["target"]["decoder"][layer_name]["self_attention"]["query"]["kernel"] UpperCamelCase : List[Any] = tax_model["target"]["decoder"][layer_name]["self_attention"]["value"]["kernel"] # Layer Normalization UpperCamelCase : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["pre_self_attention_layer_norm"][ "scale" ] # Encoder-Decoder-Attention UpperCamelCase : Any = tax_model["target"]["decoder"][layer_name]["encoder_decoder_attention"] UpperCamelCase : Optional[Any] = tax_enc_dec_attention_module["key"]["kernel"] UpperCamelCase : str = tax_enc_dec_attention_module["out"]["kernel"] UpperCamelCase : str = tax_enc_dec_attention_module["query"]["kernel"] UpperCamelCase : str = tax_enc_dec_attention_module["value"]["kernel"] # Layer Normalization UpperCamelCase : Optional[int] = tax_model["target"]["decoder"][layer_name]["pre_cross_attention_layer_norm"]["scale"] # MLP if split_mlp_wi: UpperCamelCase : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_0"]["kernel"] UpperCamelCase : List[str] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi_1"]["kernel"] else: UpperCamelCase : Union[str, Any] = tax_model["target"]["decoder"][layer_name]["mlp"]["wi"]["kernel"] UpperCamelCase : Any = tax_model["target"]["decoder"][layer_name]["mlp"]["wo"]["kernel"] # Layer Normalization UpperCamelCase : List[str] = tax_model["target"]["decoder"][layer_name]["pre_mlp_layer_norm"]["scale"] # Assigning UpperCamelCase : List[str] = flax_model.params["decoder"]["block"][str(_snake_case )]["layer"] UpperCamelCase : Optional[int] = tax_attention_key UpperCamelCase : Dict = tax_attention_out UpperCamelCase : Optional[Any] = tax_attention_query UpperCamelCase : List[str] = tax_attention_value UpperCamelCase : str = tax_pre_attention_layer_norm UpperCamelCase : Dict = tax_enc_dec_attention_key UpperCamelCase : int = tax_enc_dec_attention_out UpperCamelCase : List[Any] = tax_enc_dec_attention_query UpperCamelCase : Any = tax_enc_dec_attention_value UpperCamelCase : str = tax_cross_layer_norm if split_mlp_wi: UpperCamelCase : Tuple = tax_mlp_wi_a UpperCamelCase : Dict = tax_mlp_wi_a else: UpperCamelCase : Any = tax_mlp_wi UpperCamelCase : Optional[Any] = tax_mlp_wo UpperCamelCase : Tuple = txa_mlp_layer_norm UpperCamelCase : List[str] = flax_model_decoder_layer_block # Decoder Normalization UpperCamelCase : Union[str, Any] = tax_model["target"]["decoder"]["decoder_norm"]["scale"] UpperCamelCase : Optional[Any] = txa_decoder_norm # Only for layer 0: UpperCamelCase : Any = tax_model["target"]["decoder"]["relpos_bias"]["rel_embedding"].T UpperCamelCase : Any = tax_decoder_rel_embedding # Token Embeddings UpperCamelCase : List[str] = tax_model["target"]["token_embedder"]["embedding"] UpperCamelCase : Optional[Any] = txa_token_embeddings # LM Head (only in v1.1 and LongT5 checkpoints) if "logits_dense" in tax_model["target"]["decoder"]: UpperCamelCase : Tuple = tax_model["target"]["decoder"]["logits_dense"]["kernel"] flax_model.save_pretrained(_snake_case ) print("T5X Model was sucessfully converted!" ) if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() # Required parameters parser.add_argument( """--t5x_checkpoint_path""", default=None, type=str, required=True, help="""Path the T5X checkpoint.""" ) parser.add_argument("""--config_name""", default=None, type=str, required=True, help="""Config name of LongT5/T5 model.""") parser.add_argument( """--flax_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output FLAX model.""" ) __lowerCamelCase : Optional[int] = parser.parse_args() convert_tax_checkpoint_to_flax(args.tax_checkpoint_path, args.config_name, args.flax_dump_folder_path)
52
"""simple docstring""" import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed a = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _snake_case ( _snake_case : Tuple ) -> Dict: '''simple docstring''' assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _snake_case ( _snake_case : str , _snake_case : List[Any] ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False elif args.student_type == "gpt2": _A = False def _snake_case ( _snake_case : str , _snake_case : int ) -> Tuple: '''simple docstring''' if args.student_type == "roberta": _A = False def _snake_case ( ) -> Tuple: '''simple docstring''' _A = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=_snake_case , required=_snake_case , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=_snake_case , required=_snake_case , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=_snake_case , choices=['distilbert', 'roberta', 'gpt2'] , required=_snake_case , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=_snake_case , required=_snake_case , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=_snake_case , type=_snake_case , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=_snake_case , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=_snake_case , required=_snake_case , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=_snake_case , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=_snake_case , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=_snake_case , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=_snake_case , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=_snake_case , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=_snake_case , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=_snake_case , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=_snake_case , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=_snake_case , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=_snake_case , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=_snake_case , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=_snake_case , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=_snake_case , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=_snake_case , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=_snake_case , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=_snake_case , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=_snake_case , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5E-4 , type=_snake_case , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1E-6 , type=_snake_case , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=_snake_case , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=_snake_case , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=_snake_case , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=_snake_case , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=_snake_case , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=_snake_case , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=_snake_case , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=_snake_case , default=40_00 , help='Checkpoint interval.' ) _A = parser.parse_args() sanity_checks(_snake_case ) # ARGS # init_gpu_params(_snake_case ) set_seed(_snake_case ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( F'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(F'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(F'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(_snake_case ) , _snake_case , indent=4 ) git_log(args.dump_path ) _A , _A , _A = MODEL_CLASSES[args.student_type] _A , _A , _A = MODEL_CLASSES[args.teacher_type] # TOKENIZER # _A = teacher_tokenizer_class.from_pretrained(args.teacher_name ) _A = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): _A = tokenizer.all_special_tokens.index(_snake_case ) _A = tokenizer.all_special_ids[idx] logger.info(F'''Special tokens {special_tok_ids}''' ) _A = special_tok_ids _A = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(F'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: _A = pickle.load(_snake_case ) if args.mlm: logger.info(F'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: _A = pickle.load(_snake_case ) _A = np.maximum(_snake_case , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): _A = 0.0 # do not predict special tokens _A = torch.from_numpy(_snake_case ) else: _A = None _A = LmSeqsDataset(params=_snake_case , data=_snake_case ) logger.info('Data loader created.' ) # STUDENT # logger.info(F'''Loading student config from {args.student_config}''' ) _A = student_config_class.from_pretrained(args.student_config ) _A = True if args.student_pretrained_weights is not None: logger.info(F'''Loading pretrained weights from {args.student_pretrained_weights}''' ) _A = student_model_class.from_pretrained(args.student_pretrained_weights , config=_snake_case ) else: _A = student_model_class(_snake_case ) if args.n_gpu > 0: student.to(F'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # _A = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=_snake_case ) if args.n_gpu > 0: teacher.to(F'''cuda:{args.local_rank}''' ) logger.info(F'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(_snake_case , _snake_case ) if args.freeze_token_type_embds: freeze_token_type_embeddings(_snake_case , _snake_case ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() _A = Distiller( params=_snake_case , dataset=_snake_case , token_probs=_snake_case , student=_snake_case , teacher=_snake_case ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
315
0
"""simple docstring""" import unittest from transformers import DebertaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, ) from transformers.models.deberta.modeling_deberta import DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case ( __lowerCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=13 , __UpperCAmelCase=7 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=99 , __UpperCAmelCase=32 , __UpperCAmelCase=5 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=5_12 , __UpperCAmelCase=16 , __UpperCAmelCase=2 , __UpperCAmelCase=0.02 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase="None" , __UpperCAmelCase=3 , __UpperCAmelCase=4 , __UpperCAmelCase=None , ) ->List[str]: a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_input_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_labels a_ = num_choices a_ = relative_attention a_ = position_biased_input a_ = pos_att_type a_ = scope def UpperCAmelCase__ ( self) ->Optional[int]: a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) a_ = None if self.use_input_mask: a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) a_ = None a_ = None a_ = None if self.use_labels: a_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) a_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) a_ = ids_tensor([self.batch_size] , self.num_choices) a_ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase__ ( self) ->Optional[int]: return DebertaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.get_config() a_ = 3_00 return config def UpperCAmelCase__ ( self , __UpperCAmelCase) ->List[str]: self.parent.assertListEqual(list(result.loss.size()) , []) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Optional[Any]: a_ = DebertaModel(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase)[0] a_ = model(_UpperCAmelCase , token_type_ids=_UpperCAmelCase)[0] a_ = model(_UpperCAmelCase)[0] self.parent.assertListEqual(list(sequence_output.size()) , [self.batch_size, self.seq_length, self.hidden_size]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Any: a_ = DebertaForMaskedLM(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->int: a_ = self.num_labels a_ = DebertaForSequenceClassification(_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertListEqual(list(result.logits.size()) , [self.batch_size, self.num_labels]) self.check_loss_output(_UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Union[str, Any]: a_ = self.num_labels a_ = DebertaForTokenClassification(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , labels=_UpperCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase) ->Dict: a_ = DebertaForQuestionAnswering(config=_UpperCAmelCase) model.to(_UpperCAmelCase) model.eval() a_ = model( _UpperCAmelCase , attention_mask=_UpperCAmelCase , token_type_ids=_UpperCAmelCase , start_positions=_UpperCAmelCase , end_positions=_UpperCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase__ ( self) ->Union[str, Any]: a_ = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) = config_and_inputs a_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class snake_case ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a_ : Any = ( ( DebertaModel, DebertaForMaskedLM, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaForQuestionAnswering, ) if is_torch_available() else () ) a_ : Union[str, Any] = ( { '''feature-extraction''': DebertaModel, '''fill-mask''': DebertaForMaskedLM, '''question-answering''': DebertaForQuestionAnswering, '''text-classification''': DebertaForSequenceClassification, '''token-classification''': DebertaForTokenClassification, '''zero-shot''': DebertaForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[int] = True a_ : Union[str, Any] = False a_ : Union[str, Any] = False a_ : str = False a_ : Optional[Any] = False def UpperCAmelCase__ ( self) ->List[str]: a_ = DebertaModelTester(self) a_ = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37) def UpperCAmelCase__ ( self) ->List[Any]: self.config_tester.run_common_tests() def UpperCAmelCase__ ( self) ->int: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*_UpperCAmelCase) def UpperCAmelCase__ ( self) ->List[str]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*_UpperCAmelCase) def UpperCAmelCase__ ( self) ->Dict: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*_UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[int]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*_UpperCAmelCase) def UpperCAmelCase__ ( self) ->Optional[Any]: a_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*_UpperCAmelCase) @slow def UpperCAmelCase__ ( self) ->Any: for model_name in DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a_ = DebertaModel.from_pretrained(_UpperCAmelCase) self.assertIsNotNone(_UpperCAmelCase) @require_torch @require_sentencepiece @require_tokenizers class snake_case ( unittest.TestCase ): @unittest.skip(reason="Model not available yet") def UpperCAmelCase__ ( self) ->List[Any]: pass @slow def UpperCAmelCase__ ( self) ->List[Any]: a_ = DebertaModel.from_pretrained("microsoft/deberta-base") a_ = torch.tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]]) a_ = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): a_ = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase)[0] # compare the actual values for a slice. a_ = torch.tensor( [[[-0.5_986, -0.8_055, -0.8_462], [1.4_484, -0.9_348, -0.8_059], [0.3_123, 0.0_032, -1.4_131]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4) , F'''{output[:, 1:4, 1:4]}''')
243
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Dict ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
315
0
import argparse import logging import os import re import tensorflow as tf from transformers import ( AutoConfig, AutoTokenizer, DataCollatorForLanguageModeling, PushToHubCallback, TFAutoModelForMaskedLM, create_optimizer, ) _snake_case = logging.getLogger(__name__) _snake_case = tf.data.AUTOTUNE def lowerCAmelCase_ ( ): _A : Union[str, Any] = argparse.ArgumentParser(description="""Train a masked language model on TPU.""" ) parser.add_argument( """--pretrained_model_config""",type=_snake_case,default="""roberta-base""",help="""The model config to use. Note that we don\'t copy the model\'s weights, only the config!""",) parser.add_argument( """--tokenizer""",type=_snake_case,default="""unigram-tokenizer-wikitext""",help="""The name of the tokenizer to load. We use the pretrained tokenizer to initialize the model\'s vocab size.""",) parser.add_argument( """--per_replica_batch_size""",type=_snake_case,default=8,help="""Batch size per TPU core.""",) parser.add_argument( """--no_tpu""",action="""store_true""",help="""If set, run on CPU and don\'t try to initialize a TPU. Useful for debugging on non-TPU instances.""",) parser.add_argument( """--tpu_name""",type=_snake_case,help="""Name of TPU resource to initialize. Should be blank on Colab, and \'local\' on TPU VMs.""",default="""local""",) parser.add_argument( """--tpu_zone""",type=_snake_case,help="""Google cloud zone that TPU resource is located in. Only used for non-Colab TPU nodes.""",) parser.add_argument( """--gcp_project""",type=_snake_case,help="""Google cloud project name. Only used for non-Colab TPU nodes.""" ) parser.add_argument( """--bfloat16""",action="""store_true""",help="""Use mixed-precision bfloat16 for training. This is the recommended lower-precision format for TPU.""",) parser.add_argument( """--train_dataset""",type=_snake_case,help="""Path to training dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""",) parser.add_argument( """--shuffle_buffer_size""",type=_snake_case,default=2**18,help="""Size of the shuffle buffer (in samples)""",) parser.add_argument( """--eval_dataset""",type=_snake_case,help="""Path to evaluation dataset to load. If the path begins with `gs://`""" """ then the dataset will be loaded from a Google Cloud Storage bucket.""",) parser.add_argument( """--num_epochs""",type=_snake_case,default=1,help="""Number of epochs to train for.""",) parser.add_argument( """--learning_rate""",type=_snake_case,default=1e-4,help="""Learning rate to use for training.""",) parser.add_argument( """--weight_decay_rate""",type=_snake_case,default=1e-3,help="""Weight decay rate to use for training.""",) parser.add_argument( """--max_length""",type=_snake_case,default=512,help="""Maximum length of tokenized sequences. Should match the setting used in prepare_tfrecord_shards.py""",) parser.add_argument( """--mlm_probability""",type=_snake_case,default=0.15,help="""Fraction of tokens to mask during training.""",) parser.add_argument("""--output_dir""",type=_snake_case,required=_snake_case,help="""Path to save model checkpoints to.""" ) parser.add_argument("""--hub_model_id""",type=_snake_case,help="""Model ID to upload to on the Hugging Face Hub.""" ) _A : Dict = parser.parse_args() return args def lowerCAmelCase_ ( snake_case_ ): try: if args.tpu_name: _A : str = tf.distribute.cluster_resolver.TPUClusterResolver( args.tpu_name,zone=args.tpu_zone,project=args.gcp_project ) else: _A : Any = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: raise RuntimeError( """Couldn\'t connect to TPU! Most likely you need to specify --tpu_name, --tpu_zone, or """ """--gcp_project. When running on a TPU VM, use --tpu_name local.""" ) tf.config.experimental_connect_to_cluster(_snake_case ) tf.tpu.experimental.initialize_tpu_system(_snake_case ) return tpu def lowerCAmelCase_ ( snake_case_ ): _A : Any = 0 for file in file_list: _A : Tuple = file.split("""/""" )[-1] _A : Union[str, Any] = re.search(r"""-\d+-(\d+)\.tfrecord""",_snake_case ).group(1 ) _A : Tuple = int(_snake_case ) num_samples += sample_count return num_samples def lowerCAmelCase_ ( snake_case_,snake_case_,snake_case_,snake_case_,snake_case_,snake_case_=None ): _A : str = count_samples(_snake_case ) _A : Union[str, Any] = tf.data.Dataset.from_tensor_slices(_snake_case ) if shuffle: _A : Tuple = dataset.shuffle(len(_snake_case ) ) _A : Any = tf.data.TFRecordDataset(_snake_case,num_parallel_reads=_snake_case ) # TF can't infer the total sample count because it doesn't read all the records yet, so we assert it here _A : Tuple = dataset.apply(tf.data.experimental.assert_cardinality(_snake_case ) ) _A : Optional[int] = dataset.map(_snake_case,num_parallel_calls=_snake_case ) if shuffle: assert shuffle_buffer_size is not None _A : str = dataset.shuffle(args.shuffle_buffer_size ) _A : Any = dataset.batch(_snake_case,drop_remainder=_snake_case ) _A : int = dataset.map(_snake_case,num_parallel_calls=_snake_case ) _A : Tuple = dataset.prefetch(_snake_case ) return dataset def lowerCAmelCase_ ( snake_case_ ): if not args.no_tpu: _A : Optional[Any] = initialize_tpu(_snake_case ) _A : Union[str, Any] = tf.distribute.TPUStrategy(_snake_case ) else: _A : Any = tf.distribute.OneDeviceStrategy(device="""/gpu:0""" ) if args.bfloataa: tf.keras.mixed_precision.set_global_policy("""mixed_bfloat16""" ) _A : Union[str, Any] = AutoTokenizer.from_pretrained(args.tokenizer ) _A : Tuple = AutoConfig.from_pretrained(args.pretrained_model_config ) _A : List[Any] = tokenizer.vocab_size _A : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.train_dataset,"""*.tfrecord""" ) ) if not training_records: raise ValueError(f'''No .tfrecord files found in {args.train_dataset}.''' ) _A : Union[str, Any] = tf.io.gfile.glob(os.path.join(args.eval_dataset,"""*.tfrecord""" ) ) if not eval_records: raise ValueError(f'''No .tfrecord files found in {args.eval_dataset}.''' ) _A : Optional[int] = count_samples(_snake_case ) _A : List[str] = num_train_samples // (args.per_replica_batch_size * strategy.num_replicas_in_sync) _A : List[str] = steps_per_epoch * args.num_epochs with strategy.scope(): _A : Union[str, Any] = TFAutoModelForMaskedLM.from_config(_snake_case ) model(model.dummy_inputs ) # Pass some dummy inputs through the model to ensure all the weights are built _A , _A : str = create_optimizer( num_train_steps=_snake_case,num_warmup_steps=total_train_steps // 20,init_lr=args.learning_rate,weight_decay_rate=args.weight_decay_rate,) # Transformers models compute the right loss for their task by default when labels are passed, and will # use this for training unless you specify your own loss function in compile(). model.compile(optimizer=_snake_case,metrics=["""accuracy"""] ) def decode_fn(snake_case_ ): _A : Dict = { """input_ids""": tf.io.FixedLenFeature(dtype=tf.intaa,shape=(args.max_length,) ), """attention_mask""": tf.io.FixedLenFeature(dtype=tf.intaa,shape=(args.max_length,) ), } return tf.io.parse_single_example(_snake_case,_snake_case ) # Many of the data collators in Transformers are TF-compilable when return_tensors == "tf", so we can # use their methods in our data pipeline. _A : Optional[Any] = DataCollatorForLanguageModeling( tokenizer=_snake_case,mlm_probability=args.mlm_probability,mlm=_snake_case,return_tensors="""tf""" ) def mask_with_collator(snake_case_ ): # TF really needs an isin() function _A : List[Any] = ( ~tf.cast(batch["""attention_mask"""],tf.bool ) | (batch["""input_ids"""] == tokenizer.cls_token_id) | (batch["""input_ids"""] == tokenizer.sep_token_id) ) _A , _A : Optional[int] = data_collator.tf_mask_tokens( batch["""input_ids"""],vocab_size=len(_snake_case ),mask_token_id=tokenizer.mask_token_id,special_tokens_mask=_snake_case,) return batch _A : Dict = args.per_replica_batch_size * strategy.num_replicas_in_sync _A : Tuple = prepare_dataset( _snake_case,decode_fn=_snake_case,mask_fn=_snake_case,batch_size=_snake_case,shuffle=_snake_case,shuffle_buffer_size=args.shuffle_buffer_size,) _A : List[Any] = prepare_dataset( _snake_case,decode_fn=_snake_case,mask_fn=_snake_case,batch_size=_snake_case,shuffle=_snake_case,) _A : Any = [] if args.hub_model_id: callbacks.append( PushToHubCallback(output_dir=args.output_dir,hub_model_id=args.hub_model_id,tokenizer=_snake_case ) ) model.fit( _snake_case,validation_data=_snake_case,epochs=args.num_epochs,callbacks=_snake_case,) model.save_pretrained(args.output_dir ) if __name__ == "__main__": _snake_case = parse_args() main(args)
26
"""simple docstring""" def _snake_case ( _snake_case : list , _snake_case : int = 0 ) -> list: '''simple docstring''' _A = length or len(_snake_case ) _A = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: _A , _A = list_data[i + 1], list_data[i] _A = True return list_data if not swapped else bubble_sort(_snake_case , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class snake_case__ (__lowerCAmelCase ): """simple docstring""" def __init__( self , __lowercase , __lowercase , __lowercase ) -> Any: """simple docstring""" super().__init__() self.register_modules(vqvae=_UpperCAmelCase , unet=_UpperCAmelCase , scheduler=_UpperCAmelCase ) @torch.no_grad() def __call__( self , __lowercase = 1 , __lowercase = None , __lowercase = 0.0 , __lowercase = 5_0 , __lowercase = "pil" , __lowercase = True , **__lowercase , ) -> Optional[Any]: """simple docstring""" a__ : str = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=_UpperCAmelCase , ) a__ : Union[str, Any] = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler a__ : str = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(_UpperCAmelCase ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature a__ : str = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) a__ : Tuple = {} if accepts_eta: a__ : Any = eta for t in self.progress_bar(self.scheduler.timesteps ): a__ : Dict = self.scheduler.scale_model_input(_UpperCAmelCase , _UpperCAmelCase ) # predict the noise residual a__ : Optional[int] = self.unet(_UpperCAmelCase , _UpperCAmelCase ).sample # compute the previous noisy sample x_t -> x_t-1 a__ : List[Any] = self.scheduler.step(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase ).prev_sample # decode the image latents with the VAE a__ : Optional[int] = self.vqvae.decode(_UpperCAmelCase ).sample a__ : Dict = (image / 2 + 0.5).clamp(0 , 1 ) a__ : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": a__ : Optional[int] = self.numpy_to_pil(_UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_UpperCAmelCase )
170
"""simple docstring""" import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''input_values''', '''attention_mask'''] def __init__( self : Dict , _UpperCAmelCase : int = 1 , _UpperCAmelCase : int = 16_000 , _UpperCAmelCase : float = 0.0 , _UpperCAmelCase : bool = False , _UpperCAmelCase : int = 80 , _UpperCAmelCase : int = 16 , _UpperCAmelCase : int = 64 , _UpperCAmelCase : str = "hann_window" , _UpperCAmelCase : float = 1.0 , _UpperCAmelCase : float = 80 , _UpperCAmelCase : float = 7_600 , _UpperCAmelCase : float = 1E-1_0 , _UpperCAmelCase : int = 2 , _UpperCAmelCase : bool = True , **_UpperCAmelCase : List[Any] , ): super().__init__(feature_size=_UpperCAmelCase , sampling_rate=_UpperCAmelCase , padding_value=_UpperCAmelCase , **_UpperCAmelCase ) _A = do_normalize _A = return_attention_mask _A = num_mel_bins _A = hop_length _A = win_length _A = win_function _A = frame_signal_scale _A = fmin _A = fmax _A = mel_floor _A = reduction_factor _A = win_length * sampling_rate // 1_000 _A = hop_length * sampling_rate // 1_000 _A = optimal_fft_length(self.sample_size ) _A = (self.n_fft // 2) + 1 _A = window_function(window_length=self.sample_size , name=self.win_function , periodic=_UpperCAmelCase ) _A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='slaney' , mel_scale='slaney' , ) if frame_signal_scale != 1.0: warnings.warn( 'The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) if reduction_factor != 2.0: warnings.warn( 'The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers' , _UpperCAmelCase , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def lowerCAmelCase_ ( _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : List[np.ndarray] , _UpperCAmelCase : float = 0.0 ): if attention_mask is not None: _A = np.array(_UpperCAmelCase , np.intaa ) _A = [] for vector, length in zip(_UpperCAmelCase , attention_mask.sum(-1 ) ): _A = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 ) if length < normed_slice.shape[0]: _A = padding_value normed_input_values.append(_UpperCAmelCase ) else: _A = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values] return normed_input_values def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : np.ndarray , ): _A = spectrogram( _UpperCAmelCase , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='log10' , ) return log_mel_spec.T def __call__( self : int , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , _UpperCAmelCase : Optional[int] = None , **_UpperCAmelCase : Optional[int] , ): if audio is None and audio_target is None: raise ValueError('You must provide either `audio` or `audio_target` values.' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) if audio is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) else: _A = None if audio_target is not None: _A = self._process_audio( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase , ) if inputs is None: return inputs_target else: _A = inputs_target['input_values'] _A = inputs_target.get('attention_mask' ) if decoder_attention_mask is not None: _A = decoder_attention_mask return inputs def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _UpperCAmelCase : bool = False , _UpperCAmelCase : Union[bool, str, PaddingStrategy] = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[int] = None , _UpperCAmelCase : Optional[bool] = None , _UpperCAmelCase : Optional[Union[str, TensorType]] = None , **_UpperCAmelCase : List[Any] , ): _A = isinstance(_UpperCAmelCase , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) _A = is_batched_numpy or ( isinstance(_UpperCAmelCase , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_UpperCAmelCase , np.ndarray ): _A = np.asarray(_UpperCAmelCase , dtype=np.floataa ) elif isinstance(_UpperCAmelCase , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): _A = speech.astype(np.floataa ) # always return batch if not is_batched: _A = [speech] # needed to make pad() work on spectrogram inputs _A = self.feature_size # convert into correct format for padding if is_target: _A = [self._extract_mel_features(_UpperCAmelCase ) for waveform in speech] _A = BatchFeature({'input_values': features} ) _A = self.num_mel_bins else: _A = BatchFeature({'input_values': speech} ) _A = self.pad( _UpperCAmelCase , padding=_UpperCAmelCase , max_length=_UpperCAmelCase , truncation=_UpperCAmelCase , pad_to_multiple_of=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , **_UpperCAmelCase , ) _A = feature_size_hack # convert input values to correct format _A = padded_inputs['input_values'] if not isinstance(input_values[0] , np.ndarray ): _A = [np.asarray(_UpperCAmelCase , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_UpperCAmelCase , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): _A = [array.astype(np.floataa ) for array in input_values] elif isinstance(_UpperCAmelCase , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): _A = input_values.astype(np.floataa ) # convert attention_mask to correct format _A = padded_inputs.get('attention_mask' ) if attention_mask is not None: _A = [np.asarray(_UpperCAmelCase , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: _A = ( attention_mask if self._get_padding_strategies(_UpperCAmelCase , max_length=_UpperCAmelCase ) is not PaddingStrategy.DO_NOT_PAD else None ) _A = self.zero_mean_unit_var_norm( padded_inputs['input_values'] , attention_mask=_UpperCAmelCase , padding_value=self.padding_value ) if return_tensors is not None: _A = padded_inputs.convert_to_tensors(_UpperCAmelCase ) return padded_inputs def lowerCAmelCase_ ( self : Any ): _A = super().to_dict() # Don't serialize these as they are derived from the other properties. _A = ['window', 'mel_filters', 'sample_size', 'sample_stride', 'n_fft', 'n_freqs'] for name in names: if name in output: del output[name] return output
315
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def __UpperCamelCase ( lowercase__ : str, lowercase__ : str, **lowercase__ : Dict ): '''simple docstring''' __lowercase =AutoConfig.from_pretrained(_snake_case, **_snake_case ) __lowercase =AutoModelForSeqaSeqLM.from_config(_snake_case ) model.save_pretrained(_snake_case ) AutoTokenizer.from_pretrained(_snake_case ).save_pretrained(_snake_case ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
141
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : int , _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [] create_all_state(1 , _snake_case , _snake_case , [] , _snake_case ) return result def _snake_case ( _snake_case : int , _snake_case : int , _snake_case : int , _snake_case : list[int] , _snake_case : list[list[int]] , ) -> None: '''simple docstring''' if level == 0: total_list.append(current_list[:] ) return for i in range(_snake_case , total_number - level + 2 ): current_list.append(_snake_case ) create_all_state(i + 1 , _snake_case , level - 1 , _snake_case , _snake_case ) current_list.pop() def _snake_case ( _snake_case : list[list[int]] ) -> None: '''simple docstring''' for i in total_list: print(*_snake_case ) if __name__ == "__main__": a = 4 a = 2 a = generate_all_combinations(n, k) print_all_state(total_list)
315
0
import unittest import numpy as np from transformers import DistilBertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.distilbert.modeling_flax_distilbert import ( FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertModel, ) class _A ( unittest.TestCase ): def __init__( self : Optional[Any] , _A : List[str] , _A : Tuple=13 , _A : Tuple=7 , _A : Tuple=True , _A : Dict=True , _A : str=True , _A : List[str]=True , _A : Union[str, Any]=99 , _A : Any=32 , _A : Union[str, Any]=5 , _A : int=4 , _A : str=37 , _A : Any="gelu" , _A : int=0.1 , _A : Union[str, Any]=0.1 , _A : Tuple=512 , _A : Dict=16 , _A : Any=2 , _A : Optional[int]=0.02 , _A : List[str]=4 , ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[Any] = parent lowercase : int = batch_size lowercase : Union[str, Any] = seq_length lowercase : Any = is_training lowercase : Dict = use_attention_mask lowercase : List[Any] = use_token_type_ids lowercase : int = use_labels lowercase : Optional[int] = vocab_size lowercase : Dict = hidden_size lowercase : Tuple = num_hidden_layers lowercase : int = num_attention_heads lowercase : Tuple = intermediate_size lowercase : Optional[int] = hidden_act lowercase : int = hidden_dropout_prob lowercase : Any = attention_probs_dropout_prob lowercase : List[Any] = max_position_embeddings lowercase : List[Any] = type_vocab_size lowercase : int = type_sequence_label_size lowercase : Tuple = initializer_range lowercase : Tuple = num_choices def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase : List[Any] = None if self.use_attention_mask: lowercase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) lowercase : List[Any] = DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , tie_weights_=_UpperCAmelCase , ) return config, input_ids, attention_mask def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" lowercase : Optional[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase : List[Any] = config_and_inputs lowercase : str = {'''input_ids''': input_ids, '''attention_mask''': attention_mask} return config, inputs_dict @require_flax class _A ( __lowerCAmelCase , unittest.TestCase ): _UpperCamelCase : Dict = ( ( FlaxDistilBertModel, FlaxDistilBertForMaskedLM, FlaxDistilBertForMultipleChoice, FlaxDistilBertForQuestionAnswering, FlaxDistilBertForSequenceClassification, FlaxDistilBertForTokenClassification, FlaxDistilBertForQuestionAnswering, ) if is_flax_available() else () ) def __a ( self : Optional[int] ) -> int: """simple docstring""" lowercase : Optional[Any] = FlaxDistilBertModelTester(self ) @slow def __a ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" for model_class_name in self.all_model_classes: lowercase : Optional[int] = model_class_name.from_pretrained('''distilbert-base-uncased''' ) lowercase : int = model(np.ones((1, 1) ) ) self.assertIsNotNone(_UpperCAmelCase ) @require_flax class _A ( unittest.TestCase ): @slow def __a ( self : List[Any] ) -> int: """simple docstring""" lowercase : Dict = FlaxDistilBertModel.from_pretrained('''distilbert-base-uncased''' ) lowercase : List[str] = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) lowercase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) lowercase : Optional[int] = model(_UpperCAmelCase , attention_mask=_UpperCAmelCase )[0] lowercase : Any = (1, 11, 768) self.assertEqual(output.shape , _UpperCAmelCase ) lowercase : int = np.array([[[-0.1_639, 0.3_299, 0.1_648], [-0.1_746, 0.3_289, 0.1_710], [-0.1_884, 0.3_357, 0.1_810]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , _UpperCAmelCase , atol=1E-4 ) )
308
"""simple docstring""" def _snake_case ( _snake_case : int = 10_00 ) -> int: '''simple docstring''' return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
315
0
import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) UpperCAmelCase : List[str] = getLogger(__name__) def __lowerCamelCase ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : int = 8 , lowerCamelCase__ : int = 1024 , lowerCamelCase__ : int="val" , lowerCamelCase__ : int=None , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Tuple="summarization" , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : Optional[Any]=1 , lowerCamelCase__ : Dict = None , lowerCamelCase__ : str="" , **lowerCamelCase__ : Union[str, Any] , ): '''simple docstring''' lowerCamelCase = str(_snake_case ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=_snake_case ) lowerCamelCase = Path(_snake_case ) lowerCamelCase = save_dir.joinpath(f'rank_{local_rank}_output.json' ) torch.cuda.set_device(_snake_case ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(_snake_case ).cuda() if fpaa: lowerCamelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(_snake_case , _snake_case ) # update config with task specific params lowerCamelCase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCamelCase = num_return_sequences lowerCamelCase = AutoTokenizer.from_pretrained(_snake_case ) logger.info(f'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCamelCase = tokenizer.model_max_length if prefix is None: lowerCamelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" lowerCamelCase = SeqaSeqDataset( _snake_case , _snake_case , _snake_case , max_target_length=1024 , type_path=_snake_case , n_obs=_snake_case , prefix=_snake_case , **_snake_case , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCamelCase = ds.make_sortish_sampler(_snake_case , distributed=_snake_case , add_extra_examples=_snake_case , shuffle=_snake_case ) lowerCamelCase = DataLoader(_snake_case , sampler=_snake_case , batch_size=_snake_case , collate_fn=ds.collate_fn ) lowerCamelCase = [] for batch in tqdm(_snake_case ): lowerCamelCase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=_snake_case , num_beams=_snake_case , **_snake_case , ) lowerCamelCase = tokenizer.batch_decode(_snake_case , skip_special_tokens=_snake_case , clean_up_tokenization_spaces=_snake_case ) lowerCamelCase = batch["""ids"""] if num_return_sequences > 1: lowerCamelCase = chunks(_snake_case , _snake_case ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(_snake_case ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(_snake_case , _snake_case ) return results, sampler.num_replicas def __lowerCamelCase ( ): '''simple docstring''' lowerCamelCase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=_snake_case , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=_snake_case , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=_snake_case , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=_snake_case , default=_snake_case ) parser.add_argument( """--type_path""" , type=_snake_case , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=_snake_case , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=_snake_case , default=8 , required=_snake_case , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=_snake_case , default=-1 , required=_snake_case , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=_snake_case , default=_snake_case , required=_snake_case , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=_snake_case , default=1 , required=_snake_case , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=_snake_case , default=600 , required=_snake_case , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument("""--tgt_lang""" , type=_snake_case , default=_snake_case , required=_snake_case ) parser.add_argument( """--prefix""" , type=_snake_case , required=_snake_case , default=_snake_case , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowerCamelCase = time.time() lowerCamelCase , lowerCamelCase = parser.parse_known_args() lowerCamelCase = parse_numeric_n_bool_cl_kwargs(_snake_case ) if generate_kwargs and args.local_rank <= 0: print(f'parsed the following generate kwargs: {generate_kwargs}' ) lowerCamelCase = Path(args.save_dir + """_tmp""" ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) # this handles locking. lowerCamelCase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(f'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCamelCase = {} if args.src_lang is not None: lowerCamelCase = args.src_lang if args.tgt_lang is not None: lowerCamelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=_snake_case ) lowerCamelCase , lowerCamelCase = eval_data_dir( args.data_dir , _snake_case , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=_snake_case , **_snake_case , ) if args.local_rank <= 0: lowerCamelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=_snake_case ) lowerCamelCase = gather_results_from_each_node(_snake_case , _snake_case , args.sync_timeout ) lowerCamelCase = combine_partial_results(_snake_case ) if args.num_return_sequences > 1: lowerCamelCase = save_dir.joinpath("""pseudolabel_results.json""" ) print(f'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(_snake_case , _snake_case ) return lowerCamelCase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(_snake_case ) as f: lowerCamelCase = [x.rstrip() for x in f.readlines()][: len(_snake_case )] # Calculate metrics, save metrics, and save _generations.txt lowerCamelCase = """translation""" in args.task lowerCamelCase = calculate_bleu if calc_bleu else calculate_rouge lowerCamelCase = """bleu""" if calc_bleu else """rouge""" lowerCamelCase = score_fn(_snake_case , _snake_case ) lowerCamelCase = len(_snake_case ) lowerCamelCase = time.time() - start_time lowerCamelCase = round(runtime / metrics["""n_obs"""] , 4 ) lowerCamelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCamelCase = save_dir.joinpath(f'{args.type_path}_{metric_name}.json' ) save_json(_snake_case , _snake_case , indent=_snake_case ) print(_snake_case ) write_txt_file(_snake_case , save_dir.joinpath(f'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(_snake_case , save_dir.joinpath(f'{args.type_path}.target' ) ) else: shutil.rmtree(_snake_case ) def __lowerCamelCase ( lowerCamelCase__ : Optional[Any] ): '''simple docstring''' lowerCamelCase = [] for partial_result in partial_results: records.extend(_snake_case ) lowerCamelCase = sorted(_snake_case , key=lambda lowerCamelCase__ : x["id"] ) lowerCamelCase = [x["""pred"""] for x in records] return preds def __lowerCamelCase ( lowerCamelCase__ : Optional[int] , lowerCamelCase__ : Tuple , lowerCamelCase__ : Optional[int] ): '''simple docstring''' lowerCamelCase = time.time() logger.info("""waiting for all nodes to finish""" ) lowerCamelCase = None while (time.time() - start_wait) < timeout: lowerCamelCase = list(save_dir.glob("""rank_*.json""" ) ) if len(_snake_case ) < num_replicas: continue try: # make sure all json files are fully saved lowerCamelCase = lmap(_snake_case , _snake_case ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
252
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[str] ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Dict , _UpperCAmelCase : int , _UpperCAmelCase : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Tuple=True ): _A = () for resnet, attn in zip(self.resnets , self.attentions ): _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : List[Any] ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_downsample: _A = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : List[str] , _UpperCAmelCase : Tuple , _UpperCAmelCase : int , _UpperCAmelCase : List[str]=True ): _A = () for resnet in self.resnets: _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _A = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = resnets _A = attentions if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any]=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : bool = True UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Any ): _A = [] for i in range(self.num_layers ): _A = self.in_channels if (i == self.num_layers - 1) else self.out_channels _A = self.prev_output_channel if i == 0 else self.out_channels _A = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets if self.add_upsample: _A = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self : int , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int]=True ): for resnet in self.resnets: # pop res hidden states _A = res_hidden_states_tuple[-1] _A = res_hidden_states_tuple[:-1] _A = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _A = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class lowercase_ ( nn.Module ): '''simple docstring''' UpperCAmelCase : int UpperCAmelCase : float = 0.0 UpperCAmelCase : int = 1 UpperCAmelCase : int = 1 UpperCAmelCase : bool = False UpperCAmelCase : bool = False UpperCAmelCase : jnp.dtype = jnp.floataa def lowerCAmelCase_ ( self : Dict ): # there is always at least one resnet _A = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _A = [] for _ in range(self.num_layers ): _A = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _A = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _A = resnets _A = attentions def __call__( self : str , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int]=True ): _A = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _A = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _A = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
315
0
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "huggingface/time-series-transformer-tourism-monthly": ( "https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json" ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class _SCREAMING_SNAKE_CASE ( __lowerCAmelCase ): '''simple docstring''' lowercase_ = '''time_series_transformer''' lowercase_ = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__(self : List[Any] , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : str = "student_t" , UpperCAmelCase_ : str = "nll" , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , UpperCAmelCase_ : Optional[Union[str, bool]] = "mean" , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : int = 0 , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : Optional[List[int]] = None , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 32 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : bool = True , UpperCAmelCase_ : str = "gelu" , UpperCAmelCase_ : int = 64 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : float = 0.1 , UpperCAmelCase_ : int = 100 , UpperCAmelCase_ : float = 0.02 , UpperCAmelCase_ : List[Any]=True , **UpperCAmelCase_ : Optional[int] , ) ->Optional[int]: '''simple docstring''' lowerCamelCase__: Optional[int] =prediction_length lowerCamelCase__: int =context_length or prediction_length lowerCamelCase__: List[Any] =distribution_output lowerCamelCase__: Any =loss lowerCamelCase__: Optional[Any] =input_size lowerCamelCase__: Any =num_time_features lowerCamelCase__: Optional[int] =lags_sequence lowerCamelCase__: Tuple =scaling lowerCamelCase__: Dict =num_dynamic_real_features lowerCamelCase__: List[str] =num_static_real_features lowerCamelCase__: Optional[Any] =num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(_UpperCAmelCase) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`") lowerCamelCase__: Any =cardinality else: lowerCamelCase__: List[str] =[0] if embedding_dimension and num_static_categorical_features > 0: if len(_UpperCAmelCase) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`") lowerCamelCase__: List[str] =embedding_dimension else: lowerCamelCase__: Optional[Any] =[min(50 , (cat + 1) // 2) for cat in self.cardinality] lowerCamelCase__: Tuple =num_parallel_samples # Transformer architecture configuration lowerCamelCase__: Any =input_size * len(_UpperCAmelCase) + self._number_of_features lowerCamelCase__: Dict =d_model lowerCamelCase__: Dict =encoder_attention_heads lowerCamelCase__: Dict =decoder_attention_heads lowerCamelCase__: Union[str, Any] =encoder_ffn_dim lowerCamelCase__: int =decoder_ffn_dim lowerCamelCase__: Any =encoder_layers lowerCamelCase__: Tuple =decoder_layers lowerCamelCase__: Any =dropout lowerCamelCase__: Dict =attention_dropout lowerCamelCase__: str =activation_dropout lowerCamelCase__: int =encoder_layerdrop lowerCamelCase__: List[Any] =decoder_layerdrop lowerCamelCase__: str =activation_function lowerCamelCase__: Optional[Any] =init_std lowerCamelCase__: Tuple =use_cache super().__init__(is_encoder_decoder=_UpperCAmelCase , **_UpperCAmelCase) @property def SCREAMING_SNAKE_CASE_ (self : Tuple) ->List[str]: '''simple docstring''' return ( sum(self.embedding_dimension) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
10
"""simple docstring""" import numpy class lowercase_ : '''simple docstring''' def __init__( self : Dict , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : numpy.ndarray ): _A = input_array # Random initial weights are assigned where first argument is the # number of nodes in previous layer and second argument is the # number of nodes in the next layer. # Random initial weights are assigned. # self.input_array.shape[1] is used to represent number of nodes in input layer. # First hidden layer consists of 4 nodes. _A = numpy.random.rand( self.input_array.shape[1] , 4 ) # Random initial values for the first hidden layer. # First hidden layer has 4 nodes. # Second hidden layer has 3 nodes. _A = numpy.random.rand( 4 , 3 ) # Random initial values for the second hidden layer. # Second hidden layer has 3 nodes. # Output layer has 1 node. _A = numpy.random.rand(3 , 1 ) # Real output values provided. _A = output_array # Predicted output values by the neural network. # Predicted_output array initially consists of zeroes. _A = numpy.zeros(output_array.shape ) def lowerCAmelCase_ ( self : List[str] ): _A = sigmoid( numpy.dot(self.input_array , self.input_layer_and_first_hidden_layer_weights ) ) # layer_between_first_hidden_layer_and_second_hidden_layer is the layer # connecting the first hidden set of nodes with the second hidden set of nodes. _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) # layer_between_second_hidden_layer_and_output is the layer connecting # second hidden layer with the output node. _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return self.layer_between_second_hidden_layer_and_output def lowerCAmelCase_ ( self : Optional[int] ): _A = numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer.T , 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , ) _A = numpy.dot( self.layer_between_input_and_first_hidden_layer.T , numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , ) _A = numpy.dot( self.input_array.T , numpy.dot( numpy.dot( 2 * (self.output_array - self.predicted_output) * sigmoid_derivative(self.predicted_output ) , self.second_hidden_layer_and_output_layer_weights.T , ) * sigmoid_derivative( self.layer_between_first_hidden_layer_and_second_hidden_layer ) , self.first_hidden_layer_and_second_hidden_layer_weights.T , ) * sigmoid_derivative(self.layer_between_input_and_first_hidden_layer ) , ) self.input_layer_and_first_hidden_layer_weights += ( updated_input_layer_and_first_hidden_layer_weights ) self.first_hidden_layer_and_second_hidden_layer_weights += ( updated_first_hidden_layer_and_second_hidden_layer_weights ) self.second_hidden_layer_and_output_layer_weights += ( updated_second_hidden_layer_and_output_layer_weights ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : numpy.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : bool ): for iteration in range(1 , iterations + 1 ): _A = self.feedforward() self.back_propagation() if give_loss: _A = numpy.mean(numpy.square(output - self.feedforward() ) ) print(F'''Iteration {iteration} Loss: {loss}''' ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : numpy.ndarray ): _A = input_arr _A = sigmoid( numpy.dot(self.array , self.input_layer_and_first_hidden_layer_weights ) ) _A = sigmoid( numpy.dot( self.layer_between_input_and_first_hidden_layer , self.first_hidden_layer_and_second_hidden_layer_weights , ) ) _A = sigmoid( numpy.dot( self.layer_between_first_hidden_layer_and_second_hidden_layer , self.second_hidden_layer_and_output_layer_weights , ) ) return int(self.layer_between_second_hidden_layer_and_output > 0.6 ) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return 1 / (1 + numpy.exp(-value )) def _snake_case ( _snake_case : numpy.ndarray ) -> numpy.ndarray: '''simple docstring''' return (value) * (1 - (value)) def _snake_case ( ) -> int: '''simple docstring''' _A = numpy.array( ( [0, 0, 0], [0, 0, 1], [0, 1, 0], [0, 1, 1], [1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1], ) , dtype=numpy.floataa , ) # True output values for the given input values. _A = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]) , dtype=numpy.floataa ) # Calling neural network class. _A = TwoHiddenLayerNeuralNetwork( input_array=_snake_case , output_array=_snake_case ) # Calling training function. # Set give_loss to True if you want to see loss in every iteration. neural_network.train(output=_snake_case , iterations=10 , give_loss=_snake_case ) return neural_network.predict(numpy.array(([1, 1, 1]) , dtype=numpy.floataa ) ) if __name__ == "__main__": example()
315
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCamelCase : List[str] = { "configuration_blenderbot": [ "BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BlenderbotConfig", "BlenderbotOnnxConfig", ], "tokenization_blenderbot": ["BlenderbotTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[str] = ["BlenderbotTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ "BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST", "BlenderbotForCausalLM", "BlenderbotForConditionalGeneration", "BlenderbotModel", "BlenderbotPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "TFBlenderbotForConditionalGeneration", "TFBlenderbotModel", "TFBlenderbotPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ "FlaxBlenderbotForConditionalGeneration", "FlaxBlenderbotModel", "FlaxBlenderbotPreTrainedModel", ] if TYPE_CHECKING: from .configuration_blenderbot import ( BLENDERBOT_PRETRAINED_CONFIG_ARCHIVE_MAP, BlenderbotConfig, BlenderbotOnnxConfig, ) from .tokenization_blenderbot import BlenderbotTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_blenderbot_fast import BlenderbotTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blenderbot import ( BLENDERBOT_PRETRAINED_MODEL_ARCHIVE_LIST, BlenderbotForCausalLM, BlenderbotForConditionalGeneration, BlenderbotModel, BlenderbotPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blenderbot import ( TFBlenderbotForConditionalGeneration, TFBlenderbotModel, TFBlenderbotPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, FlaxBlenderbotPreTrainedModel, ) else: import sys __UpperCamelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
146
"""simple docstring""" from __future__ import annotations from collections.abc import Iterator from typing import Generic, TypeVar a = TypeVar('''T''') class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Any , _UpperCAmelCase : T ): _A = data _A = None def __str__( self : str ): return F'''{self.data}''' class lowercase_ ( Generic[T] ): '''simple docstring''' def __init__( self : Tuple ): _A = None def __iter__( self : List[Any] ): _A = self.top while node: yield node.data _A = node.next def __str__( self : Union[str, Any] ): return "->".join([str(_UpperCAmelCase ) for item in self] ) def __len__( self : List[Any] ): return len(tuple(iter(self ) ) ) def lowerCAmelCase_ ( self : str ): return self.top is None def lowerCAmelCase_ ( self : Union[str, Any] , _UpperCAmelCase : T ): _A = Node(_UpperCAmelCase ) if not self.is_empty(): _A = self.top _A = node def lowerCAmelCase_ ( self : Dict ): if self.is_empty(): raise IndexError('pop from empty stack' ) assert isinstance(self.top , _UpperCAmelCase ) _A = self.top _A = self.top.next return pop_node.data def lowerCAmelCase_ ( self : Tuple ): if self.is_empty(): raise IndexError('peek from empty stack' ) assert self.top is not None return self.top.data def lowerCAmelCase_ ( self : Optional[Any] ): _A = None if __name__ == "__main__": from doctest import testmod testmod()
315
0
"""simple docstring""" import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__lowerCAmelCase ) class SCREAMING_SNAKE_CASE__ ( __lowerCAmelCase ): """simple docstring""" a : str =field(default="text-classification" , metadata={"include_in_asdict_even_if_is_default": True} ) a : ClassVar[Features] =Features({"text": Value("string" )} ) a : ClassVar[Features] =Features({"labels": ClassLabel} ) a : str ="text" a : str ="labels" def lowercase__ ( self , snake_case__ ): """simple docstring""" if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , _UpperCAmelCase ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) lowerCAmelCase : Optional[int] = copy.deepcopy(self ) lowerCAmelCase : List[str] = self.label_schema.copy() lowerCAmelCase : List[Any] = features[self.label_column] lowerCAmelCase : int = label_schema return task_template @property def lowercase__ ( self ): """simple docstring""" return { self.text_column: "text", self.label_column: "labels", }
108
"""simple docstring""" import warnings from ...utils import logging from .image_processing_imagegpt import ImageGPTImageProcessor a = logging.get_logger(__name__) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Any , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): warnings.warn( 'The class ImageGPTFeatureExtractor is deprecated and will be removed in version 5 of Transformers.' ' Please use ImageGPTImageProcessor instead.' , _UpperCAmelCase , ) super().__init__(*_UpperCAmelCase , **_UpperCAmelCase )
315
0
import torch from transformers import AutoModel class snake_case__(torch.nn.Module ): """simple docstring""" def __init__( self : Any , SCREAMING_SNAKE_CASE : Optional[Any]="sayef/fsner-bert-base-uncased" ): super(_UpperCAmelCase , self ).__init__() lowercase__ : Optional[int] = AutoModel.from_pretrained(_UpperCAmelCase , return_dict=_UpperCAmelCase ) lowercase__ : Any = torch.nn.CosineSimilarity(3 , 1E-0_8 ) lowercase__ : str = torch.nn.Softmax(dim=1 ) def snake_case ( self : Dict , **SCREAMING_SNAKE_CASE : int ): return self.bert(**_UpperCAmelCase ).last_hidden_state def snake_case ( self : Dict , SCREAMING_SNAKE_CASE : List[str] ): return token_embeddings.sum(2 , keepdim=_UpperCAmelCase ) def snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any]=1 ): return self.softmax(T * self.cos(_UpperCAmelCase , _UpperCAmelCase ) ) def snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : Tuple ): lowercase__ : int = W_supports["sizes"].tolist() lowercase__ : Union[str, Any] = W_supports["start_token_id"].item() lowercase__ : Tuple = W_supports["end_token_id"].item() del W_supports["sizes"] del W_supports["start_token_id"] del W_supports["end_token_id"] lowercase__ : Any = self.BERT(**_UpperCAmelCase ) lowercase__ : Union[str, Any] = self.BERT(**_UpperCAmelCase ) lowercase__ : List[Any] = None lowercase__ : List[str] = None lowercase__ : List[Any] = W_supports["input_ids"] == start_token_id lowercase__ : Dict = W_supports["input_ids"] == end_token_id for i, size in enumerate(_UpperCAmelCase ): if i == 0: lowercase__ : Any = 0 else: lowercase__ : Optional[int] = support_sizes[i - 1] lowercase__ : Optional[int] = S[s : s + size][start_token_masks[s : s + size]] lowercase__ : int = S[s : s + size][end_token_masks[s : s + size]] lowercase__ : Any = torch.matmul(q[i] , s_start.T ).sum(1 ).softmax(0 ) lowercase__ : List[str] = torch.matmul(q[i] , s_end.T ).sum(1 ).softmax(0 ) if p_starts is not None: lowercase__ : Union[str, Any] = torch.vstack((p_starts, p_start) ) lowercase__ : Any = torch.vstack((p_ends, p_end) ) else: lowercase__ : List[str] = p_start lowercase__ : Tuple = p_end return p_starts, p_ends
130
"""simple docstring""" from __future__ import annotations import collections import pprint from pathlib import Path def _snake_case ( _snake_case : str ) -> str: '''simple docstring''' return "".join(sorted(_snake_case ) ) def _snake_case ( _snake_case : str ) -> list[str]: '''simple docstring''' return word_by_signature[signature(_snake_case )] a = Path(__file__).parent.joinpath('''words.txt''').read_text(encoding='''utf-8''') a = sorted({word.strip().lower() for word in data.splitlines()}) a = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": a = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('''anagrams.txt''', '''w''') as file: file.write('''all_anagrams = \n ''') file.write(pprint.pformat(all_anagrams))
315
0
class A__ : def __init__( self ): '''simple docstring''' UpperCamelCase : Any = {} def __UpperCamelCase( self ): '''simple docstring''' print(self.vertex ) for i in self.vertex: print(_UpperCAmelCase , " -> " , " -> ".join([str(_UpperCAmelCase ) for j in self.vertex[i]] ) ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' if from_vertex in self.vertex: self.vertex[from_vertex].append(_UpperCAmelCase ) else: # else make a new vertex UpperCamelCase : Union[str, Any] = [to_vertex] def __UpperCamelCase( self ): '''simple docstring''' UpperCamelCase : int = [False] * len(self.vertex ) # call the recursive helper function for i in range(len(self.vertex ) ): if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCamelCase( self , A_ , A_ ): '''simple docstring''' UpperCamelCase : Optional[Any] = True print(_UpperCAmelCase , end=" " ) # Recur for all the vertices that are adjacent to this node for i in self.vertex: if not visited[i]: self.dfs_recursive(_UpperCAmelCase , _UpperCAmelCase ) if __name__ == "__main__": __lowerCamelCase : Optional[int] = Graph() g.add_edge(0, 1) g.add_edge(0, 2) g.add_edge(1, 2) g.add_edge(2, 0) g.add_edge(2, 3) g.add_edge(3, 3) g.print_graph() print("""DFS:""") g.dfs() # OUTPUT: # 0 -> 1 -> 2 # 1 -> 2 # 2 -> 0 -> 3 # 3 -> 3 # DFS: # 0 1 2 3
52
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version a = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : Optional[str] = field( default='''cifar10''' , metadata={'''help''': '''Name of a dataset from the datasets package'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''The column name of the images in the files.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the training data.'''} ) UpperCAmelCase : Optional[str] = field(default=__lowerCAmelCase , metadata={'''help''': '''A folder containing the validation data.'''} ) UpperCAmelCase : Optional[float] = field( default=0.15 , metadata={'''help''': '''Percent to split off of train for validation.'''} ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of training examples to this ''' '''value if set.''' ) } , ) UpperCAmelCase : Optional[int] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''For debugging purposes or quicker training, truncate the number of evaluation examples to this ''' '''value if set.''' ) } , ) def lowerCAmelCase_ ( self : Dict ): _A = {} if self.train_dir is not None: _A = self.train_dir if self.validation_dir is not None: _A = self.validation_dir _A = data_files if data_files else None @dataclass class lowercase_ : '''simple docstring''' UpperCAmelCase : str = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Pretrained config name or path if not the same as model_name_or_path'''} ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) UpperCAmelCase : Optional[str] = field( default=__lowerCAmelCase , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from s3'''} ) UpperCAmelCase : str = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) UpperCAmelCase : str = field(default=__lowerCAmelCase , metadata={'''help''': '''Name or path of preprocessor config.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) UpperCAmelCase : float = field( default=0.75 , metadata={'''help''': '''The ratio of the number of masked tokens in the input sequence.'''} ) UpperCAmelCase : bool = field( default=__lowerCAmelCase , metadata={'''help''': '''Whether or not to train with normalized pixel values as target.'''} ) @dataclass class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : float = field( default=1E-3 , metadata={'''help''': '''Base learning rate: absolute_lr = base_lr * total_batch_size / 256.'''} ) def _snake_case ( _snake_case : int ) -> Optional[int]: '''simple docstring''' _A = torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def _snake_case ( ) -> List[str]: '''simple docstring''' _A = HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _A , _A , _A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _A , _A , _A = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae' , _snake_case , _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' , datefmt='%m/%d/%Y %H:%M:%S' , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _A = training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. _A = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _A = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. _A = load_dataset( data_args.dataset_name , data_args.dataset_config_name , data_files=data_args.data_files , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , ) # If we don't have a validation split, split off a percentage of train as validation. _A = None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split , _snake_case ) and data_args.train_val_split > 0.0: _A = ds['train'].train_test_split(data_args.train_val_split ) _A = split['train'] _A = split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _A = { 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: _A = ViTMAEConfig.from_pretrained(model_args.config_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTMAEConfig.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: _A = ViTImageProcessor.from_pretrained(model_args.image_processor_name , **_snake_case ) elif model_args.model_name_or_path: _A = ViTImageProcessor.from_pretrained(model_args.model_name_or_path , **_snake_case ) else: _A = ViTImageProcessor() # create model if model_args.model_name_or_path: _A = ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path , from_tf=bool('.ckpt' in model_args.model_name_or_path ) , config=_snake_case , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('Training new model from scratch' ) _A = ViTMAEForPreTraining(_snake_case ) if training_args.do_train: _A = ds['train'].column_names else: _A = ds['validation'].column_names if data_args.image_column_name is not None: _A = data_args.image_column_name elif "image" in column_names: _A = 'image' elif "img" in column_names: _A = 'img' else: _A = column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: _A = image_processor.size['shortest_edge'] else: _A = (image_processor.size['height'], image_processor.size['width']) _A = Compose( [ Lambda(lambda _snake_case : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case , scale=(0.2, 1.0) , interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean , std=image_processor.image_std ), ] ) def preprocess_images(_snake_case : List[Any] ): _A = [transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: _A = ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: _A = ( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate _A = ( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: _A = training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer _A = Trainer( model=_snake_case , args=_snake_case , train_dataset=ds['train'] if training_args.do_train else None , eval_dataset=ds['validation'] if training_args.do_eval else None , tokenizer=_snake_case , data_collator=_snake_case , ) # Training if training_args.do_train: _A = None if training_args.resume_from_checkpoint is not None: _A = training_args.resume_from_checkpoint elif last_checkpoint is not None: _A = last_checkpoint _A = trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train' , train_result.metrics ) trainer.save_metrics('train' , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _A = trainer.evaluate() trainer.log_metrics('eval' , _snake_case ) trainer.save_metrics('eval' , _snake_case ) # Write model card and (optionally) push to hub _A = { 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def _snake_case ( _snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' main() if __name__ == "__main__": main()
315
0
"""simple docstring""" import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def UpperCamelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" a_ = int(_snake_case ) a_ , a_ , a_ = t // 3_600, (t // 60) % 60, t % 60 return F'''{h}:{m:02d}:{s:02d}''' if h != 0 else F'''{m:02d}:{s:02d}''' def UpperCamelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=300 ) ->Tuple: """simple docstring""" return F''' <div> {prefix} <progress value=\'{value}\' max=\'{total}\' style=\'width:{width}px; height:20px; vertical-align: middle;\'></progress> {label} </div> ''' def UpperCamelCase ( UpperCAmelCase ) ->Optional[int]: """simple docstring""" a_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += F''' <th>{i}</th>\n''' html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: a_ = F'''{elt:.6f}''' if isinstance(_snake_case , _snake_case ) else str(_snake_case ) html_code += F''' <td>{elt}</td>\n''' html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class snake_case : a_ : Dict = 5 a_ : int = 0.2 def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = 3_00 , ) ->Optional[int]: a_ = total a_ = "" if prefix is None else prefix a_ = leave a_ = parent a_ = width a_ = None a_ = None a_ = None def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = None) ->List[str]: a_ = value if comment is not None: a_ = comment if self.last_value is None: a_ = a_ = time.time() a_ = a_ = value a_ = a_ = None a_ = self.warmup a_ = 1 self.update_bar(_UpperCAmelCase) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total): if self.first_calls > 0: self.first_calls -= 1 a_ = time.time() a_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: a_ = self.elapsed_time / (value - self.start_value) else: a_ = None if value >= self.total: a_ = self.total a_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: a_ = self.average_time_per_item * (self.total - value) self.update_bar(_UpperCAmelCase) a_ = value a_ = current_time if self.average_time_per_item is None: a_ = 1 else: a_ = max(int(self.update_every / self.average_time_per_item) , 1) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None) ->Optional[int]: a_ = " " * (len(str(self.total)) - len(str(_UpperCAmelCase))) + str(_UpperCAmelCase) if self.elapsed_time is None: a_ = F'''[{spaced_value}/{self.total} : < :''' elif self.predicted_remaining is None: a_ = F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time)}''' else: a_ = ( F'''[{spaced_value}/{self.total} {format_time(self.elapsed_time)} <''' F''' {format_time(self.predicted_remaining)}''' ) self.label += F''', {1/self.average_time_per_item:.2f} it/s''' self.label += "]" if self.comment is None or len(self.comment) == 0 else F''', {self.comment}]''' self.display() def UpperCAmelCase__ ( self) ->str: a_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: a_ = disp.display(disp.HTML(self.html_code) , display_id=_UpperCAmelCase) else: self.output.update(disp.HTML(self.html_code)) def UpperCAmelCase__ ( self) ->int: if self.parent is None and self.output is not None: self.output.update(disp.HTML("")) class snake_case ( __lowerCAmelCase ): def __init__( self , __UpperCAmelCase , __UpperCAmelCase=None) ->str: super().__init__(_UpperCAmelCase) a_ = None if column_names is None else [column_names] a_ = None def UpperCAmelCase__ ( self) ->List[str]: a_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: a_ = disp.display(disp.HTML(self.html_code) , display_id=_UpperCAmelCase) else: self.output.update(disp.HTML(self.html_code)) def UpperCAmelCase__ ( self , __UpperCAmelCase) ->Dict: if self.inner_table is None: a_ = [list(values.keys()), list(values.values())] else: a_ = self.inner_table[0] if len(self.inner_table) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(_UpperCAmelCase) a_ = columns self.inner_table.append([values[c] for c in columns]) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase=None , __UpperCAmelCase=3_00) ->Optional[int]: a_ = NotebookProgressBar(_UpperCAmelCase , prefix=_UpperCAmelCase , parent=self , width=_UpperCAmelCase) return self.child_bar def UpperCAmelCase__ ( self) ->Any: a_ = None self.display() class snake_case ( __lowerCAmelCase ): def __init__( self) ->int: a_ = None a_ = None a_ = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Any: a_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" a_ = 0 a_ = 0 a_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss") a_ = NotebookTrainingTracker(state.max_steps , _UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Optional[Any]: a_ = int(state.epoch) if int(state.epoch) == state.epoch else F'''{state.epoch:.2f}''' self.training_tracker.update( state.global_step + 1 , comment=F'''Epoch {epoch}/{state.num_train_epochs}''' , force_update=self._force_next_update , ) a_ = False def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->Dict: if not has_length(_UpperCAmelCase): return if self.prediction_bar is None: if self.training_tracker is not None: a_ = self.training_tracker.add_child(len(_UpperCAmelCase)) else: a_ = NotebookProgressBar(len(_UpperCAmelCase)) self.prediction_bar.update(1) else: self.prediction_bar.update(self.prediction_bar.value + 1) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->str: if self.prediction_bar is not None: self.prediction_bar.close() a_ = None def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->List[str]: # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: a_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy a_ = state.global_step self.training_tracker.write_line(_UpperCAmelCase) def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None , **__UpperCAmelCase) ->Any: if self.training_tracker is not None: a_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history): if "loss" in log: a_ = log["loss"] break if self.first_column == "Epoch": a_ = int(state.epoch) else: a_ = state.global_step a_ = "eval" for k in metrics: if k.endswith("_loss"): a_ = re.sub(r"\_loss$" , "" , _UpperCAmelCase) a_ = metrics.pop("total_flos" , _UpperCAmelCase) a_ = metrics.pop("epoch" , _UpperCAmelCase) a_ = metrics.pop(F'''{metric_key_prefix}_runtime''' , _UpperCAmelCase) a_ = metrics.pop(F'''{metric_key_prefix}_samples_per_second''' , _UpperCAmelCase) a_ = metrics.pop(F'''{metric_key_prefix}_steps_per_second''' , _UpperCAmelCase) a_ = metrics.pop(F'''{metric_key_prefix}_jit_compilation_time''' , _UpperCAmelCase) for k, v in metrics.items(): if k == F'''{metric_key_prefix}_loss''': a_ = v else: a_ = k.split("_") a_ = " ".join([part.capitalize() for part in splits[1:]]) a_ = v self.training_tracker.write_line(_UpperCAmelCase) self.training_tracker.remove_child() a_ = None # Evaluation takes a long time so we should force the next update. a_ = True def UpperCAmelCase__ ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , **__UpperCAmelCase) ->Tuple: self.training_tracker.update( state.global_step , comment=F'''Epoch {int(state.epoch)}/{state.num_train_epochs}''' , force_update=_UpperCAmelCase) a_ = None
243
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor a = logging.getLogger(__name__) a = 50 # max width of layer names a = 70 # max width of quantizer names def _snake_case ( _snake_case : int ) -> List[Any]: '''simple docstring''' _A = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=_snake_case , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=_snake_case , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=_snake_case , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=_snake_case , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=_snake_case , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=_snake_case , type=_snake_case , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=_snake_case , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def _snake_case ( _snake_case : Dict ) -> Optional[Any]: '''simple docstring''' if args.calibrator == "max": _A = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) _A = 'histogram' elif args.calibrator == "mse": _A = 'histogram' else: raise ValueError(F'''Invalid calibrator {args.calibrator}''' ) _A = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) _A = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _snake_case ( _snake_case : Union[str, Any] , _snake_case : List[Any] , _snake_case : Any=False , _snake_case : Union[str, Any]=False ) -> Optional[int]: '''simple docstring''' logger.info('Configuring Model for Quantization' ) logger.info(F'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['embeddings'] , which='weight' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str ) -> Any: '''simple docstring''' logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F'''{name:80}: {module}''' ) def _snake_case ( _snake_case : List[Any] , _snake_case : List[Any] ) -> str: '''simple docstring''' logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _snake_case ( _snake_case : str , _snake_case : int ) -> str: '''simple docstring''' def fusea(_snake_case : int , _snake_case : str , _snake_case : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return _A = qq._amax.detach().item() _A = qk._amax.detach().item() _A = qv._amax.detach().item() _A = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(F'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _snake_case ( _snake_case : int , _snake_case : str ) -> Union[str, Any]: '''simple docstring''' for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): _A = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) _A = mod._input_quantizer._amax.data.detach().item() logger.info(F'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def _snake_case ( _snake_case : List[str] ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: _A = mod.weight.shape[0] _A = mod._weight_quantizer._amax.detach() _A = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def _snake_case ( _snake_case : Dict ) -> Tuple: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) _A = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) _A = set(range(len(mod.weight.size() ) ) ) - axis_set _A = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) _A = amax def _snake_case ( _snake_case : Tuple , _snake_case : List[str]=25 , _snake_case : str=1_80 , _snake_case : int=None ) -> List[Any]: '''simple docstring''' if ignore is None: _A = [] elif not isinstance(_snake_case , _snake_case ): _A = [ignore] _A = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , 'weight' ): continue _A = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): _A = getattr(_snake_case , '_input_quantizer' , _snake_case ) _A = getattr(_snake_case , '_weight_quantizer' , _snake_case ) if not hasattr(_snake_case , 'weight' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue _A = F'''Act:{input_q.extra_repr()}''' _A = F'''Wgt:{weight_q.extra_repr()}''' _A = F'''{name:{name_width}} {act_str} {wgt_str}''' if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F'''{name:{name_width}} {act_str}''' ) logger.info(F'''{" ":{name_width}} {wgt_str}''' ) def _snake_case ( _snake_case : Dict ) -> int: '''simple docstring''' _A = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F'''{name:80} {mod}''' ) count += 1 print(F'''{count} TensorQuantizers found in model''' ) def _snake_case ( _snake_case : str , _snake_case : Dict , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : Any ) -> int: '''simple docstring''' _A = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F'''{name} has no {quantizer}''' ) def _snake_case ( _snake_case : Dict , _snake_case : Optional[int] , _snake_case : str="both" , **_snake_case : List[Any] ) -> str: '''simple docstring''' _A = F'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '_input_quantizer' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '_weight_quantizer' , _snake_case , _snake_case ) logger.info(_snake_case ) def _snake_case ( _snake_case : Any , _snake_case : int , **_snake_case : Dict ) -> List[str]: '''simple docstring''' for name, mod in model.named_modules(): if hasattr(_snake_case , '_input_quantizer' ) or hasattr(_snake_case , '_weight_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('_quantizer' ): for n in names: if re.search(_snake_case , _snake_case ): _A = F'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += F''' {k}={v}''' setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
315
0
import operator as op _snake_case = "scaler.pt" _snake_case = "pytorch_model" _snake_case = "random_states" _snake_case = "optimizer" _snake_case = "scheduler" _snake_case = "pytorch_model.bin" _snake_case = "pytorch_model.bin.index.json" _snake_case = "model.safetensors" _snake_case = "model.safetensors.index.json" _snake_case = "1.10.2" _snake_case = "py38" _snake_case = "4.17.0" _snake_case = ["ml.p3.16xlarge", "ml.p3dn.24xlarge", "ml.p4dn.24xlarge"] _snake_case = ["FULL_SHARD", "SHARD_GRAD_OP", "NO_SHARD", "HYBRID_SHARD", "HYBRID_SHARD_ZERO2"] _snake_case = ["TRANSFORMER_BASED_WRAP", "SIZE_BASED_WRAP", "NO_WRAP"] _snake_case = ["BACKWARD_PRE", "BACKWARD_POST", "NO_PREFETCH"] _snake_case = ["FULL_STATE_DICT", "LOCAL_STATE_DICT", "SHARDED_STATE_DICT"] _snake_case = "2.0.1" _snake_case = ["pdsh", "standard", "openmpi", "mvapich"] _snake_case = ["default", "reduce-overhead", "max-autotune"] _snake_case = {">": op.gt, ">=": op.ge, "==": op.eq, "!=": op.ne, "<=": op.le, "<": op.lt} # These are the args for `torch.distributed.launch` for pytorch < 1.9 _snake_case = [ "nnodes", "nproc_per_node", "rdzv_backend", "rdzv_endpoint", "rdzv_id", "rdzv_conf", "standalone", "max_restarts", "monitor_interval", "start_method", "role", "module", "m", "no_python", "run_path", "log_dir", "r", "redirects", "t", "tee", "node_rank", "master_addr", "master_port", ] _snake_case = ["DEEPSPEED", "MULTI_GPU", "FSDP", "MEGATRON_LM"] _snake_case = ["DEEPSPEED", "MULTI_XPU", "FSDP"]
26
"""simple docstring""" from scipy.stats import spearmanr import datasets a = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' a = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' a = r'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowercase_ ( datasets.Metric ): '''simple docstring''' def lowerCAmelCase_ ( self : Optional[int] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('float' ), 'references': datasets.Value('float' ), } ) , reference_urls=['https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html'] , ) def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[int]=False ): _A = spearmanr(_UpperCAmelCase , _UpperCAmelCase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
315
0
_lowercase : Tuple ={str(digit): digit**5 for digit in range(10)} def lowerCAmelCase_ ( _lowercase : int) -> int: """simple docstring""" return sum(DIGITS_FIFTH_POWER[digit] for digit in str(_snake_case)) def lowerCAmelCase_ ( ) -> int: """simple docstring""" return sum( number for number in range(1000 , 100_0000) if number == digits_fifth_powers_sum(_snake_case)) if __name__ == "__main__": print(solution())
170
"""simple docstring""" from collections.abc import Callable def _snake_case ( _snake_case : Callable[[float], float] , _snake_case : float , _snake_case : float ) -> float: '''simple docstring''' _A = a _A = b if function(_snake_case ) == 0: # one of the a or b is a root for the function return a elif function(_snake_case ) == 0: return b elif ( function(_snake_case ) * function(_snake_case ) > 0 ): # if none of these are root and they are both positive or negative, # then this algorithm can't find the root raise ValueError('could not find root in given interval.' ) else: _A = start + (end - start) / 2.0 while abs(start - mid ) > 10**-7: # until precisely equals to 10^-7 if function(_snake_case ) == 0: return mid elif function(_snake_case ) * function(_snake_case ) < 0: _A = mid else: _A = mid _A = start + (end - start) / 2.0 return mid def _snake_case ( _snake_case : float ) -> float: '''simple docstring''' return x**3 - 2 * x - 5 if __name__ == "__main__": print(bisection(f, 1, 1_000)) import doctest doctest.testmod()
315
0
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional import torch from datasets import load_dataset from torchvision.transforms import Compose, Lambda, Normalize, RandomHorizontalFlip, RandomResizedCrop, ToTensor from torchvision.transforms.functional import InterpolationMode import transformers from transformers import ( HfArgumentParser, Trainer, TrainingArguments, ViTImageProcessor, ViTMAEConfig, ViTMAEForPreTraining, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version UpperCAmelCase = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version('''4.31.0''') require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-pretraining/requirements.txt''') @dataclass class lowerCAmelCase : lowerCAmelCase_ = field( default="cifar10" , metadata={"help": "Name of a dataset from the datasets package"} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={"help": "The column name of the images in the files."} ) lowerCAmelCase_ = field(default=__lowerCAmelCase , metadata={"help": "A folder containing the training data."} ) lowerCAmelCase_ = field(default=__lowerCAmelCase , metadata={"help": "A folder containing the validation data."} ) lowerCAmelCase_ = field( default=0.1_5 , metadata={"help": "Percent to split off of train for validation."} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) def snake_case ( self : Dict ): """simple docstring""" __lowercase ={} if self.train_dir is not None: __lowercase =self.train_dir if self.validation_dir is not None: __lowercase =self.validation_dir __lowercase =data_files if data_files else None @dataclass class lowerCAmelCase : lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={ "help": ( "The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch." ) } , ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name_or_path"} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={ "help": ( "Override some existing default config settings when a model is trained from scratch. Example: " "n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index" ) } , ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from s3"} ) lowerCAmelCase_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) lowerCAmelCase_ = field(default=__lowerCAmelCase , metadata={"help": "Name or path of preprocessor config."} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) lowerCAmelCase_ = field( default=0.7_5 , metadata={"help": "The ratio of the number of masked tokens in the input sequence."} ) lowerCAmelCase_ = field( default=__lowerCAmelCase , metadata={"help": "Whether or not to train with normalized pixel values as target."} ) @dataclass class lowerCAmelCase ( __lowerCAmelCase ): lowerCAmelCase_ = field( default=1E-3 , metadata={"help": "Base learning rate: absolute_lr = base_lr * total_batch_size / 256."} ) def __UpperCamelCase ( lowercase__ : int ): '''simple docstring''' __lowercase =torch.stack([example['pixel_values'] for example in examples] ) return {"pixel_values": pixel_values} def __UpperCamelCase ( ): '''simple docstring''' __lowercase =HfArgumentParser((ModelArguments, DataTrainingArguments, CustomTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __lowercase , __lowercase , __lowercase =parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __lowercase , __lowercase , __lowercase =parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry('run_mae', _snake_case, _snake_case ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', handlers=[logging.StreamHandler(sys.stdout )], ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() __lowercase =training_args.get_process_log_level() logger.setLevel(_snake_case ) transformers.utils.logging.set_verbosity(_snake_case ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + F'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(F'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. __lowercase =None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: __lowercase =get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' 'Use --overwrite_output_dir to overcome.' ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' 'the `--output_dir` or add `--overwrite_output_dir` to train from scratch.' ) # Initialize our dataset. __lowercase =load_dataset( data_args.dataset_name, data_args.dataset_config_name, data_files=data_args.data_files, cache_dir=model_args.cache_dir, use_auth_token=True if model_args.use_auth_token else None, ) # If we don't have a validation split, split off a percentage of train as validation. __lowercase =None if 'validation' in ds.keys() else data_args.train_val_split if isinstance(data_args.train_val_split, _snake_case ) and data_args.train_val_split > 0.0: __lowercase =ds['train'].train_test_split(data_args.train_val_split ) __lowercase =split['train'] __lowercase =split['test'] # Load pretrained model and image processor # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __lowercase ={ 'cache_dir': model_args.cache_dir, 'revision': model_args.model_revision, 'use_auth_token': True if model_args.use_auth_token else None, } if model_args.config_name: __lowercase =ViTMAEConfig.from_pretrained(model_args.config_name, **_snake_case ) elif model_args.model_name_or_path: __lowercase =ViTMAEConfig.from_pretrained(model_args.model_name_or_path, **_snake_case ) else: __lowercase =ViTMAEConfig() logger.warning('You are instantiating a new config instance from scratch.' ) if model_args.config_overrides is not None: logger.info(F'''Overriding config: {model_args.config_overrides}''' ) config.update_from_string(model_args.config_overrides ) logger.info(F'''New config: {config}''' ) # adapt config config.update( { 'mask_ratio': model_args.mask_ratio, 'norm_pix_loss': model_args.norm_pix_loss, } ) # create image processor if model_args.image_processor_name: __lowercase =ViTImageProcessor.from_pretrained(model_args.image_processor_name, **_snake_case ) elif model_args.model_name_or_path: __lowercase =ViTImageProcessor.from_pretrained(model_args.model_name_or_path, **_snake_case ) else: __lowercase =ViTImageProcessor() # create model if model_args.model_name_or_path: __lowercase =ViTMAEForPreTraining.from_pretrained( model_args.model_name_or_path, from_tf=bool('.ckpt' in model_args.model_name_or_path ), config=_snake_case, cache_dir=model_args.cache_dir, revision=model_args.model_revision, use_auth_token=True if model_args.use_auth_token else None, ) else: logger.info('Training new model from scratch' ) __lowercase =ViTMAEForPreTraining(_snake_case ) if training_args.do_train: __lowercase =ds['train'].column_names else: __lowercase =ds['validation'].column_names if data_args.image_column_name is not None: __lowercase =data_args.image_column_name elif "image" in column_names: __lowercase ='image' elif "img" in column_names: __lowercase ='img' else: __lowercase =column_names[0] # transformations as done in original MAE paper # source: https://github.com/facebookresearch/mae/blob/main/main_pretrain.py if "shortest_edge" in image_processor.size: __lowercase =image_processor.size['shortest_edge'] else: __lowercase =(image_processor.size['height'], image_processor.size['width']) __lowercase =Compose( [ Lambda(lambda lowercase__ : img.convert('RGB' ) if img.mode != "RGB" else img ), RandomResizedCrop(_snake_case, scale=(0.2, 1.0), interpolation=InterpolationMode.BICUBIC ), RandomHorizontalFlip(), ToTensor(), Normalize(mean=image_processor.image_mean, std=image_processor.image_std ), ] ) def preprocess_images(lowercase__ : List[Any] ): __lowercase =[transforms(_snake_case ) for image in examples[image_column_name]] return examples if training_args.do_train: if "train" not in ds: raise ValueError('--do_train requires a train dataset' ) if data_args.max_train_samples is not None: __lowercase =ds['train'].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) # Set the training transforms ds["train"].set_transform(_snake_case ) if training_args.do_eval: if "validation" not in ds: raise ValueError('--do_eval requires a validation dataset' ) if data_args.max_eval_samples is not None: __lowercase =( ds['validation'].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms ds["validation"].set_transform(_snake_case ) # Compute absolute learning rate __lowercase =( training_args.train_batch_size * training_args.gradient_accumulation_steps * training_args.world_size ) if training_args.base_learning_rate is not None: __lowercase =training_args.base_learning_rate * total_train_batch_size / 2_56 # Initialize our trainer __lowercase =Trainer( model=_snake_case, args=_snake_case, train_dataset=ds['train'] if training_args.do_train else None, eval_dataset=ds['validation'] if training_args.do_eval else None, tokenizer=_snake_case, data_collator=_snake_case, ) # Training if training_args.do_train: __lowercase =None if training_args.resume_from_checkpoint is not None: __lowercase =training_args.resume_from_checkpoint elif last_checkpoint is not None: __lowercase =last_checkpoint __lowercase =trainer.train(resume_from_checkpoint=_snake_case ) trainer.save_model() trainer.log_metrics('train', train_result.metrics ) trainer.save_metrics('train', train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: __lowercase =trainer.evaluate() trainer.log_metrics('eval', _snake_case ) trainer.save_metrics('eval', _snake_case ) # Write model card and (optionally) push to hub __lowercase ={ 'tasks': 'masked-auto-encoding', 'dataset': data_args.dataset_name, 'tags': ['masked-auto-encoding'], } if training_args.push_to_hub: trainer.push_to_hub(**_snake_case ) else: trainer.create_model_card(**_snake_case ) def __UpperCamelCase ( lowercase__ : List[str] ): '''simple docstring''' main() if __name__ == "__main__": main()
141
"""simple docstring""" import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCAmelCase ) , '''Tatoeba directory does not exist.''' ) class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def lowerCAmelCase_ ( self : Optional[Any] ): _A = tempfile.mkdtemp() return TatoebaConverter(save_dir=_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : Optional[int] ): self.resolver.convert_models(['heb-eng'] ) @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.resolver.write_model_card('opus-mt-he-en' , dry_run=_UpperCAmelCase ) assert mmeta["long_pair"] == "heb-eng"
315
0
from collections import deque from math import floor from random import random from time import time class _A : def __init__( self : int ) -> List[Any]: """simple docstring""" lowercase : Optional[Any] = {} def __a ( self : int , _A : str , _A : int , _A : Optional[Any]=1 ) -> List[str]: """simple docstring""" if self.graph.get(_UpperCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: lowercase : int = [[w, v]] if not self.graph.get(_UpperCAmelCase ): lowercase : List[Any] = [] def __a ( self : Any ) -> int: """simple docstring""" return list(self.graph ) def __a ( self : Dict , _A : Union[str, Any] , _A : Union[str, Any] ) -> Optional[Any]: """simple docstring""" if self.graph.get(_UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCAmelCase ) def __a ( self : Tuple , _A : Dict=-2 , _A : Optional[int]=-1 ) -> Optional[Any]: """simple docstring""" if s == d: return [] lowercase : int = [] lowercase : Union[str, Any] = [] if s == -2: lowercase : Optional[Any] = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : Any = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCAmelCase ) != 0: lowercase : List[Any] = stack[len(_UpperCAmelCase ) - 1] else: lowercase : Dict = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return visited def __a ( self : int , _A : Tuple=-1 ) -> List[str]: """simple docstring""" if c == -1: lowercase : Any = floor(random() * 10_000 ) + 10 for i in range(_UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase : Any = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 ) def __a ( self : int , _A : Dict=-2 ) -> Dict: """simple docstring""" lowercase : Any = deque() lowercase : Dict = [] if s == -2: lowercase : int = list(self.graph )[0] d.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) while d: lowercase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self : Tuple , _A : Optional[int] ) -> Tuple: """simple docstring""" lowercase : Dict = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __a ( self : Dict , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return len(self.graph[u] ) def __a ( self : Any , _A : int=-2 ) -> Optional[Any]: """simple docstring""" lowercase : List[Any] = [] lowercase : List[str] = [] if s == -2: lowercase : Any = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : Any = s lowercase : int = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : Optional[Any] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_UpperCAmelCase ) != 0: lowercase : Dict = stack[len(_UpperCAmelCase ) - 1] else: lowercase : List[str] = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return sorted_nodes def __a ( self : str ) -> Union[str, Any]: """simple docstring""" lowercase : Union[str, Any] = [] lowercase : Any = [] lowercase : Optional[Any] = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : int = -2 lowercase : Tuple = [] lowercase : List[str] = s lowercase : List[str] = False lowercase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : int = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase : Any = len(_UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase : Tuple = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase : List[Any] = True if len(_UpperCAmelCase ) != 0: lowercase : List[Any] = stack[len(_UpperCAmelCase ) - 1] else: lowercase : str = False indirect_parents.append(_UpperCAmelCase ) lowercase : Optional[Any] = s lowercase : Optional[int] = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return list(_UpperCAmelCase ) def __a ( self : str ) -> List[Any]: """simple docstring""" lowercase : str = [] lowercase : List[str] = [] lowercase : List[Any] = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : Dict = -2 lowercase : Any = [] lowercase : Optional[int] = s lowercase : Optional[Any] = False lowercase : str = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase : Optional[int] = len(_UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase : Optional[Any] = True if len(_UpperCAmelCase ) != 0: lowercase : int = stack[len(_UpperCAmelCase ) - 1] else: lowercase : Dict = False indirect_parents.append(_UpperCAmelCase ) lowercase : str = s lowercase : Optional[Any] = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return False def __a ( self : Optional[Any] , _A : str=-2 , _A : Union[str, Any]=-1 ) -> Any: """simple docstring""" lowercase : str = time() self.dfs(_UpperCAmelCase , _UpperCAmelCase ) lowercase : Any = time() return end - begin def __a ( self : Union[str, Any] , _A : List[Any]=-2 ) -> Dict: """simple docstring""" lowercase : List[str] = time() self.bfs(_UpperCAmelCase ) lowercase : Dict = time() return end - begin class _A : def __init__( self : str ) -> List[str]: """simple docstring""" lowercase : Optional[int] = {} def __a ( self : List[Any] , _A : str , _A : int , _A : Optional[int]=1 ) -> str: """simple docstring""" if self.graph.get(_UpperCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist lowercase : List[Any] = [[w, v]] # add the other way if self.graph.get(_UpperCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist lowercase : Tuple = [[w, u]] def __a ( self : Optional[int] , _A : Union[str, Any] , _A : Union[str, Any] ) -> Tuple: """simple docstring""" if self.graph.get(_UpperCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_UpperCAmelCase ) # the other way round if self.graph.get(_UpperCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_UpperCAmelCase ) def __a ( self : Optional[int] , _A : Optional[int]=-2 , _A : str=-1 ) -> Optional[int]: """simple docstring""" if s == d: return [] lowercase : Optional[int] = [] lowercase : int = [] if s == -2: lowercase : str = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : Dict = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_UpperCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) lowercase : Optional[Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_UpperCAmelCase ) != 0: lowercase : Tuple = stack[len(_UpperCAmelCase ) - 1] else: lowercase : Union[str, Any] = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return visited def __a ( self : Optional[Any] , _A : str=-1 ) -> Tuple: """simple docstring""" if c == -1: lowercase : Any = floor(random() * 10_000 ) + 10 for i in range(_UpperCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 102 ) + 1 ): lowercase : Union[str, Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_UpperCAmelCase , _UpperCAmelCase , 1 ) def __a ( self : Dict , _A : List[str]=-2 ) -> Any: """simple docstring""" lowercase : List[str] = deque() lowercase : List[Any] = [] if s == -2: lowercase : Tuple = list(self.graph )[0] d.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) while d: lowercase : str = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self : Union[str, Any] , _A : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return len(self.graph[u] ) def __a ( self : Any ) -> Any: """simple docstring""" lowercase : Optional[Any] = [] lowercase : Any = [] lowercase : Tuple = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : Any = -2 lowercase : Dict = [] lowercase : List[Any] = s lowercase : Any = False lowercase : List[str] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase : Tuple = len(_UpperCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase : Dict = True if len(_UpperCAmelCase ) != 0: lowercase : Dict = stack[len(_UpperCAmelCase ) - 1] else: lowercase : Dict = False indirect_parents.append(_UpperCAmelCase ) lowercase : Dict = s lowercase : List[Any] = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return list(_UpperCAmelCase ) def __a ( self : Tuple ) -> Tuple: """simple docstring""" lowercase : Optional[int] = [] lowercase : List[str] = [] lowercase : Dict = list(self.graph )[0] stack.append(_UpperCAmelCase ) visited.append(_UpperCAmelCase ) lowercase : List[Any] = -2 lowercase : Optional[Any] = [] lowercase : Any = s lowercase : Dict = False lowercase : Union[str, Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: lowercase : Optional[int] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): lowercase : List[Any] = len(_UpperCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) lowercase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() lowercase : Dict = True if len(_UpperCAmelCase ) != 0: lowercase : Optional[int] = stack[len(_UpperCAmelCase ) - 1] else: lowercase : Optional[int] = False indirect_parents.append(_UpperCAmelCase ) lowercase : Any = s lowercase : str = ss # check if se have reached the starting point if len(_UpperCAmelCase ) == 0: return False def __a ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" return list(self.graph ) def __a ( self : str , _A : Optional[Any]=-2 , _A : int=-1 ) -> Union[str, Any]: """simple docstring""" lowercase : Optional[int] = time() self.dfs(_UpperCAmelCase , _UpperCAmelCase ) lowercase : List[str] = time() return end - begin def __a ( self : Tuple , _A : str=-2 ) -> Dict: """simple docstring""" lowercase : List[str] = time() self.bfs(_UpperCAmelCase ) lowercase : str = time() return end - begin
308
"""simple docstring""" from ...utils import is_note_seq_available, is_transformers_available, is_torch_available from ...utils import OptionalDependencyNotAvailable try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .notes_encoder import SpectrogramNotesEncoder from .continous_encoder import SpectrogramContEncoder from .pipeline_spectrogram_diffusion import ( SpectrogramContEncoder, SpectrogramDiffusionPipeline, TaFilmDecoder, ) try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .midi_utils import MidiProcessor
315
0
from __future__ import annotations def __lowerCamelCase ( lowerCamelCase__ : tuple[int, int] , lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase , lowerCamelCase = position lowerCamelCase = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] lowerCamelCase = [] for position in positions: lowerCamelCase , lowerCamelCase = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] ): '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def __lowerCamelCase ( lowerCamelCase__ : list[list[int]] , lowerCamelCase__ : tuple[int, int] , lowerCamelCase__ : int ): '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): lowerCamelCase , lowerCamelCase = position if board[y][x] == 0: lowerCamelCase = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True lowerCamelCase = 0 return False def __lowerCamelCase ( lowerCamelCase__ : int ): '''simple docstring''' lowerCamelCase = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): lowerCamelCase = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board lowerCamelCase = 0 lowerCamelCase = f'Open Kight Tour cannot be performed on a board of size {n}' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
252
"""simple docstring""" from __future__ import annotations def _snake_case ( _snake_case : tuple[int, int] , _snake_case : int ) -> list[tuple[int, int]]: '''simple docstring''' _A , _A = position _A = [ (y + 1, x + 2), (y - 1, x + 2), (y + 1, x - 2), (y - 1, x - 2), (y + 2, x + 1), (y + 2, x - 1), (y - 2, x + 1), (y - 2, x - 1), ] _A = [] for position in positions: _A , _A = position if 0 <= y_test < n and 0 <= x_test < n: permissible_positions.append(_snake_case ) return permissible_positions def _snake_case ( _snake_case : list[list[int]] ) -> bool: '''simple docstring''' return not any(elem == 0 for row in board for elem in row ) def _snake_case ( _snake_case : list[list[int]] , _snake_case : tuple[int, int] , _snake_case : int ) -> bool: '''simple docstring''' if is_complete(_snake_case ): return True for position in get_valid_pos(_snake_case , len(_snake_case ) ): _A , _A = position if board[y][x] == 0: _A = curr + 1 if open_knight_tour_helper(_snake_case , _snake_case , curr + 1 ): return True _A = 0 return False def _snake_case ( _snake_case : int ) -> list[list[int]]: '''simple docstring''' _A = [[0 for i in range(_snake_case )] for j in range(_snake_case )] for i in range(_snake_case ): for j in range(_snake_case ): _A = 1 if open_knight_tour_helper(_snake_case , (i, j) , 1 ): return board _A = 0 _A = F'''Open Kight Tour cannot be performed on a board of size {n}''' raise ValueError(_snake_case ) if __name__ == "__main__": import doctest doctest.testmod()
315
0
__A = 256 # Modulus to hash a string __A = 100_0003 def lowerCAmelCase_ ( __a , __a ) -> bool: """simple docstring""" lowerCamelCase__: Optional[int] =len(_snake_case ) lowerCamelCase__: int =len(_snake_case ) if p_len > t_len: return False lowerCamelCase__: Optional[int] =0 lowerCamelCase__: Tuple =0 lowerCamelCase__: List[str] =1 # Calculating the hash of pattern and substring of text for i in range(_snake_case ): lowerCamelCase__: List[str] =(ord(pattern[i] ) + p_hash * alphabet_size) % modulus lowerCamelCase__: Tuple =(ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue lowerCamelCase__: Optional[Any] =(modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash lowerCamelCase__: List[Any] =( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def lowerCAmelCase_ ( ) -> None: """simple docstring""" lowerCamelCase__: Union[str, Any] ="abc1abc12" lowerCamelCase__: Dict ="alskfjaldsabc1abc1abc12k23adsfabcabc" lowerCamelCase__: Any ="alskfjaldsk23adsfabcabc" assert rabin_karp(_snake_case , _snake_case ) and not rabin_karp(_snake_case , _snake_case ) # Test 2) lowerCamelCase__: List[str] ="ABABX" lowerCamelCase__: Tuple ="ABABZABABYABABX" assert rabin_karp(_snake_case , _snake_case ) # Test 3) lowerCamelCase__: List[Any] ="AAAB" lowerCamelCase__: Union[str, Any] ="ABAAAAAB" assert rabin_karp(_snake_case , _snake_case ) # Test 4) lowerCamelCase__: Optional[int] ="abcdabcy" lowerCamelCase__: Optional[Any] ="abcxabcdabxabcdabcdabcy" assert rabin_karp(_snake_case , _snake_case ) # Test 5) lowerCamelCase__: Dict ="Lü" lowerCamelCase__: Any ="Lüsai" assert rabin_karp(_snake_case , _snake_case ) lowerCamelCase__: List[Any] ="Lue" assert not rabin_karp(_snake_case , _snake_case ) print("Success." ) if __name__ == "__main__": test_rabin_karp()
10
"""simple docstring""" import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : int , *_UpperCAmelCase : Dict , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str=None , **_UpperCAmelCase : List[Any] ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) _A = eval_examples _A = post_process_function def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : str=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : str = "eval" ): _A = self.eval_dataset if eval_dataset is None else eval_dataset _A = self.get_eval_dataloader(_UpperCAmelCase ) _A = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Evaluation' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) else: _A = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(_UpperCAmelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) _A = self.callback_handler.on_evaluate(self.args , self.state , self.control , _UpperCAmelCase ) return metrics def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Optional[int]=None , _UpperCAmelCase : str = "test" ): _A = self.get_test_dataloader(_UpperCAmelCase ) # Temporarily disable metric computation, we will do it in the loop here. _A = self.compute_metrics _A = None _A = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop _A = time.time() try: _A = eval_loop( _UpperCAmelCase , description='Prediction' , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=_UpperCAmelCase , metric_key_prefix=_UpperCAmelCase , ) finally: _A = compute_metrics _A = self.args.eval_batch_size * self.args.world_size if F'''{metric_key_prefix}_jit_compilation_time''' in output.metrics: start_time += output.metrics[F'''{metric_key_prefix}_jit_compilation_time'''] output.metrics.update( speed_metrics( _UpperCAmelCase , _UpperCAmelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output _A = self.post_process_function(_UpperCAmelCase , _UpperCAmelCase , output.predictions , 'predict' ) _A = self.compute_metrics(_UpperCAmelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F'''{metric_key_prefix}_''' ): _A = metrics.pop(_UpperCAmelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=_UpperCAmelCase )
315
0
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __UpperCamelCase : int = logging.getLogger(__name__) __UpperCamelCase : str = 50 # max width of layer names __UpperCamelCase : List[str] = 70 # max width of quantizer names def _a ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" UpperCamelCase__ : List[str] = parser.add_argument_group('''quant_trainer arguments''' ) group.add_argument('''--wprec''' , type=_snake_case , default=8 , help='''weight precision''' ) group.add_argument('''--aprec''' , type=_snake_case , default=8 , help='''activation precision''' ) group.add_argument('''--quant-per-tensor''' , action='''store_true''' , help='''per tensor weight scaling''' ) group.add_argument('''--quant-disable''' , action='''store_true''' , help='''disable all quantizers''' ) group.add_argument('''--quant-disable-embeddings''' , action='''store_true''' , help='''disable all embeddings quantizers''' ) group.add_argument('''--quant-disable-keyword''' , type=_snake_case , nargs='''+''' , help='''disable quantizers by keyword''' ) group.add_argument('''--quant-disable-layer-module''' , type=_snake_case , help='''disable quantizers by keyword under layer.''' ) group.add_argument('''--quant-enable-layer-module''' , type=_snake_case , help='''enable quantizers by keyword under layer''' ) group.add_argument('''--calibrator''' , default='''max''' , help='''which quantization range calibrator to use''' ) group.add_argument('''--percentile''' , default=_snake_case , type=_snake_case , help='''percentile for PercentileCalibrator''' ) group.add_argument('''--fuse-qkv''' , action='''store_true''' , help='''use the same scale factor for qkv''' ) group.add_argument('''--clip-gelu''' , metavar='''N''' , type=_snake_case , help='''clip gelu output maximum value to N''' ) group.add_argument( '''--recalibrate-weights''' , action='''store_true''' , help=( '''recalibrate weight amaxes by taking the max of the weights.''' ''' amaxes will be computed with the current quantization granularity (axis).''' ) , ) def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" if args.calibrator == "max": UpperCamelCase__ : Tuple = '''max''' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('''Specify --percentile when using percentile calibrator''' ) UpperCamelCase__ : Union[str, Any] = '''histogram''' elif args.calibrator == "mse": UpperCamelCase__ : Dict = '''histogram''' else: raise ValueError(F"Invalid calibrator {args.calibrator}" ) UpperCamelCase__ : List[Any] = QuantDescriptor(num_bits=args.aprec , calib_method=_snake_case ) UpperCamelCase__ : Union[str, Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(_snake_case ) quant_nn.QuantLinear.set_default_quant_desc_weight(_snake_case ) def _a ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Any=False , SCREAMING_SNAKE_CASE : Union[str, Any]=False ): """simple docstring""" logger.info('''Configuring Model for Quantization''' ) logger.info(F"using quantization package {pytorch_quantization.__file__}" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(_snake_case , ['''embeddings'''] , which='''weight''' , _disabled=_snake_case ) if args.quant_disable: set_quantizer_by_name(_snake_case , [''''''] , _disabled=_snake_case ) if args.quant_disable_keyword: set_quantizer_by_name(_snake_case , args.quant_disable_keyword , _disabled=_snake_case ) if args.quant_disable_layer_module: set_quantizer_by_name(_snake_case , [r'''layer.\d+.''' + args.quant_disable_layer_module] , _disabled=_snake_case ) if args.quant_enable_layer_module: set_quantizer_by_name(_snake_case , [r'''layer.\d+.''' + args.quant_enable_layer_module] , _disabled=_snake_case ) if args.recalibrate_weights: recalibrate_weights(_snake_case ) if args.fuse_qkv: fuse_qkv(_snake_case , _snake_case ) if args.clip_gelu: clip_gelu(_snake_case , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(_snake_case ) def _a ( SCREAMING_SNAKE_CASE : str ): """simple docstring""" logger.info('''Enabling Calibration''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(F"{name:80}: {module}" ) def _a ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" logger.info('''Loading calibrated amax''' ) for name, module in model.named_modules(): if name.endswith('''_quantizer''' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('''percentile''' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(_snake_case ) def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : int ): """simple docstring""" def fusea(SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ): for mod in [qq, qk, qv]: if not hasattr(_snake_case , '''_amax''' ): print(''' WARNING: NO AMAX BUFFER''' ) return UpperCamelCase__ : Any = qq._amax.detach().item() UpperCamelCase__ : Any = qk._amax.detach().item() UpperCamelCase__ : Optional[Any] = qv._amax.detach().item() UpperCamelCase__ : List[Any] = max(_snake_case , _snake_case , _snake_case ) qq._amax.fill_(_snake_case ) qk._amax.fill_(_snake_case ) qv._amax.fill_(_snake_case ) logger.info(F" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}" ) for name, mod in model.named_modules(): if name.endswith('''.attention.self''' ): logger.info(F"FUSE_QKV: {name:{name_width}}" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _a ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith('''.output.dense''' ) and not name.endswith('''attention.output.dense''' ): UpperCamelCase__ : str = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=_snake_case ) UpperCamelCase__ : Union[str, Any] = mod._input_quantizer._amax.data.detach().item() logger.info(F"CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}" ) def _a ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_snake_case , '''_weight_quantizer''' ) and mod._weight_quantizer.axis is not None: UpperCamelCase__ : Any = mod.weight.shape[0] UpperCamelCase__ : Optional[int] = mod._weight_quantizer._amax.detach() UpperCamelCase__ : Optional[int] = torch.ones(_snake_case , dtype=amax.dtype , device=amax.device ) * amax print(F"expanding {name} {amax} -> {mod._weight_quantizer._amax}" ) def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_snake_case , '''_weight_quantizer''' ): if not hasattr(mod.weight_quantizer , '''_amax''' ): print('''RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER''' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) UpperCamelCase__ : List[str] = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) UpperCamelCase__ : Tuple = set(range(len(mod.weight.size() ) ) ) - axis_set UpperCamelCase__ : Any = pytorch_quantization.utils.reduce_amax(mod.weight , axis=_snake_case , keepdims=_snake_case ).detach() logger.info(F"RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}" ) UpperCamelCase__ : Union[str, Any] = amax def _a ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : List[str]=25 , SCREAMING_SNAKE_CASE : str=180 , SCREAMING_SNAKE_CASE : int=None ): """simple docstring""" if ignore is None: UpperCamelCase__ : Tuple = [] elif not isinstance(_snake_case , _snake_case ): UpperCamelCase__ : Union[str, Any] = [ignore] UpperCamelCase__ : Any = 0 for name, mod in model.named_modules(): if not hasattr(_snake_case , '''weight''' ): continue UpperCamelCase__ : List[Any] = max(_snake_case , len(_snake_case ) ) for name, mod in model.named_modules(): UpperCamelCase__ : Any = getattr(_snake_case , '''_input_quantizer''' , _snake_case ) UpperCamelCase__ : Union[str, Any] = getattr(_snake_case , '''_weight_quantizer''' , _snake_case ) if not hasattr(_snake_case , '''weight''' ): continue if type(_snake_case ) in ignore: continue if [True for s in ignore if type(_snake_case ) is str and s in name]: continue UpperCamelCase__ : List[Any] = F"Act:{input_q.extra_repr()}" UpperCamelCase__ : Any = F"Wgt:{weight_q.extra_repr()}" UpperCamelCase__ : Dict = F"{name:{name_width}} {act_str} {wgt_str}" if len(_snake_case ) <= line_width: logger.info(_snake_case ) else: logger.info(F"{name:{name_width}} {act_str}" ) logger.info(F"{' ':{name_width}} {wgt_str}" ) def _a ( SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" UpperCamelCase__ : List[Any] = 0 for name, mod in model.named_modules(): if isinstance(_snake_case , pytorch_quantization.nn.TensorQuantizer ): print(F"{name:80} {mod}" ) count += 1 print(F"{count} TensorQuantizers found in model" ) def _a ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" UpperCamelCase__ : Union[str, Any] = getattr(_snake_case , _snake_case , _snake_case ) if quantizer_mod is not None: assert hasattr(_snake_case , _snake_case ) setattr(_snake_case , _snake_case , _snake_case ) else: logger.warning(F"{name} has no {quantizer}" ) def _a ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : str="both" , **SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" UpperCamelCase__ : str = F"Warning: changing {which} quantizers of {name:{qname_width}}" for k, v in kwargs.items(): s += F" {k}={v}" if which in ["input", "both"]: set_quantizer(_snake_case , _snake_case , '''_input_quantizer''' , _snake_case , _snake_case ) if which in ["weight", "both"]: set_quantizer(_snake_case , _snake_case , '''_weight_quantizer''' , _snake_case , _snake_case ) logger.info(_snake_case ) def _a ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : int , **SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(_snake_case , '''_input_quantizer''' ) or hasattr(_snake_case , '''_weight_quantizer''' ): for n in names: if re.search(_snake_case , _snake_case ): set_quantizers(_snake_case , _snake_case , **_snake_case ) elif name.endswith('''_quantizer''' ): for n in names: if re.search(_snake_case , _snake_case ): UpperCamelCase__ : List[str] = F"Warning: changing {name:{name_width}}" for k, v in kwargs.items(): s += F" {k}={v}" setattr(_snake_case , _snake_case , _snake_case ) logger.info(_snake_case )
146
"""simple docstring""" def _snake_case ( _snake_case : int , _snake_case : int ) -> bool: '''simple docstring''' return numa ^ numa < 0 if __name__ == "__main__": import doctest doctest.testmod()
315
0