code
stringlengths 87
55.2k
| code_codestyle
int64 0
349
| style_context
stringlengths 135
49.1k
| style_context_codestyle
int64 0
349
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any:
A: Any = [x.strip() for x in open(__lowercase ).readlines()]
A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )]
A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase )
if save_path is not None:
save_json(__lowercase , __lowercase , indent=__lowercase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 319 | 1 |
'''simple docstring'''
import torch
from diffusers import KDPMaDiscreteScheduler
from diffusers.utils import torch_device
from .test_schedulers import SchedulerCommonTest
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Any = (KDPMaDiscreteScheduler,)
UpperCamelCase_ : str = 10
def _snake_case ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Dict:
'''simple docstring'''
A: str = {
'''num_train_timesteps''': 11_00,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
}
config.update(**SCREAMING_SNAKE_CASE_ )
return config
def _snake_case ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
for timesteps in [10, 50, 1_00, 10_00]:
self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ):
self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : str ) -> Optional[int]:
'''simple docstring'''
for schedule in ["linear", "scaled_linear"]:
self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] ) -> int:
'''simple docstring'''
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Tuple:
'''simple docstring'''
A: Union[str, Any] = self.scheduler_classes[0]
A: int = self.get_scheduler_config(prediction_type='''v_prediction''' )
A: int = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps )
A: Union[str, Any] = self.dummy_model()
A: Any = self.dummy_sample_deter * scheduler.init_noise_sigma
A: str = sample.to(SCREAMING_SNAKE_CASE_ )
for i, t in enumerate(scheduler.timesteps ):
A: Optional[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: int = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Dict = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[int] = output.prev_sample
A: int = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
A: Dict = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 4.6934E-07 ) < 1E-2
assert abs(result_mean.item() - 6.1112E-10 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 4.693428650170972E-07 ) < 1E-2
assert abs(result_mean.item() - 0.0002 ) < 1E-3
def _snake_case ( self : int ) -> Dict:
'''simple docstring'''
if torch_device == "mps":
return
A: List[Any] = self.scheduler_classes[0]
A: int = self.get_scheduler_config()
A: Dict = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps )
A: str = self.dummy_model()
A: Dict = self.dummy_sample_deter * scheduler.init_noise_sigma
A: Dict = sample.to(SCREAMING_SNAKE_CASE_ )
for i, t in enumerate(scheduler.timesteps ):
A: Tuple = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = output.prev_sample
A: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
A: Union[str, Any] = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if torch_device in ["cpu", "mps"]:
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
def _snake_case ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
if torch_device == "mps":
return
A: str = self.scheduler_classes[0]
A: Any = self.get_scheduler_config()
A: int = scheduler_class(**SCREAMING_SNAKE_CASE_ )
scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ )
A: str = self.dummy_model()
A: int = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma
for t in scheduler.timesteps:
A: List[Any] = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: int = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = output.prev_sample
A: List[str] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) )
A: str = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) )
if str(SCREAMING_SNAKE_CASE_ ).startswith('''cpu''' ):
# The following sum varies between 148 and 156 on mps. Why?
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
else:
# CUDA
assert abs(result_sum.item() - 20.4125 ) < 1E-2
assert abs(result_mean.item() - 0.0266 ) < 1E-3
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list:
A: Dict = length or len(__lowercase )
A: Dict = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
A , A: Tuple = list_data[i + 1], list_data[i]
A: Union[str, Any] = True
return list_data if not swapped else bubble_sort(__lowercase , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available
UpperCamelCase = {'''configuration_speech_encoder_decoder''': ['''SpeechEncoderDecoderConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''SpeechEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''FlaxSpeechEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 |
'''simple docstring'''
from itertools import permutations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
A: int = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int:
return sum(
int(''''''.join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 319 | 1 |
'''simple docstring'''
from collections import Counter
from timeit import timeit
def SCREAMING_SNAKE_CASE( __lowercase = "" , ) -> bool:
return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2
def SCREAMING_SNAKE_CASE( __lowercase = "" ) -> bool:
if len(__lowercase ) == 0:
return True
A: Any = input_str.replace(''' ''' , '''''' ).lower()
# character_freq_dict: Stores the frequency of every character in the input string
A: dict[str, int] = {}
for character in lower_case_input_str:
A: List[Any] = character_freq_dict.get(__lowercase , 0 ) + 1
A: Optional[Any] = 0
for character_count in character_freq_dict.values():
if character_count % 2:
odd_char += 1
if odd_char > 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = "" ) -> None:
print('''\nFor string = ''' , __lowercase , ''':''' )
print(
'''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , '''\ttime =''' , timeit(
'''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , )
print(
'''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(__lowercase ) , '''\ttime =''' , timeit(
'''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , )
if __name__ == "__main__":
UpperCamelCase = input(
'''Enter string to determine if it can be rearranged as a palindrome or not: '''
).strip()
benchmark(check_str)
UpperCamelCase = can_string_be_rearranged_as_palindrome_counter(check_str)
print(f'{check_str} can {"" if status else "not "}be rearranged as a palindrome')
| 319 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 1 |
'''simple docstring'''
from copy import deepcopy
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Any , SCREAMING_SNAKE_CASE_ : list[int] | None = None , SCREAMING_SNAKE_CASE_ : int | None = None ) -> None:
'''simple docstring'''
if arr is None and size is not None:
A: Tuple = size
A: Dict = [0] * size
elif arr is not None:
self.init(SCREAMING_SNAKE_CASE_ )
else:
raise ValueError('''Either arr or size must be specified''' )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : list[int] ) -> None:
'''simple docstring'''
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
A: List[str] = deepcopy(SCREAMING_SNAKE_CASE_ )
for i in range(1 , self.size ):
A: Any = self.next_(SCREAMING_SNAKE_CASE_ )
if j < self.size:
self.tree[j] += self.tree[i]
def _snake_case ( self : Optional[int] ) -> list[int]:
'''simple docstring'''
A: Optional[Any] = self.tree[:]
for i in range(self.size - 1 , 0 , -1 ):
A: int = self.next_(SCREAMING_SNAKE_CASE_ )
if j < self.size:
arr[j] -= arr[i]
return arr
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
return index + (index & (-index))
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
return index - (index & (-index))
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None:
'''simple docstring'''
if index == 0:
self.tree[0] += value
return
while index < self.size:
self.tree[index] += value
A: Dict = self.next_(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> None:
'''simple docstring'''
self.add(SCREAMING_SNAKE_CASE_ , value - self.get(SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
if right == 0:
return 0
A: Any = self.tree[0]
right -= 1 # make right inclusive
while right > 0:
result += self.tree[right]
A: Dict = self.prev(SCREAMING_SNAKE_CASE_ )
return result
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
return self.prefix(SCREAMING_SNAKE_CASE_ ) - self.prefix(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
return self.query(SCREAMING_SNAKE_CASE_ , index + 1 )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
value -= self.tree[0]
if value < 0:
return -1
A: Dict = 1 # Largest power of 2 <= size
while j * 2 < self.size:
j *= 2
A: Optional[Any] = 0
while j > 0:
if i + j < self.size and self.tree[i + j] <= value:
value -= self.tree[i + j]
i += j
j //= 2
return i
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 | 1 |
'''simple docstring'''
from abc import ABC, abstractmethod
from argparse import ArgumentParser
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@staticmethod
@abstractmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : ArgumentParser ) -> Union[str, Any]:
'''simple docstring'''
raise NotImplementedError()
@abstractmethod
def _snake_case ( self : Dict ) -> Optional[int]:
'''simple docstring'''
raise NotImplementedError()
| 319 |
'''simple docstring'''
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
A: str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]:
if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
A: Union[str, Any] = len(__lowercase )
A: str = matrix_length // 2
A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )]
A: Optional[Any] = [
[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase )
]
A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )]
A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )]
return top_left, top_right, bot_left, bot_right
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]:
return len(__lowercase ), len(matrix[0] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> None:
print('''\n'''.join(str(__lowercase ) for line in matrix ) )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase ) == (2, 2):
return default_matrix_multiplication(__lowercase , __lowercase )
A , A , A , A: Union[str, Any] = split_matrix(__lowercase )
A , A , A , A: List[Any] = split_matrix(__lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
A: Any = matrix_addition(__lowercase , __lowercase )
A: List[Any] = matrix_addition(__lowercase , __lowercase )
A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
# construct the new matrix from our 4 quadrants
A: Union[str, Any] = []
for i in range(len(__lowercase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowercase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]:
A: int = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(__lowercase )
A: str = matrix_dimensions(__lowercase )
A: str = matrix_dimensions(__lowercase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
A: Union[str, Any] = max(*__lowercase , *__lowercase )
A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) )
A: List[Any] = matrixa
A: Tuple = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
A: Any = actual_strassen(__lowercase , __lowercase )
# Removing the additional zeros
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCamelCase = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 319 | 1 |
'''simple docstring'''
import re
def SCREAMING_SNAKE_CASE( __lowercase ) -> str:
if len(re.findall('''[ATCG]''' , __lowercase ) ) != len(__lowercase ):
raise ValueError('''Invalid Strand''' )
return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = 2
@register_to_config
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = sigma_max
# setable values
A: int = None
A: np.IntTensor = None
A: torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = num_inference_steps
A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
A: str = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A: List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device )
A: Optional[Any] = sigma + gamma * sigma
A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: Union[str, Any] = sample_hat + sigma_hat * model_output
A: str = (sample_hat - pred_original_sample) / sigma_hat
A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: int = sample_prev + sigma_prev * model_output
A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev
A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
'''simple docstring'''
raise NotImplementedError()
| 319 | 1 |
'''simple docstring'''
import argparse
import logging
import os
import time
import timeit
import datasets
import numpy as np
import pycuda.autoinit # noqa: F401
import pycuda.driver as cuda
import tensorrt as trt
import torch
from absl import logging as absl_logging
from accelerate import Accelerator
from datasets import load_dataset, load_metric
from torch.utils.data import DataLoader
from utils_qa import postprocess_qa_predictions
import transformers
from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed
from transformers.trainer_pt_utils import nested_concat, nested_truncate
UpperCamelCase = trt.Logger(trt.Logger.WARNING)
UpperCamelCase = absl_logging.get_absl_logger()
absl_logger.setLevel(logging.WARNING)
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--onnx_model_path''',
default=None,
type=str,
required=True,
help='''Path to ONNX model: ''',
)
parser.add_argument(
'''--output_dir''',
default=None,
type=str,
required=True,
help='''The output directory where the model checkpoints and predictions will be written.''',
)
# Other parameters
parser.add_argument(
'''--tokenizer_name''',
default='''''',
type=str,
required=True,
help='''Pretrained tokenizer name or path if not the same as model_name''',
)
parser.add_argument(
'''--version_2_with_negative''',
action='''store_true''',
help='''If true, the SQuAD examples contain some that do not have an answer.''',
)
parser.add_argument(
'''--null_score_diff_threshold''',
type=float,
default=0.0,
help='''If null_score - best_non_null is greater than the threshold predict null.''',
)
parser.add_argument(
'''--max_seq_length''',
default=384,
type=int,
help=(
'''The maximum total input sequence length after WordPiece tokenization. Sequences '''
'''longer than this will be truncated, and sequences shorter than this will be padded.'''
),
)
parser.add_argument(
'''--doc_stride''',
default=128,
type=int,
help='''When splitting up a long document into chunks, how much stride to take between chunks.''',
)
parser.add_argument('''--per_device_eval_batch_size''', default=8, type=int, help='''Batch size per GPU/CPU for evaluation.''')
parser.add_argument(
'''--n_best_size''',
default=20,
type=int,
help='''The total number of n-best predictions to generate in the nbest_predictions.json output file.''',
)
parser.add_argument(
'''--max_answer_length''',
default=30,
type=int,
help=(
'''The maximum length of an answer that can be generated. This is needed because the start '''
'''and end predictions are not conditioned on one another.'''
),
)
parser.add_argument('''--seed''', type=int, default=42, help='''random seed for initialization''')
parser.add_argument(
'''--dataset_name''',
type=str,
default=None,
required=True,
help='''The name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--dataset_config_name''',
type=str,
default=None,
help='''The configuration name of the dataset to use (via the datasets library).''',
)
parser.add_argument(
'''--preprocessing_num_workers''', type=int, default=4, help='''A csv or a json file containing the training data.'''
)
parser.add_argument('''--overwrite_cache''', action='''store_true''', help='''Overwrite the cached training and evaluation sets''')
parser.add_argument(
'''--fp16''',
action='''store_true''',
help='''Whether to use 16-bit (mixed) precision instead of 32-bit''',
)
parser.add_argument(
'''--int8''',
action='''store_true''',
help='''Whether to use INT8''',
)
UpperCamelCase = parser.parse_args()
if args.tokenizer_name:
UpperCamelCase = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True)
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.'''
)
logger.info('''Training/evaluation parameters %s''', args)
UpperCamelCase = args.per_device_eval_batch_size
UpperCamelCase = (args.eval_batch_size, args.max_seq_length)
# TRT Engine properties
UpperCamelCase = True
UpperCamelCase = '''temp_engine/bert-fp32.engine'''
if args.fpaa:
UpperCamelCase = '''temp_engine/bert-fp16.engine'''
if args.inta:
UpperCamelCase = '''temp_engine/bert-int8.engine'''
# import ONNX file
if not os.path.exists('''temp_engine'''):
os.makedirs('''temp_engine''')
UpperCamelCase = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)
with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser(
network, TRT_LOGGER
) as parser:
with open(args.onnx_model_path, '''rb''') as model:
if not parser.parse(model.read()):
for error in range(parser.num_errors):
print(parser.get_error(error))
# Query input names and shapes from parsed TensorRT network
UpperCamelCase = [network.get_input(i) for i in range(network.num_inputs)]
UpperCamelCase = [_input.name for _input in network_inputs] # ex: ["actual_input1"]
with builder.create_builder_config() as config:
UpperCamelCase = 1 << 50
if STRICT_TYPES:
config.set_flag(trt.BuilderFlag.STRICT_TYPES)
if args.fpaa:
config.set_flag(trt.BuilderFlag.FPaa)
if args.inta:
config.set_flag(trt.BuilderFlag.INTa)
UpperCamelCase = builder.create_optimization_profile()
config.add_optimization_profile(profile)
for i in range(len(input_names)):
profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE)
UpperCamelCase = builder.build_engine(network, config)
# serialize_engine and store in file (can be directly loaded and deserialized):
with open(engine_name, '''wb''') as f:
f.write(engine.serialize())
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> List[str]:
A: Any = np.asarray(inputs['''input_ids'''] , dtype=np.intaa )
A: List[str] = np.asarray(inputs['''attention_mask'''] , dtype=np.intaa )
A: Optional[Any] = np.asarray(inputs['''token_type_ids'''] , dtype=np.intaa )
# Copy inputs
cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __lowercase )
cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __lowercase )
cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __lowercase )
# start time
A: Tuple = time.time()
# Run inference
context.execute_async(
bindings=[int(__lowercase ) for d_inp in d_inputs] + [int(__lowercase ), int(__lowercase )] , stream_handle=stream.handle )
# Transfer predictions back from GPU
cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase )
cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase )
# Synchronize the stream and take time
stream.synchronize()
# end time
A: Optional[Any] = time.time()
A: Dict = end_time - start_time
A: List[str] = (h_outputa, h_outputa)
# print(outputs)
return outputs, infer_time
# Initialize the accelerator. We will let the accelerator handle device placement for us in this example.
UpperCamelCase = Accelerator()
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''',
datefmt='''%m/%d/%Y %H:%M:%S''',
level=logging.INFO,
)
# Setup logging, we only want one process per machine to log things on the screen.
# accelerator.is_local_main_process is only True for one process per machine.
logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
if args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
UpperCamelCase = load_dataset(args.dataset_name, args.dataset_config_name)
else:
raise ValueError('''Evaluation requires a dataset name''')
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Preprocessing the datasets.
# Preprocessing is slighlty different for training and evaluation.
UpperCamelCase = raw_datasets['''validation'''].column_names
UpperCamelCase = '''question''' if '''question''' in column_names else column_names[0]
UpperCamelCase = '''context''' if '''context''' in column_names else column_names[1]
UpperCamelCase = '''answers''' if '''answers''' in column_names else column_names[2]
# Padding side determines if we do (question|context) or (context|question).
UpperCamelCase = tokenizer.padding_side == '''right'''
if args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f'The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the'
f'model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.'
)
UpperCamelCase = min(args.max_seq_length, tokenizer.model_max_length)
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# Some of the questions have lots of whitespace on the left, which is not useful and will make the
# truncation of the context fail (the tokenized question will take a lots of space). So we remove that
# left whitespace
A: Tuple = [q.lstrip() for q in examples[question_column_name]]
# Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results
# in one example possible giving several features when a context is long, each of those features having a
# context that overlaps a bit the context of the previous feature.
A: Union[str, Any] = tokenizer(
examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation='''only_second''' if pad_on_right else '''only_first''' , max_length=__lowercase , stride=args.doc_stride , return_overflowing_tokens=__lowercase , return_offsets_mapping=__lowercase , padding='''max_length''' , )
# Since one example might give us several features if it has a long context, we need a map from a feature to
# its corresponding example. This key gives us just that.
A: Optional[int] = tokenized_examples.pop('''overflow_to_sample_mapping''' )
# For evaluation, we will need to convert our predictions to substrings of the context, so we keep the
# corresponding example_id and we will store the offset mappings.
A: List[Any] = []
for i in range(len(tokenized_examples['''input_ids'''] ) ):
# Grab the sequence corresponding to that example (to know what is the context and what is the question).
A: List[str] = tokenized_examples.sequence_ids(__lowercase )
A: List[Any] = 1 if pad_on_right else 0
# One example can give several spans, this is the index of the example containing this span of text.
A: int = sample_mapping[i]
tokenized_examples["example_id"].append(examples['''id'''][sample_index] )
# Set to None the offset_mapping that are not part of the context so it's easy to determine if a token
# position is part of the context or not.
A: Union[str, Any] = [
(o if sequence_ids[k] == context_index else None)
for k, o in enumerate(tokenized_examples['''offset_mapping'''][i] )
]
return tokenized_examples
UpperCamelCase = raw_datasets['''validation''']
# Validation Feature Creation
UpperCamelCase = eval_examples.map(
prepare_validation_features,
batched=True,
num_proc=args.preprocessing_num_workers,
remove_columns=column_names,
load_from_cache_file=not args.overwrite_cache,
desc='''Running tokenizer on validation dataset''',
)
UpperCamelCase = default_data_collator
UpperCamelCase = eval_dataset.remove_columns(['''example_id''', '''offset_mapping'''])
UpperCamelCase = DataLoader(
eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size
)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase="eval" ) -> Tuple:
# Post-processing: we match the start logits and end logits to answers in the original context.
A: str = postprocess_qa_predictions(
examples=__lowercase , features=__lowercase , predictions=__lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__lowercase , )
# Format the result to the format the metric expects.
if args.version_2_with_negative:
A: Tuple = [
{'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items()
]
else:
A: Union[str, Any] = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()]
A: str = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples]
return EvalPrediction(predictions=__lowercase , label_ids=__lowercase )
UpperCamelCase = load_metric('''squad_v2''' if args.version_2_with_negative else '''squad''')
# Evaluation!
logger.info('''Loading ONNX model %s for evaluation''', args.onnx_model_path)
with open(engine_name, '''rb''') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine(
f.read()
) as engine, engine.create_execution_context() as context:
# setup for TRT inferrence
for i in range(len(input_names)):
context.set_binding_shape(i, INPUT_SHAPE)
assert context.all_binding_shapes_specified
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
return trt.volume(engine.get_binding_shape(__lowercase ) ) * engine.get_binding_dtype(__lowercase ).itemsize
# Allocate device memory for inputs and outputs.
UpperCamelCase = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)]
# Allocate output buffer
UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa)
UpperCamelCase = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa)
UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes)
UpperCamelCase = cuda.mem_alloc(h_outputa.nbytes)
# Create a stream in which to copy inputs/outputs and run inference.
UpperCamelCase = cuda.Stream()
# Evaluation
logger.info('''***** Running Evaluation *****''')
logger.info(f' Num examples = {len(eval_dataset)}')
logger.info(f' Batch size = {args.per_device_eval_batch_size}')
UpperCamelCase = 0.0
UpperCamelCase = 0
UpperCamelCase = timeit.default_timer()
UpperCamelCase = None
for step, batch in enumerate(eval_dataloader):
UpperCamelCase , UpperCamelCase = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream)
total_time += infer_time
niter += 1
UpperCamelCase , UpperCamelCase = outputs
UpperCamelCase = torch.tensor(start_logits)
UpperCamelCase = torch.tensor(end_logits)
# necessary to pad predictions and labels for being gathered
UpperCamelCase = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100)
UpperCamelCase = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100)
UpperCamelCase = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy())
UpperCamelCase = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100)
if all_preds is not None:
UpperCamelCase = nested_truncate(all_preds, len(eval_dataset))
UpperCamelCase = timeit.default_timer() - start_time
logger.info(''' Evaluation done in total %f secs (%f sec per example)''', evalTime, evalTime / len(eval_dataset))
# Inference time from TRT
logger.info('''Average Inference Time = {:.3f} ms'''.format(total_time * 1000 / niter))
logger.info('''Total Inference Time = {:.3f} ms'''.format(total_time * 1000))
logger.info('''Total Number of Inference = %d''', niter)
UpperCamelCase = post_processing_function(eval_examples, eval_dataset, all_preds)
UpperCamelCase = metric.compute(predictions=prediction.predictions, references=prediction.label_ids)
logger.info(f'Evaluation metrics: {eval_metric}')
| 319 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Any:
# Return True if there is node that has not iterated.
A: int = [False] * len(__lowercase )
A: str = []
queue.append(__lowercase )
A: Dict = True
while queue:
A: Tuple = queue.pop(0 )
for ind in range(len(graph[u] ) ):
if visited[ind] is False and graph[u][ind] > 0:
queue.append(__lowercase )
A: List[Any] = True
A: List[Any] = u
return visited[t]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
# This array is filled by BFS and to store path
A: Dict = [-1] * (len(__lowercase ))
A: Tuple = 0
while bfs(__lowercase , __lowercase , __lowercase , __lowercase ):
A: str = float('''Inf''' )
A: List[str] = sink
while s != source:
# Find the minimum value in select path
A: List[Any] = min(__lowercase , graph[parent[s]][s] )
A: Union[str, Any] = parent[s]
max_flow += path_flow
A: List[str] = sink
while v != source:
A: Any = parent[v]
graph[u][v] -= path_flow
graph[v][u] += path_flow
A: str = parent[v]
return max_flow
UpperCamelCase = [
[0, 16, 13, 0, 0, 0],
[0, 0, 10, 12, 0, 0],
[0, 4, 0, 0, 14, 0],
[0, 0, 9, 0, 0, 20],
[0, 0, 0, 7, 0, 4],
[0, 0, 0, 0, 0, 0],
]
UpperCamelCase , UpperCamelCase = 0, 5
print(ford_fulkerson(graph, source, sink))
| 319 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import ast
import os
import re
import shutil
import tempfile
import unittest
from unittest import mock
import torch
from accelerate.test_utils.examples import compare_against_test
from accelerate.test_utils.testing import TempDirTestCase, require_trackers, run_command, slow
from accelerate.utils import write_basic_config
# DataLoaders built from `test_samples/MRPC` for quick testing
# Should mock `{script_name}.get_dataloaders` via:
# @mock.patch("{script_name}.get_dataloaders", mocked_dataloaders)
UpperCamelCase = [
'''cross_validation.py''',
'''gradient_accumulation.py''',
'''local_sgd.py''',
'''multi_process_metrics.py''',
'''memory.py''',
'''automatic_gradient_accumulation.py''',
'''fsdp_with_peak_mem_tracking.py''',
'''deepspeed_with_config_support.py''',
'''megatron_lm_gpt_pretraining.py''',
]
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : list = None ) -> List[Any]:
'''simple docstring'''
A: Dict = None
A: str = os.path.abspath(os.path.join('''examples''' , '''by_feature''' ) )
A: Any = os.path.abspath('''examples''' )
for item in os.listdir(SCREAMING_SNAKE_CASE_ ):
if item not in EXCLUDE_EXAMPLES:
A: List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if os.path.isfile(SCREAMING_SNAKE_CASE_ ) and ".py" in item_path:
with self.subTest(
tested_script=SCREAMING_SNAKE_CASE_ , feature_script=SCREAMING_SNAKE_CASE_ , tested_section='''main()''' if parser_only else '''training_function()''' , ):
A: Union[str, Any] = compare_against_test(
os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''\n'''.join(SCREAMING_SNAKE_CASE_ )
if special_strings is not None:
for string in special_strings:
A: str = diff.replace(SCREAMING_SNAKE_CASE_ , '''''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''''' )
def _snake_case ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ )
self.one_complete_example('''complete_nlp_example.py''' , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : str ) -> Optional[Any]:
'''simple docstring'''
A: Tuple = os.path.abspath(os.path.join('''examples''' , '''cv_example.py''' ) )
A: Optional[Any] = [
''' ''' * 16 + '''{\n\n''',
''' ''' * 20 + '''"accuracy": eval_metric["accuracy"],\n\n''',
''' ''' * 20 + '''"f1": eval_metric["f1"],\n\n''',
''' ''' * 20 + '''"train_loss": total_loss.item() / len(train_dataloader),\n\n''',
''' ''' * 20 + '''"epoch": epoch,\n\n''',
''' ''' * 16 + '''},\n\n''',
''' ''' * 16 + '''step=epoch,\n''',
''' ''' * 12,
''' ''' * 8 + '''for step, batch in enumerate(active_dataloader):\n''',
]
self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.one_complete_example('''complete_cv_example.py''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@mock.patch.dict(os.environ , {"""TESTING_MOCKED_DATALOADERS""": """1"""} )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : str = False
@classmethod
def _snake_case ( cls : Any ) -> Any:
'''simple docstring'''
super().setUpClass()
A: Any = tempfile.mkdtemp()
A: int = os.path.join(cls._tmpdir , '''default_config.yml''' )
write_basic_config(save_location=cls.configPath )
A: Tuple = ['''accelerate''', '''launch''', '''--config_file''', cls.configPath]
@classmethod
def _snake_case ( cls : Any ) -> Dict:
'''simple docstring'''
super().tearDownClass()
shutil.rmtree(cls._tmpdir )
def _snake_case ( self : Tuple ) -> List[str]:
'''simple docstring'''
A: List[str] = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps epoch
--output_dir {self.tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''epoch_0''' ) ) )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = f"""
examples/by_feature/checkpointing.py
--checkpointing_steps 1
--output_dir {self.tmpdir}
""".split()
A: Union[str, Any] = run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(self.tmpdir , '''step_2''' ) ) )
def _snake_case ( self : int ) -> Tuple:
'''simple docstring'''
A: str = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'epoch_0' )}
""".split()
A: Optional[Any] = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ )
self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
A: Optional[Any] = f"""
examples/by_feature/checkpointing.py
--resume_from_checkpoint {os.path.join(self.tmpdir , 'step_2' )}
""".split()
A: Tuple = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ )
if torch.cuda.is_available():
A: Any = torch.cuda.device_count()
else:
A: int = 1
if num_processes > 1:
self.assertNotIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ )
else:
self.assertIn('''epoch 0:''' , SCREAMING_SNAKE_CASE_ )
self.assertIn('''epoch 1:''' , SCREAMING_SNAKE_CASE_ )
@slow
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = '''
examples/by_feature/cross_validation.py
--num_folds 2
'''.split()
with mock.patch.dict(os.environ , {'''TESTING_MOCKED_DATALOADERS''': '''0'''} ):
A: List[Any] = run_command(self._launch_args + testargs , return_stdout=SCREAMING_SNAKE_CASE_ )
A: List[str] = re.findall('''({.+})''' , SCREAMING_SNAKE_CASE_ )
A: Tuple = [r for r in results if '''accuracy''' in r][-1]
A: Dict = ast.literal_eval(SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(results['''accuracy'''] , 0.75 )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = ['''examples/by_feature/multi_process_metrics.py''']
run_command(self._launch_args + testargs )
@require_trackers
@mock.patch.dict(os.environ , {'''WANDB_MODE''': '''offline'''} )
def _snake_case ( self : Optional[int] ) -> str:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdir:
A: Optional[Any] = f"""
examples/by_feature/tracking.py
--with_tracking
--project_dir {tmpdir}
""".split()
run_command(self._launch_args + testargs )
self.assertTrue(os.path.exists(os.path.join(SCREAMING_SNAKE_CASE_ , '''tracking''' ) ) )
def _snake_case ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
A: Dict = ['''examples/by_feature/gradient_accumulation.py''']
run_command(self._launch_args + testargs )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = ['''examples/by_feature/local_sgd.py''']
run_command(self._launch_args + testargs )
| 319 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import copy
import os
import cva
import numpy as np
from matplotlib import pyplot as plt
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = ''''''
A: Optional[Any] = ''''''
A: str = []
A: Union[str, Any] = 0
A: str = 2_56
A: Optional[Any] = 0
A: Dict = 0
A: List[str] = 0
A: int = 0
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = cva.imread(SCREAMING_SNAKE_CASE_ , 0 )
A: str = copy.deepcopy(self.img )
A , A , A: List[Any] = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' )
A: Union[str, Any] = np.sum(SCREAMING_SNAKE_CASE_ )
for i in range(len(SCREAMING_SNAKE_CASE_ ) ):
A: Tuple = x[i] / self.k
self.sk += prk
A: Optional[int] = (self.L - 1) * self.sk
if self.rem != 0:
A: Dict = int(last % last )
A: Any = int(last + 1 if self.rem >= 0.5 else last )
self.last_list.append(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = int(np.ma.count(self.img ) / self.img[1].size )
A: Dict = self.img[1].size
for i in range(self.number_of_cols ):
for j in range(self.number_of_rows ):
A: int = self.img[j][i]
if num != self.last_list[num]:
A: str = self.last_list[num]
cva.imwrite('''output_data/output.jpg''' , self.img )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
plt.hist(self.img.ravel() , 2_56 , [0, 2_56] )
def _snake_case ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
cva.imshow('''Output-Image''' , self.img )
cva.imshow('''Input-Image''' , self.original_image )
cva.waitKey(50_00 )
cva.destroyAllWindows()
if __name__ == "__main__":
UpperCamelCase = os.path.join(os.path.basename(__file__), '''image_data/input.jpg''')
UpperCamelCase = ConstantStretch()
stretcher.stretch(file_path)
stretcher.plot_histogram()
stretcher.show_image()
| 319 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCamelCase = '''
import os
'''
UpperCamelCase = '''
def foo():
import os
return False
'''
UpperCamelCase = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Tuple = os.path.join(__lowercase , '''test_file.py''' )
with open(__lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(__lowercase )
A: List[Any] = get_imports(__lowercase )
assert parsed_imports == ["os"]
| 319 | 1 |
'''simple docstring'''
import json
import os
import shutil
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from requests.exceptions import HTTPError
from transformers import AutoConfig, BertConfig, GPTaConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.testing_utils import TOKEN, USER, is_staging_test
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
UpperCamelCase = {
'''return_dict''': False,
'''output_hidden_states''': True,
'''output_attentions''': True,
'''torchscript''': True,
'''torch_dtype''': '''float16''',
'''use_bfloat16''': True,
'''tf_legacy_loss''': True,
'''pruned_heads''': {'''a''': 1},
'''tie_word_embeddings''': False,
'''is_decoder''': True,
'''cross_attention_hidden_size''': 128,
'''add_cross_attention''': True,
'''tie_encoder_decoder''': True,
'''max_length''': 50,
'''min_length''': 3,
'''do_sample''': True,
'''early_stopping''': True,
'''num_beams''': 3,
'''num_beam_groups''': 3,
'''diversity_penalty''': 0.5,
'''temperature''': 2.0,
'''top_k''': 10,
'''top_p''': 0.7,
'''typical_p''': 0.2,
'''repetition_penalty''': 0.8,
'''length_penalty''': 0.8,
'''no_repeat_ngram_size''': 5,
'''encoder_no_repeat_ngram_size''': 5,
'''bad_words_ids''': [1, 2, 3],
'''num_return_sequences''': 3,
'''chunk_size_feed_forward''': 5,
'''output_scores''': True,
'''return_dict_in_generate''': True,
'''forced_bos_token_id''': 2,
'''forced_eos_token_id''': 3,
'''remove_invalid_values''': True,
'''architectures''': ['''BertModel'''],
'''finetuning_task''': '''translation''',
'''id2label''': {0: '''label'''},
'''label2id''': {'''label''': '''0'''},
'''tokenizer_class''': '''BertTokenizerFast''',
'''prefix''': '''prefix''',
'''bos_token_id''': 6,
'''pad_token_id''': 7,
'''eos_token_id''': 8,
'''sep_token_id''': 9,
'''decoder_start_token_id''': 10,
'''exponential_decay_length_penalty''': (5, 1.01),
'''suppress_tokens''': [0, 1],
'''begin_suppress_tokens''': 2,
'''task_specific_params''': {'''translation''': '''some_params'''},
'''problem_type''': '''regression''',
}
@is_staging_test
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
@classmethod
def _snake_case ( cls : int ) -> List[Any]:
'''simple docstring'''
A: Dict = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE_ )
@classmethod
def _snake_case ( cls : List[str] ) -> Union[str, Any]:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-config''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-config-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-config''' )
except HTTPError:
pass
def _snake_case ( self : List[Any] ) -> str:
'''simple docstring'''
A: str = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''test-config''' , use_auth_token=self._token )
A: Optional[Any] = BertConfig.from_pretrained(f"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''test-config''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(SCREAMING_SNAKE_CASE_ , repo_id='''test-config''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
A: Dict = BertConfig.from_pretrained(f"""{USER}/test-config""" )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Optional[Any] = BertConfig(
vocab_size=99 , hidden_size=32 , num_hidden_layers=5 , num_attention_heads=4 , intermediate_size=37 )
config.push_to_hub('''valid_org/test-config-org''' , use_auth_token=self._token )
A: str = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# Reset repo
delete_repo(token=self._token , repo_id='''valid_org/test-config-org''' )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
config.save_pretrained(
SCREAMING_SNAKE_CASE_ , repo_id='''valid_org/test-config-org''' , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
A: List[Any] = BertConfig.from_pretrained('''valid_org/test-config-org''' )
for k, v in config.to_dict().items():
if k != "transformers_version":
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : Dict ) -> str:
'''simple docstring'''
CustomConfig.register_for_auto_class()
A: Any = CustomConfig(attribute=42 )
config.push_to_hub('''test-dynamic-config''' , use_auth_token=self._token )
# This has added the proper auto_map field to the config
self.assertDictEqual(config.auto_map , {'''AutoConfig''': '''custom_configuration.CustomConfig'''} )
A: Optional[int] = AutoConfig.from_pretrained(f"""{USER}/test-dynamic-config""" , trust_remote_code=SCREAMING_SNAKE_CASE_ )
# Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module
self.assertEqual(new_config.__class__.__name__ , '''CustomConfig''' )
self.assertEqual(new_config.attribute , 42 )
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
A: Optional[int] = GPTaConfig()
# attempt to modify each of int/float/bool/str config records and verify they were updated
A: int = c.n_embd + 1 # int
A: Dict = c.resid_pdrop + 1.0 # float
A: Tuple = not c.scale_attn_weights # bool
A: Optional[int] = c.summary_type + '''foo''' # str
c.update_from_string(
f"""n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}""" )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.n_embd , '''mismatch for key: n_embd''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.resid_pdrop , '''mismatch for key: resid_pdrop''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.scale_attn_weights , '''mismatch for key: scale_attn_weights''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , c.summary_type , '''mismatch for key: summary_type''' )
def _snake_case ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
A: List[str] = PretrainedConfig()
A: int = [key for key in base_config.__dict__ if key not in config_common_kwargs]
# If this part of the test fails, you have arguments to addin config_common_kwargs above.
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , ['''is_encoder_decoder''', '''_name_or_path''', '''_commit_hash''', '''transformers_version'''] )
A: str = [key for key, value in config_common_kwargs.items() if value == getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
if len(SCREAMING_SNAKE_CASE_ ) > 0:
raise ValueError(
'''The following keys are set with the default values in'''
''' `test_configuration_common.config_common_kwargs` pick another value for them:'''
f""" {', '.join(SCREAMING_SNAKE_CASE_ )}.""" )
def _snake_case ( self : str ) -> Dict:
'''simple docstring'''
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
# config is in subfolder, the following should not work without specifying the subfolder
A: Union[str, Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' )
A: Dict = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert-subfolder''' , subfolder='''bert''' )
self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: Union[str, Any] = mock.Mock()
A: Optional[int] = 5_00
A: int = {}
A: str = HTTPError
A: int = {}
# Download this model to make sure it's in the cache.
A: List[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch('''requests.Session.request''' , return_value=SCREAMING_SNAKE_CASE_ ) as mock_head:
A: Optional[Any] = BertConfig.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
# This check we did call the fake head request
mock_head.assert_called()
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: List[Any] = BertConfig.from_pretrained(
'''https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json''' )
def _snake_case ( self : List[str] ) -> Tuple:
'''simple docstring'''
A: Optional[Any] = AutoConfig.from_pretrained('''bert-base-cased''' )
A: Optional[int] = ['''config.4.0.0.json''']
with tempfile.TemporaryDirectory() as tmp_dir:
configuration.save_pretrained(SCREAMING_SNAKE_CASE_ )
A: int = 2
json.dump(configuration.to_dict() , open(os.path.join(SCREAMING_SNAKE_CASE_ , '''config.4.0.0.json''' ) , '''w''' ) )
# This should pick the new configuration file as the version of Transformers is > 4.0.0
A: str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# Will need to be adjusted if we reach v42 and this test is still here.
# Should pick the old configuration file as the version of Transformers is < 4.42.0
A: Union[str, Any] = ['''config.42.0.0.json''']
A: Union[str, Any] = 7_68
configuration.save_pretrained(SCREAMING_SNAKE_CASE_ )
shutil.move(os.path.join(SCREAMING_SNAKE_CASE_ , '''config.4.0.0.json''' ) , os.path.join(SCREAMING_SNAKE_CASE_ , '''config.42.0.0.json''' ) )
A: str = AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 7_68 )
def _snake_case ( self : Tuple ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = '''hf-internal-testing/test-two-configs'''
import transformers as new_transformers
A: Optional[int] = '''v4.0.0'''
A , A: Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained(
SCREAMING_SNAKE_CASE_ , return_unused_kwargs=SCREAMING_SNAKE_CASE_ )
self.assertEqual(new_configuration.hidden_size , 2 )
# This checks `_configuration_file` ia not kept in the kwargs by mistake.
self.assertDictEqual(SCREAMING_SNAKE_CASE_ , {} )
# Testing an older version by monkey-patching the version in the module it's used.
import transformers as old_transformers
A: Dict = '''v3.0.0'''
A: Tuple = old_transformers.models.auto.AutoConfig.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertEqual(old_configuration.hidden_size , 7_68 )
| 319 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]:
A: str = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
for i in range(config.num_hidden_layers ):
A: Tuple = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A: Dict = in_proj_weight[
: config.hidden_size, :
]
A: int = in_proj_bias[: config.hidden_size]
A: Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A: int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A: Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
A: Optional[Any] = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: Optional[int] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: List[Any] = dct.pop(__lowercase )
A: int = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str:
A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase )
A: Tuple = False
A: str = False
A: List[Any] = False
A: Optional[int] = False
if "vqa" in checkpoint_url:
A: Union[str, Any] = True
A: Union[str, Any] = 3_1_2_9
A: List[Any] = '''huggingface/label-files'''
A: Any = '''vqa2-id2label.json'''
A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()}
A: Any = idalabel
A: Optional[Any] = {v: k for k, v in idalabel.items()}
A: List[str] = ViltForQuestionAnswering(__lowercase )
elif "nlvr" in checkpoint_url:
A: Dict = True
A: str = 2
A: Union[str, Any] = {0: '''False''', 1: '''True'''}
A: Any = {v: k for k, v in config.idalabel.items()}
A: Optional[Any] = 3
A: Any = ViltForImagesAndTextClassification(__lowercase )
elif "irtr" in checkpoint_url:
A: Tuple = True
A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase )
elif "mlm_itm" in checkpoint_url:
A: Tuple = True
A: Optional[int] = ViltForMaskedLM(__lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict''']
A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase )
for src, dest in rename_keys:
rename_key(__lowercase , __lowercase , __lowercase )
read_in_q_k_v(__lowercase , __lowercase )
if mlm_model or irtr_model:
A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__lowercase )
# Define processor
A: Optional[Any] = ViltImageProcessor(size=3_8_4 )
A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A: Optional[int] = ViltProcessor(__lowercase , __lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: Any = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[str] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw )
if mlm_model:
A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].'''
else:
A: Optional[int] = '''How many cats are there?'''
A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: Any = model(**__lowercase )
# Verify outputs
if mlm_model:
A: Any = torch.Size([1, 1_1, 3_0_5_2_2] )
A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify masked token prediction equals "cats"
A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A: Any = torch.Size([1, 3_1_2_9] )
A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify vqa prediction equals "2"
A: Dict = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A: Union[str, Any] = torch.Size([1, 2] )
A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(__lowercase ).mkdir(exist_ok=__lowercase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowercase )
processor.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
import copy
from typing import Any, Dict, List, Optional, Union
import numpy as np
from ...audio_utils import mel_filter_bank, spectrogram, window_function
from ...feature_extraction_sequence_utils import SequenceFeatureExtractor
from ...feature_extraction_utils import BatchFeature
from ...utils import TensorType, logging
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Optional[int] = ["""input_features"""]
def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple=80 , SCREAMING_SNAKE_CASE_ : int=1_60_00 , SCREAMING_SNAKE_CASE_ : Optional[Any]=1_60 , SCREAMING_SNAKE_CASE_ : int=30 , SCREAMING_SNAKE_CASE_ : Any=4_00 , SCREAMING_SNAKE_CASE_ : Any=0.0 , SCREAMING_SNAKE_CASE_ : Any=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> Union[str, Any]:
'''simple docstring'''
super().__init__(
feature_size=SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , padding_value=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: str = n_fft
A: List[Any] = hop_length
A: List[str] = chunk_length
A: Optional[Any] = chunk_length * sampling_rate
A: List[str] = self.n_samples // hop_length
A: Union[str, Any] = sampling_rate
A: Tuple = mel_filter_bank(
num_frequency_bins=1 + n_fft // 2 , num_mel_filters=SCREAMING_SNAKE_CASE_ , min_frequency=0.0 , max_frequency=8000.0 , sampling_rate=SCREAMING_SNAKE_CASE_ , norm='''slaney''' , mel_scale='''slaney''' , )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : np.array ) -> np.ndarray:
'''simple docstring'''
A: List[Any] = spectrogram(
SCREAMING_SNAKE_CASE_ , window_function(self.n_fft , '''hann''' ) , frame_length=self.n_fft , hop_length=self.hop_length , power=2.0 , mel_filters=self.mel_filters , log_mel='''log10''' , )
A: Tuple = log_spec[:, :-1]
A: List[str] = np.maximum(SCREAMING_SNAKE_CASE_ , log_spec.max() - 8.0 )
A: Dict = (log_spec + 4.0) / 4.0
return log_spec
@staticmethod
# Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm
def _snake_case ( SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : List[np.ndarray] , SCREAMING_SNAKE_CASE_ : float = 0.0 ) -> List[np.ndarray]:
'''simple docstring'''
if attention_mask is not None:
A: int = np.array(SCREAMING_SNAKE_CASE_ , np.intaa )
A: List[str] = []
for vector, length in zip(SCREAMING_SNAKE_CASE_ , attention_mask.sum(-1 ) ):
A: str = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1E-7 )
if length < normed_slice.shape[0]:
A: Dict = padding_value
normed_input_values.append(SCREAMING_SNAKE_CASE_ )
else:
A: Optional[Any] = [(x - x.mean()) / np.sqrt(x.var() + 1E-7 ) for x in input_values]
return normed_input_values
def __call__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[str] = "max_length" , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , **SCREAMING_SNAKE_CASE_ : Any , ) -> BatchFeature:
'''simple docstring'''
if sampling_rate is not None:
if sampling_rate != self.sampling_rate:
raise ValueError(
f"""The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a"""
f""" sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input"""
f""" was sampled with {self.sampling_rate} and not {sampling_rate}.""" )
else:
logger.warning(
'''It is strongly recommended to pass the `sampling_rate` argument to this function. '''
'''Failing to do so can result in silent errors that might be hard to debug.''' )
A: List[str] = isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and len(raw_speech.shape ) > 1
if is_batched_numpy and len(raw_speech.shape ) > 2:
raise ValueError(f"""Only mono-channel audio is supported for input to {self}""" )
A: Union[str, Any] = is_batched_numpy or (
isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) ))
)
if is_batched:
A: Tuple = [np.asarray([speech] , dtype=np.floataa ).T for speech in raw_speech]
elif not is_batched and not isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ):
A: Dict = np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa )
elif isinstance(SCREAMING_SNAKE_CASE_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ):
A: Tuple = raw_speech.astype(np.floataa )
# always return batch
if not is_batched:
A: Any = [np.asarray([raw_speech] ).T]
A: int = BatchFeature({'''input_features''': raw_speech} )
# convert into correct format for padding
A: Dict = self.pad(
SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , max_length=max_length if max_length else self.n_samples , truncation=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_attention_mask=return_attention_mask or do_normalize , )
# zero-mean and unit-variance normalization
if do_normalize:
A: Any = self.zero_mean_unit_var_norm(
padded_inputs['''input_features'''] , attention_mask=padded_inputs['''attention_mask'''] , padding_value=self.padding_value , )
A: Optional[int] = np.stack(padded_inputs['''input_features'''] , axis=0 )
# make sure list is in array format
A: Dict = padded_inputs.get('''input_features''' ).transpose(2 , 0 , 1 )
A: Tuple = [self._np_extract_fbank_features(SCREAMING_SNAKE_CASE_ ) for waveform in input_features[0]]
if isinstance(input_features[0] , SCREAMING_SNAKE_CASE_ ):
A: Dict = [np.asarray(SCREAMING_SNAKE_CASE_ , dtype=np.floataa ) for feature in input_features]
else:
A: str = input_features
if return_attention_mask:
# rescale from sample (48000) to feature (3000)
A: Optional[int] = padded_inputs['''attention_mask'''][:, :: self.hop_length]
if return_tensors is not None:
A: Union[str, Any] = padded_inputs.convert_to_tensors(SCREAMING_SNAKE_CASE_ )
return padded_inputs
def _snake_case ( self : Optional[int] ) -> Dict[str, Any]:
'''simple docstring'''
A: Optional[Any] = copy.deepcopy(self.__dict__ )
A: Dict = self.__class__.__name__
if "mel_filters" in output:
del output["mel_filters"]
return output
| 319 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
UpperCamelCase = {
'''b0''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict:
A: Tuple = EfficientNetConfig()
A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim''']
A: Optional[int] = CONFIG_MAP[model_name]['''width_coef''']
A: str = CONFIG_MAP[model_name]['''depth_coef''']
A: Dict = CONFIG_MAP[model_name]['''image_size''']
A: str = CONFIG_MAP[model_name]['''dropout_rate''']
A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding''']
A: Optional[Any] = '''huggingface/label-files'''
A: List[str] = '''imagenet-1k-id2label.json'''
A: Dict = 1_0_0_0
A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()}
A: int = idalabel
A: Tuple = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE( ) -> Any:
A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw )
return im
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
A: List[str] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , )
return preprocessor
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
A: List[str] = sorted(set(__lowercase ) )
A: Dict = len(__lowercase )
A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )}
A: Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
A: int = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
A: Union[str, Any] = {}
for item in rename_keys:
if item[0] in original_param_names:
A: str = '''efficientnet.''' + item[1]
A: int = '''classifier.weight'''
A: Tuple = '''classifier.bias'''
return key_mapping
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple:
for key, value in tf_params.items():
if "normalization" in key:
continue
A: Union[str, Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) )
else:
A: Any = torch.from_numpy(__lowercase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(__lowercase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple:
A: Optional[int] = model_classes[model_name](
include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , )
A: List[str] = original_model.trainable_variables
A: Optional[Any] = original_model.non_trainable_variables
A: Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A: int = param.numpy()
A: Tuple = list(tf_params.keys() )
# Load HuggingFace model
A: Dict = get_efficientnet_config(__lowercase )
A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval()
A: Dict = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
A: int = rename_keys(__lowercase )
replace_params(__lowercase , __lowercase , __lowercase )
# Initialize preprocessor and preprocess input image
A: List[Any] = convert_image_processor(__lowercase )
A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
A: str = hf_model(**__lowercase )
A: List[Any] = outputs.logits.detach().numpy()
# Original model inference
A: Any = False
A: List[Any] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A: str = image.img_to_array(__lowercase )
A: Dict = np.expand_dims(__lowercase , axis=0 )
A: Any = original_model.predict(__lowercase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(__lowercase ):
os.mkdir(__lowercase )
# Save converted model and image processor
hf_model.save_pretrained(__lowercase )
preprocessor.save_pretrained(__lowercase )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
A: int = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(__lowercase )
hf_model.push_to_hub(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
UpperCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 319 | 1 |
'''simple docstring'''
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate
# and perform gradient accumulation
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
UpperCamelCase = 16
UpperCamelCase = 32
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 1_6 ) -> Optional[Any]:
A: int = AutoTokenizer.from_pretrained('''bert-base-cased''' )
A: Any = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(__lowercase ):
# max_length=None => use the model max length (it's actually the default)
A: Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__lowercase , max_length=__lowercase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
A: Dict = datasets.map(
__lowercase , batched=__lowercase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
A: Optional[int] = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(__lowercase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
A: Optional[Any] = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
A: int = 1_6
elif accelerator.mixed_precision != "no":
A: Optional[int] = 8
else:
A: Optional[int] = None
return tokenizer.pad(
__lowercase , padding='''longest''' , max_length=__lowercase , pad_to_multiple_of=__lowercase , return_tensors='''pt''' , )
# Instantiate dataloaders.
A: str = DataLoader(
tokenized_datasets['''train'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase )
A: Optional[int] = DataLoader(
tokenized_datasets['''validation'''] , shuffle=__lowercase , collate_fn=__lowercase , batch_size=__lowercase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''', None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
UpperCamelCase = mocked_dataloaders # noqa: F811
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[int]:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __lowercase ) == "1":
A: str = 2
# New Code #
A: List[Any] = int(args.gradient_accumulation_steps )
# Initialize accelerator
A: Any = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__lowercase )
if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1:
raise NotImplementedError(
'''Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`''' )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
A: Union[str, Any] = config['''lr''']
A: List[Any] = int(config['''num_epochs'''] )
A: int = int(config['''seed'''] )
A: Dict = int(config['''batch_size'''] )
A: int = evaluate.load('''glue''' , '''mrpc''' )
set_seed(__lowercase )
A , A: List[Any] = get_dataloaders(__lowercase , __lowercase )
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
A: Tuple = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__lowercase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
A: Union[str, Any] = model.to(accelerator.device )
# Instantiate optimizer
A: int = AdamW(params=model.parameters() , lr=__lowercase )
# Instantiate scheduler
A: Optional[Any] = get_linear_schedule_with_warmup(
optimizer=__lowercase , num_warmup_steps=1_0_0 , num_training_steps=(len(__lowercase ) * num_epochs) , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
A , A , A , A , A: Any = accelerator.prepare(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase )
# Now we train the model
for epoch in range(__lowercase ):
model.train()
for step, batch in enumerate(__lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
# New code #
# We use the new `accumulate` context manager to perform gradient accumulation
# We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests.
with accelerator.accumulate(__lowercase ):
A: str = model(**__lowercase )
A: int = output.loss
accelerator.backward(__lowercase )
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(__lowercase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
with torch.no_grad():
A: List[Any] = model(**__lowercase )
A: Any = outputs.logits.argmax(dim=-1 )
A , A: Optional[int] = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=__lowercase , references=__lowercase , )
A: Optional[int] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , __lowercase )
def SCREAMING_SNAKE_CASE( ) -> Optional[Any]:
A: List[str] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=__lowercase , default=__lowercase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
# New Code #
parser.add_argument(
'''--gradient_accumulation_steps''' , type=__lowercase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
A: Optional[int] = parser.parse_args()
A: str = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 4_2, '''batch_size''': 1_6}
training_function(__lowercase , __lowercase )
if __name__ == "__main__":
main()
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FocalNetForImageClassification''',
'''FocalNetForMaskedImageModeling''',
'''FocalNetBackbone''',
'''FocalNetModel''',
'''FocalNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
'''configuration_x_clip''': [
'''XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''XCLIPConfig''',
'''XCLIPTextConfig''',
'''XCLIPVisionConfig''',
],
'''processing_x_clip''': ['''XCLIPProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''XCLIPModel''',
'''XCLIPPreTrainedModel''',
'''XCLIPTextModel''',
'''XCLIPVisionModel''',
]
if TYPE_CHECKING:
from .configuration_x_clip import (
XCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP,
XCLIPConfig,
XCLIPTextConfig,
XCLIPVisionConfig,
)
from .processing_x_clip import XCLIPProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_x_clip import (
XCLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
XCLIPModel,
XCLIPPreTrainedModel,
XCLIPTextModel,
XCLIPVisionModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Any = {}
if "threshold" in kwargs:
A: List[Any] = kwargs['''threshold''']
return {}, {}, postprocess_kwargs
def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: int = load_image(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = torch.IntTensor([[image.height, image.width]] )
A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A: Any = target_size
return inputs
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
'''simple docstring'''
A: Tuple = model_inputs.pop('''target_size''' )
A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ )
A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A: Dict = model_inputs['''bbox''']
return model_outputs
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = model_outputs['''target_size''']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A , A: Union[str, Any] = target_size[0].tolist()
def unnormalize(SCREAMING_SNAKE_CASE_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )]
A: Dict = ['''score''', '''label''', '''box''']
A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = raw_annotations[0]
A: List[Any] = raw_annotation['''scores''']
A: List[Any] = raw_annotation['''labels''']
A: int = raw_annotation['''boxes''']
A: Any = scores.tolist()
A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels]
A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A: Tuple = ['''score''', '''label''', '''box''']
A: str = [
dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A , A , A , A: str = box.int().tolist()
A: str = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
A: Union[str, Any] = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 319 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Optional[Any] = """convbert"""
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Dict = vocab_size
A: Tuple = hidden_size
A: Optional[int] = num_hidden_layers
A: List[str] = num_attention_heads
A: int = intermediate_size
A: int = hidden_act
A: List[str] = hidden_dropout_prob
A: int = attention_probs_dropout_prob
A: Tuple = max_position_embeddings
A: Any = type_vocab_size
A: str = initializer_range
A: Union[str, Any] = layer_norm_eps
A: str = embedding_size
A: Optional[int] = head_ratio
A: List[Any] = conv_kernel_size
A: List[Any] = num_groups
A: Optional[int] = classifier_dropout
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A: List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
UpperCamelCase = {
'''configuration_blip''': [
'''BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''BlipConfig''',
'''BlipTextConfig''',
'''BlipVisionConfig''',
],
'''processing_blip''': ['''BlipProcessor'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''BlipImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''BlipModel''',
'''BlipPreTrainedModel''',
'''BlipForConditionalGeneration''',
'''BlipForQuestionAnswering''',
'''BlipVisionModel''',
'''BlipTextModel''',
'''BlipForImageTextRetrieval''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFBlipModel''',
'''TFBlipPreTrainedModel''',
'''TFBlipForConditionalGeneration''',
'''TFBlipForQuestionAnswering''',
'''TFBlipVisionModel''',
'''TFBlipTextModel''',
'''TFBlipForImageTextRetrieval''',
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if len(__lowercase ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
A: Any = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ....tokenization_utils_fast import PreTrainedTokenizerFast
from ....utils import logging
from .tokenization_retribert import RetriBertTokenizer
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''yjernite/retribert-base-uncased''': (
'''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json'''
),
},
}
UpperCamelCase = {
'''yjernite/retribert-base-uncased''': 512,
}
UpperCamelCase = {
'''yjernite/retribert-base-uncased''': {'''do_lower_case''': True},
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : List[str] = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : List[Any] = PRETRAINED_INIT_CONFIGURATION
UpperCamelCase_ : int = RetriBertTokenizer
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : int="[UNK]" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="[SEP]" , SCREAMING_SNAKE_CASE_ : int="[PAD]" , SCREAMING_SNAKE_CASE_ : Dict="[CLS]" , SCREAMING_SNAKE_CASE_ : int="[MASK]" , SCREAMING_SNAKE_CASE_ : List[Any]=True , SCREAMING_SNAKE_CASE_ : List[str]=None , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Dict:
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , tokenize_chinese_chars=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get('''lowercase''' , SCREAMING_SNAKE_CASE_ ) != do_lower_case
or normalizer_state.get('''strip_accents''' , SCREAMING_SNAKE_CASE_ ) != strip_accents
or normalizer_state.get('''handle_chinese_chars''' , SCREAMING_SNAKE_CASE_ ) != tokenize_chinese_chars
):
A: List[Any] = getattr(SCREAMING_SNAKE_CASE_ , normalizer_state.pop('''type''' ) )
A: List[Any] = do_lower_case
A: int = strip_accents
A: Any = tokenize_chinese_chars
A: List[Any] = normalizer_class(**SCREAMING_SNAKE_CASE_ )
A: List[str] = do_lower_case
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> Any:
'''simple docstring'''
A: str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: int = [self.sep_token_id]
A: str = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
A: Dict = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
| 319 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
from transformers.testing_utils import pytest_terminal_summary_main
A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__lowercase , id=__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
A: Tuple = 0
# Doctest custom flag to ignore output.
UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''')
UpperCamelCase = doctest.OutputChecker
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase = CustomOutputChecker
UpperCamelCase = HfDoctestModule
UpperCamelCase = HfDocTestParser
| 319 | 1 |
'''simple docstring'''
import pytest
from datasets.parallel import ParallelBackendConfig, parallel_backend
from datasets.utils.py_utils import map_nested
from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]: # picklable for multiprocessing
return i + 1
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
def SCREAMING_SNAKE_CASE( ) -> Optional[int]:
with parallel_backend('''spark''' ):
assert ParallelBackendConfig.backend_name == "spark"
A: Optional[Any] = [1, 2, 3]
with pytest.raises(__lowercase ):
with parallel_backend('''unsupported backend''' ):
map_nested(__lowercase , __lowercase , num_proc=2 )
with pytest.raises(__lowercase ):
with parallel_backend('''unsupported backend''' ):
map_nested(__lowercase , __lowercase , num_proc=-1 )
@require_dill_gt_0_3_2
@require_joblibspark
@require_not_windows
@pytest.mark.parametrize('''num_proc''' , [2, -1] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
A: List[str] = [1, 2]
A: Tuple = {'''a''': 1, '''b''': 2}
A: List[str] = {'''a''': [1, 2], '''b''': [3, 4]}
A: Dict = {'''a''': {'''1''': 1}, '''b''': 2}
A: List[str] = {'''a''': 1, '''b''': 2, '''c''': 3, '''d''': 4}
A: Any = [2, 3]
A: str = {'''a''': 2, '''b''': 3}
A: Optional[Any] = {'''a''': [2, 3], '''b''': [4, 5]}
A: Tuple = {'''a''': {'''1''': 2}, '''b''': 3}
A: List[str] = {'''a''': 2, '''b''': 3, '''c''': 4, '''d''': 5}
with parallel_backend('''spark''' ):
assert map_nested(__lowercase , __lowercase , num_proc=__lowercase ) == expected_map_nested_sa
assert map_nested(__lowercase , __lowercase , num_proc=__lowercase ) == expected_map_nested_sa
assert map_nested(__lowercase , __lowercase , num_proc=__lowercase ) == expected_map_nested_sa
assert map_nested(__lowercase , __lowercase , num_proc=__lowercase ) == expected_map_nested_sa
assert map_nested(__lowercase , __lowercase , num_proc=__lowercase ) == expected_map_nested_sa
| 319 |
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCamelCase = tuple[int, int]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
'''simple docstring'''
A: Any = []
A: int = set()
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
A: Optional[int] = []
((A) , (A)): str = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)): int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
'''simple docstring'''
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
A: str = []
((A) , (A)): List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)): Any = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return self.elements[0][1]
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
((A) , (A)): Dict = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
# euclidean distance
A: List[str] = np.array(__lowercase )
A: Optional[int] = np.array(__lowercase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
# integer division by time variable
return consistent_heuristic(__lowercase , __lowercase ) // t
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase )
return ans
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
A: Union[str, Any] = np.chararray((n, n) )
for i in range(__lowercase ):
for j in range(__lowercase ):
A: Union[str, Any] = '''*'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (j, (n - 1) - i) in blocks:
A: Optional[Any] = '''#'''
A: Tuple = '''-'''
A: List[str] = back_pointer[goal]
while x != start:
((A) , (A)): Tuple = x
# print(x)
A: List[str] = '''-'''
A: str = back_pointer[x]
A: Dict = '''-'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A: List[str] = back_pointer[goal]
while x != start:
print(__lowercase , end=''' ''' )
A: Optional[int] = back_pointer[x]
print(__lowercase )
sys.exit()
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
for itera in range(__lowercase ):
open_list[itera].remove_element(__lowercase )
# print("s", s)
# print("j", j)
((A) , (A)): Tuple = s
A: Optional[Any] = (x - 1, y)
A: str = (x + 1, y)
A: List[Any] = (x, y + 1)
A: int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(__lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(__lowercase )
A: int = -1
A: int = float('''inf''' )
if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1:
A: List[str] = g_function[s] + 1
A: List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) )
if neighbours not in close_list_inad:
for var in range(1 , __lowercase ):
if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key(
__lowercase , 0 , __lowercase , __lowercase ):
open_list[j].put(
__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( ) -> Tuple:
A: str = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCamelCase = make_common_ground()
UpperCamelCase = blocks_blk
# hyper parameters
UpperCamelCase = 1
UpperCamelCase = 1
UpperCamelCase = 20
UpperCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
UpperCamelCase = (0, 0)
UpperCamelCase = (n - 1, n - 1)
UpperCamelCase = 1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: int = {start: 0, goal: float('''inf''' )}
A: Union[str, Any] = {start: -1, goal: -1}
A: List[Any] = []
A: Union[str, Any] = set()
for i in range(__lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
A: list[int] = []
A: list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , __lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A , A: Union[str, Any] = open_list[i].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_inad.append(__lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A: Union[str, Any] = open_list[0].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_anchor.append(__lowercase )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(__lowercase ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> str: # noqa: E741
A: str = len(__lowercase )
A: Optional[Any] = 0
A: Any = [0] * n
A: List[Any] = [False] * n
A: List[str] = [False] * n
def dfs(__lowercase , __lowercase , __lowercase , __lowercase ):
if parent == root:
out_edge_count += 1
A: Optional[Any] = True
A: Optional[Any] = at
for to in l[at]:
if to == parent:
pass
elif not visited[to]:
A: List[str] = dfs(__lowercase , __lowercase , __lowercase , __lowercase )
A: Union[str, Any] = min(low[at] , low[to] )
# AP found via bridge
if at < low[to]:
A: Tuple = True
# AP found via cycle
if at == low[to]:
A: Dict = True
else:
A: Any = min(low[at] , __lowercase )
return out_edge_count
for i in range(__lowercase ):
if not visited[i]:
A: int = 0
A: List[Any] = dfs(__lowercase , __lowercase , -1 , __lowercase )
A: List[Any] = out_edge_count > 1
for x in range(len(__lowercase ) ):
if is_art[x] is True:
print(__lowercase )
# Adjacency list of graph
UpperCamelCase = {
0: [1, 2],
1: [0, 2],
2: [0, 1, 3, 5],
3: [2, 4],
4: [3],
5: [2, 6, 8],
6: [5, 7],
7: [6, 8],
8: [5, 7],
}
compute_ap(data)
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int:
A: Any = 1
A: Optional[Any] = 0
for divide_by_number in range(__lowercase , digit + 1 ):
A: list[int] = []
A: List[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__lowercase ):
A: Any = len(__lowercase )
A: Dict = divide_by_number
else:
has_been_divided.append(__lowercase )
A: str = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
import pickle
import shutil
import tempfile
import unittest
from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast
from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
@require_tokenizers
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : int = XLMRobertaTokenizer
UpperCamelCase_ : Optional[int] = XLMRobertaTokenizerFast
UpperCamelCase_ : List[str] = True
UpperCamelCase_ : str = True
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A: List[str] = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: List[str] = '''<pad>'''
A: Union[str, Any] = 1
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> Optional[int]:
'''simple docstring'''
A: Any = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''<s>''' )
self.assertEqual(vocab_keys[1] , '''<pad>''' )
self.assertEqual(vocab_keys[-1] , '''<mask>''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_02 )
def _snake_case ( self : Optional[Any] ) -> Any:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 10_02 )
def _snake_case ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A: str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
A: List[Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4]
# ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^
] , )
A: int = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''<unk>''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''<unk>''',
'''.''',
] , )
def _snake_case ( self : Optional[Any] ) -> List[Any]:
'''simple docstring'''
if not self.test_slow_tokenizer:
# as we don't have a slow version, we can't compare the outputs between slow and fast versions
return
A: str = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {})
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
A: Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
A: str = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
A: int = tempfile.mkdtemp()
A: Optional[int] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files + the tokenizer.json file for the fast one
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
A: Dict = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f )
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
A: Tuple = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
A: int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
# self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=True
A: Tuple = tempfile.mkdtemp()
A: Optional[Any] = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
A: Dict = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it save with the same files
self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Checks everything loads correctly in the same way
A: int = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
# Save tokenizer rust, legacy_format=False
A: List[Any] = tempfile.mkdtemp()
A: str = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ )
A: str = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ )
# Checks it saved the tokenizer.json file
self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) )
# Checks everything loads correctly in the same way
A: str = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ )
A: int = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ )
# Check special tokens are set accordingly on Rust and Python
for key in tokenizer_pp.special_tokens_map:
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
shutil.rmtree(SCREAMING_SNAKE_CASE_ )
@cached_property
def _snake_case ( self : str ) -> int:
'''simple docstring'''
return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
with tempfile.NamedTemporaryFile() as f:
shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name )
A: Tuple = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ )
A: str = pickle.dumps(SCREAMING_SNAKE_CASE_ )
pickle.loads(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
if not self.test_rust_tokenizer:
return
A: Optional[int] = self.get_tokenizer()
A: Union[str, Any] = self.get_rust_tokenizer()
A: Dict = '''I was born in 92000, and this is falsé.'''
A: Dict = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[int] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: int = self.get_rust_tokenizer()
A: Union[str, Any] = tokenizer.encode(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@slow
def _snake_case ( self : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: Optional[int] = '''Hello World!'''
A: Tuple = [0, 3_53_78, 66_61, 38, 2]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) )
@slow
def _snake_case ( self : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Tuple = (
'''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will'''
''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth'''
)
A: Optional[Any] = [
0,
32_93,
83,
10,
45_52,
49_89,
79_86,
6_78,
10,
59_15,
1_11,
17_94_59,
12_48_50,
4,
60_44,
2_37,
12,
6,
5,
6,
4,
67_80,
7_05,
15,
13_88,
44,
3_78,
1_01_14,
7_11,
1_52,
20,
6,
5,
2_23_76,
6_42,
12_21,
1_51_90,
3_41_53,
4_50,
56_08,
9_59,
11_19,
5_77_02,
1_36,
1_86,
47,
10_98,
2_93_67,
47,
# 4426, # What fairseq tokenizes from "<unk>": "_<"
# 3678, # What fairseq tokenizes from "<unk>": "unk"
# 2740, # What fairseq tokenizes from "<unk>": ">"
3, # What we tokenize from "<unk>": "<unk>"
6, # Residue from the tokenization: an extra sentencepiece underline
4,
60_44,
2_37,
62_84,
5_09_01,
5_28,
31,
90,
34,
9_27,
2,
]
# xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer
# xlmr.eval()
# xlmr.encode(symbols)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) )
@slow
def _snake_case ( self : Optional[int] ) -> int:
'''simple docstring'''
A: int = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
| 319 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any:
A: Any = [x.strip() for x in open(__lowercase ).readlines()]
A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )]
A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase )
if save_path is not None:
save_json(__lowercase , __lowercase , indent=__lowercase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 319 | 1 |
'''simple docstring'''
import argparse
import ast
import logging
import os
import sys
import pandas as pd
import torch
from tqdm import tqdm
from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration
from transformers import logging as transformers_logging
sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip
from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip
UpperCamelCase = logging.getLogger(__name__)
logging.basicConfig(level=logging.INFO)
transformers_logging.set_verbosity_info()
def SCREAMING_SNAKE_CASE( __lowercase ) -> str:
if "token" in model_name_or_path:
return "rag_token"
if "sequence" in model_name_or_path:
return "rag_sequence"
if "bart" in model_name_or_path:
return "bart"
return None
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[Any]:
return max(metric_fn(__lowercase , __lowercase ) for gt in ground_truths )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: List[Any] = [line.strip() for line in open(__lowercase , '''r''' ).readlines()]
A: Any = []
if args.gold_data_mode == "qa":
A: int = pd.read_csv(__lowercase , sep='''\t''' , header=__lowercase )
for answer_list in data[1]:
A: Optional[Any] = ast.literal_eval(__lowercase )
answers.append(__lowercase )
else:
A: Tuple = [line.strip() for line in open(__lowercase , '''r''' ).readlines()]
A: List[str] = [[reference] for reference in references]
A: List[Any] = 0
for prediction, ground_truths in zip(__lowercase , __lowercase ):
total += 1
em += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase )
fa += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase )
A: Optional[Any] = 1_0_0.0 * em / total
A: List[str] = 1_0_0.0 * fa / total
logger.info(F"""F1: {fa:.2f}""" )
logger.info(F"""EM: {em:.2f}""" )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> str:
A: Tuple = args.k
A: int = [line.strip() for line in open(__lowercase , '''r''' ).readlines()]
A: List[Any] = [line.strip() for line in open(__lowercase , '''r''' ).readlines()]
A: Dict = 0
for hypo, reference in zip(__lowercase , __lowercase ):
A: List[str] = set(hypo.split('''\t''' )[:k] )
A: Dict = set(reference.split('''\t''' ) )
total += 1
em += len(hypo_provenance & ref_provenance ) / k
A: Any = 1_0_0.0 * em / total
logger.info(F"""Precision@{k}: {em: .2f}""" )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Union[str, Any]:
def strip_title(__lowercase ):
if title.startswith('''"''' ):
A: Dict = title[1:]
if title.endswith('''"''' ):
A: str = title[:-1]
return title
A: str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
__lowercase , return_tensors='''pt''' , padding=__lowercase , truncation=__lowercase , )['''input_ids'''].to(args.device )
A: List[Any] = rag_model.rag.question_encoder(__lowercase )
A: List[str] = question_enc_outputs[0]
A: Optional[int] = rag_model.retriever(
__lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , )
A: Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids )
A: Tuple = []
for docs in all_docs:
A: Tuple = [strip_title(__lowercase ) for title in docs['''title''']]
provenance_strings.append('''\t'''.join(__lowercase ) )
return provenance_strings
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[Any]:
with torch.no_grad():
A: Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus(
__lowercase , return_tensors='''pt''' , padding=__lowercase , truncation=__lowercase )
A: Optional[int] = inputs_dict.input_ids.to(args.device )
A: Any = inputs_dict.attention_mask.to(args.device )
A: int = rag_model.generate( # rag_model overwrites generate
__lowercase , attention_mask=__lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , )
A: List[str] = rag_model.retriever.generator_tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase )
if args.print_predictions:
for q, a in zip(__lowercase , __lowercase ):
logger.info('''Q: {} - A: {}'''.format(__lowercase , __lowercase ) )
return answers
def SCREAMING_SNAKE_CASE( ) -> int:
A: Union[str, Any] = argparse.ArgumentParser()
parser.add_argument(
'''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__lowercase , help=(
'''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the'''
''' model_name_or_path'''
) , )
parser.add_argument(
'''--index_name''' , default=__lowercase , choices=['''exact''', '''compressed''', '''legacy'''] , type=__lowercase , help='''RAG model retriever type''' , )
parser.add_argument(
'''--index_path''' , default=__lowercase , type=__lowercase , help='''Path to the retrieval index''' , )
parser.add_argument('''--n_docs''' , default=5 , type=__lowercase , help='''Number of retrieved docs''' )
parser.add_argument(
'''--model_name_or_path''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , )
parser.add_argument(
'''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__lowercase , help=(
'''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates'''
''' precision@k.'''
) , )
parser.add_argument('''--k''' , default=1 , type=__lowercase , help='''k for the precision@k calculation''' )
parser.add_argument(
'''--evaluation_set''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to a file containing evaluation samples''' , )
parser.add_argument(
'''--gold_data_path''' , default=__lowercase , type=__lowercase , required=__lowercase , help='''Path to a tab-separated file with gold samples''' , )
parser.add_argument(
'''--gold_data_mode''' , default='''qa''' , type=__lowercase , choices=['''qa''', '''ans'''] , help=(
'''Format of the gold data file'''
'''qa - a single line in the following format: question [tab] answer_list'''
'''ans - a single line of the gold file contains the expected answer string'''
) , )
parser.add_argument(
'''--predictions_path''' , type=__lowercase , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , )
parser.add_argument(
'''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , )
parser.add_argument(
'''--eval_batch_size''' , default=8 , type=__lowercase , help='''Batch size per GPU/CPU for evaluation.''' , )
parser.add_argument(
'''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , )
parser.add_argument(
'''--num_beams''' , default=4 , type=__lowercase , help='''Number of beams to be used when generating answers''' , )
parser.add_argument('''--min_length''' , default=1 , type=__lowercase , help='''Min length of the generated answers''' )
parser.add_argument('''--max_length''' , default=5_0 , type=__lowercase , help='''Max length of the generated answers''' )
parser.add_argument(
'''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , )
parser.add_argument(
'''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , )
A: Optional[int] = parser.parse_args()
A: Dict = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' )
return args
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Union[str, Any] = {}
if args.model_type is None:
A: Optional[int] = infer_model_type(args.model_name_or_path )
assert args.model_type is not None
if args.model_type.startswith('''rag''' ):
A: Optional[int] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration
A: Optional[Any] = args.n_docs
if args.index_name is not None:
A: Optional[int] = args.index_name
if args.index_path is not None:
A: Tuple = args.index_path
else:
A: int = BartForConditionalGeneration
A: List[Any] = (
[f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()]
if args.eval_all_checkpoints
else [args.model_name_or_path]
)
logger.info('''Evaluate the following checkpoints: %s''' , __lowercase )
A: Optional[Any] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k
A: Union[str, Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval
for checkpoint in checkpoints:
if os.path.exists(args.predictions_path ) and (not args.recalculate):
logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path ) )
score_fn(__lowercase , args.predictions_path , args.gold_data_path )
continue
logger.info('''***** Running evaluation for {} *****'''.format(__lowercase ) )
logger.info(''' Batch size = %d''' , args.eval_batch_size )
logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path ) )
if args.model_type.startswith('''rag''' ):
A: Dict = RagRetriever.from_pretrained(__lowercase , **__lowercase )
A: Any = model_class.from_pretrained(__lowercase , retriever=__lowercase , **__lowercase )
model.retriever.init_retrieval()
else:
A: Optional[int] = model_class.from_pretrained(__lowercase , **__lowercase )
model.to(args.device )
with open(args.evaluation_set , '''r''' ) as eval_file, open(args.predictions_path , '''w''' ) as preds_file:
A: Dict = []
for line in tqdm(__lowercase ):
questions.append(line.strip() )
if len(__lowercase ) == args.eval_batch_size:
A: str = evaluate_batch_fn(__lowercase , __lowercase , __lowercase )
preds_file.write('''\n'''.join(__lowercase ) + '''\n''' )
preds_file.flush()
A: Any = []
if len(__lowercase ) > 0:
A: Tuple = evaluate_batch_fn(__lowercase , __lowercase , __lowercase )
preds_file.write('''\n'''.join(__lowercase ) )
preds_file.flush()
score_fn(__lowercase , args.predictions_path , args.gold_data_path )
if __name__ == "__main__":
UpperCamelCase = get_args()
main(args)
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list:
A: Dict = length or len(__lowercase )
A: Dict = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
A , A: Tuple = list_data[i + 1], list_data[i]
A: Union[str, Any] = True
return list_data if not swapped else bubble_sort(__lowercase , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
UpperCamelCase = tuple[int, int, int]
UpperCamelCase = tuple[str, str, str]
# used alphabet --------------------------
# from string.ascii_uppercase
UpperCamelCase = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ'''
# -------------------------- default selection --------------------------
# rotors --------------------------
UpperCamelCase = '''EGZWVONAHDCLFQMSIPJBYUKXTR'''
UpperCamelCase = '''FOBHMDKEXQNRAULPGSJVTYICZW'''
UpperCamelCase = '''ZJXESIUQLHAVRMDOYGTNFWPBKC'''
# reflector --------------------------
UpperCamelCase = {
'''A''': '''N''',
'''N''': '''A''',
'''B''': '''O''',
'''O''': '''B''',
'''C''': '''P''',
'''P''': '''C''',
'''D''': '''Q''',
'''Q''': '''D''',
'''E''': '''R''',
'''R''': '''E''',
'''F''': '''S''',
'''S''': '''F''',
'''G''': '''T''',
'''T''': '''G''',
'''H''': '''U''',
'''U''': '''H''',
'''I''': '''V''',
'''V''': '''I''',
'''J''': '''W''',
'''W''': '''J''',
'''K''': '''X''',
'''X''': '''K''',
'''L''': '''Y''',
'''Y''': '''L''',
'''M''': '''Z''',
'''Z''': '''M''',
}
# -------------------------- extra rotors --------------------------
UpperCamelCase = '''RMDJXFUWGISLHVTCQNKYPBEZOA'''
UpperCamelCase = '''SGLCPQWZHKXAREONTFBVIYJUDM'''
UpperCamelCase = '''HVSICLTYKQUBXDWAJZOMFGPREN'''
UpperCamelCase = '''RZWQHFMVDBKICJLNTUXAGYPSOE'''
UpperCamelCase = '''LFKIJODBEGAMQPXVUHYSTCZRWN'''
UpperCamelCase = '''KOAEGVDHXPQZMLFTYWJNBRCIUS'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]:
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(__lowercase ) )) < 3:
A: str = F"""Please use 3 unique rotors (not {unique_rotsel})"""
raise Exception(__lowercase )
# Checks if rotor positions are valid
A , A , A: Union[str, Any] = rotpos
if not 0 < rotorposa <= len(__lowercase ):
A: Optional[Any] = F"""First rotor position is not within range of 1..26 ({rotorposa}"""
raise ValueError(__lowercase )
if not 0 < rotorposa <= len(__lowercase ):
A: List[str] = F"""Second rotor position is not within range of 1..26 ({rotorposa})"""
raise ValueError(__lowercase )
if not 0 < rotorposa <= len(__lowercase ):
A: Any = F"""Third rotor position is not within range of 1..26 ({rotorposa})"""
raise ValueError(__lowercase )
# Validates string and returns dict
A: Optional[Any] = _plugboard(__lowercase )
return rotpos, rotsel, pbdict
def SCREAMING_SNAKE_CASE( __lowercase ) -> dict[str, str]:
# tests the input string if it
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(__lowercase , __lowercase ):
A: Optional[int] = F"""Plugboard setting isn't type string ({type(__lowercase )})"""
raise TypeError(__lowercase )
elif len(__lowercase ) % 2 != 0:
A: Dict = F"""Odd number of symbols ({len(__lowercase )})"""
raise Exception(__lowercase )
elif pbstring == "":
return {}
pbstring.replace(''' ''' , '''''' )
# Checks if all characters are unique
A: Dict = set()
for i in pbstring:
if i not in abc:
A: Optional[Any] = F"""'{i}' not in list of symbols"""
raise Exception(__lowercase )
elif i in tmppbl:
A: Dict = F"""Duplicate symbol ({i})"""
raise Exception(__lowercase )
else:
tmppbl.add(__lowercase )
del tmppbl
# Created the dictionary
A: List[str] = {}
for j in range(0 , len(__lowercase ) - 1 , 2 ):
A: Tuple = pbstring[j + 1]
A: List[Any] = pbstring[j]
return pb
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = (rotora, rotora, rotora) , __lowercase = "" , ) -> str:
A: List[str] = text.upper()
A , A , A: Dict = _validator(
__lowercase , __lowercase , plugb.upper() )
A , A , A: str = rotor_position
A , A , A: Optional[int] = rotor_selection
rotorposa -= 1
rotorposa -= 1
rotorposa -= 1
A: Dict = []
# encryption/decryption process --------------------------
for symbol in text:
if symbol in abc:
# 1st plugboard --------------------------
if symbol in plugboard:
A: Tuple = plugboard[symbol]
# rotor ra --------------------------
A: Optional[Any] = abc.index(__lowercase ) + rotorposa
A: str = rotora[index % len(__lowercase )]
# rotor rb --------------------------
A: List[Any] = abc.index(__lowercase ) + rotorposa
A: Tuple = rotora[index % len(__lowercase )]
# rotor rc --------------------------
A: List[str] = abc.index(__lowercase ) + rotorposa
A: int = rotora[index % len(__lowercase )]
# reflector --------------------------
# this is the reason you don't need another machine to decipher
A: Union[str, Any] = reflector[symbol]
# 2nd rotors
A: Optional[Any] = abc[rotora.index(__lowercase ) - rotorposa]
A: List[str] = abc[rotora.index(__lowercase ) - rotorposa]
A: List[str] = abc[rotora.index(__lowercase ) - rotorposa]
# 2nd plugboard
if symbol in plugboard:
A: int = plugboard[symbol]
# moves/resets rotor positions
rotorposa += 1
if rotorposa >= len(__lowercase ):
A: Dict = 0
rotorposa += 1
if rotorposa >= len(__lowercase ):
A: Tuple = 0
rotorposa += 1
if rotorposa >= len(__lowercase ):
A: str = 0
# else:
# pass
# Error could be also raised
# raise ValueError(
# 'Invalid symbol('+repr(symbol)+')')
result.append(__lowercase )
return "".join(__lowercase )
if __name__ == "__main__":
UpperCamelCase = '''This is my Python script that emulates the Enigma machine from WWII.'''
UpperCamelCase = (1, 1, 1)
UpperCamelCase = '''pictures'''
UpperCamelCase = (rotora, rotora, rotora)
UpperCamelCase = enigma(message, rotor_pos, rotor_sel, pb)
print('''Encrypted message:''', en)
print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
| 319 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
import json
from typing import TYPE_CHECKING, List, Optional, Tuple
from tokenizers import pre_tokenizers
from ...tokenization_utils_base import BatchEncoding
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_gpta import GPTaTokenizer
if TYPE_CHECKING:
from transformers.pipelines.conversational import Conversation
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {
'''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''',
'''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''',
'''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''',
'''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''',
'''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''',
},
'''merges_file''': {
'''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''',
'''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''',
'''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''',
'''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''',
'''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''',
'''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''',
'''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''',
'''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''',
'''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''',
},
}
UpperCamelCase = {
'''gpt2''': 1024,
'''gpt2-medium''': 1024,
'''gpt2-large''': 1024,
'''gpt2-xl''': 1024,
'''distilgpt2''': 1024,
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Any = VOCAB_FILES_NAMES
UpperCamelCase_ : List[str] = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Union[str, Any] = ["""input_ids""", """attention_mask"""]
UpperCamelCase_ : Optional[int] = GPTaTokenizer
def __init__( self : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple=None , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : str="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : List[Any]="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : Optional[int]="<|endoftext|>" , SCREAMING_SNAKE_CASE_ : Optional[int]=False , **SCREAMING_SNAKE_CASE_ : List[Any] , ) -> Optional[int]:
'''simple docstring'''
super().__init__(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Optional[int] = kwargs.pop('''add_bos_token''' , SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() )
if pre_tok_state.get('''add_prefix_space''' , SCREAMING_SNAKE_CASE_ ) != add_prefix_space:
A: Any = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop('''type''' ) )
A: Tuple = add_prefix_space
A: List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ )
A: Tuple = add_prefix_space
def _snake_case ( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> BatchEncoding:
'''simple docstring'''
A: str = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ) -> BatchEncoding:
'''simple docstring'''
A: str = kwargs.get('''is_split_into_words''' , SCREAMING_SNAKE_CASE_ )
assert self.add_prefix_space or not is_split_into_words, (
f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """
"to use it with pretokenized inputs."
)
return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
A: List[str] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ )
return tuple(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : "Conversation" ) -> List[int]:
'''simple docstring'''
A: List[Any] = []
for is_user, text in conversation.iter_texts():
input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] )
if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length:
A: Union[str, Any] = input_ids[-self.model_max_length :]
return input_ids
| 319 |
'''simple docstring'''
from itertools import permutations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
A: int = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int:
return sum(
int(''''''.join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 319 | 1 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : List[str] = ["""image_processor""", """tokenizer"""]
UpperCamelCase_ : Union[str, Any] = """ViltImageProcessor"""
UpperCamelCase_ : Any = ("""BertTokenizer""", """BertTokenizerFast""")
def __init__( self : Any , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[int]:
'''simple docstring'''
A: str = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , SCREAMING_SNAKE_CASE_ , )
A: Dict = kwargs.pop('''feature_extractor''' )
A: Optional[int] = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: int = self.image_processor
def __call__( self : Any , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Union[bool, str, PaddingStrategy] = False , SCREAMING_SNAKE_CASE_ : Union[bool, str, TruncationStrategy] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : int = 0 , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = False , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , **SCREAMING_SNAKE_CASE_ : int , ) -> BatchEncoding:
'''simple docstring'''
A: Optional[Any] = self.tokenizer(
text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# add pixel_values + pixel_mask
A: Optional[int] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ )
encoding.update(SCREAMING_SNAKE_CASE_ )
return encoding
def _snake_case ( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> List[Any]:
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def _snake_case ( self : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: List[str] = self.tokenizer.model_input_names
A: Union[str, Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def _snake_case ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
warnings.warn(
'''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def _snake_case ( self : Optional[int] ) -> Any:
'''simple docstring'''
warnings.warn(
'''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 319 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 1 |
'''simple docstring'''
import numpy as np
from scipy.spatial.distance import cdist
from sklearn.metrics import fa_score
import datasets
UpperCamelCase = '''\
@inproceedings{kakwani2020indicnlpsuite,
title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},
author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},
year={2020},
booktitle={Findings of EMNLP},
}
'''
UpperCamelCase = '''\
IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide
variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.
'''
UpperCamelCase = '''
Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset.
Args:
predictions: list of predictions to score (as int64),
except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).
references: list of ground truth labels corresponding to the predictions (as int64),
except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).
Returns: depending on the IndicGLUE subset, one or several of:
"accuracy": Accuracy
"f1": F1 score
"precision": Precision@10
Examples:
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0}
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')
>>> references = [0, 1]
>>> predictions = [0, 1]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'accuracy\': 1.0, \'f1\': 1.0}
>>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')
>>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]
>>> results = indic_glue_metric.compute(predictions=predictions, references=references)
>>> print(results)
{\'precision@10\': 1.0}
'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
return float((preds == labels).mean() )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Optional[int] = simple_accuracy(__lowercase , __lowercase )
A: str = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) )
return {
"accuracy": acc,
"f1": fa,
}
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
A: Optional[int] = np.array(__lowercase )
A: Optional[Any] = np.array(__lowercase )
A: int = en_sentvecs.shape[0]
# mean centering
A: str = en_sentvecs - np.mean(__lowercase , axis=0 )
A: Tuple = in_sentvecs - np.mean(__lowercase , axis=0 )
A: str = cdist(__lowercase , __lowercase , '''cosine''' )
A: Union[str, Any] = np.array(range(__lowercase ) )
A: Any = sim.argsort(axis=1 )[:, :1_0]
A: Dict = np.any(preds == actual[:, None] , axis=1 )
return float(matches.mean() )
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class lowerCAmelCase_ ( datasets.Metric ):
'''simple docstring'''
def _snake_case ( self : Optional[int] ) -> int:
'''simple docstring'''
if self.config_name not in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"cvit-mkb-clsr",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
"wiki-ner",
]:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
'''predictions''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
'''references''': datasets.Value('''int64''' )
if self.config_name != '''cvit-mkb-clsr'''
else datasets.Sequence(datasets.Value('''float32''' ) ),
} ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' if self.config_name != '''cvit-mkb-clsr''' else None , )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]:
'''simple docstring'''
if self.config_name == "cvit-mkb-clsr":
return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}
elif self.config_name in ["wiki-ner"]:
return acc_and_fa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
elif self.config_name in [
"wnli",
"copa",
"sna",
"csqa",
"wstp",
"inltkh",
"bbca",
"iitp-mr",
"iitp-pr",
"actsa-sc",
"md",
]:
return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )}
else:
raise KeyError(
'''You should supply a configuration name selected in '''
'''["wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", '''
'''"cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", '''
'''"wiki-ner"]''' )
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0_0_0_0 ) -> int:
A: Optional[Any] = limit + 1
A: List[Any] = [0] * limit
for first_term in range(1 , __lowercase ):
for n in range(__lowercase , __lowercase , __lowercase ):
A: Optional[Any] = first_term + n / first_term
if common_difference % 4: # d must be divisble by 4
continue
else:
common_difference /= 4
if (
first_term > common_difference
and first_term < 4 * common_difference
): # since x,y,z are positive integers
frequency[n] += 1 # so z>0 and a>d ,also 4d<a
A: Union[str, Any] = sum(1 for x in frequency[1:limit] if x == 1_0 )
return count
if __name__ == "__main__":
print(f'{solution() = }')
| 319 |
'''simple docstring'''
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
A: str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]:
if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
A: Union[str, Any] = len(__lowercase )
A: str = matrix_length // 2
A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )]
A: Optional[Any] = [
[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase )
]
A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )]
A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )]
return top_left, top_right, bot_left, bot_right
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]:
return len(__lowercase ), len(matrix[0] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> None:
print('''\n'''.join(str(__lowercase ) for line in matrix ) )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase ) == (2, 2):
return default_matrix_multiplication(__lowercase , __lowercase )
A , A , A , A: Union[str, Any] = split_matrix(__lowercase )
A , A , A , A: List[Any] = split_matrix(__lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
A: Any = matrix_addition(__lowercase , __lowercase )
A: List[Any] = matrix_addition(__lowercase , __lowercase )
A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
# construct the new matrix from our 4 quadrants
A: Union[str, Any] = []
for i in range(len(__lowercase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowercase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]:
A: int = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(__lowercase )
A: str = matrix_dimensions(__lowercase )
A: str = matrix_dimensions(__lowercase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
A: Union[str, Any] = max(*__lowercase , *__lowercase )
A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) )
A: List[Any] = matrixa
A: Tuple = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
A: Any = actual_strassen(__lowercase , __lowercase )
# Removing the additional zeros
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCamelCase = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 319 | 1 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = 2
@register_to_config
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = sigma_max
# setable values
A: int = None
A: np.IntTensor = None
A: torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = num_inference_steps
A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
A: str = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A: List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device )
A: Optional[Any] = sigma + gamma * sigma
A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: Union[str, Any] = sample_hat + sigma_hat * model_output
A: str = (sample_hat - pred_original_sample) / sigma_hat
A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: int = sample_prev + sigma_prev * model_output
A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev
A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
'''simple docstring'''
raise NotImplementedError()
| 319 | 1 |
'''simple docstring'''
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
'''The `inpainting.py` script is outdated. Please use directly `from diffusers import'''
''' StableDiffusionInpaintPipeline` instead.'''
)
| 319 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 | 1 |
'''simple docstring'''
import collections
import gzip
import os
import urllib
import numpy
from tensorflow.python.framework import dtypes, random_seed
from tensorflow.python.platform import gfile
from tensorflow.python.util.deprecation import deprecated
UpperCamelCase = collections.namedtuple('''_Datasets''', ['''train''', '''validation''', '''test'''])
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
UpperCamelCase = '''https://storage.googleapis.com/cvdf-datasets/mnist/'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[int] = numpy.dtype(numpy.uintaa ).newbyteorder('''>''' )
return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0]
@deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> str:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowercase ) as bytestream:
A: Union[str, Any] = _readaa(__lowercase )
if magic != 2_0_5_1:
raise ValueError(
'''Invalid magic number %d in MNIST image file: %s''' % (magic, f.name) )
A: Optional[int] = _readaa(__lowercase )
A: List[str] = _readaa(__lowercase )
A: Optional[int] = _readaa(__lowercase )
A: Any = bytestream.read(rows * cols * num_images )
A: List[str] = numpy.frombuffer(__lowercase , dtype=numpy.uinta )
A: int = data.reshape(__lowercase , __lowercase , __lowercase , 1 )
return data
@deprecated(__lowercase , '''Please use tf.one_hot on tensors.''' )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
A: int = labels_dense.shape[0]
A: Any = numpy.arange(__lowercase ) * num_classes
A: int = numpy.zeros((num_labels, num_classes) )
A: int = 1
return labels_one_hot
@deprecated(__lowercase , '''Please use tf.data to implement this functionality.''' )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=1_0 ) -> int:
print('''Extracting''' , f.name )
with gzip.GzipFile(fileobj=__lowercase ) as bytestream:
A: Union[str, Any] = _readaa(__lowercase )
if magic != 2_0_4_9:
raise ValueError(
'''Invalid magic number %d in MNIST label file: %s''' % (magic, f.name) )
A: Dict = _readaa(__lowercase )
A: List[str] = bytestream.read(__lowercase )
A: List[Any] = numpy.frombuffer(__lowercase , dtype=numpy.uinta )
if one_hot:
return _dense_to_one_hot(__lowercase , __lowercase )
return labels
class lowerCAmelCase_ :
'''simple docstring'''
@deprecated(
SCREAMING_SNAKE_CASE_ , '''Please use alternatives such as official/mnist/_DataSet.py'''
''' from tensorflow/models.''' , )
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Tuple=dtypes.floataa , SCREAMING_SNAKE_CASE_ : Dict=True , SCREAMING_SNAKE_CASE_ : List[str]=None , ) -> Dict:
'''simple docstring'''
A , A: Union[str, Any] = random_seed.get_seed(SCREAMING_SNAKE_CASE_ )
# If op level seed is not set, use whatever graph level seed is returned
numpy.random.seed(seeda if seed is None else seeda )
A: Tuple = dtypes.as_dtype(SCREAMING_SNAKE_CASE_ ).base_dtype
if dtype not in (dtypes.uinta, dtypes.floataa):
raise TypeError('''Invalid image dtype %r, expected uint8 or float32''' % dtype )
if fake_data:
A: int = 1_00_00
A: Tuple = one_hot
else:
assert (
images.shape[0] == labels.shape[0]
), f"""images.shape: {images.shape} labels.shape: {labels.shape}"""
A: int = images.shape[0]
# Convert shape from [num examples, rows, columns, depth]
# to [num examples, rows*columns] (assuming depth == 1)
if reshape:
assert images.shape[3] == 1
A: Optional[int] = images.reshape(
images.shape[0] , images.shape[1] * images.shape[2] )
if dtype == dtypes.floataa:
# Convert from [0, 255] -> [0.0, 1.0].
A: int = images.astype(numpy.floataa )
A: List[Any] = numpy.multiply(SCREAMING_SNAKE_CASE_ , 1.0 / 255.0 )
A: int = images
A: List[Any] = labels
A: List[str] = 0
A: List[str] = 0
@property
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
return self._images
@property
def _snake_case ( self : Tuple ) -> Tuple:
'''simple docstring'''
return self._labels
@property
def _snake_case ( self : Optional[int] ) -> Any:
'''simple docstring'''
return self._num_examples
@property
def _snake_case ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
return self._epochs_completed
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict=False , SCREAMING_SNAKE_CASE_ : List[str]=True ) -> Dict:
'''simple docstring'''
if fake_data:
A: List[Any] = [1] * 7_84
A: Any = [1] + [0] * 9 if self.one_hot else 0
return (
[fake_image for _ in range(SCREAMING_SNAKE_CASE_ )],
[fake_label for _ in range(SCREAMING_SNAKE_CASE_ )],
)
A: str = self._index_in_epoch
# Shuffle for the first epoch
if self._epochs_completed == 0 and start == 0 and shuffle:
A: Union[str, Any] = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = self.images[perma]
A: Any = self.labels[perma]
# Go to the next epoch
if start + batch_size > self._num_examples:
# Finished epoch
self._epochs_completed += 1
# Get the rest examples in this epoch
A: Union[str, Any] = self._num_examples - start
A: int = self._images[start : self._num_examples]
A: Dict = self._labels[start : self._num_examples]
# Shuffle the data
if shuffle:
A: Optional[Any] = numpy.arange(self._num_examples )
numpy.random.shuffle(SCREAMING_SNAKE_CASE_ )
A: str = self.images[perm]
A: Dict = self.labels[perm]
# Start next epoch
A: List[Any] = 0
A: List[str] = batch_size - rest_num_examples
A: List[str] = self._index_in_epoch
A: Tuple = self._images[start:end]
A: Optional[Any] = self._labels[start:end]
return (
numpy.concatenate((images_rest_part, images_new_part) , axis=0 ),
numpy.concatenate((labels_rest_part, labels_new_part) , axis=0 ),
)
else:
self._index_in_epoch += batch_size
A: int = self._index_in_epoch
return self._images[start:end], self._labels[start:end]
@deprecated(__lowercase , '''Please write your own downloading logic.''' )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> str:
if not gfile.Exists(__lowercase ):
gfile.MakeDirs(__lowercase )
A: Tuple = os.path.join(__lowercase , __lowercase )
if not gfile.Exists(__lowercase ):
urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310
with gfile.GFile(__lowercase ) as f:
A: List[str] = f.size()
print('''Successfully downloaded''' , __lowercase , __lowercase , '''bytes.''' )
return filepath
@deprecated(
__lowercase , '''Please use alternatives such as:''' ''' tensorflow_datasets.load(\'mnist\')''' )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=dtypes.floataa , __lowercase=True , __lowercase=5_0_0_0 , __lowercase=None , __lowercase=DEFAULT_SOURCE_URL , ) -> int:
if fake_data:
def fake():
return _DataSet(
[] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase )
A: int = fake()
A: int = fake()
A: Union[str, Any] = fake()
return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
if not source_url: # empty string check
A: Tuple = DEFAULT_SOURCE_URL
A: Union[str, Any] = '''train-images-idx3-ubyte.gz'''
A: List[Any] = '''train-labels-idx1-ubyte.gz'''
A: Any = '''t10k-images-idx3-ubyte.gz'''
A: Dict = '''t10k-labels-idx1-ubyte.gz'''
A: Dict = _maybe_download(
__lowercase , __lowercase , source_url + train_images_file )
with gfile.Open(__lowercase , '''rb''' ) as f:
A: Optional[int] = _extract_images(__lowercase )
A: Union[str, Any] = _maybe_download(
__lowercase , __lowercase , source_url + train_labels_file )
with gfile.Open(__lowercase , '''rb''' ) as f:
A: Optional[Any] = _extract_labels(__lowercase , one_hot=__lowercase )
A: Any = _maybe_download(
__lowercase , __lowercase , source_url + test_images_file )
with gfile.Open(__lowercase , '''rb''' ) as f:
A: Any = _extract_images(__lowercase )
A: List[Any] = _maybe_download(
__lowercase , __lowercase , source_url + test_labels_file )
with gfile.Open(__lowercase , '''rb''' ) as f:
A: Optional[int] = _extract_labels(__lowercase , one_hot=__lowercase )
if not 0 <= validation_size <= len(__lowercase ):
A: Dict = (
'''Validation size should be between 0 and '''
F"""{len(__lowercase )}. Received: {validation_size}."""
)
raise ValueError(__lowercase )
A: Tuple = train_images[:validation_size]
A: List[str] = train_labels[:validation_size]
A: List[str] = train_images[validation_size:]
A: Optional[Any] = train_labels[validation_size:]
A: Union[str, Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed}
A: int = _DataSet(__lowercase , __lowercase , **__lowercase )
A: Tuple = _DataSet(__lowercase , __lowercase , **__lowercase )
A: Union[str, Any] = _DataSet(__lowercase , __lowercase , **__lowercase )
return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
| 319 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.activations import gelu_new, gelu_python, get_activation
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
A: Any = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
A: Dict = get_activation('''gelu''' )
self.assertTrue(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_ ) , torch_builtin(SCREAMING_SNAKE_CASE_ ) ) )
self.assertFalse(torch.allclose(gelu_python(SCREAMING_SNAKE_CASE_ ) , gelu_new(SCREAMING_SNAKE_CASE_ ) ) )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[Any] = torch.tensor([-1_00, -1, -0.1, 0, 0.1, 1.0, 1_00] )
A: List[Any] = get_activation('''gelu''' )
A: Optional[int] = get_activation('''gelu_10''' )
A: Any = torch_builtin(SCREAMING_SNAKE_CASE_ )
A: Optional[int] = geluaa(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = torch.where(y_gelu_aa < 10.0 , 1 , 0 )
self.assertTrue(torch.max(SCREAMING_SNAKE_CASE_ ).item() == 10.0 )
self.assertTrue(torch.allclose(y_gelu * clipped_mask , y_gelu_aa * clipped_mask ) )
def _snake_case ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
get_activation('''gelu''' )
get_activation('''gelu_10''' )
get_activation('''gelu_fast''' )
get_activation('''gelu_new''' )
get_activation('''gelu_python''' )
get_activation('''gelu_pytorch_tanh''' )
get_activation('''linear''' )
get_activation('''mish''' )
get_activation('''quick_gelu''' )
get_activation('''relu''' )
get_activation('''sigmoid''' )
get_activation('''silu''' )
get_activation('''swish''' )
get_activation('''tanh''' )
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
get_activation('''bogus''' )
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
get_activation(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> int:
'''simple docstring'''
A: int = get_activation('''gelu''' )
A: Optional[Any] = 1
A: List[Any] = get_activation('''gelu''' )
self.assertEqual(acta.a , 1 )
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
A: Tuple = acta.a
| 319 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import argparse
import json
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from typing import Callable, Dict, List, Tuple
import timm
import torch
import torch.nn as nn
from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf
from huggingface_hub import cached_download, hf_hub_url
from torch import Tensor
from vissl.models.model_helpers import get_trunk_forward_outputs
from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger()
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : nn.Module
UpperCamelCase_ : List[nn.Module] = field(default_factory=UpperCAmelCase_ )
UpperCamelCase_ : list = field(default_factory=UpperCAmelCase_ )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tensor , SCREAMING_SNAKE_CASE_ : Tensor ) -> List[str]:
'''simple docstring'''
A: Tuple = len(list(m.modules() ) ) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad ) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad )
if has_not_submodules:
self.traced.append(SCREAMING_SNAKE_CASE_ )
def __call__( self : str , SCREAMING_SNAKE_CASE_ : Tensor ) -> List[str]:
'''simple docstring'''
for m in self.module.modules():
self.handles.append(m.register_forward_hook(self._forward_hook ) )
self.module(SCREAMING_SNAKE_CASE_ )
[x.remove() for x in self.handles]
return self
@property
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
return list(filter(lambda SCREAMING_SNAKE_CASE_ : len(list(x.state_dict().keys() ) ) > 0 , self.traced ) )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : nn.Module
UpperCamelCase_ : nn.Module
UpperCamelCase_ : int = 1
UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ )
UpperCamelCase_ : List = field(default_factory=UpperCAmelCase_ )
UpperCamelCase_ : bool = True
def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Optional[Any]:
'''simple docstring'''
A: str = Tracker(self.dest )(SCREAMING_SNAKE_CASE_ ).parametrized
A: List[str] = Tracker(self.src )(SCREAMING_SNAKE_CASE_ ).parametrized
A: str = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.src_skip , SCREAMING_SNAKE_CASE_ ) )
A: int = list(filter(lambda SCREAMING_SNAKE_CASE_ : type(SCREAMING_SNAKE_CASE_ ) not in self.dest_skip , SCREAMING_SNAKE_CASE_ ) )
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ) and self.raise_if_mismatch:
raise Exception(
f"""Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_ )} operations while"""
f""" destination module has {len(SCREAMING_SNAKE_CASE_ )}.""" )
for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
dest_m.load_state_dict(src_m.state_dict() )
if self.verbose == 1:
print(f"""Transfered from={src_m} to={dest_m}""" )
class lowerCAmelCase_ ( nn.Module ):
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : nn.Module ) -> List[Any]:
'''simple docstring'''
super().__init__()
A: List[Tuple[str, nn.Module]] = []
# - get the stem
feature_blocks.append(('''conv1''', model.stem) )
# - get all the feature blocks
for k, v in model.trunk_output.named_children():
assert k.startswith('''block''' ), f"""Unexpected layer name {k}"""
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) + 1
feature_blocks.append((f"""res{block_index}""", v) )
A: Optional[Any] = nn.ModuleDict(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : Tensor ) -> Any:
'''simple docstring'''
return get_trunk_forward_outputs(
SCREAMING_SNAKE_CASE_ , out_feat_keys=SCREAMING_SNAKE_CASE_ , feature_blocks=self._feature_blocks , )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> str:
'''simple docstring'''
A: Optional[int] = x.split('''-''' )
return x_split[0] + x_split[1] + "_" + "".join(x_split[2:] )
def __getitem__( self : List[str] , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], Tuple[nn.Module, Dict]]:
'''simple docstring'''
if x not in self:
A: int = self.convert_name_to_timm(SCREAMING_SNAKE_CASE_ )
A: int = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_ ).eval(), None) )
else:
A: Dict = super().__getitem__(SCREAMING_SNAKE_CASE_ )
return val
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __getitem__( self : Tuple , SCREAMING_SNAKE_CASE_ : str ) -> Callable[[], nn.Module]:
'''simple docstring'''
if "seer" in x and "in1k" not in x:
A: Tuple = RegNetModel
else:
A: str = RegNetForImageClassification
return val
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Dict:
for from_key, to_key in keys:
A: Any = from_state_dict[from_key].clone()
print(F"""Copied key={from_key} to={to_key}""" )
return to_state_dict
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase = True , ) -> List[str]:
print(F"""Converting {name}...""" )
with torch.no_grad():
A , A: Any = from_model_func()
A: Union[str, Any] = our_model_func(__lowercase ).eval()
A: str = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase )
A: Tuple = torch.randn((1, 3, 2_2_4, 2_2_4) )
module_transfer(__lowercase )
if from_state_dict is not None:
A: str = []
# for seer - in1k finetuned we have to manually copy the head
if "seer" in name and "in1k" in name:
A: List[Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')]
A: Dict = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase )
our_model.load_state_dict(__lowercase )
A: Optional[int] = our_model(__lowercase , output_hidden_states=__lowercase )
A: Any = (
our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state
)
A: Optional[Any] = from_model(__lowercase )
A: Optional[int] = from_output[-1] if type(__lowercase ) is list else from_output
# now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state
if "seer" in name and "in1k" in name:
A: Any = our_outputs.hidden_states[-1]
assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one."
if push_to_hub:
our_model.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add model''' , use_temp_dir=__lowercase , )
A: Dict = 2_2_4 if '''seer''' not in name else 3_8_4
# we can use the convnext one
A: Dict = AutoImageProcessor.from_pretrained('''facebook/convnext-base-224-22k-1k''' , size=__lowercase )
image_processor.push_to_hub(
repo_path_or_name=save_directory / name , commit_message='''Add image processor''' , use_temp_dir=__lowercase , )
print(F"""Pushed {name}""" )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = None , __lowercase = True ) -> Union[str, Any]:
A: Any = '''imagenet-1k-id2label.json'''
A: List[str] = 1_0_0_0
A: Optional[Any] = (1, num_labels)
A: List[Any] = '''huggingface/label-files'''
A: str = num_labels
A: Optional[int] = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type='''dataset''' ) ) , '''r''' ) )
A: Dict = {int(__lowercase ): v for k, v in idalabel.items()}
A: Tuple = idalabel
A: Optional[Any] = {v: k for k, v in idalabel.items()}
A: List[str] = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase )
A: Union[str, Any] = {
'''regnet-x-002''': ImageNetPreTrainedConfig(
depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 , layer_type='''x''' ),
'''regnet-x-004''': ImageNetPreTrainedConfig(
depths=[1, 2, 7, 1_2] , hidden_sizes=[3_2, 6_4, 1_6_0, 3_8_4] , groups_width=1_6 , layer_type='''x''' ),
'''regnet-x-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 5, 7] , hidden_sizes=[4_8, 9_6, 2_4_0, 5_2_8] , groups_width=2_4 , layer_type='''x''' ),
'''regnet-x-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 5] , hidden_sizes=[6_4, 1_2_8, 2_8_8, 6_7_2] , groups_width=1_6 , layer_type='''x''' ),
'''regnet-x-016''': ImageNetPreTrainedConfig(
depths=[2, 4, 1_0, 2] , hidden_sizes=[7_2, 1_6_8, 4_0_8, 9_1_2] , groups_width=2_4 , layer_type='''x''' ),
'''regnet-x-032''': ImageNetPreTrainedConfig(
depths=[2, 6, 1_5, 2] , hidden_sizes=[9_6, 1_9_2, 4_3_2, 1_0_0_8] , groups_width=4_8 , layer_type='''x''' ),
'''regnet-x-040''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_4, 2] , hidden_sizes=[8_0, 2_4_0, 5_6_0, 1_3_6_0] , groups_width=4_0 , layer_type='''x''' ),
'''regnet-x-064''': ImageNetPreTrainedConfig(
depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 3_9_2, 7_8_4, 1_6_2_4] , groups_width=5_6 , layer_type='''x''' ),
'''regnet-x-080''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_5, 1] , hidden_sizes=[8_0, 2_4_0, 7_2_0, 1_9_2_0] , groups_width=1_2_0 , layer_type='''x''' ),
'''regnet-x-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 , layer_type='''x''' ),
'''regnet-x-160''': ImageNetPreTrainedConfig(
depths=[2, 6, 1_3, 1] , hidden_sizes=[2_5_6, 5_1_2, 8_9_6, 2_0_4_8] , groups_width=1_2_8 , layer_type='''x''' ),
'''regnet-x-320''': ImageNetPreTrainedConfig(
depths=[2, 7, 1_3, 1] , hidden_sizes=[3_3_6, 6_7_2, 1_3_4_4, 2_5_2_0] , groups_width=1_6_8 , layer_type='''x''' ),
# y variant
'''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[2_4, 5_6, 1_5_2, 3_6_8] , groups_width=8 ),
'''regnet-y-004''': ImageNetPreTrainedConfig(
depths=[1, 3, 6, 6] , hidden_sizes=[4_8, 1_0_4, 2_0_8, 4_4_0] , groups_width=8 ),
'''regnet-y-006''': ImageNetPreTrainedConfig(
depths=[1, 3, 7, 4] , hidden_sizes=[4_8, 1_1_2, 2_5_6, 6_0_8] , groups_width=1_6 ),
'''regnet-y-008''': ImageNetPreTrainedConfig(
depths=[1, 3, 8, 2] , hidden_sizes=[6_4, 1_2_8, 3_2_0, 7_6_8] , groups_width=1_6 ),
'''regnet-y-016''': ImageNetPreTrainedConfig(
depths=[2, 6, 1_7, 2] , hidden_sizes=[4_8, 1_2_0, 3_3_6, 8_8_8] , groups_width=2_4 ),
'''regnet-y-032''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_3, 1] , hidden_sizes=[7_2, 2_1_6, 5_7_6, 1_5_1_2] , groups_width=2_4 ),
'''regnet-y-040''': ImageNetPreTrainedConfig(
depths=[2, 6, 1_2, 2] , hidden_sizes=[1_2_8, 1_9_2, 5_1_2, 1_0_8_8] , groups_width=6_4 ),
'''regnet-y-064''': ImageNetPreTrainedConfig(
depths=[2, 7, 1_4, 2] , hidden_sizes=[1_4_4, 2_8_8, 5_7_6, 1_2_9_6] , groups_width=7_2 ),
'''regnet-y-080''': ImageNetPreTrainedConfig(
depths=[2, 4, 1_0, 1] , hidden_sizes=[1_6_8, 4_4_8, 8_9_6, 2_0_1_6] , groups_width=5_6 ),
'''regnet-y-120''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 8_9_6, 2_2_4_0] , groups_width=1_1_2 ),
'''regnet-y-160''': ImageNetPreTrainedConfig(
depths=[2, 4, 1_1, 1] , hidden_sizes=[2_2_4, 4_4_8, 1_2_3_2, 3_0_2_4] , groups_width=1_1_2 ),
'''regnet-y-320''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ),
# models created by SEER -> https://arxiv.org/abs/2202.08360
'''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ),
'''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ),
'''regnet-y-1280-seer''': RegNetConfig(
depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ),
'''regnet-y-2560-seer''': RegNetConfig(
depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ),
'''regnet-y-10b-seer''': ImageNetPreTrainedConfig(
depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ),
# finetuned on imagenet
'''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_2, 1] , hidden_sizes=[2_3_2, 6_9_6, 1_3_9_2, 3_7_1_2] , groups_width=2_3_2 ),
'''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 5, 1_2, 1] , hidden_sizes=[3_2_8, 9_8_4, 1_9_6_8, 4_9_2_0] , groups_width=3_2_8 ),
'''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 1_7, 1] , hidden_sizes=[5_2_8, 1_0_5_6, 2_9_0_4, 7_3_9_2] , groups_width=2_6_4 ),
'''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig(
depths=[3, 7, 1_6, 1] , hidden_sizes=[6_4_0, 1_6_9_6, 2_5_4_4, 5_0_8_8] , groups_width=6_4_0 ),
'''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig(
depths=[2, 7, 1_7, 1] , hidden_sizes=[2_0_2_0, 4_0_4_0, 1_1_1_1_0, 2_8_2_8_0] , groups_width=1_0_1_0 ),
}
A: Dict = NameToOurModelFuncMap()
A: Union[str, Any] = NameToFromModelFuncMap()
# add seer weights logic
def load_using_classy_vision(__lowercase , __lowercase ) -> Tuple[nn.Module, Dict]:
A: Any = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location='''cpu''' )
A: Any = model_func()
# check if we have a head, if yes add it
A: Optional[Any] = files['''classy_state_dict''']['''base_model''']['''model''']
A: List[Any] = model_state_dict['''trunk''']
model.load_state_dict(__lowercase )
return model.eval(), model_state_dict["heads"]
# pretrained
A: str = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A: List[str] = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A: Optional[int] = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
A: str = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
# IN1K finetuned
A: Optional[Any] = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A: Union[str, Any] = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , )
A: int = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch''' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , )
A: Dict = partial(
__lowercase , '''https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch''' , lambda: FakeRegNetVisslWrapper(
RegNet(RegNetParams(depth=2_7 , group_width=1_0_1_0 , w_a=1_7_4_4 , w_a=6_2_0.8_3 , w_m=2.5_2 ) ) ) , )
if model_name:
convert_weight_and_push(
__lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(
__lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , )
return config, expected_shape
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default=None,
type=str,
help=(
'''The name of the model you wish to convert, it must be one of the supported regnet* architecture,'''
''' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.'''
),
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default=None,
type=Path,
required=True,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument(
'''--push_to_hub''',
default=True,
type=bool,
required=False,
help='''If True, push model and image processor to the hub.''',
)
UpperCamelCase = parser.parse_args()
UpperCamelCase = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 319 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCamelCase = '''
import os
'''
UpperCamelCase = '''
def foo():
import os
return False
'''
UpperCamelCase = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Tuple = os.path.join(__lowercase , '''test_file.py''' )
with open(__lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(__lowercase )
A: List[Any] = get_imports(__lowercase )
assert parsed_imports == ["os"]
| 319 | 1 |
'''simple docstring'''
import logging
import os
from dataclasses import dataclass, field
from functools import partial
from pathlib import Path
from tempfile import TemporaryDirectory
from typing import List, Optional
import faiss
import torch
from datasets import Features, Sequence, Value, load_dataset
from transformers import DPRContextEncoder, DPRContextEncoderTokenizerFast, HfArgumentParser
UpperCamelCase = logging.getLogger(__name__)
torch.set_grad_enabled(False)
UpperCamelCase = '''cuda''' if torch.cuda.is_available() else '''cpu'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=1_0_0 , __lowercase=" " ) -> List[str]:
A: int = text.split(__lowercase )
return [character.join(text[i : i + n] ).strip() for i in range(0 , len(__lowercase ) , __lowercase )]
def SCREAMING_SNAKE_CASE( __lowercase ) -> dict:
A , A: Optional[int] = [], []
for title, text in zip(documents['''title'''] , documents['''text'''] ):
if text is not None:
for passage in split_text(__lowercase ):
titles.append(title if title is not None else '''''' )
texts.append(__lowercase )
return {"title": titles, "text": texts}
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> dict:
A: Any = ctx_tokenizer(
documents['''title'''] , documents['''text'''] , truncation=__lowercase , padding='''longest''' , return_tensors='''pt''' )['''input_ids''']
A: Optional[Any] = ctx_encoder(input_ids.to(device=__lowercase ) , return_dict=__lowercase ).pooler_output
return {"embeddings": embeddings.detach().cpu().numpy()}
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , ) -> Tuple:
######################################
logger.info('''Step 1 - Create the dataset''' )
######################################
# The dataset needed for RAG must have three columns:
# - title (string): title of the document
# - text (string): text of a passage of the document
# - embeddings (array of dimension d): DPR representation of the passage
# Let's say you have documents in tab-separated csv files with columns "title" and "text"
assert os.path.isfile(rag_example_args.csv_path ), "Please provide a valid path to a csv file"
# You can load a Dataset object this way
A: Optional[int] = load_dataset(
'''csv''' , data_files=[rag_example_args.csv_path] , split='''train''' , delimiter='''\t''' , column_names=['''title''', '''text'''] )
# More info about loading csv files in the documentation: https://huggingface.co/docs/datasets/loading_datasets.html?highlight=csv#csv-files
# Then split the documents into passages of 100 words
A: Optional[Any] = dataset.map(__lowercase , batched=__lowercase , num_proc=processing_args.num_proc )
# And compute the embeddings
A: List[Any] = DPRContextEncoder.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name ).to(device=__lowercase )
A: str = DPRContextEncoderTokenizerFast.from_pretrained(rag_example_args.dpr_ctx_encoder_model_name )
A: List[Any] = Features(
{'''text''': Value('''string''' ), '''title''': Value('''string''' ), '''embeddings''': Sequence(Value('''float32''' ) )} ) # optional, save as float32 instead of float64 to save space
A: int = dataset.map(
partial(__lowercase , ctx_encoder=__lowercase , ctx_tokenizer=__lowercase ) , batched=__lowercase , batch_size=processing_args.batch_size , features=__lowercase , )
# And finally save your dataset
A: List[str] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset''' )
dataset.save_to_disk(__lowercase )
# from datasets import load_from_disk
# dataset = load_from_disk(passages_path) # to reload the dataset
######################################
logger.info('''Step 2 - Index the dataset''' )
######################################
# Let's use the Faiss implementation of HNSW for fast approximate nearest neighbor search
A: str = faiss.IndexHNSWFlat(index_hnsw_args.d , index_hnsw_args.m , faiss.METRIC_INNER_PRODUCT )
dataset.add_faiss_index('''embeddings''' , custom_index=__lowercase )
# And save the index
A: Optional[int] = os.path.join(rag_example_args.output_dir , '''my_knowledge_dataset_hnsw_index.faiss''' )
dataset.get_index('''embeddings''' ).save(__lowercase )
# dataset.load_faiss_index("embeddings", index_path) # to reload the index
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : str = field(
default=str(Path(UpperCAmelCase_ ).parent / """test_run""" / """dummy-kb""" / """my_knowledge_dataset.csv""" ) , metadata={"""help""": """Path to a tab-separated csv file with columns 'title' and 'text'"""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Question that is passed as input to RAG. Default is 'What does Moses' rod turn into ?'."""} , )
UpperCamelCase_ : str = field(
default="""facebook/rag-sequence-nq""" , metadata={"""help""": """The RAG model to use. Either 'facebook/rag-sequence-nq' or 'facebook/rag-token-nq'"""} , )
UpperCamelCase_ : str = field(
default="""facebook/dpr-ctx_encoder-multiset-base""" , metadata={
"""help""": (
"""The DPR context encoder model to use. Either 'facebook/dpr-ctx_encoder-single-nq-base' or"""
""" 'facebook/dpr-ctx_encoder-multiset-base'"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=str(Path(UpperCAmelCase_ ).parent / """test_run""" / """dummy-kb""" ) , metadata={"""help""": """Path to a directory where the dataset passages and the index will be saved"""} , )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": """The number of processes to use to split the documents into passages. Default is single process."""
} , )
UpperCamelCase_ : int = field(
default=16 , metadata={
"""help""": """The batch size to use when computing the passages embeddings using the DPR context encoder."""
} , )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : int = field(
default=768 , metadata={"""help""": """The dimension of the embeddings to pass to the HNSW Faiss index."""} , )
UpperCamelCase_ : int = field(
default=128 , metadata={
"""help""": (
"""The number of bi-directional links created for every new element during the HNSW index construction."""
)
} , )
if __name__ == "__main__":
logging.basicConfig(level=logging.WARNING)
logger.setLevel(logging.INFO)
UpperCamelCase = HfArgumentParser((RagExampleArguments, ProcessingArguments, IndexHnswArguments))
UpperCamelCase , UpperCamelCase , UpperCamelCase = parser.parse_args_into_dataclasses()
with TemporaryDirectory() as tmp_dir:
UpperCamelCase = rag_example_args.output_dir or tmp_dir
main(rag_example_args, processing_args, index_hnsw_args)
| 319 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]:
A: str = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
for i in range(config.num_hidden_layers ):
A: Tuple = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A: Dict = in_proj_weight[
: config.hidden_size, :
]
A: int = in_proj_bias[: config.hidden_size]
A: Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A: int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A: Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
A: Optional[Any] = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: Optional[int] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: List[Any] = dct.pop(__lowercase )
A: int = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str:
A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase )
A: Tuple = False
A: str = False
A: List[Any] = False
A: Optional[int] = False
if "vqa" in checkpoint_url:
A: Union[str, Any] = True
A: Union[str, Any] = 3_1_2_9
A: List[Any] = '''huggingface/label-files'''
A: Any = '''vqa2-id2label.json'''
A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()}
A: Any = idalabel
A: Optional[Any] = {v: k for k, v in idalabel.items()}
A: List[str] = ViltForQuestionAnswering(__lowercase )
elif "nlvr" in checkpoint_url:
A: Dict = True
A: str = 2
A: Union[str, Any] = {0: '''False''', 1: '''True'''}
A: Any = {v: k for k, v in config.idalabel.items()}
A: Optional[Any] = 3
A: Any = ViltForImagesAndTextClassification(__lowercase )
elif "irtr" in checkpoint_url:
A: Tuple = True
A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase )
elif "mlm_itm" in checkpoint_url:
A: Tuple = True
A: Optional[int] = ViltForMaskedLM(__lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict''']
A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase )
for src, dest in rename_keys:
rename_key(__lowercase , __lowercase , __lowercase )
read_in_q_k_v(__lowercase , __lowercase )
if mlm_model or irtr_model:
A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__lowercase )
# Define processor
A: Optional[Any] = ViltImageProcessor(size=3_8_4 )
A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A: Optional[int] = ViltProcessor(__lowercase , __lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: Any = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[str] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw )
if mlm_model:
A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].'''
else:
A: Optional[int] = '''How many cats are there?'''
A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: Any = model(**__lowercase )
# Verify outputs
if mlm_model:
A: Any = torch.Size([1, 1_1, 3_0_5_2_2] )
A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify masked token prediction equals "cats"
A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A: Any = torch.Size([1, 3_1_2_9] )
A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify vqa prediction equals "2"
A: Dict = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A: Union[str, Any] = torch.Size([1, 2] )
A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(__lowercase ).mkdir(exist_ok=__lowercase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowercase )
processor.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
UpperCamelCase = False
try:
UpperCamelCase = _is_package_available('''google.colab''')
except ModuleNotFoundError:
pass
@input.register
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : list = [] ) -> int:
'''simple docstring'''
A: Any = 0
A: Dict = choices
A: Optional[int] = prompt
if sys.platform == "win32":
A: Optional[int] = '''*'''
else:
A: int = '''➔ '''
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : str = "" ) -> List[str]:
'''simple docstring'''
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , SCREAMING_SNAKE_CASE_ )
else:
forceWrite(self.choices[index] , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]:
'''simple docstring'''
if index == self.position:
forceWrite(f""" {self.arrow_char} """ )
self.write_choice(SCREAMING_SNAKE_CASE_ )
else:
forceWrite(f""" {self.choices[index]}""" )
reset_cursor()
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Direction , SCREAMING_SNAKE_CASE_ : int = 1 ) -> str:
'''simple docstring'''
A: Tuple = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(SCREAMING_SNAKE_CASE_ )
move_cursor(SCREAMING_SNAKE_CASE_ , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP['''up'''] )
def _snake_case ( self : str ) -> Optional[int]:
'''simple docstring'''
self.move_direction(Direction.UP )
@input.mark(KEYMAP['''down'''] )
def _snake_case ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP['''newline'''] )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
return self.position
@input.mark(KEYMAP['''interrupt'''] )
def _snake_case ( self : Tuple ) -> int:
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , '''DOWN''' )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(SCREAMING_SNAKE_CASE_ )] for number in range(10 )] )
def _snake_case ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
A: Dict = int(chr(self.current_selection ) )
A: Dict = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , SCREAMING_SNAKE_CASE_ )
else:
return
else:
return
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : int = 0 ) -> Union[str, Any]:
'''simple docstring'''
if self.prompt:
linebreak()
forceWrite(self.prompt , '''\n''' )
if in_colab:
forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' )
else:
forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' )
A: Union[str, Any] = default_choice
for i in range(len(self.choices ) ):
self.print_choice(SCREAMING_SNAKE_CASE_ )
forceWrite('''\n''' )
move_cursor(len(self.choices ) - self.position , '''UP''' )
with cursor.hide():
while True:
if in_colab:
try:
A: str = int(builtins.input() )
except ValueError:
A: List[str] = default_choice
else:
A: Optional[int] = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , '''UP''' )
clear_line()
self.write_choice(SCREAMING_SNAKE_CASE_ , '''\n''' )
return choice
| 319 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
UpperCamelCase = {
'''b0''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict:
A: Tuple = EfficientNetConfig()
A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim''']
A: Optional[int] = CONFIG_MAP[model_name]['''width_coef''']
A: str = CONFIG_MAP[model_name]['''depth_coef''']
A: Dict = CONFIG_MAP[model_name]['''image_size''']
A: str = CONFIG_MAP[model_name]['''dropout_rate''']
A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding''']
A: Optional[Any] = '''huggingface/label-files'''
A: List[str] = '''imagenet-1k-id2label.json'''
A: Dict = 1_0_0_0
A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()}
A: int = idalabel
A: Tuple = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE( ) -> Any:
A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw )
return im
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
A: List[str] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , )
return preprocessor
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
A: List[str] = sorted(set(__lowercase ) )
A: Dict = len(__lowercase )
A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )}
A: Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
A: int = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
A: Union[str, Any] = {}
for item in rename_keys:
if item[0] in original_param_names:
A: str = '''efficientnet.''' + item[1]
A: int = '''classifier.weight'''
A: Tuple = '''classifier.bias'''
return key_mapping
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple:
for key, value in tf_params.items():
if "normalization" in key:
continue
A: Union[str, Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) )
else:
A: Any = torch.from_numpy(__lowercase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(__lowercase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple:
A: Optional[int] = model_classes[model_name](
include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , )
A: List[str] = original_model.trainable_variables
A: Optional[Any] = original_model.non_trainable_variables
A: Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A: int = param.numpy()
A: Tuple = list(tf_params.keys() )
# Load HuggingFace model
A: Dict = get_efficientnet_config(__lowercase )
A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval()
A: Dict = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
A: int = rename_keys(__lowercase )
replace_params(__lowercase , __lowercase , __lowercase )
# Initialize preprocessor and preprocess input image
A: List[Any] = convert_image_processor(__lowercase )
A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
A: str = hf_model(**__lowercase )
A: List[Any] = outputs.logits.detach().numpy()
# Original model inference
A: Any = False
A: List[Any] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A: str = image.img_to_array(__lowercase )
A: Dict = np.expand_dims(__lowercase , axis=0 )
A: Any = original_model.predict(__lowercase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(__lowercase ):
os.mkdir(__lowercase )
# Save converted model and image processor
hf_model.save_pretrained(__lowercase )
preprocessor.save_pretrained(__lowercase )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
A: int = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(__lowercase )
hf_model.push_to_hub(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
UpperCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 319 | 1 |
'''simple docstring'''
UpperCamelCase = 8.31_44_62 # Unit - J mol-1 K-1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> float:
if moles < 0 or kelvin < 0 or volume < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / volume
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> float:
if moles < 0 or kelvin < 0 or pressure < 0:
raise ValueError('''Invalid inputs. Enter positive value.''' )
return moles * kelvin * UNIVERSAL_GAS_CONSTANT / pressure
if __name__ == "__main__":
from doctest import testmod
testmod()
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FocalNetForImageClassification''',
'''FocalNetForMaskedImageModeling''',
'''FocalNetBackbone''',
'''FocalNetModel''',
'''FocalNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
from bisect import bisect
from itertools import accumulate
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> int:
A: Any = sorted(zip(__lowercase , __lowercase ) , key=lambda __lowercase : x[0] / x[1] , reverse=__lowercase )
A , A: Any = [i[0] for i in r], [i[1] for i in r]
A: int = list(accumulate(__lowercase ) )
A: int = bisect(__lowercase , __lowercase )
return (
0
if k == 0
else sum(vl[:k] ) + (w - acc[k - 1]) * (vl[k]) / (wt[k])
if k != n
else sum(vl[:k] )
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Any = {}
if "threshold" in kwargs:
A: List[Any] = kwargs['''threshold''']
return {}, {}, postprocess_kwargs
def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: int = load_image(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = torch.IntTensor([[image.height, image.width]] )
A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A: Any = target_size
return inputs
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
'''simple docstring'''
A: Tuple = model_inputs.pop('''target_size''' )
A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ )
A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A: Dict = model_inputs['''bbox''']
return model_outputs
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = model_outputs['''target_size''']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A , A: Union[str, Any] = target_size[0].tolist()
def unnormalize(SCREAMING_SNAKE_CASE_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )]
A: Dict = ['''score''', '''label''', '''box''']
A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = raw_annotations[0]
A: List[Any] = raw_annotation['''scores''']
A: List[Any] = raw_annotation['''labels''']
A: int = raw_annotation['''boxes''']
A: Any = scores.tolist()
A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels]
A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A: Tuple = ['''score''', '''label''', '''box''']
A: str = [
dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A , A , A , A: str = box.int().tolist()
A: str = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 319 | 1 |
'''simple docstring'''
import numpy as np
from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> np.ndarray:
# prepare kernel
# the kernel size have to be odd
if (ksize % 2) == 0:
A: Optional[int] = ksize + 1
A: str = np.zeros((ksize, ksize) , dtype=np.floataa )
# each value
for y in range(__lowercase ):
for x in range(__lowercase ):
# distance from center
A: str = x - ksize // 2
A: Union[str, Any] = y - ksize // 2
# degree to radiant
A: Dict = theta / 1_8_0 * np.pi
A: Optional[int] = np.cos(_theta )
A: str = np.sin(_theta )
# get kernel x
A: Dict = cos_theta * px + sin_theta * py
# get kernel y
A: List[Any] = -sin_theta * px + cos_theta * py
# fill kernel
A: Union[str, Any] = np.exp(
-(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi )
return gabor
if __name__ == "__main__":
import doctest
doctest.testmod()
# read original image
UpperCamelCase = imread('''../image_data/lena.jpg''')
# turn image in gray scale value
UpperCamelCase = cvtColor(img, COLOR_BGR2GRAY)
# Apply multiple Kernel to detect edges
UpperCamelCase = np.zeros(gray.shape[:2])
for theta in [0, 30, 60, 90, 120, 150]:
UpperCamelCase = gabor_filter_kernel(10, 8, theta, 10, 0, 0)
out += filteraD(gray, CV_8UC3, kernel_aa)
UpperCamelCase = out / out.max() * 255
UpperCamelCase = out.astype(np.uinta)
imshow('''Original''', gray)
imshow('''Gabor filter with 20x20 mask and 6 directions''', out)
waitKey(0)
| 319 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Optional[Any] = """convbert"""
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Dict = vocab_size
A: Tuple = hidden_size
A: Optional[int] = num_hidden_layers
A: List[str] = num_attention_heads
A: int = intermediate_size
A: int = hidden_act
A: List[str] = hidden_dropout_prob
A: int = attention_probs_dropout_prob
A: Tuple = max_position_embeddings
A: Any = type_vocab_size
A: str = initializer_range
A: Union[str, Any] = layer_norm_eps
A: str = embedding_size
A: Optional[int] = head_ratio
A: List[Any] = conv_kernel_size
A: List[Any] = num_groups
A: Optional[int] = classifier_dropout
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A: List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 319 | 1 |
'''simple docstring'''
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Dict = StableDiffusionXLImgaImgPipeline
UpperCamelCase_ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""}
UpperCamelCase_ : List[str] = PipelineTesterMixin.required_optional_params - {"""latents"""}
UpperCamelCase_ : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
UpperCamelCase_ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS
UpperCamelCase_ : int = IMAGE_TO_IMAGE_IMAGE_PARAMS
def _snake_case ( self : Any ) -> Dict:
'''simple docstring'''
torch.manual_seed(0 )
A: str = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
A: List[Any] = EulerDiscreteScheduler(
beta_start=0.0_0085 , beta_end=0.012 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
A: Union[str, Any] = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_28 , )
torch.manual_seed(0 )
A: Dict = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , hidden_act='''gelu''' , projection_dim=32 , )
A: str = CLIPTextModel(SCREAMING_SNAKE_CASE_ )
A: List[Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=SCREAMING_SNAKE_CASE_ )
A: Tuple = CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=SCREAMING_SNAKE_CASE_ )
A: List[str] = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any]=0 ) -> List[Any]:
'''simple docstring'''
A: List[Any] = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
A: Optional[int] = image / 2 + 0.5
if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ):
A: Union[str, Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
A: int = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
A: Tuple = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.75,
}
return inputs
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
A: int = '''cpu''' # ensure determinism for the device-dependent torch.Generator
A: Union[str, Any] = self.get_dummy_components()
A: str = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ )
A: Optional[int] = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
A: Any = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images
A: Optional[int] = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
A: Any = np.array([0.4656, 0.4840, 0.4439, 0.6698, 0.5574, 0.4524, 0.5799, 0.5943, 0.5165] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def _snake_case ( self : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def _snake_case ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def _snake_case ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
pass
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = self.get_dummy_components()
A: int = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ )
A: Tuple = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
A: Any = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
# forward without prompt embeds
A: Optional[Any] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = 3 * ['''this is a negative prompt''']
A: int = negative_prompt
A: int = 3 * [inputs['''prompt''']]
A: List[Any] = sd_pipe(**SCREAMING_SNAKE_CASE_ )
A: Dict = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
A: Optional[int] = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
A: List[Any] = 3 * ['''this is a negative prompt''']
A: str = 3 * [inputs.pop('''prompt''' )]
(
(
A
) , (
A
) , (
A
) , (
A
) ,
): Optional[Any] = sd_pipe.encode_prompt(SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = sd_pipe(
**SCREAMING_SNAKE_CASE_ , prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , )
A: str = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Optional[Any] ) -> Any:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[Any]="cpu" , SCREAMING_SNAKE_CASE_ : Tuple=torch.floataa , SCREAMING_SNAKE_CASE_ : Union[str, Any]=0 ) -> List[str]:
'''simple docstring'''
A: Any = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
A: Tuple = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 4, 64, 64) )
A: int = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def _snake_case ( self : Any ) -> str:
'''simple docstring'''
A: List[str] = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
A: Tuple = self.get_inputs(SCREAMING_SNAKE_CASE_ )
A: int = pipe(**SCREAMING_SNAKE_CASE_ ).images
A: Union[str, Any] = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 5_12, 5_12, 3)
A: Tuple = np.array([0.4_9493, 0.4_7896, 0.4_0798, 0.5_4214, 0.5_3212, 0.4_8202, 0.4_7656, 0.4_6329, 0.4_8506] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 319 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if len(__lowercase ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
A: Any = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
return 1 if digit in (0, 1) else (digit * factorial(digit - 1 ))
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
A: List[Any] = 0
A: Dict = number
while duplicate > 0:
A , A: List[str] = divmod(__lowercase , 1_0 )
fact_sum += factorial(__lowercase )
return fact_sum == number
if __name__ == "__main__":
print('''Program to check whether a number is a Krisnamurthy Number or not.''')
UpperCamelCase = int(input('''Enter number: ''').strip())
print(
f'{number} is {"" if krishnamurthy(number) else "not "}a Krishnamurthy Number.'
)
| 319 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
from transformers.testing_utils import pytest_terminal_summary_main
A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__lowercase , id=__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
A: Tuple = 0
# Doctest custom flag to ignore output.
UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''')
UpperCamelCase = doctest.OutputChecker
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase = CustomOutputChecker
UpperCamelCase = HfDoctestModule
UpperCamelCase = HfDocTestParser
| 319 | 1 |
'''simple docstring'''
# flake8: noqa
# Lint as: python3
from typing import Dict, List, Optional, Type
from .. import config
from ..utils import logging
from .formatting import (
ArrowFormatter,
CustomFormatter,
Formatter,
PandasFormatter,
PythonFormatter,
TensorFormatter,
format_table,
query_table,
)
from .np_formatter import NumpyFormatter
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {}
UpperCamelCase = {}
UpperCamelCase = {}
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = None , ) -> str:
A: Union[str, Any] = aliases if aliases is not None else []
if format_type in _FORMAT_TYPES:
logger.warning(
F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" )
A: Union[str, Any] = formatter_cls
for alias in set(aliases + [format_type] ):
if alias in _FORMAT_TYPES_ALIASES:
logger.warning(
F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" )
A: Optional[int] = format_type
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase = None ) -> Optional[Any]:
A: List[Any] = aliases if aliases is not None else []
for alias in set(aliases + [format_type] ):
A: List[str] = unavailable_error
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
_register_formatter(PythonFormatter, None, aliases=['''python'''])
_register_formatter(ArrowFormatter, '''arrow''', aliases=['''pa''', '''pyarrow'''])
_register_formatter(NumpyFormatter, '''numpy''', aliases=['''np'''])
_register_formatter(PandasFormatter, '''pandas''', aliases=['''pd'''])
_register_formatter(CustomFormatter, '''custom''')
if config.TORCH_AVAILABLE:
from .torch_formatter import TorchFormatter
_register_formatter(TorchFormatter, '''torch''', aliases=['''pt''', '''pytorch'''])
else:
UpperCamelCase = ValueError('''PyTorch needs to be installed to be able to return PyTorch tensors.''')
_register_unavailable_formatter(_torch_error, '''torch''', aliases=['''pt''', '''pytorch'''])
if config.TF_AVAILABLE:
from .tf_formatter import TFFormatter
_register_formatter(TFFormatter, '''tensorflow''', aliases=['''tf'''])
else:
UpperCamelCase = ValueError('''Tensorflow needs to be installed to be able to return Tensorflow tensors.''')
_register_unavailable_formatter(_tf_error, '''tensorflow''', aliases=['''tf'''])
if config.JAX_AVAILABLE:
from .jax_formatter import JaxFormatter
_register_formatter(JaxFormatter, '''jax''', aliases=[])
else:
UpperCamelCase = ValueError('''JAX needs to be installed to be able to return JAX arrays.''')
_register_unavailable_formatter(_jax_error, '''jax''', aliases=[])
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[str]:
if format_type in _FORMAT_TYPES_ALIASES:
return _FORMAT_TYPES_ALIASES[format_type]
else:
return format_type
def SCREAMING_SNAKE_CASE( __lowercase , **__lowercase ) -> Formatter:
A: int = get_format_type_from_alias(__lowercase )
if format_type in _FORMAT_TYPES:
return _FORMAT_TYPES[format_type](**__lowercase )
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
else:
raise ValueError(
F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
| 319 |
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCamelCase = tuple[int, int]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
'''simple docstring'''
A: Any = []
A: int = set()
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
A: Optional[int] = []
((A) , (A)): str = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)): int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
'''simple docstring'''
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
A: str = []
((A) , (A)): List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)): Any = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return self.elements[0][1]
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
((A) , (A)): Dict = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
# euclidean distance
A: List[str] = np.array(__lowercase )
A: Optional[int] = np.array(__lowercase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
# integer division by time variable
return consistent_heuristic(__lowercase , __lowercase ) // t
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase )
return ans
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
A: Union[str, Any] = np.chararray((n, n) )
for i in range(__lowercase ):
for j in range(__lowercase ):
A: Union[str, Any] = '''*'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (j, (n - 1) - i) in blocks:
A: Optional[Any] = '''#'''
A: Tuple = '''-'''
A: List[str] = back_pointer[goal]
while x != start:
((A) , (A)): Tuple = x
# print(x)
A: List[str] = '''-'''
A: str = back_pointer[x]
A: Dict = '''-'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A: List[str] = back_pointer[goal]
while x != start:
print(__lowercase , end=''' ''' )
A: Optional[int] = back_pointer[x]
print(__lowercase )
sys.exit()
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
for itera in range(__lowercase ):
open_list[itera].remove_element(__lowercase )
# print("s", s)
# print("j", j)
((A) , (A)): Tuple = s
A: Optional[Any] = (x - 1, y)
A: str = (x + 1, y)
A: List[Any] = (x, y + 1)
A: int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(__lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(__lowercase )
A: int = -1
A: int = float('''inf''' )
if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1:
A: List[str] = g_function[s] + 1
A: List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) )
if neighbours not in close_list_inad:
for var in range(1 , __lowercase ):
if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key(
__lowercase , 0 , __lowercase , __lowercase ):
open_list[j].put(
__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( ) -> Tuple:
A: str = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCamelCase = make_common_ground()
UpperCamelCase = blocks_blk
# hyper parameters
UpperCamelCase = 1
UpperCamelCase = 1
UpperCamelCase = 20
UpperCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
UpperCamelCase = (0, 0)
UpperCamelCase = (n - 1, n - 1)
UpperCamelCase = 1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: int = {start: 0, goal: float('''inf''' )}
A: Union[str, Any] = {start: -1, goal: -1}
A: List[Any] = []
A: Union[str, Any] = set()
for i in range(__lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
A: list[int] = []
A: list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , __lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A , A: Union[str, Any] = open_list[i].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_inad.append(__lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A: Union[str, Any] = open_list[0].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_anchor.append(__lowercase )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(__lowercase ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 319 | 1 |
'''simple docstring'''
UpperCamelCase = [
(1000, '''M'''),
(900, '''CM'''),
(500, '''D'''),
(400, '''CD'''),
(100, '''C'''),
(90, '''XC'''),
(50, '''L'''),
(40, '''XL'''),
(10, '''X'''),
(9, '''IX'''),
(5, '''V'''),
(4, '''IV'''),
(1, '''I'''),
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: Union[str, Any] = {'''I''': 1, '''V''': 5, '''X''': 1_0, '''L''': 5_0, '''C''': 1_0_0, '''D''': 5_0_0, '''M''': 1_0_0_0}
A: Dict = 0
A: Tuple = 0
while place < len(__lowercase ):
if (place + 1 < len(__lowercase )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def SCREAMING_SNAKE_CASE( __lowercase ) -> str:
A: Any = []
for arabic, roman in ROMAN:
((A) , (A)): Tuple = divmod(__lowercase , __lowercase )
result.append(roman * factor )
if number == 0:
break
return "".join(__lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int:
A: Any = 1
A: Optional[Any] = 0
for divide_by_number in range(__lowercase , digit + 1 ):
A: list[int] = []
A: List[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__lowercase ):
A: Any = len(__lowercase )
A: Dict = divide_by_number
else:
has_been_divided.append(__lowercase )
A: str = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> float:
return price * (1 + tax_rate)
if __name__ == "__main__":
print(f'{price_plus_tax(100, 0.25) = }')
print(f'{price_plus_tax(1_25.50, 0.05) = }')
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
import json
import os
import re
import unicodedata
from json.encoder import INFINITY
from typing import Any, Dict, List, Optional, Tuple, Union
import numpy as np
import regex
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding
from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging
from ...utils.generic import _is_jax, _is_numpy
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''artists_file''': '''artists.json''',
'''lyrics_file''': '''lyrics.json''',
'''genres_file''': '''genres.json''',
}
UpperCamelCase = {
'''artists_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''',
},
'''genres_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''',
},
'''lyrics_file''': {
'''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''',
},
}
UpperCamelCase = {
'''jukebox''': 512,
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Union[str, Any] = VOCAB_FILES_NAMES
UpperCamelCase_ : str = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES
UpperCamelCase_ : Optional[int] = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple=["v3", "v2", "v2"] , SCREAMING_SNAKE_CASE_ : List[str]=5_12 , SCREAMING_SNAKE_CASE_ : Optional[Any]=5 , SCREAMING_SNAKE_CASE_ : List[Any]="<|endoftext|>" , **SCREAMING_SNAKE_CASE_ : str , ) -> Tuple:
'''simple docstring'''
A: Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
super().__init__(
unk_token=SCREAMING_SNAKE_CASE_ , n_genres=SCREAMING_SNAKE_CASE_ , version=SCREAMING_SNAKE_CASE_ , max_n_lyric_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Optional[int] = version
A: Tuple = max_n_lyric_tokens
A: Union[str, Any] = n_genres
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: List[Any] = json.load(SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: Optional[int] = json.load(SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: Optional[Any] = json.load(SCREAMING_SNAKE_CASE_ )
A: List[Any] = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+'''
# In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters.
if len(self.lyrics_encoder ) == 79:
A: Optional[Any] = oov.replace(R'''\-\'''' , R'''\-+\'''' )
A: Optional[Any] = regex.compile(SCREAMING_SNAKE_CASE_ )
A: Tuple = {v: k for k, v in self.artists_encoder.items()}
A: Dict = {v: k for k, v in self.genres_encoder.items()}
A: Optional[int] = {v: k for k, v in self.lyrics_encoder.items()}
@property
def _snake_case ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
return dict(self.artists_encoder , self.genres_encoder , self.lyrics_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = [self.artists_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for artist in list_artists]
for genres in range(len(SCREAMING_SNAKE_CASE_ ) ):
A: Optional[int] = [self.genres_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for genre in list_genres[genres]]
A: Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] ))
A: Optional[Any] = [[self.lyrics_encoder.get(SCREAMING_SNAKE_CASE_ , 0 ) for character in list_lyrics[0]], [], []]
return artists_id, list_genres, lyric_ids
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Union[str, Any]:
'''simple docstring'''
return list(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : str ) -> Optional[int]:
'''simple docstring'''
A , A , A: Optional[Any] = self.prepare_for_tokenization(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = self._tokenize(SCREAMING_SNAKE_CASE_ )
return artist, genre, lyrics
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ) -> Tuple[str, str, str, Dict[str, Any]]:
'''simple docstring'''
for idx in range(len(self.version ) ):
if self.version[idx] == "v3":
A: Tuple = artists[idx].lower()
A: str = [genres[idx].lower()]
else:
A: str = self._normalize(artists[idx] ) + '''.v2'''
A: Dict = [
self._normalize(SCREAMING_SNAKE_CASE_ ) + '''.v2''' for genre in genres[idx].split('''_''' )
] # split is for the full dictionary with combined genres
if self.version[0] == "v2":
A: Any = regex.compile(R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' )
A: int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n'''
A: List[str] = {vocab[index]: index + 1 for index in range(len(SCREAMING_SNAKE_CASE_ ) )}
A: Optional[Any] = 0
A: Any = len(SCREAMING_SNAKE_CASE_ ) + 1
A: int = self.vocab
A: Optional[Any] = {v: k for k, v in self.vocab.items()}
A: List[Any] = ''''''
else:
A: Tuple = regex.compile(R'''[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+''' )
A: Optional[int] = self._run_strip_accents(SCREAMING_SNAKE_CASE_ )
A: List[Any] = lyrics.replace('''\\''' , '''\n''' )
A: Tuple = self.out_of_vocab.sub('''''' , SCREAMING_SNAKE_CASE_ ), [], []
return artists, genres, lyrics
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> int:
'''simple docstring'''
A: str = unicodedata.normalize('''NFD''' , SCREAMING_SNAKE_CASE_ )
A: List[Any] = []
for char in text:
A: int = unicodedata.category(SCREAMING_SNAKE_CASE_ )
if cat == "Mn":
continue
output.append(SCREAMING_SNAKE_CASE_ )
return "".join(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> str:
'''simple docstring'''
A: Optional[int] = (
[chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''a''' ) , ord('''z''' ) + 1 )]
+ [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''A''' ) , ord('''Z''' ) + 1 )]
+ [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord('''0''' ) , ord('''9''' ) + 1 )]
+ ['''.''']
)
A: str = frozenset(SCREAMING_SNAKE_CASE_ )
A: Dict = re.compile(R'''_+''' )
A: List[str] = ''''''.join([c if c in accepted else '''_''' for c in text.lower()] )
A: Union[str, Any] = pattern.sub('''_''' , SCREAMING_SNAKE_CASE_ ).strip('''_''' )
return text
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> str:
'''simple docstring'''
return " ".join(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Union[str, TensorType]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> Optional[int]:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
A: List[Any] = TensorType(SCREAMING_SNAKE_CASE_ )
# Get a function reference for the correct framework
if tensor_type == TensorType.TENSORFLOW:
if not is_tf_available():
raise ImportError(
'''Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.''' )
import tensorflow as tf
A: Any = tf.constant
A: int = tf.is_tensor
elif tensor_type == TensorType.PYTORCH:
if not is_torch_available():
raise ImportError('''Unable to convert output to PyTorch tensors format, PyTorch is not installed.''' )
import torch
A: Optional[int] = torch.tensor
A: str = torch.is_tensor
elif tensor_type == TensorType.JAX:
if not is_flax_available():
raise ImportError('''Unable to convert output to JAX tensors format, JAX is not installed.''' )
import jax.numpy as jnp # noqa: F811
A: List[Any] = jnp.array
A: Optional[Any] = _is_jax
else:
A: str = np.asarray
A: Dict = _is_numpy
# Do the tensor conversion in batch
try:
if prepend_batch_axis:
A: List[str] = [inputs]
if not is_tensor(SCREAMING_SNAKE_CASE_ ):
A: List[Any] = as_tensor(SCREAMING_SNAKE_CASE_ )
except: # noqa E722
raise ValueError(
'''Unable to create tensor, you should probably activate truncation and/or padding '''
'''with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.''' )
return inputs
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : List[Any]="" , SCREAMING_SNAKE_CASE_ : Union[str, Any]="pt" ) -> BatchEncoding:
'''simple docstring'''
A: Tuple = [0, 0, 0]
A: Optional[Any] = [artist] * len(self.version )
A: Union[str, Any] = [genres] * len(self.version )
A , A , A: Union[str, Any] = self.tokenize(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A , A , A: str = self._convert_token_to_id(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: int = [-INFINITY] * len(full_tokens[-1] )
A: Dict = [
self.convert_to_tensors(
[input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] , tensor_type=SCREAMING_SNAKE_CASE_ )
for i in range(len(self.version ) )
]
return BatchEncoding({'''input_ids''': input_ids, '''attention_masks''': attention_masks} )
def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: List[str] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''artists_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.artists_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) )
A: Optional[int] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''genres_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.genres_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) )
A: List[str] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''lyrics_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.lyrics_encoder , ensure_ascii=SCREAMING_SNAKE_CASE_ ) )
return (artists_file, genres_file, lyrics_file)
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[int]:
'''simple docstring'''
A: Tuple = self.artists_decoder.get(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = [self.genres_decoder.get(SCREAMING_SNAKE_CASE_ ) for genre in genres_index]
A: Tuple = [self.lyrics_decoder.get(SCREAMING_SNAKE_CASE_ ) for character in lyric_index]
return artist, genres, lyrics
| 319 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any:
A: Any = [x.strip() for x in open(__lowercase ).readlines()]
A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )]
A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase )
if save_path is not None:
save_json(__lowercase , __lowercase , indent=__lowercase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 319 | 1 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_flava import FlavaImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE_ : Optional[int] , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use FlavaImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list:
A: Dict = length or len(__lowercase )
A: Dict = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
A , A: Tuple = list_data[i + 1], list_data[i]
A: Union[str, Any] = True
return list_data if not swapped else bubble_sort(__lowercase , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
import baseaa
def SCREAMING_SNAKE_CASE( __lowercase ) -> bytes:
return baseaa.baaencode(string.encode('''utf-8''' ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> str:
return baseaa.baadecode(__lowercase ).decode('''utf-8''' )
if __name__ == "__main__":
UpperCamelCase = '''Hello World!'''
UpperCamelCase = baseaa_encode(test)
print(encoded)
UpperCamelCase = baseaa_decode(encoded)
print(decoded)
| 319 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
import numpy as np
from transformers import BatchFeature
from transformers.testing_utils import require_tf, require_torch
from .test_feature_extraction_common import FeatureExtractionSavingTestMixin
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : List[str] = None
UpperCamelCase_ : Optional[Any] = None
@property
def _snake_case ( self : Tuple ) -> str:
'''simple docstring'''
return self.feat_extract_tester.prepare_feat_extract_dict()
def _snake_case ( self : str ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''feature_size''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''sampling_rate''' ) )
self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , '''padding_value''' ) )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: List[str] = self.feat_extract_tester.prepare_inputs_for_common()
A: List[Any] = self.feature_extraction_class(**self.feat_extract_dict )
A: Optional[int] = feat_extract.model_input_names[0]
A: str = BatchFeature({input_name: speech_inputs} )
self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == len(SCREAMING_SNAKE_CASE_ ) for x, y in zip(SCREAMING_SNAKE_CASE_ , processed_features[input_name] ) ) )
A: List[str] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' )
A: Any = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A: Dict = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_torch
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict )
A: List[str] = feat_extract.model_input_names[0]
A: Optional[int] = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' )
A: Union[str, Any] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A: Any = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
@require_tf
def _snake_case ( self : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
A: str = self.feat_extract_tester.prepare_inputs_for_common(equal_length=SCREAMING_SNAKE_CASE_ )
A: List[str] = self.feature_extraction_class(**self.feat_extract_dict )
A: Union[str, Any] = feat_extract.model_input_names[0]
A: Dict = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' )
A: Optional[int] = processed_features[input_name]
if len(batch_features_input.shape ) < 3:
A: Optional[Any] = batch_features_input[:, :, None]
self.assertTrue(
batch_features_input.shape
== (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> Dict:
'''simple docstring'''
def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ : Optional[int] ):
A: Tuple = len(input[0] )
for input_slice in input[1:]:
if len(SCREAMING_SNAKE_CASE_ ) != length:
return False
return True
def _inputs_are_equal(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Union[str, Any] ):
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
return False
for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE_ ) , np.asarray(SCREAMING_SNAKE_CASE_ ) , atol=1E-3 ):
return False
return True
A: int = self.feature_extraction_class(**self.feat_extract_dict )
A: int = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE_ )
A: Dict = feat_extract.model_input_names[0]
A: Optional[int] = BatchFeature({input_name: speech_inputs} )
A: Optional[int] = self.feat_extract_tester.seq_length_diff
A: List[Any] = self.feat_extract_tester.max_seq_length + pad_diff
A: List[str] = self.feat_extract_tester.min_seq_length
A: int = self.feat_extract_tester.batch_size
A: List[Any] = self.feat_extract_tester.feature_size
# test padding for List[int] + numpy
A: int = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = input_a[input_name]
A: int = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' )
A: Tuple = input_a[input_name]
A: Dict = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[-1] ) )
A: Tuple = input_a[input_name]
A: Union[str, Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''np''' )
A: Optional[Any] = input_a[input_name]
# max_length parameter has to be provided when setting `padding="max_length"`
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''max_length''' )[input_name]
A: Tuple = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
A: Optional[Any] = input_a[input_name]
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(len(input_a[0] ) == pad_min_length )
self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff )
self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) )
self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size )
# test padding for `pad_to_multiple_of` for List[int] + numpy
A: Any = feat_extract.pad(SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=10 )
A: Any = input_a[input_name]
A: str = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , pad_to_multiple_of=10 )
A: Optional[Any] = input_a[input_name]
A: int = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = input_a[input_name]
A: List[str] = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , pad_to_multiple_of=10 , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' , )
A: Union[str, Any] = input_a[input_name]
self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) % 10 == 0 for x in input_a ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
A: str = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10
self.assertTrue(all(len(SCREAMING_SNAKE_CASE_ ) == expected_mult_pad_length for x in input_a ) )
self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) )
if feature_size > 1:
self.assertTrue(input_a.shape[2] == feature_size )
# Check padding value is correct
A: Optional[Any] = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum()
self.assertTrue(
abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) )
< 1E-3 )
self.assertTrue(
abs(
np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum()
- padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) )
< 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1E-3 )
self.assertTrue(
abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) )
< 1E-3 )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : List[Any]=False ) -> Tuple:
'''simple docstring'''
def _inputs_have_equal_length(SCREAMING_SNAKE_CASE_ : str ):
A: List[Any] = len(input[0] )
for input_slice in input[1:]:
if len(SCREAMING_SNAKE_CASE_ ) != length:
return False
return True
def _inputs_are_equal(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Tuple ):
if len(SCREAMING_SNAKE_CASE_ ) != len(SCREAMING_SNAKE_CASE_ ):
return False
for input_slice_a, input_slice_a in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
if not np.allclose(np.asarray(SCREAMING_SNAKE_CASE_ ) , np.asarray(SCREAMING_SNAKE_CASE_ ) , atol=1E-3 ):
return False
return True
A: List[str] = self.feature_extraction_class(**self.feat_extract_dict )
A: int = self.feat_extract_tester.prepare_inputs_for_common(numpify=SCREAMING_SNAKE_CASE_ )
A: List[str] = feat_extract.model_input_names[0]
A: Tuple = BatchFeature({input_name: speech_inputs} )
# truncate to smallest
A: Any = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=SCREAMING_SNAKE_CASE_ )
A: Any = input_a[input_name]
A: Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) )
A: List[str] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
# truncate to smallest with np
A: Any = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=SCREAMING_SNAKE_CASE_ , )
A: Any = input_a[input_name]
A: List[Any] = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' )
A: Optional[int] = input_a[input_name]
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
# truncate to middle
A: Optional[int] = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' , )
A: Dict = input_a[input_name]
A: List[Any] = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=SCREAMING_SNAKE_CASE_ )
A: int = input_a[input_name]
A: Dict = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' )
A: Tuple = input_a[input_name]
self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(_inputs_are_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# since truncation forces padding to be smaller than longest input
# function can't return `np.ndarray`, but has to return list
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) )
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
feat_extract.pad(SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , truncation=SCREAMING_SNAKE_CASE_ )[input_name]
# padding has to be max_length when setting `truncation=True`
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , truncation=SCREAMING_SNAKE_CASE_ )[input_name]
# max_length parameter has to be provided when setting `truncation=True` and padding="max_length"
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''max_length''' , truncation=SCREAMING_SNAKE_CASE_ )[input_name]
# test truncation for `pad_to_multiple_of` for List[int] + numpy
A: List[Any] = 12
A: int = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , )
A: Union[str, Any] = input_a[input_name]
A: int = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , )
A: Tuple = input_a[input_name]
# retrieve expected_length as multiple of pad_to_multiple_of
A: List[Any] = len(speech_inputs[0] )
if expected_length % pad_to_multiple_of != 0:
A: Any = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of
self.assertTrue(len(input_a[0] ) == expected_length )
self.assertTrue(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
self.assertFalse(_inputs_have_equal_length(SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : Union[str, Any] ) -> Dict:
'''simple docstring'''
self._check_padding(numpify=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> Tuple:
'''simple docstring'''
self._check_padding(numpify=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
self._check_truncation(numpify=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[Any] ) -> Dict:
'''simple docstring'''
self._check_truncation(numpify=SCREAMING_SNAKE_CASE_ )
@require_torch
def _snake_case ( self : int ) -> str:
'''simple docstring'''
A: str = self.feature_extraction_class(**self.feat_extract_dict )
A: Optional[int] = self.feat_extract_tester.prepare_inputs_for_common()
A: Optional[int] = feat_extract.model_input_names[0]
A: int = BatchFeature({input_name: speech_inputs} )
A: Optional[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''np''' )[input_name]
A: Optional[int] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''pt''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1E-2 )
@require_tf
def _snake_case ( self : Union[str, Any] ) -> Any:
'''simple docstring'''
A: Dict = self.feature_extraction_class(**self.feat_extract_dict )
A: Tuple = self.feat_extract_tester.prepare_inputs_for_common()
A: Tuple = feat_extract.model_input_names[0]
A: Union[str, Any] = BatchFeature({input_name: speech_inputs} )
A: List[Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''np''' )[input_name]
A: Union[str, Any] = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''tf''' )[input_name]
self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1E-2 )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = self.feat_extract_dict
A: Dict = True
A: List[Any] = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ )
A: int = self.feat_extract_tester.prepare_inputs_for_common()
A: Dict = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
A: Optional[Any] = feat_extract.model_input_names[0]
A: Dict = BatchFeature({input_name: speech_inputs} )
A: Any = feat_extract.pad(SCREAMING_SNAKE_CASE_ , padding='''longest''' , return_tensors='''np''' )
self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) )
self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.feat_extract_dict
A: Union[str, Any] = True
A: str = self.feature_extraction_class(**SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = self.feat_extract_tester.prepare_inputs_for_common()
A: int = [len(SCREAMING_SNAKE_CASE_ ) for x in speech_inputs]
A: Optional[Any] = feat_extract.model_input_names[0]
A: Tuple = BatchFeature({input_name: speech_inputs} )
A: List[str] = min(SCREAMING_SNAKE_CASE_ )
A: Any = feat_extract.pad(
SCREAMING_SNAKE_CASE_ , padding='''max_length''' , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
self.assertIn('''attention_mask''' , SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] )
self.assertListEqual(
processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
| 319 |
'''simple docstring'''
from itertools import permutations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
A: int = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int:
return sum(
int(''''''.join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 319 | 1 |
'''simple docstring'''
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
UpperCamelCase = TypeVar('''T''')
class lowerCAmelCase_ ( Generic[T] ):
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : bool = True ) -> None:
'''simple docstring'''
A: dict[T, list[T]] = {} # dictionary of lists
A: Optional[Any] = directed
def _snake_case ( self : Dict , SCREAMING_SNAKE_CASE_ : T , SCREAMING_SNAKE_CASE_ : T ) -> GraphAdjacencyList[T]:
'''simple docstring'''
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_ )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
A: str = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
A: str = [destination_vertex]
A: int = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_ )
A: Optional[int] = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
A: str = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
A: List[str] = [destination_vertex]
A: Dict = []
return self
def __repr__( self : Union[str, Any] ) -> str:
'''simple docstring'''
return pformat(self.adj_list )
| 319 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 1 |
'''simple docstring'''
import os
import tempfile
import unittest
import uuid
from pathlib import Path
from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision
from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText
from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available
if is_torch_available():
import torch
if is_soundfile_availble():
import soundfile as sf
if is_vision_available():
from PIL import Image
def SCREAMING_SNAKE_CASE( __lowercase="" ) -> str:
A: Tuple = tempfile.mkdtemp()
return os.path.join(__lowercase , str(uuid.uuida() ) + suffix )
@require_soundfile
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Tuple ) -> str:
'''simple docstring'''
A: Dict = torch.rand(12 , dtype=torch.floataa ) - 0.5
A: Tuple = AgentAudio(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() , atol=1E-4 ) )
del agent_type
# Ensure the path remains even after the object deletion
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
# Ensure that the file contains the same value as the original tensor
A , A: Any = sf.read(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , torch.tensor(SCREAMING_SNAKE_CASE_ ) , atol=1E-4 ) )
def _snake_case ( self : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = torch.rand(12 , dtype=torch.floataa ) - 0.5
A: Dict = get_new_path(suffix='''.wav''' )
sf.write(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , 1_60_00 )
A: Union[str, Any] = AgentAudio(SCREAMING_SNAKE_CASE_ )
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() , atol=1E-4 ) )
self.assertEqual(agent_type.to_string() , SCREAMING_SNAKE_CASE_ )
@require_vision
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : int ) -> Optional[int]:
'''simple docstring'''
A: int = torch.randint(0 , 2_56 , (64, 64, 3) )
A: Optional[int] = AgentImage(SCREAMING_SNAKE_CASE_ )
A: Dict = str(agent_type.to_string() )
# Ensure that the tensor and the agent_type's tensor are the same
self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , agent_type._tensor , atol=1E-4 ) )
self.assertIsInstance(agent_type.to_raw() , Image.Image )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : int ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
A: Dict = Image.open(SCREAMING_SNAKE_CASE_ )
A: int = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertTrue(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : Optional[Any] ) -> str:
'''simple docstring'''
A: List[str] = Path(get_tests_dir('''fixtures/tests_samples/COCO''' ) ) / '''000000039769.png'''
A: int = Image.open(SCREAMING_SNAKE_CASE_ )
A: Dict = AgentImage(SCREAMING_SNAKE_CASE_ )
self.assertFalse(path.samefile(agent_type.to_string() ) )
self.assertTrue(image == agent_type.to_raw() )
# Ensure the path remains even after the object deletion
del agent_type
self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) )
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : str ) -> Optional[Any]:
'''simple docstring'''
A: Union[str, Any] = '''Hey!'''
A: Optional[Any] = AgentText(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , agent_type.to_string() )
self.assertEqual(SCREAMING_SNAKE_CASE_ , agent_type.to_raw() )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {
'''configuration_clap''': [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapAudioConfig''',
'''ClapConfig''',
'''ClapTextConfig''',
],
'''processing_clap''': ['''ClapProcessor'''],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''CLAP_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''ClapModel''',
'''ClapPreTrainedModel''',
'''ClapTextModel''',
'''ClapTextModelWithProjection''',
'''ClapAudioModel''',
'''ClapAudioModelWithProjection''',
]
UpperCamelCase = ['''ClapFeatureExtractor''']
if TYPE_CHECKING:
from .configuration_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioConfig,
ClapConfig,
ClapTextConfig,
)
from .processing_clap import ClapProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_clap import ClapFeatureExtractor
from .modeling_clap import (
CLAP_PRETRAINED_MODEL_ARCHIVE_LIST,
ClapAudioModel,
ClapAudioModelWithProjection,
ClapModel,
ClapPreTrainedModel,
ClapTextModel,
ClapTextModelWithProjection,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
A: str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]:
if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
A: Union[str, Any] = len(__lowercase )
A: str = matrix_length // 2
A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )]
A: Optional[Any] = [
[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase )
]
A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )]
A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )]
return top_left, top_right, bot_left, bot_right
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]:
return len(__lowercase ), len(matrix[0] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> None:
print('''\n'''.join(str(__lowercase ) for line in matrix ) )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase ) == (2, 2):
return default_matrix_multiplication(__lowercase , __lowercase )
A , A , A , A: Union[str, Any] = split_matrix(__lowercase )
A , A , A , A: List[Any] = split_matrix(__lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
A: Any = matrix_addition(__lowercase , __lowercase )
A: List[Any] = matrix_addition(__lowercase , __lowercase )
A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
# construct the new matrix from our 4 quadrants
A: Union[str, Any] = []
for i in range(len(__lowercase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowercase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]:
A: int = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(__lowercase )
A: str = matrix_dimensions(__lowercase )
A: str = matrix_dimensions(__lowercase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
A: Union[str, Any] = max(*__lowercase , *__lowercase )
A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) )
A: List[Any] = matrixa
A: Tuple = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
A: Any = actual_strassen(__lowercase , __lowercase )
# Removing the additional zeros
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCamelCase = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 319 | 1 |
'''simple docstring'''
from dataclasses import dataclass
from typing import List, Optional, Union
import numpy as np
import PIL
from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available
from .timesteps import (
fastaa_timesteps,
smartaa_timesteps,
smartaa_timesteps,
smartaaa_timesteps,
smartaaa_timesteps,
superaa_timesteps,
superaa_timesteps,
superaaa_timesteps,
)
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Union[List[PIL.Image.Image], np.ndarray]
UpperCamelCase_ : Optional[List[bool]]
UpperCamelCase_ : Optional[List[bool]]
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import * # noqa F403
else:
from .pipeline_if import IFPipeline
from .pipeline_if_imgaimg import IFImgaImgPipeline
from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline
from .pipeline_if_inpainting import IFInpaintingPipeline
from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline
from .pipeline_if_superresolution import IFSuperResolutionPipeline
from .safety_checker import IFSafetyChecker
from .watermark import IFWatermarker
| 319 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = 2
@register_to_config
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = sigma_max
# setable values
A: int = None
A: np.IntTensor = None
A: torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = num_inference_steps
A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
A: str = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A: List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device )
A: Optional[Any] = sigma + gamma * sigma
A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: Union[str, Any] = sample_hat + sigma_hat * model_output
A: str = (sample_hat - pred_original_sample) / sigma_hat
A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: int = sample_prev + sigma_prev * model_output
A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev
A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
'''simple docstring'''
raise NotImplementedError()
| 319 | 1 |
'''simple docstring'''
import shutil
import tempfile
import unittest
import numpy as np
import pytest
from transformers import is_speech_available, is_vision_available
from transformers.testing_utils import require_torch
if is_vision_available():
from transformers import TvltImageProcessor
if is_speech_available():
from transformers import TvltFeatureExtractor
from transformers import TvltProcessor
@require_torch
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Any ) -> int:
'''simple docstring'''
A: Optional[Any] = '''ZinengTang/tvlt-base'''
A: List[Any] = tempfile.mkdtemp()
def _snake_case ( self : List[str] , **SCREAMING_SNAKE_CASE_ : Dict ) -> str:
'''simple docstring'''
return TvltImageProcessor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Any , **SCREAMING_SNAKE_CASE_ : int ) -> Optional[Any]:
'''simple docstring'''
return TvltFeatureExtractor.from_pretrained(self.checkpoint , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] ) -> Optional[int]:
'''simple docstring'''
shutil.rmtree(self.tmpdirname )
def _snake_case ( self : List[Any] ) -> int:
'''simple docstring'''
A: List[str] = self.get_image_processor()
A: str = self.get_feature_extractor()
A: int = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(self.tmpdirname )
A: List[str] = TvltProcessor.from_pretrained(self.tmpdirname )
self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Any ) -> Union[str, Any]:
'''simple docstring'''
A: int = self.get_image_processor()
A: Any = self.get_feature_extractor()
A: int = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
A: Any = np.ones([1_20_00] )
A: Optional[Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
A: int = processor(audio=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
for key in audio_dict.keys():
self.assertAlmostEqual(audio_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self : Dict ) -> Dict:
'''simple docstring'''
A: Optional[int] = self.get_image_processor()
A: List[Any] = self.get_feature_extractor()
A: List[Any] = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = np.ones([3, 2_24, 2_24] )
A: Optional[int] = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
A: Any = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='''np''' )
for key in image_dict.keys():
self.assertAlmostEqual(image_dict[key].sum() , input_processor[key].sum() , delta=1E-2 )
def _snake_case ( self : str ) -> Dict:
'''simple docstring'''
A: Union[str, Any] = self.get_image_processor()
A: Tuple = self.get_feature_extractor()
A: Any = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
A: Any = np.ones([1_20_00] )
A: Dict = np.ones([3, 2_24, 2_24] )
A: Union[str, Any] = processor(audio=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(list(inputs.keys() ) , ['''audio_values''', '''audio_mask''', '''pixel_values''', '''pixel_mask'''] )
# test if it raises when no input is passed
with pytest.raises(SCREAMING_SNAKE_CASE_ ):
processor()
def _snake_case ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
A: Union[str, Any] = self.get_image_processor()
A: List[str] = self.get_feature_extractor()
A: List[Any] = TvltProcessor(image_processor=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
processor.model_input_names , image_processor.model_input_names + feature_extractor.model_input_names , msg='''`processor` and `image_processor`+`feature_extractor` model input names do not match''' , )
| 319 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 | 1 |
'''simple docstring'''
import numpy as np
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) -> Dict:
A: List[Any] = int(np.ceil((x_end - xa) / h ) )
A: int = np.zeros((n + 1,) )
A: Tuple = ya
A: Dict = xa
for k in range(__lowercase ):
A: Tuple = f(__lowercase , y[k] )
A: Any = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
A: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka )
A: List[str] = f(x + h , y[k] + h * ka )
A: Tuple = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka)
x += h
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''microsoft/focalnet-tiny''': '''https://huggingface.co/microsoft/focalnet-tiny/resolve/main/config.json''',
}
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : str = """focalnet"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=2_24 , SCREAMING_SNAKE_CASE_ : List[Any]=4 , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=96 , SCREAMING_SNAKE_CASE_ : List[str]=False , SCREAMING_SNAKE_CASE_ : int=[1_92, 3_84, 7_68, 7_68] , SCREAMING_SNAKE_CASE_ : Dict=[2, 2, 6, 2] , SCREAMING_SNAKE_CASE_ : Dict=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_ : Dict=[3, 3, 3, 3] , SCREAMING_SNAKE_CASE_ : Dict="gelu" , SCREAMING_SNAKE_CASE_ : Optional[int]=4.0 , SCREAMING_SNAKE_CASE_ : Tuple=0.0 , SCREAMING_SNAKE_CASE_ : Any=0.1 , SCREAMING_SNAKE_CASE_ : int=False , SCREAMING_SNAKE_CASE_ : int=1E-4 , SCREAMING_SNAKE_CASE_ : List[Any]=False , SCREAMING_SNAKE_CASE_ : Optional[Any]=False , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , SCREAMING_SNAKE_CASE_ : Any=0.02 , SCREAMING_SNAKE_CASE_ : Tuple=1E-5 , SCREAMING_SNAKE_CASE_ : List[Any]=32 , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : Tuple=None , **SCREAMING_SNAKE_CASE_ : Union[str, Any] , ) -> Tuple:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = image_size
A: str = patch_size
A: Any = num_channels
A: Dict = embed_dim
A: int = use_conv_embed
A: Union[str, Any] = hidden_sizes
A: Dict = depths
A: Optional[Any] = focal_levels
A: List[Any] = focal_windows
A: List[str] = hidden_act
A: Dict = mlp_ratio
A: int = hidden_dropout_prob
A: List[Any] = drop_path_rate
A: Tuple = use_layerscale
A: Optional[int] = layerscale_value
A: Tuple = use_post_layernorm
A: Tuple = use_post_layernorm_in_modulation
A: str = normalize_modulator
A: Any = initializer_range
A: str = layer_norm_eps
A: Tuple = encoder_stride
A: Optional[Any] = ['''stem'''] + [f"""stage{idx}""" for idx in range(1 , len(self.depths ) + 1 )]
A , A: List[str] = get_aligned_output_features_output_indices(
out_features=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , stage_names=self.stage_names )
| 319 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> list[int]:
A: Optional[int] = [True] * limit
A: List[Any] = False
A: Optional[Any] = False
A: str = True
for i in range(3 , int(limit**0.5 + 1 ) , 2 ):
A: List[str] = i * 2
while index < limit:
A: Tuple = False
A: Optional[int] = index + i
A: Optional[int] = [2]
for i in range(3 , __lowercase , 2 ):
if is_prime[i]:
primes.append(__lowercase )
return primes
def SCREAMING_SNAKE_CASE( __lowercase = 1_0_0_0_0_0_0 ) -> int:
A: Tuple = prime_sieve(__lowercase )
A: int = 0
A: Any = 0
for i in range(len(__lowercase ) ):
for j in range(i + length , len(__lowercase ) ):
A: Optional[Any] = sum(primes[i:j] )
if sol >= ceiling:
break
if sol in primes:
A: List[str] = j - i
A: Optional[int] = sol
return largest
if __name__ == "__main__":
print(f'{solution() = }')
| 319 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCamelCase = '''
import os
'''
UpperCamelCase = '''
def foo():
import os
return False
'''
UpperCamelCase = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Tuple = os.path.join(__lowercase , '''test_file.py''' )
with open(__lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(__lowercase )
A: List[Any] = get_imports(__lowercase )
assert parsed_imports == ["os"]
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
import csv
import requests
from bsa import BeautifulSoup
def SCREAMING_SNAKE_CASE( __lowercase = "" ) -> dict[str, float]:
A: Tuple = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250'''
A: List[Any] = BeautifulSoup(requests.get(__lowercase ).text , '''html.parser''' )
A: int = soup.find_all('''td''' , attrs='''titleColumn''' )
A: List[str] = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' )
return {
title.a.text: float(rating.strong.text )
for title, rating in zip(__lowercase , __lowercase )
}
def SCREAMING_SNAKE_CASE( __lowercase = "IMDb_Top_250_Movies.csv" ) -> None:
A: Dict = get_imdb_top_aaa_movies()
with open(__lowercase , '''w''' , newline='''''' ) as out_file:
A: Dict = csv.writer(__lowercase )
writer.writerow(['''Movie title''', '''IMDb rating'''] )
for title, rating in movies.items():
writer.writerow([title, rating] )
if __name__ == "__main__":
write_movies()
| 319 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]:
A: str = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
for i in range(config.num_hidden_layers ):
A: Tuple = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A: Dict = in_proj_weight[
: config.hidden_size, :
]
A: int = in_proj_bias[: config.hidden_size]
A: Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A: int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A: Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
A: Optional[Any] = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: Optional[int] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: List[Any] = dct.pop(__lowercase )
A: int = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str:
A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase )
A: Tuple = False
A: str = False
A: List[Any] = False
A: Optional[int] = False
if "vqa" in checkpoint_url:
A: Union[str, Any] = True
A: Union[str, Any] = 3_1_2_9
A: List[Any] = '''huggingface/label-files'''
A: Any = '''vqa2-id2label.json'''
A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()}
A: Any = idalabel
A: Optional[Any] = {v: k for k, v in idalabel.items()}
A: List[str] = ViltForQuestionAnswering(__lowercase )
elif "nlvr" in checkpoint_url:
A: Dict = True
A: str = 2
A: Union[str, Any] = {0: '''False''', 1: '''True'''}
A: Any = {v: k for k, v in config.idalabel.items()}
A: Optional[Any] = 3
A: Any = ViltForImagesAndTextClassification(__lowercase )
elif "irtr" in checkpoint_url:
A: Tuple = True
A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase )
elif "mlm_itm" in checkpoint_url:
A: Tuple = True
A: Optional[int] = ViltForMaskedLM(__lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict''']
A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase )
for src, dest in rename_keys:
rename_key(__lowercase , __lowercase , __lowercase )
read_in_q_k_v(__lowercase , __lowercase )
if mlm_model or irtr_model:
A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__lowercase )
# Define processor
A: Optional[Any] = ViltImageProcessor(size=3_8_4 )
A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A: Optional[int] = ViltProcessor(__lowercase , __lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: Any = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[str] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw )
if mlm_model:
A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].'''
else:
A: Optional[int] = '''How many cats are there?'''
A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: Any = model(**__lowercase )
# Verify outputs
if mlm_model:
A: Any = torch.Size([1, 1_1, 3_0_5_2_2] )
A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify masked token prediction equals "cats"
A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A: Any = torch.Size([1, 3_1_2_9] )
A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify vqa prediction equals "2"
A: Dict = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A: Union[str, Any] = torch.Size([1, 2] )
A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(__lowercase ).mkdir(exist_ok=__lowercase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowercase )
processor.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
UpperCamelCase = {
'''configuration_mobilenet_v2''': [
'''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''MobileNetV2Config''',
'''MobileNetV2OnnxConfig''',
],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''MobileNetV2FeatureExtractor''']
UpperCamelCase = ['''MobileNetV2ImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''MobileNetV2ForImageClassification''',
'''MobileNetV2ForSemanticSegmentation''',
'''MobileNetV2Model''',
'''MobileNetV2PreTrainedModel''',
'''load_tf_weights_in_mobilenet_v2''',
]
if TYPE_CHECKING:
from .configuration_mobilenet_va import (
MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP,
MobileNetVaConfig,
MobileNetVaOnnxConfig,
)
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor
from .image_processing_mobilenet_va import MobileNetVaImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mobilenet_va import (
MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST,
MobileNetVaForImageClassification,
MobileNetVaForSemanticSegmentation,
MobileNetVaModel,
MobileNetVaPreTrainedModel,
load_tf_weights_in_mobilenet_va,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
UpperCamelCase = {
'''b0''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict:
A: Tuple = EfficientNetConfig()
A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim''']
A: Optional[int] = CONFIG_MAP[model_name]['''width_coef''']
A: str = CONFIG_MAP[model_name]['''depth_coef''']
A: Dict = CONFIG_MAP[model_name]['''image_size''']
A: str = CONFIG_MAP[model_name]['''dropout_rate''']
A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding''']
A: Optional[Any] = '''huggingface/label-files'''
A: List[str] = '''imagenet-1k-id2label.json'''
A: Dict = 1_0_0_0
A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()}
A: int = idalabel
A: Tuple = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE( ) -> Any:
A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw )
return im
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
A: List[str] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , )
return preprocessor
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
A: List[str] = sorted(set(__lowercase ) )
A: Dict = len(__lowercase )
A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )}
A: Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
A: int = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
A: Union[str, Any] = {}
for item in rename_keys:
if item[0] in original_param_names:
A: str = '''efficientnet.''' + item[1]
A: int = '''classifier.weight'''
A: Tuple = '''classifier.bias'''
return key_mapping
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple:
for key, value in tf_params.items():
if "normalization" in key:
continue
A: Union[str, Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) )
else:
A: Any = torch.from_numpy(__lowercase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(__lowercase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple:
A: Optional[int] = model_classes[model_name](
include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , )
A: List[str] = original_model.trainable_variables
A: Optional[Any] = original_model.non_trainable_variables
A: Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A: int = param.numpy()
A: Tuple = list(tf_params.keys() )
# Load HuggingFace model
A: Dict = get_efficientnet_config(__lowercase )
A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval()
A: Dict = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
A: int = rename_keys(__lowercase )
replace_params(__lowercase , __lowercase , __lowercase )
# Initialize preprocessor and preprocess input image
A: List[Any] = convert_image_processor(__lowercase )
A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
A: str = hf_model(**__lowercase )
A: List[Any] = outputs.logits.detach().numpy()
# Original model inference
A: Any = False
A: List[Any] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A: str = image.img_to_array(__lowercase )
A: Dict = np.expand_dims(__lowercase , axis=0 )
A: Any = original_model.predict(__lowercase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(__lowercase ):
os.mkdir(__lowercase )
# Save converted model and image processor
hf_model.save_pretrained(__lowercase )
preprocessor.save_pretrained(__lowercase )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
A: int = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(__lowercase )
hf_model.push_to_hub(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
UpperCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 319 | 1 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : List[str] = None
UpperCamelCase_ : Tuple = BloomTokenizerFast
UpperCamelCase_ : Dict = BloomTokenizerFast
UpperCamelCase_ : Dict = True
UpperCamelCase_ : List[str] = False
UpperCamelCase_ : Any = """tokenizer_file"""
UpperCamelCase_ : Optional[int] = {"""bos_token""": """<s>""", """eos_token""": """</s>""", """unk_token""": """<unk>""", """pad_token""": """<pad>"""}
def _snake_case ( self : List[Any] ) -> List[str]:
'''simple docstring'''
super().setUp()
A: List[str] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Optional[Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: List[str] = self.get_rust_tokenizer()
A: List[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>''']
A: int = [[21_75, 2_37_14, 7_31_73, 14_42_52, 2], [77, 13_26_19, 34_78, 3_68, 10_95_86, 3_54_33, 2]]
A: List[str] = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ )['''input_ids''']
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : str=6 ) -> Optional[Any]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
A: Optional[int] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
A: Any = '''This is a simple input'''
A: Union[str, Any] = ['''This is a simple input 1''', '''This is a simple input 2''']
A: List[str] = ('''This is a simple input''', '''This is a pair''')
A: Optional[Any] = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
try:
tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
tokenizer_r.batch_encode_plus(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ )
except ValueError:
self.fail('''Bloom Tokenizer should be able to deal with padding''' )
A: Optional[Any] = None # Hotfixing padding = None
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' )
# Simple input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' )
# Simple input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' )
# Pair input
self.assertRaises(SCREAMING_SNAKE_CASE_ , tokenizer_r.encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' )
# Pair input
self.assertRaises(
SCREAMING_SNAKE_CASE_ , tokenizer_r.batch_encode_plus , SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , padding='''max_length''' , )
def _snake_case ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
A: Union[str, Any] = self.get_rust_tokenizer()
A: Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = next(iter(SCREAMING_SNAKE_CASE_ ) )['''premise'''] # pick up one data
A: Tuple = list(sample_data.values() )
A: Any = list(map(tokenizer.encode , SCREAMING_SNAKE_CASE_ ) )
A: int = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) for x in output_tokens]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> List[str]:
'''simple docstring'''
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FocalNetForImageClassification''',
'''FocalNetForMaskedImageModeling''',
'''FocalNetBackbone''',
'''FocalNetModel''',
'''FocalNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
import numpy as np
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
return np.maximum(0 , __lowercase )
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
| 319 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Any = {}
if "threshold" in kwargs:
A: List[Any] = kwargs['''threshold''']
return {}, {}, postprocess_kwargs
def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: int = load_image(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = torch.IntTensor([[image.height, image.width]] )
A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A: Any = target_size
return inputs
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
'''simple docstring'''
A: Tuple = model_inputs.pop('''target_size''' )
A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ )
A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A: Dict = model_inputs['''bbox''']
return model_outputs
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = model_outputs['''target_size''']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A , A: Union[str, Any] = target_size[0].tolist()
def unnormalize(SCREAMING_SNAKE_CASE_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )]
A: Dict = ['''score''', '''label''', '''box''']
A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = raw_annotations[0]
A: List[Any] = raw_annotation['''scores''']
A: List[Any] = raw_annotation['''labels''']
A: int = raw_annotation['''boxes''']
A: Any = scores.tolist()
A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels]
A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A: Tuple = ['''score''', '''label''', '''box''']
A: str = [
dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A , A , A , A: str = box.int().tolist()
A: str = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 319 | 1 |
'''simple docstring'''
import logging
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
import evaluate
import numpy as np
import torch
from datasets import load_dataset
from PIL import Image
from torchvision.transforms import (
CenterCrop,
Compose,
Normalize,
RandomHorizontalFlip,
RandomResizedCrop,
Resize,
ToTensor,
)
import transformers
from transformers import (
MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING,
AutoConfig,
AutoImageProcessor,
AutoModelForImageClassification,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
UpperCamelCase = logging.getLogger(__name__)
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version('''4.31.0''')
require_version('''datasets>=1.8.0''', '''To fix: pip install -r examples/pytorch/image-classification/requirements.txt''')
UpperCamelCase = list(MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]:
with open(__lowercase , '''rb''' ) as f:
A: int = Image.open(__lowercase )
return im.convert('''RGB''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": """Name of a dataset from the hub (could be your own, possibly private dataset hosted on the hub)."""
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the training data."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """A folder containing the validation data."""} )
UpperCamelCase_ : Optional[float] = field(
default=0.15 , metadata={"""help""": """Percent to split off of train for validation."""} )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of training examples to this """
"""value if set."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""For debugging purposes or quicker training, truncate the number of evaluation examples to this """
"""value if set."""
)
} , )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
if self.dataset_name is None and (self.train_dir is None and self.validation_dir is None):
raise ValueError(
'''You must specify either a dataset name from the hub or a train and/or validation directory.''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : str = field(
default="""google/vit-base-patch16-224-in21k""" , metadata={"""help""": """Path to pretrained model or model identifier from huggingface.co/models"""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from s3"""} )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : str = field(default=UpperCAmelCase_ , metadata={"""help""": """Name or path of preprocessor config."""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Will enable to load a pretrained model whose head dimensions are different."""} , )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
A: str = torch.stack([example['''pixel_values'''] for example in examples] )
A: int = torch.tensor([example['''labels'''] for example in examples] )
return {"pixel_values": pixel_values, "labels": labels}
def SCREAMING_SNAKE_CASE( ) -> Optional[int]:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: Union[str, Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: List[Any] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: str = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry('''run_image_classification''' , __lowercase , __lowercase )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
A: Tuple = training_args.get_process_log_level()
logger.setLevel(__lowercase )
transformers.utils.logging.set_verbosity(__lowercase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
logger.info(F"""Training/evaluation parameters {training_args}""" )
# Detecting last checkpoint.
A: Optional[int] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Optional[Any] = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None and training_args.resume_from_checkpoint is None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Set seed before initializing model.
set_seed(training_args.seed )
# Initialize our dataset and prepare it for the 'image-classification' task.
if data_args.dataset_name is not None:
A: List[Any] = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir , task='''image-classification''' , use_auth_token=True if model_args.use_auth_token else None , )
else:
A: List[Any] = {}
if data_args.train_dir is not None:
A: List[str] = os.path.join(data_args.train_dir , '''**''' )
if data_args.validation_dir is not None:
A: Any = os.path.join(data_args.validation_dir , '''**''' )
A: Dict = load_dataset(
'''imagefolder''' , data_files=__lowercase , cache_dir=model_args.cache_dir , task='''image-classification''' , )
# If we don't have a validation split, split off a percentage of train as validation.
A: Tuple = None if '''validation''' in dataset.keys() else data_args.train_val_split
if isinstance(data_args.train_val_split , __lowercase ) and data_args.train_val_split > 0.0:
A: Optional[Any] = dataset['''train'''].train_test_split(data_args.train_val_split )
A: List[Any] = split['''train''']
A: str = split['''test''']
# Prepare label mappings.
# We'll include these in the model's config to get human readable labels in the Inference API.
A: Optional[int] = dataset['''train'''].features['''labels'''].names
A , A: List[str] = {}, {}
for i, label in enumerate(__lowercase ):
A: List[str] = str(__lowercase )
A: int = label
# Load the accuracy metric from the datasets package
A: Dict = evaluate.load('''accuracy''' )
# Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__lowercase ):
return metric.compute(predictions=np.argmax(p.predictions , axis=1 ) , references=p.label_ids )
A: List[str] = AutoConfig.from_pretrained(
model_args.config_name or model_args.model_name_or_path , num_labels=len(__lowercase ) , labelaid=__lowercase , idalabel=__lowercase , finetuning_task='''image-classification''' , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
A: int = AutoModelForImageClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
A: Union[str, Any] = AutoImageProcessor.from_pretrained(
model_args.image_processor_name or model_args.model_name_or_path , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
# Define torchvision transforms to be applied to each image.
if "shortest_edge" in image_processor.size:
A: str = image_processor.size['''shortest_edge''']
else:
A: Any = (image_processor.size['''height'''], image_processor.size['''width'''])
A: str = Normalize(mean=image_processor.image_mean , std=image_processor.image_std )
A: Tuple = Compose(
[
RandomResizedCrop(__lowercase ),
RandomHorizontalFlip(),
ToTensor(),
normalize,
] )
A: Union[str, Any] = Compose(
[
Resize(__lowercase ),
CenterCrop(__lowercase ),
ToTensor(),
normalize,
] )
def train_transforms(__lowercase ):
A: Union[str, Any] = [
_train_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']
]
return example_batch
def val_transforms(__lowercase ):
A: List[str] = [_val_transforms(pil_img.convert('''RGB''' ) ) for pil_img in example_batch['''image''']]
return example_batch
if training_args.do_train:
if "train" not in dataset:
raise ValueError('''--do_train requires a train dataset''' )
if data_args.max_train_samples is not None:
A: List[Any] = (
dataset['''train'''].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) )
)
# Set the training transforms
dataset["train"].set_transform(__lowercase )
if training_args.do_eval:
if "validation" not in dataset:
raise ValueError('''--do_eval requires a validation dataset''' )
if data_args.max_eval_samples is not None:
A: Tuple = (
dataset['''validation'''].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) )
)
# Set the validation transforms
dataset["validation"].set_transform(__lowercase )
# Initalize our trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=dataset['''train'''] if training_args.do_train else None , eval_dataset=dataset['''validation'''] if training_args.do_eval else None , compute_metrics=__lowercase , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
A: Optional[Any] = None
if training_args.resume_from_checkpoint is not None:
A: Dict = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
A: List[str] = last_checkpoint
A: Optional[Any] = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model()
trainer.log_metrics('''train''' , train_result.metrics )
trainer.save_metrics('''train''' , train_result.metrics )
trainer.save_state()
# Evaluation
if training_args.do_eval:
A: Dict = trainer.evaluate()
trainer.log_metrics('''eval''' , __lowercase )
trainer.save_metrics('''eval''' , __lowercase )
# Write model card and (optionally) push to hub
A: int = {
'''finetuned_from''': model_args.model_name_or_path,
'''tasks''': '''image-classification''',
'''dataset''': data_args.dataset_name,
'''tags''': ['''image-classification''', '''vision'''],
}
if training_args.push_to_hub:
trainer.push_to_hub(**__lowercase )
else:
trainer.create_model_card(**__lowercase )
if __name__ == "__main__":
main()
| 319 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Optional[Any] = """convbert"""
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Dict = vocab_size
A: Tuple = hidden_size
A: Optional[int] = num_hidden_layers
A: List[str] = num_attention_heads
A: int = intermediate_size
A: int = hidden_act
A: List[str] = hidden_dropout_prob
A: int = attention_probs_dropout_prob
A: Tuple = max_position_embeddings
A: Any = type_vocab_size
A: str = initializer_range
A: Union[str, Any] = layer_norm_eps
A: str = embedding_size
A: Optional[int] = head_ratio
A: List[Any] = conv_kernel_size
A: List[Any] = num_groups
A: Optional[int] = classifier_dropout
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A: List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 319 | 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
UpperCamelCase = {
'''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''],
'''tokenization_roberta''': ['''RobertaTokenizer'''],
}
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''RobertaTokenizerFast''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''RobertaForCausalLM''',
'''RobertaForMaskedLM''',
'''RobertaForMultipleChoice''',
'''RobertaForQuestionAnswering''',
'''RobertaForSequenceClassification''',
'''RobertaForTokenClassification''',
'''RobertaModel''',
'''RobertaPreTrainedModel''',
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TFRobertaForCausalLM''',
'''TFRobertaForMaskedLM''',
'''TFRobertaForMultipleChoice''',
'''TFRobertaForQuestionAnswering''',
'''TFRobertaForSequenceClassification''',
'''TFRobertaForTokenClassification''',
'''TFRobertaMainLayer''',
'''TFRobertaModel''',
'''TFRobertaPreTrainedModel''',
]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''FlaxRobertaForCausalLM''',
'''FlaxRobertaForMaskedLM''',
'''FlaxRobertaForMultipleChoice''',
'''FlaxRobertaForQuestionAnswering''',
'''FlaxRobertaForSequenceClassification''',
'''FlaxRobertaForTokenClassification''',
'''FlaxRobertaModel''',
'''FlaxRobertaPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig
from .tokenization_roberta import RobertaTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_roberta_fast import RobertaTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_roberta import (
ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
RobertaForCausalLM,
RobertaForMaskedLM,
RobertaForMultipleChoice,
RobertaForQuestionAnswering,
RobertaForSequenceClassification,
RobertaForTokenClassification,
RobertaModel,
RobertaPreTrainedModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_roberta import (
TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
TFRobertaForCausalLM,
TFRobertaForMaskedLM,
TFRobertaForMultipleChoice,
TFRobertaForQuestionAnswering,
TFRobertaForSequenceClassification,
TFRobertaForTokenClassification,
TFRobertaMainLayer,
TFRobertaModel,
TFRobertaPreTrainedModel,
)
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_roberta import (
FlaxRobertaForCausalLM,
FlaxRobertaForMaskedLM,
FlaxRobertaForMultipleChoice,
FlaxRobertaForQuestionAnswering,
FlaxRobertaForSequenceClassification,
FlaxRobertaForTokenClassification,
FlaxRobertaModel,
FlaxRobertaPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if len(__lowercase ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
A: Any = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> bool:
A: Union[str, Any] = len(__lowercase )
A: str = [[False] * (required_sum + 1) for _ in range(arr_len + 1 )]
# for each arr value, a sum of zero(0) can be formed by not taking any element
# hence True/1
for i in range(arr_len + 1 ):
A: Any = True
# sum is not zero and set is empty then false
for i in range(1 , required_sum + 1 ):
A: Optional[Any] = False
for i in range(1 , arr_len + 1 ):
for j in range(1 , required_sum + 1 ):
if arr[i - 1] > j:
A: Any = subset[i - 1][j]
if arr[i - 1] <= j:
A: Tuple = subset[i - 1][j] or subset[i - 1][j - arr[i - 1]]
return subset[arr_len][required_sum]
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
from transformers.testing_utils import pytest_terminal_summary_main
A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__lowercase , id=__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
A: Tuple = 0
# Doctest custom flag to ignore output.
UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''')
UpperCamelCase = doctest.OutputChecker
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase = CustomOutputChecker
UpperCamelCase = HfDoctestModule
UpperCamelCase = HfDocTestParser
| 319 | 1 |
'''simple docstring'''
import os
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_pegasus import PegasusTokenizer
else:
UpperCamelCase = None
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = '''▁'''
UpperCamelCase = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''}
UpperCamelCase = {
'''vocab_file''': {'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'''},
'''tokenizer_file''': {
'''google/pegasus-xsum''': '''https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json'''
},
}
UpperCamelCase = {
'''google/pegasus-xsum''': 512,
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = VOCAB_FILES_NAMES
UpperCamelCase_ : Dict = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : Optional[Any] = PegasusTokenizer
UpperCamelCase_ : str = ["""input_ids""", """attention_mask"""]
def __init__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : Optional[int]=None , SCREAMING_SNAKE_CASE_ : Union[str, Any]="<pad>" , SCREAMING_SNAKE_CASE_ : List[str]="</s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<mask_2>" , SCREAMING_SNAKE_CASE_ : List[Any]="<mask_1>" , SCREAMING_SNAKE_CASE_ : List[str]=None , SCREAMING_SNAKE_CASE_ : str=1_03 , **SCREAMING_SNAKE_CASE_ : Any , ) -> Dict:
'''simple docstring'''
A: Tuple = offset
if additional_special_tokens is not None:
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
raise TypeError(
f"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is"""
f""" {type(SCREAMING_SNAKE_CASE_ )}""" )
A: str = (
([mask_token_sent] + additional_special_tokens)
if mask_token_sent not in additional_special_tokens and mask_token_sent is not None
else additional_special_tokens
)
# fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken
additional_special_tokens_extended += [
f"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 )
]
if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ):
raise ValueError(
'''Please make sure that the provided additional_special_tokens do not contain an incorrectly'''
f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" )
A: List[Any] = additional_special_tokens_extended
else:
A: Dict = [mask_token_sent] if mask_token_sent is not None else []
additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )]
super().__init__(
SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Optional[int] = vocab_file
A: Dict = False if not self.vocab_file else True
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Any ) -> str:
'''simple docstring'''
A: List[str] = set(self.all_special_ids ) # call it once instead of inside list comp
all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special
if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ):
raise ValueError(
'''There should be 3 special tokens: mask_token, pad_token, and eos_token +'''
f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" )
return [1 if x in all_special_ids else 0 for x in seq]
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : List , SCREAMING_SNAKE_CASE_ : Optional[List] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return self._special_token_mask(SCREAMING_SNAKE_CASE_ )
elif token_ids_a is None:
return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1]
else:
return self._special_token_mask(token_ids_a + token_ids_a ) + [1]
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Optional[int]=None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return token_ids_a + token_ids_a + [self.eos_token_id]
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Optional[Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ):
copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ )
return (out_vocab_file,)
| 319 |
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCamelCase = tuple[int, int]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
'''simple docstring'''
A: Any = []
A: int = set()
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
A: Optional[int] = []
((A) , (A)): str = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)): int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
'''simple docstring'''
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
A: str = []
((A) , (A)): List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)): Any = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return self.elements[0][1]
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
((A) , (A)): Dict = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
# euclidean distance
A: List[str] = np.array(__lowercase )
A: Optional[int] = np.array(__lowercase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
# integer division by time variable
return consistent_heuristic(__lowercase , __lowercase ) // t
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase )
return ans
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
A: Union[str, Any] = np.chararray((n, n) )
for i in range(__lowercase ):
for j in range(__lowercase ):
A: Union[str, Any] = '''*'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (j, (n - 1) - i) in blocks:
A: Optional[Any] = '''#'''
A: Tuple = '''-'''
A: List[str] = back_pointer[goal]
while x != start:
((A) , (A)): Tuple = x
# print(x)
A: List[str] = '''-'''
A: str = back_pointer[x]
A: Dict = '''-'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A: List[str] = back_pointer[goal]
while x != start:
print(__lowercase , end=''' ''' )
A: Optional[int] = back_pointer[x]
print(__lowercase )
sys.exit()
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
for itera in range(__lowercase ):
open_list[itera].remove_element(__lowercase )
# print("s", s)
# print("j", j)
((A) , (A)): Tuple = s
A: Optional[Any] = (x - 1, y)
A: str = (x + 1, y)
A: List[Any] = (x, y + 1)
A: int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(__lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(__lowercase )
A: int = -1
A: int = float('''inf''' )
if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1:
A: List[str] = g_function[s] + 1
A: List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) )
if neighbours not in close_list_inad:
for var in range(1 , __lowercase ):
if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key(
__lowercase , 0 , __lowercase , __lowercase ):
open_list[j].put(
__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( ) -> Tuple:
A: str = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCamelCase = make_common_ground()
UpperCamelCase = blocks_blk
# hyper parameters
UpperCamelCase = 1
UpperCamelCase = 1
UpperCamelCase = 20
UpperCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
UpperCamelCase = (0, 0)
UpperCamelCase = (n - 1, n - 1)
UpperCamelCase = 1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: int = {start: 0, goal: float('''inf''' )}
A: Union[str, Any] = {start: -1, goal: -1}
A: List[Any] = []
A: Union[str, Any] = set()
for i in range(__lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
A: list[int] = []
A: list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , __lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A , A: Union[str, Any] = open_list[i].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_inad.append(__lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A: Union[str, Any] = open_list[0].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_anchor.append(__lowercase )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(__lowercase ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
from typing import Any
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = 0 ) -> None:
'''simple docstring'''
A , A: int = row, column
A: Any = [[default_value for c in range(SCREAMING_SNAKE_CASE_ )] for r in range(SCREAMING_SNAKE_CASE_ )]
def __str__( self : Optional[Any] ) -> str:
'''simple docstring'''
A: List[str] = f"""Matrix consist of {self.row} rows and {self.column} columns\n"""
# Make string identifier
A: str = 0
for row_vector in self.array:
for obj in row_vector:
A: str = max(SCREAMING_SNAKE_CASE_ , len(str(SCREAMING_SNAKE_CASE_ ) ) )
A: int = f"""%{max_element_length}s"""
# Make string and return
def single_line(SCREAMING_SNAKE_CASE_ : list[float] ) -> str:
nonlocal string_format_identifier
A: Dict = '''['''
line += ", ".join(string_format_identifier % (obj,) for obj in row_vector )
line += "]"
return line
s += "\n".join(single_line(SCREAMING_SNAKE_CASE_ ) for row_vector in self.array )
return s
def __repr__( self : List[str] ) -> str:
'''simple docstring'''
return str(self )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : tuple[int, int] ) -> bool:
'''simple docstring'''
if not (isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) and len(SCREAMING_SNAKE_CASE_ ) == 2):
return False
elif not (0 <= loc[0] < self.row and 0 <= loc[1] < self.column):
return False
else:
return True
def __getitem__( self : Any , SCREAMING_SNAKE_CASE_ : tuple[int, int] ) -> Any:
'''simple docstring'''
assert self.validate_indicies(SCREAMING_SNAKE_CASE_ )
return self.array[loc[0]][loc[1]]
def __setitem__( self : int , SCREAMING_SNAKE_CASE_ : tuple[int, int] , SCREAMING_SNAKE_CASE_ : float ) -> None:
'''simple docstring'''
assert self.validate_indicies(SCREAMING_SNAKE_CASE_ )
A: Any = value
def __add__( self : str , SCREAMING_SNAKE_CASE_ : Matrix ) -> Matrix:
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert self.row == another.row and self.column == another.column
# Add
A: Dict = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A: Dict = self[r, c] + another[r, c]
return result
def __neg__( self : Optional[Any] ) -> Matrix:
'''simple docstring'''
A: Tuple = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A: Union[str, Any] = -self[r, c]
return result
def __sub__( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Matrix ) -> Matrix:
'''simple docstring'''
return self + (-another)
def __mul__( self : List[str] , SCREAMING_SNAKE_CASE_ : int | float | Matrix ) -> Matrix:
'''simple docstring'''
if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ): # Scalar multiplication
A: Optional[int] = Matrix(self.row , self.column )
for r in range(self.row ):
for c in range(self.column ):
A: Optional[Any] = self[r, c] * another
return result
elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Matrix multiplication
assert self.column == another.row
A: str = Matrix(self.row , another.column )
for r in range(self.row ):
for c in range(another.column ):
for i in range(self.column ):
result[r, c] += self[r, i] * another[i, c]
return result
else:
A: Tuple = f"""Unsupported type given for another ({type(SCREAMING_SNAKE_CASE_ )})"""
raise TypeError(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Matrix:
'''simple docstring'''
A: str = Matrix(self.column , self.row )
for r in range(self.row ):
for c in range(self.column ):
A: Optional[Any] = self[r, c]
return result
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : Matrix , SCREAMING_SNAKE_CASE_ : Matrix ) -> Any:
'''simple docstring'''
assert isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert self.row == self.column == u.row == v.row # u, v should be column vector
assert u.column == v.column == 1 # u, v should be column vector
# Calculate
A: Optional[Any] = v.transpose()
A: List[str] = (v_t * self * u)[0, 0] + 1
if numerator_factor == 0:
return None # It's not invertable
return self - ((self * u) * (v_t * self) * (1.0 / numerator_factor))
# Testing
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE( ) -> None:
# a^(-1)
A: Optional[int] = Matrix(3 , 3 , 0 )
for i in range(3 ):
A: Any = 1
print(F"""a^(-1) is {ainv}""" )
# u, v
A: str = Matrix(3 , 1 , 0 )
A , A , A: Union[str, Any] = 1, 2, -3
A: Union[str, Any] = Matrix(3 , 1 , 0 )
A , A , A: Union[str, Any] = 4, -2, 5
print(F"""u is {u}""" )
print(F"""v is {v}""" )
print(F"""uv^T is {u * v.transpose()}""" )
# Sherman Morrison
print(F"""(a + uv^T)^(-1) is {ainv.sherman_morrison(__lowercase , __lowercase )}""" )
def SCREAMING_SNAKE_CASE( ) -> None:
import doctest
doctest.testmod()
testa()
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int:
A: Any = 1
A: Optional[Any] = 0
for divide_by_number in range(__lowercase , digit + 1 ):
A: list[int] = []
A: List[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__lowercase ):
A: Any = len(__lowercase )
A: Dict = divide_by_number
else:
has_been_divided.append(__lowercase )
A: str = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
import gc
import unittest
from diffusers import FlaxStableDiffusionInpaintPipeline
from diffusers.utils import is_flax_available, load_image, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
def _snake_case ( self : Any ) -> int:
'''simple docstring'''
super().tearDown()
gc.collect()
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
A: Dict = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main'''
'''/sd2-inpaint/init_image.png''' )
A: List[Any] = load_image(
'''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png''' )
A: List[str] = '''xvjiarui/stable-diffusion-2-inpainting'''
A , A: List[Any] = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ )
A: Tuple = '''Face of a yellow cat, high resolution, sitting on a park bench'''
A: Optional[int] = jax.random.PRNGKey(0 )
A: Dict = 50
A: List[str] = jax.device_count()
A: Optional[Any] = num_samples * [prompt]
A: Optional[Any] = num_samples * [init_image]
A: int = num_samples * [mask_image]
A , A , A: int = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# shard inputs and rng
A: List[Any] = replicate(SCREAMING_SNAKE_CASE_ )
A: List[str] = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() )
A: int = shard(SCREAMING_SNAKE_CASE_ )
A: str = shard(SCREAMING_SNAKE_CASE_ )
A: Dict = shard(SCREAMING_SNAKE_CASE_ )
A: Tuple = pipeline(
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = output.images.reshape(SCREAMING_SNAKE_CASE_ , 5_12 , 5_12 , 3 )
A: Dict = images[0, 2_53:2_56, 2_53:2_56, -1]
A: Any = jnp.asarray(jax.device_get(image_slice.flatten() ) )
A: Optional[int] = jnp.array(
[0.361_1307, 0.3764_9736, 0.375_7408, 0.3821_3953, 0.3929_5167, 0.384_1631, 0.4155_4978, 0.413_7475, 0.421_7084] )
print(f"""output_slice: {output_slice}""" )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 319 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 1 |
'''simple docstring'''
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
UpperCamelCase = get_logger(__name__)
UpperCamelCase = R'''
Args:
input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):
Indices of input sequence tokens in the vocabulary.
Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):
Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam
search or log softmax for each vocabulary token when using beam search
kwargs (`Dict[str, Any]`, *optional*):
Additional logits processor specific kwargs.
Return:
`jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.
'''
class lowerCAmelCase_ :
'''simple docstring'''
@add_start_docstrings(SCREAMING_SNAKE_CASE_ )
def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowerCAmelCase_ :
'''simple docstring'''
@add_start_docstrings(SCREAMING_SNAKE_CASE_ )
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray ) -> jnp.ndarray:
'''simple docstring'''
raise NotImplementedError(
f"""{self.__class__} is an abstract class. Only classes inheriting this class can be called.""" )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@add_start_docstrings(SCREAMING_SNAKE_CASE_ )
def __call__( self : str , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int , **SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
for processor in self:
A: Dict = inspect.signature(processor.__call__ ).parameters
if len(SCREAMING_SNAKE_CASE_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
f"""Make sure that all the required parameters: {list(function_args.keys() )} for """
f"""{processor.__class__} are passed to the logits processor.""" )
A: str = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
else:
A: Optional[Any] = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : float ) -> Tuple:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or not (temperature > 0):
raise ValueError(f"""`temperature` has to be a strictly positive float, but is {temperature}""" )
A: List[Any] = temperature
def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A: List[str] = scores / self.temperature
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Tuple , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Union[str, Any]:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(f"""`top_p` has to be a float > 0 and < 1, but is {top_p}""" )
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or (min_tokens_to_keep < 1):
raise ValueError(f"""`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}""" )
A: Optional[Any] = top_p
A: Dict = filter_value
A: Dict = min_tokens_to_keep
def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A , A: Tuple = lax.top_k(SCREAMING_SNAKE_CASE_ , scores.shape[-1] )
A: List[str] = jnp.full_like(SCREAMING_SNAKE_CASE_ , self.filter_value )
A: Optional[int] = jax.nn.softmax(SCREAMING_SNAKE_CASE_ , axis=-1 ).cumsum(axis=-1 )
A: List[str] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
A: List[str] = jnp.roll(SCREAMING_SNAKE_CASE_ , 1 )
score_mask |= score_mask.at[:, 0].set(SCREAMING_SNAKE_CASE_ )
# min tokens to keep
A: str = score_mask.at[:, : self.min_tokens_to_keep].set(SCREAMING_SNAKE_CASE_ )
A: Optional[int] = jnp.where(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = jax.lax.sort_key_val(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )[-1]
return next_scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : float = -float('''Inf''' ) , SCREAMING_SNAKE_CASE_ : int = 1 ) -> Dict:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or top_k <= 0:
raise ValueError(f"""`top_k` has to be a strictly positive integer, but is {top_k}""" )
A: str = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Any = filter_value
def __call__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A , A: List[Any] = scores.shape
A: Tuple = jnp.full(batch_size * vocab_size , self.filter_value )
A: Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check
A , A: Optional[int] = lax.top_k(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = jnp.broadcast_to((jnp.arange(SCREAMING_SNAKE_CASE_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
A: Any = topk_scores.flatten()
A: List[str] = topk_indices.flatten() + shift
A: List[str] = next_scores_flat.at[topk_indices_flat].set(SCREAMING_SNAKE_CASE_ )
A: Any = next_scores_flat.reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return next_scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int ) -> List[Any]:
'''simple docstring'''
A: Tuple = bos_token_id
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A: Any = jnp.full(scores.shape , -float('''inf''' ) )
A: str = 1 - jnp.bool_(cur_len - 1 )
A: Union[str, Any] = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.bos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : str , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> Any:
'''simple docstring'''
A: str = max_length
A: Optional[Any] = eos_token_id
def __call__( self : str , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A: Tuple = jnp.full(scores.shape , -float('''inf''' ) )
A: Optional[Any] = 1 - jnp.bool_(cur_len - self.max_length + 1 )
A: Tuple = jnp.where(SCREAMING_SNAKE_CASE_ , new_scores.at[:, self.eos_token_id].set(0 ) , SCREAMING_SNAKE_CASE_ )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> int:
'''simple docstring'''
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or min_length < 0:
raise ValueError(f"""`min_length` has to be a positive integer, but is {min_length}""" )
if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) or eos_token_id < 0:
raise ValueError(f"""`eos_token_id` has to be a positive integer, but is {eos_token_id}""" )
A: Union[str, Any] = min_length
A: List[Any] = eos_token_id
def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A: Optional[int] = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
A: Dict = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE_ )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Tuple:
'''simple docstring'''
A: Tuple = list(SCREAMING_SNAKE_CASE_ )
A: str = begin_index
def __call__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ) -> Optional[int]:
'''simple docstring'''
A: str = 1 - jnp.bool_(cur_len - self.begin_index )
A: Tuple = jnp.where(SCREAMING_SNAKE_CASE_ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE_ )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : list ) -> str:
'''simple docstring'''
A: int = list(SCREAMING_SNAKE_CASE_ )
def __call__( self : Dict , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
A: List[str] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = dict(SCREAMING_SNAKE_CASE_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
A: Dict = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
A: Union[str, Any] = force_token_array.at[index].set(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = jnp.intaa(SCREAMING_SNAKE_CASE_ )
def __call__( self : Tuple , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : jnp.ndarray , SCREAMING_SNAKE_CASE_ : int ) -> jnp.ndarray:
'''simple docstring'''
def _force_token(SCREAMING_SNAKE_CASE_ : Optional[Any] ):
A: int = scores.shape[0]
A: str = self.force_token_array[generation_idx]
A: Any = jnp.ones_like(SCREAMING_SNAKE_CASE_ , dtype=scores.dtype ) * -float('''inf''' )
A: str = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
A: List[Any] = lax.dynamic_update_slice(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , (0, current_token) )
return new_scores
A: Optional[Any] = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(SCREAMING_SNAKE_CASE_ ) , lambda: scores , ) , )
return scores
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : int ) -> Any:
'''simple docstring'''
A: Optional[int] = generate_config.eos_token_id
A: Dict = generate_config.no_timestamps_token_id
A: List[str] = generate_config.no_timestamps_token_id + 1
A: Optional[int] = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(SCREAMING_SNAKE_CASE_ , '''max_initial_timestamp_index''' ):
A: Tuple = generate_config.max_initial_timestamp_index
else:
A: Any = model_config.vocab_size
if self.max_initial_timestamp_index is None:
A: Tuple = model_config.vocab_size
def __call__( self : List[Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any ) -> Union[str, Any]:
'''simple docstring'''
A: Any = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) )
def handle_pairs(SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
A: int = jnp.where((cur_len - self.begin_index) >= 1 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[int] = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , SCREAMING_SNAKE_CASE_ , )
A: str = jnp.where((cur_len - self.begin_index) < 2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , )
return jnp.where(
SCREAMING_SNAKE_CASE_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , SCREAMING_SNAKE_CASE_ , )
A: Union[str, Any] = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = jnp.where(cur_len == self.begin_index , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: str = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , SCREAMING_SNAKE_CASE_ , )
A: List[Any] = self.timestamp_begin + self.max_initial_timestamp_index
A: List[Any] = jnp.where(
SCREAMING_SNAKE_CASE_ , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
A: Optional[Any] = jax.nn.log_softmax(SCREAMING_SNAKE_CASE_ , axis=-1 )
def handle_cumulative_probs(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : int ):
A: Optional[Any] = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
A: Optional[int] = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , SCREAMING_SNAKE_CASE_ , )
A: Dict = jax.vmap(SCREAMING_SNAKE_CASE_ )(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
return scores
| 319 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any:
A: Any = [x.strip() for x in open(__lowercase ).readlines()]
A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )]
A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase )
if save_path is not None:
save_json(__lowercase , __lowercase , indent=__lowercase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if len(__lowercase ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
A: Any = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list:
A: Dict = length or len(__lowercase )
A: Dict = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
A , A: Tuple = list_data[i + 1], list_data[i]
A: Union[str, Any] = True
return list_data if not swapped else bubble_sort(__lowercase , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 1 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Any = {}
if "threshold" in kwargs:
A: List[Any] = kwargs['''threshold''']
return {}, {}, postprocess_kwargs
def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: int = load_image(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = torch.IntTensor([[image.height, image.width]] )
A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A: Any = target_size
return inputs
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
'''simple docstring'''
A: Tuple = model_inputs.pop('''target_size''' )
A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ )
A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A: Dict = model_inputs['''bbox''']
return model_outputs
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = model_outputs['''target_size''']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A , A: Union[str, Any] = target_size[0].tolist()
def unnormalize(SCREAMING_SNAKE_CASE_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )]
A: Dict = ['''score''', '''label''', '''box''']
A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = raw_annotations[0]
A: List[Any] = raw_annotation['''scores''']
A: List[Any] = raw_annotation['''labels''']
A: int = raw_annotation['''boxes''']
A: Any = scores.tolist()
A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels]
A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A: Tuple = ['''score''', '''label''', '''box''']
A: str = [
dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A , A , A , A: str = box.int().tolist()
A: str = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 319 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 | 1 |
'''simple docstring'''
from functools import lru_cache
@lru_cache
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if num < 0:
raise ValueError('''Number should not be negative.''' )
return 1 if num in (0, 1) else num * factorial(num - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 |
'''simple docstring'''
from itertools import permutations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
A: int = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int:
return sum(
int(''''''.join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 319 | 1 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 1 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
from transformers.testing_utils import pytest_terminal_summary_main
A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__lowercase , id=__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
A: Tuple = 0
# Doctest custom flag to ignore output.
UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''')
UpperCamelCase = doctest.OutputChecker
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase = CustomOutputChecker
UpperCamelCase = HfDoctestModule
UpperCamelCase = HfDocTestParser
| 319 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 | 1 |
'''simple docstring'''
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : str = """timm_backbone"""
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : List[str]=3 , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[Any]=True , SCREAMING_SNAKE_CASE_ : Optional[int]=None , **SCREAMING_SNAKE_CASE_ : Dict , ) -> List[str]:
'''simple docstring'''
super().__init__(**SCREAMING_SNAKE_CASE_ )
A: str = backbone
A: Optional[int] = num_channels
A: List[Any] = features_only
A: int = use_pretrained_backbone
A: Union[str, Any] = True
A: Any = out_indices if out_indices is not None else (-1,)
| 319 |
'''simple docstring'''
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
A: str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]:
if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
A: Union[str, Any] = len(__lowercase )
A: str = matrix_length // 2
A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )]
A: Optional[Any] = [
[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase )
]
A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )]
A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )]
return top_left, top_right, bot_left, bot_right
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]:
return len(__lowercase ), len(matrix[0] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> None:
print('''\n'''.join(str(__lowercase ) for line in matrix ) )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase ) == (2, 2):
return default_matrix_multiplication(__lowercase , __lowercase )
A , A , A , A: Union[str, Any] = split_matrix(__lowercase )
A , A , A , A: List[Any] = split_matrix(__lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
A: Any = matrix_addition(__lowercase , __lowercase )
A: List[Any] = matrix_addition(__lowercase , __lowercase )
A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
# construct the new matrix from our 4 quadrants
A: Union[str, Any] = []
for i in range(len(__lowercase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowercase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]:
A: int = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(__lowercase )
A: str = matrix_dimensions(__lowercase )
A: str = matrix_dimensions(__lowercase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
A: Union[str, Any] = max(*__lowercase , *__lowercase )
A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) )
A: List[Any] = matrixa
A: Tuple = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
A: Any = actual_strassen(__lowercase , __lowercase )
# Removing the additional zeros
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCamelCase = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 319 | 1 |
'''simple docstring'''
from collections.abc import Iterable
from typing import Generic, TypeVar
UpperCamelCase = TypeVar('''_T''')
class lowerCAmelCase_ ( Generic[_T] ):
'''simple docstring'''
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Iterable[_T] | None = None ) -> None:
'''simple docstring'''
A: list[_T] = list(iterable or [] )
A: list[_T] = []
def __len__( self : List[str] ) -> int:
'''simple docstring'''
return len(self._stacka ) + len(self._stacka )
def __repr__( self : int ) -> str:
'''simple docstring'''
return f"""Queue({tuple(self._stacka[::-1] + self._stacka )})"""
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : _T ) -> None:
'''simple docstring'''
self._stacka.append(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> _T:
'''simple docstring'''
A: str = self._stacka.pop
A: Optional[Any] = self._stacka.append
if not self._stacka:
while self._stacka:
stacka_append(stacka_pop() )
if not self._stacka:
raise IndexError('''Queue is empty''' )
return self._stacka.pop()
if __name__ == "__main__":
from doctest import testmod
testmod()
| 319 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = 2
@register_to_config
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = sigma_max
# setable values
A: int = None
A: np.IntTensor = None
A: torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = num_inference_steps
A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
A: str = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A: List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device )
A: Optional[Any] = sigma + gamma * sigma
A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: Union[str, Any] = sample_hat + sigma_hat * model_output
A: str = (sample_hat - pred_original_sample) / sigma_hat
A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: int = sample_prev + sigma_prev * model_output
A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev
A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
'''simple docstring'''
raise NotImplementedError()
| 319 | 1 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import Callable
UpperCamelCase = list[list[float | int]]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Matrix:
A: int = len(__lowercase )
A: Matrix = [[0 for _ in range(size + 1 )] for _ in range(__lowercase )]
A: int
A: int
A: int
A: int
A: int
A: float
for row in range(__lowercase ):
for col in range(__lowercase ):
A: Optional[int] = matrix[row][col]
A: Any = vector[row][0]
A: Any = 0
A: int = 0
while row < size and col < size:
# pivoting
A: str = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowercase , __lowercase ) )[
1
]
if augmented[pivot_row][col] == 0:
col += 1
continue
else:
A , A: Dict = augmented[pivot_row], augmented[row]
for rowa in range(row + 1 , __lowercase ):
A: Optional[Any] = augmented[rowa][col] / augmented[row][col]
A: Tuple = 0
for cola in range(col + 1 , size + 1 ):
augmented[rowa][cola] -= augmented[row][cola] * ratio
row += 1
col += 1
# back substitution
for col in range(1 , __lowercase ):
for row in range(__lowercase ):
A: Tuple = augmented[row][col] / augmented[col][col]
for cola in range(__lowercase , size + 1 ):
augmented[row][cola] -= augmented[col][cola] * ratio
# round to get rid of numbers like 2.000000000000004
return [
[round(augmented[row][size] / augmented[row][row] , 1_0 )] for row in range(__lowercase )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> Callable[[int], int]:
A: int = len(__lowercase )
A: Matrix = [[0 for _ in range(__lowercase )] for _ in range(__lowercase )]
A: Matrix = [[0] for _ in range(__lowercase )]
A: Matrix
A: int
A: int
A: int
for x_val, y_val in enumerate(__lowercase ):
for col in range(__lowercase ):
A: List[Any] = (x_val + 1) ** (size - col - 1)
A: Tuple = y_val
A: Dict = solve(__lowercase , __lowercase )
def interpolated_func(__lowercase ) -> int:
return sum(
round(coeffs[x_val][0] ) * (var ** (size - x_val - 1))
for x_val in range(__lowercase ) )
return interpolated_func
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
return (
1
- variable
+ variable**2
- variable**3
+ variable**4
- variable**5
+ variable**6
- variable**7
+ variable**8
- variable**9
+ variable**1_0
)
def SCREAMING_SNAKE_CASE( __lowercase = question_function , __lowercase = 1_0 ) -> int:
A: list[int] = [func(__lowercase ) for x_val in range(1 , order + 1 )]
A: list[Callable[[int], int]] = [
interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 )
]
A: int = 0
A: Callable[[int], int]
A: int
for poly in polynomials:
A: int = 1
while func(__lowercase ) == poly(__lowercase ):
x_val += 1
ret += poly(__lowercase )
return ret
if __name__ == "__main__":
print(f'{solution() = }')
| 319 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 | 1 |
'''simple docstring'''
import unittest
from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer
from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow
from transformers.utils import cached_property
from ...test_tokenization_common import TokenizerTesterMixin
UpperCamelCase = get_tests_dir('''fixtures/test_sentencepiece.model''')
@require_sentencepiece
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : int = XLMProphetNetTokenizer
UpperCamelCase_ : Optional[Any] = False
UpperCamelCase_ : List[Any] = True
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
super().setUp()
# We have a SentencePiece fixture for testing
A: Union[str, Any] = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
tokenizer.save_pretrained(self.tmpdirname )
def _snake_case ( self : Any ) -> str:
'''simple docstring'''
A: Any = '''[PAD]'''
A: Tuple = 0
self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] ) -> Dict:
'''simple docstring'''
A: Optional[Any] = list(self.get_tokenizer().get_vocab().keys() )
self.assertEqual(vocab_keys[0] , '''[PAD]''' )
self.assertEqual(vocab_keys[1] , '''[CLS]''' )
self.assertEqual(vocab_keys[-1] , '''j''' )
self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 10_12 )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
self.assertEqual(self.get_tokenizer().vocab_size , 10_12 )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[int] = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ )
A: str = tokenizer.tokenize('''This is a test''' )
self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] )
self.assertListEqual(
tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , )
A: Dict = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''9''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''é''',
'''.''',
] , )
A: str = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
value + tokenizer.fairseq_offset
for value in [8, 21, 84, 55, 24, 19, 7, -9, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, -9, 4]
] , )
A: List[str] = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ )
self.assertListEqual(
SCREAMING_SNAKE_CASE_ , [
SPIECE_UNDERLINE + '''I''',
SPIECE_UNDERLINE + '''was''',
SPIECE_UNDERLINE + '''b''',
'''or''',
'''n''',
SPIECE_UNDERLINE + '''in''',
SPIECE_UNDERLINE + '''''',
'''[UNK]''',
'''2''',
'''0''',
'''0''',
'''0''',
''',''',
SPIECE_UNDERLINE + '''and''',
SPIECE_UNDERLINE + '''this''',
SPIECE_UNDERLINE + '''is''',
SPIECE_UNDERLINE + '''f''',
'''al''',
'''s''',
'''[UNK]''',
'''.''',
] , )
@cached_property
def _snake_case ( self : Any ) -> Any:
'''simple docstring'''
return XLMProphetNetTokenizer.from_pretrained('''microsoft/xprophetnet-large-wiki100-cased''' )
@slow
def _snake_case ( self : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
A: Union[str, Any] = '''Hello World!'''
A: List[Any] = [3_53_89, 66_72, 49, 2]
self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) )
@slow
def _snake_case ( self : Optional[Any] ) -> str:
'''simple docstring'''
A: Optional[int] = {'''input_ids''': [[1_10_73, 8_27_83, 18, 26, 8_27_83, 5_49, 5_15_40, 2_48, 1_72_09, 13_01, 2_17, 20, 21_51_86, 13_25, 1_47, 1_72_09, 13_01, 2_17, 20, 5_63_70, 53, 12_20_20, 20, 1_64_77, 27, 8_73_55, 45_48, 20, 47_28, 7_83_92, 17, 15_99_69, 18, 26, 2_44_91, 6_29, 15, 5_38, 2_27_04, 54_39, 15, 27_88, 2_44_91, 98_85, 15, 4_35_34, 6_05, 15, 8_14, 1_84_03, 3_32_00, 29, 15, 4_35_34, 2_44_58, 1_24_10, 1_11, 2_49_66, 8_36_69, 96_37, 14_40_68, 26, 8_50, 2_23_46, 27, 1_47, 2_49_66, 8_36_69, 8_34_90, 26, 3_91_13, 7_35, 27, 6_89, 6_56, 28_00, 13_39, 46_00, 53, 12_20_20, 11_57_85, 34, 8_16, 13_39, 4_68_87, 18, 1_47, 5_39_05, 19_51, 4_22_38, 4_11_70, 1_77_32, 8_34, 4_36, 15, 2_75_23, 9_87_33, 2_17, 1_47, 55_42, 49_81, 9_30, 1_73_47, 16, 2], [2_00_91, 6_29, 94, 8_27_86, 58, 4_90, 20, 15_28, 84, 5_39_05, 3_44, 8_05_92, 11_01_28, 1_88_22, 52_67, 13_06, 62, 15_25_37, 3_08, 79_97, 4_01, 12_44_27, 5_49, 3_54_42, 2_25, 1_09, 1_50_55, 2_57_48, 1_47, 71_19, 4_37_12, 34, 7_67, 13_53_66, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [5_92, 6_37_84, 11_94_66, 17, 14_78_08, 8_82_14, 18, 6_56, 81, 32, 32_96, 1_02_80, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501
# fmt: on
self.tokenizer_integration_test_util(
expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='''microsoft/xprophetnet-large-wiki100-cased''' , revision='''1acad1643ddd54a44df6a1b797ada8373685d90e''' , )
| 319 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import itertools
import json
import os
import unittest
from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast
from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers, slow
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Optional[int] = LongformerTokenizer
UpperCamelCase_ : List[str] = True
UpperCamelCase_ : Any = LongformerTokenizerFast
UpperCamelCase_ : Dict = True
def _snake_case ( self : Optional[Any] ) -> str:
'''simple docstring'''
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
A: Dict = [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''\u0120''',
'''\u0120l''',
'''\u0120n''',
'''\u0120lo''',
'''\u0120low''',
'''er''',
'''\u0120lowest''',
'''\u0120newer''',
'''\u0120wider''',
'''<unk>''',
]
A: Optional[Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: str = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', '''''']
A: str = {'''unk_token''': '''<unk>'''}
A: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
A: str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write('''\n'''.join(SCREAMING_SNAKE_CASE_ ) )
def _snake_case ( self : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : str ) -> Union[str, Any]:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> List[Any]:
'''simple docstring'''
A: str = '''lower newer'''
A: int = '''lower newer'''
return input_text, output_text
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map )
A: List[str] = '''lower newer'''
A: int = ['''l''', '''o''', '''w''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er''']
A: Any = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) # , add_prefix_space=True)
self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Optional[int] = tokens + [tokenizer.unk_token]
A: Tuple = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19]
self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : str ) -> int:
'''simple docstring'''
A: Optional[Any] = self.get_tokenizer()
self.assertListEqual(tokenizer.encode('''Hello world!''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 2] )
self.assertListEqual(
tokenizer.encode('''Hello world! cécé herlolip 418''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , )
@slow
def _snake_case ( self : Any ) -> str:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained('''allenai/longformer-base-4096''' )
A: Optional[Any] = tokenizer.encode('''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
A: int = tokenizer.encode(
'''sequence builders''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = tokenizer.encode(
'''sequence builders''' , '''multi-sequence build''' , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ )
A: List[str] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
assert encoded_sentence == encoded_text_from_decode
assert encoded_pair == encoded_pair_from_decode
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
A: Any = self.get_tokenizer()
A: Tuple = '''Encode this sequence.'''
A: List[str] = tokenizer.byte_encoder[''' '''.encode('''utf-8''' )[0]]
# Testing encoder arguments
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
A: str = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ )
A: List[str] = tokenizer.convert_ids_to_tokens(encoded[0] )[0]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
tokenizer.add_special_tokens({'''bos_token''': '''<s>'''} )
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
A: Optional[int] = tokenizer.convert_ids_to_tokens(encoded[1] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Testing spaces after special tokens
A: Optional[int] = '''<mask>'''
tokenizer.add_special_tokens(
{'''mask_token''': AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ )} ) # mask token has a left space
A: Tuple = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = '''Encode <mask> sequence'''
A: List[Any] = '''Encode <mask>sequence'''
A: Dict = tokenizer.encode(SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = encoded.index(SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ )
A: Tuple = encoded.index(SCREAMING_SNAKE_CASE_ )
A: Dict = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0]
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Tuple:
'''simple docstring'''
pass
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
A: int = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
A: Optional[int] = '''A, <mask> AllenNLP sentence.'''
A: Any = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ )
# token_type_ids should put 0 everywhere
self.assertEqual(sum(tokens_r['''token_type_ids'''] ) , sum(tokens_p['''token_type_ids'''] ) )
# attention_mask should put 1 everywhere, so sum over length should be 1
self.assertEqual(
sum(tokens_r['''attention_mask'''] ) / len(tokens_r['''attention_mask'''] ) , sum(tokens_p['''attention_mask'''] ) / len(tokens_p['''attention_mask'''] ) , )
A: Optional[int] = tokenizer_r.convert_ids_to_tokens(tokens_r['''input_ids'''] )
A: Any = tokenizer_p.convert_ids_to_tokens(tokens_p['''input_ids'''] )
# Rust correctly handles the space before the mask while python doesnt
self.assertSequenceEqual(tokens_p['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(tokens_r['''input_ids'''] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
self.assertSequenceEqual(
SCREAMING_SNAKE_CASE_ , ['''<s>''', '''A''', ''',''', '''<mask>''', '''ĠAllen''', '''N''', '''LP''', '''Ġsentence''', '''.''', '''</s>'''] )
def _snake_case ( self : Tuple ) -> str:
'''simple docstring'''
for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ):
A: List[Any] = self.rust_tokenizer_class.from_pretrained(
self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() )
A: Optional[Any] = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() )
self.assertEqual(pre_tokenizer_state['''add_prefix_space'''] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(post_processor_state['''add_prefix_space'''] , SCREAMING_SNAKE_CASE_ )
self.assertEqual(post_processor_state['''trim_offsets'''] , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> str:
'''simple docstring'''
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ):
A: Tuple = '''hello''' # `hello` is a token in the vocabulary of `pretrained_name`
A: Dict = f"""{text_of_1_token} {text_of_1_token}"""
A: Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: Dict = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: Dict = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: Dict = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: int = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: int = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: Dict = f""" {text}"""
# tokenizer_r = self.rust_tokenizer_class.from_pretrained(
# pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True
# )
# encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False)
# self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token)))
# self.assertEqual(
# encoding.offset_mapping[1],
# (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)),
# )
A: Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: List[str] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
A: Optional[Any] = self.rust_tokenizer_class.from_pretrained(
SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ )
A: List[str] = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) )
self.assertEqual(
encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
| 319 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 | 1 |
'''simple docstring'''
import json
import os
import sys
import tempfile
import unittest
from pathlib import Path
from shutil import copyfile
from huggingface_hub import HfFolder, Repository, create_repo, delete_repo
from requests.exceptions import HTTPError
import transformers
from transformers import (
CONFIG_MAPPING,
FEATURE_EXTRACTOR_MAPPING,
PROCESSOR_MAPPING,
TOKENIZER_MAPPING,
AutoConfig,
AutoFeatureExtractor,
AutoProcessor,
AutoTokenizer,
BertTokenizer,
ProcessorMixin,
WavaVecaConfig,
WavaVecaFeatureExtractor,
WavaVecaProcessor,
)
from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test
from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE
from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available
sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils'''))
from test_module.custom_configuration import CustomConfig # noqa E402
from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402
from test_module.custom_processing import CustomProcessor # noqa E402
from test_module.custom_tokenization import CustomTokenizer # noqa E402
UpperCamelCase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''')
UpperCamelCase = get_tests_dir('''fixtures/vocab.json''')
UpperCamelCase = get_tests_dir('''fixtures''')
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
def _snake_case ( self : str ) -> Optional[Any]:
'''simple docstring'''
A: Union[str, Any] = 0
def _snake_case ( self : Dict ) -> Dict:
'''simple docstring'''
A: Optional[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
A: List[Any] = WavaVecaConfig()
A: List[Any] = AutoProcessor.from_pretrained('''facebook/wav2vec2-base-960h''' )
# save in new folder
model_config.save_pretrained(SCREAMING_SNAKE_CASE_ )
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
A: Dict = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[Any] ) -> Tuple:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.json''' ) )
A: str = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Tuple ) -> List[str]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
A: Dict = WavaVecaFeatureExtractor()
A: List[Any] = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A: str = WavaVecaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
# drop `processor_class` in tokenizer
with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''r''' ) as f:
A: Dict = json.load(SCREAMING_SNAKE_CASE_ )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
A: List[str] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> str:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
A: str = WavaVecaFeatureExtractor()
A: str = AutoTokenizer.from_pretrained('''facebook/wav2vec2-base-960h''' )
A: int = WavaVecaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# save in new folder
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
# drop `processor_class` in feature extractor
with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''r''' ) as f:
A: Tuple = json.load(SCREAMING_SNAKE_CASE_ )
config_dict.pop('''processor_class''' )
with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''w''' ) as f:
f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) )
A: Optional[int] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Union[str, Any]:
'''simple docstring'''
with tempfile.TemporaryDirectory() as tmpdirname:
A: Dict = WavaVecaConfig(processor_class='''Wav2Vec2Processor''' )
model_config.save_pretrained(SCREAMING_SNAKE_CASE_ )
# copy relevant files
copyfile(SCREAMING_SNAKE_CASE_ , os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.json''' ) )
# create emtpy sample processor
with open(os.path.join(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , '''w''' ) as f:
f.write('''{}''' )
A: Optional[int] = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Any ) -> Dict:
'''simple docstring'''
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
A: Optional[int] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
# If remote code is disabled, we can't load this config.
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
A: int = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ )
self.assertTrue(processor.special_attribute_present )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
A: int = processor.feature_extractor
self.assertTrue(feature_extractor.special_attribute_present )
self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''' )
A: Any = processor.tokenizer
self.assertTrue(tokenizer.special_attribute_present )
if is_tokenizers_available():
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizerFast''' )
# Test we can also load the slow version
A: List[str] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ )
A: Union[str, Any] = new_processor.tokenizer
self.assertTrue(new_tokenizer.special_attribute_present )
self.assertEqual(new_tokenizer.__class__.__name__ , '''NewTokenizer''' )
else:
self.assertEqual(tokenizer.__class__.__name__ , '''NewTokenizer''' )
def _snake_case ( self : int ) -> Tuple:
'''simple docstring'''
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ )
AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Trying to register something existing in the Transformers library will raise an error
with self.assertRaises(SCREAMING_SNAKE_CASE_ ):
AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# Now that the config is registered, it can be used as any other config with the auto-API
A: Union[str, Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
A: Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A: Any = CustomTokenizer(SCREAMING_SNAKE_CASE_ )
A: int = CustomProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
A: Dict = AutoProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _snake_case ( self : Dict ) -> Tuple:
'''simple docstring'''
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : str = False
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : List[Any] = False
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : str = """AutoFeatureExtractor"""
UpperCamelCase_ : Tuple = """AutoTokenizer"""
UpperCamelCase_ : Optional[Any] = False
try:
AutoConfig.register('''custom''' , SCREAMING_SNAKE_CASE_ )
AutoFeatureExtractor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
AutoTokenizer.register(SCREAMING_SNAKE_CASE_ , slow_tokenizer_class=SCREAMING_SNAKE_CASE_ )
AutoProcessor.register(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
# If remote code is not set, the default is to use local classes.
A: Dict = AutoProcessor.from_pretrained('''hf-internal-testing/test_dynamic_processor''' )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote code is disabled, we load the local ones.
A: Optional[int] = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertFalse(processor.special_attribute_present )
self.assertFalse(processor.feature_extractor.special_attribute_present )
self.assertFalse(processor.tokenizer.special_attribute_present )
# If remote is enabled, we load from the Hub.
A: Any = AutoProcessor.from_pretrained(
'''hf-internal-testing/test_dynamic_processor''' , trust_remote_code=SCREAMING_SNAKE_CASE_ )
self.assertEqual(processor.__class__.__name__ , '''NewProcessor''' )
self.assertTrue(processor.special_attribute_present )
self.assertTrue(processor.feature_extractor.special_attribute_present )
self.assertTrue(processor.tokenizer.special_attribute_present )
finally:
if "custom" in CONFIG_MAPPING._extra_content:
del CONFIG_MAPPING._extra_content["custom"]
if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content:
del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
if CustomConfig in TOKENIZER_MAPPING._extra_content:
del TOKENIZER_MAPPING._extra_content[CustomConfig]
if CustomConfig in PROCESSOR_MAPPING._extra_content:
del PROCESSOR_MAPPING._extra_content[CustomConfig]
def _snake_case ( self : Optional[Any] ) -> Any:
'''simple docstring'''
A: Dict = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-bert''' )
self.assertEqual(processor.__class__.__name__ , '''BertTokenizerFast''' )
def _snake_case ( self : Any ) -> Any:
'''simple docstring'''
A: List[Any] = AutoProcessor.from_pretrained('''hf-internal-testing/tiny-random-convnext''' )
self.assertEqual(processor.__class__.__name__ , '''ConvNextImageProcessor''' )
@is_staging_test
class lowerCAmelCase_ ( unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Tuple = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def _snake_case ( cls : Tuple ) -> Any:
'''simple docstring'''
A: Optional[int] = TOKEN
HfFolder.save_token(SCREAMING_SNAKE_CASE_ )
@classmethod
def _snake_case ( cls : str ) -> str:
'''simple docstring'''
try:
delete_repo(token=cls._token , repo_id='''test-processor''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''valid_org/test-processor-org''' )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id='''test-dynamic-processor''' )
except HTTPError:
pass
def _snake_case ( self : Dict ) -> Tuple:
'''simple docstring'''
A: int = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE_ , '''test-processor''' ) , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token )
A: Dict = WavaVecaProcessor.from_pretrained(f"""{USER}/test-processor""" )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def _snake_case ( self : Union[str, Any] ) -> int:
'''simple docstring'''
A: Optional[Any] = WavaVecaProcessor.from_pretrained(SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
processor.save_pretrained(
os.path.join(SCREAMING_SNAKE_CASE_ , '''test-processor-org''' ) , push_to_hub=SCREAMING_SNAKE_CASE_ , use_auth_token=self._token , organization='''valid_org''' , )
A: Optional[Any] = WavaVecaProcessor.from_pretrained('''valid_org/test-processor-org''' )
for k, v in processor.feature_extractor.__dict__.items():
self.assertEqual(SCREAMING_SNAKE_CASE_ , getattr(new_processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) )
self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() )
def _snake_case ( self : List[str] ) -> Tuple:
'''simple docstring'''
CustomFeatureExtractor.register_for_auto_class()
CustomTokenizer.register_for_auto_class()
CustomProcessor.register_for_auto_class()
A: Union[str, Any] = CustomFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
A: List[Any] = os.path.join(SCREAMING_SNAKE_CASE_ , '''vocab.txt''' )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as vocab_writer:
vocab_writer.write(''''''.join([x + '''\n''' for x in self.vocab_tokens] ) )
A: int = CustomTokenizer(SCREAMING_SNAKE_CASE_ )
A: List[Any] = CustomProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
with tempfile.TemporaryDirectory() as tmp_dir:
create_repo(f"""{USER}/test-dynamic-processor""" , token=self._token )
A: List[Any] = Repository(SCREAMING_SNAKE_CASE_ , clone_from=f"""{USER}/test-dynamic-processor""" , token=self._token )
processor.save_pretrained(SCREAMING_SNAKE_CASE_ )
# This has added the proper auto_map field to the feature extractor config
self.assertDictEqual(
processor.feature_extractor.auto_map , {
'''AutoFeatureExtractor''': '''custom_feature_extraction.CustomFeatureExtractor''',
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# This has added the proper auto_map field to the tokenizer config
with open(os.path.join(SCREAMING_SNAKE_CASE_ , '''tokenizer_config.json''' ) ) as f:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
self.assertDictEqual(
tokenizer_config['''auto_map'''] , {
'''AutoTokenizer''': ['''custom_tokenization.CustomTokenizer''', None],
'''AutoProcessor''': '''custom_processing.CustomProcessor''',
} , )
# The code has been copied from fixtures
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , '''custom_feature_extraction.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , '''custom_tokenization.py''' ) ) )
self.assertTrue(os.path.isfile(os.path.join(SCREAMING_SNAKE_CASE_ , '''custom_processing.py''' ) ) )
repo.push_to_hub()
A: Optional[Any] = AutoProcessor.from_pretrained(f"""{USER}/test-dynamic-processor""" , trust_remote_code=SCREAMING_SNAKE_CASE_ )
# Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module
self.assertEqual(new_processor.__class__.__name__ , '''CustomProcessor''' )
| 319 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCamelCase = '''
import os
'''
UpperCamelCase = '''
def foo():
import os
return False
'''
UpperCamelCase = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Tuple = os.path.join(__lowercase , '''test_file.py''' )
with open(__lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(__lowercase )
A: List[Any] = get_imports(__lowercase )
assert parsed_imports == ["os"]
| 319 | 1 |
'''simple docstring'''
# Lint as: python3
import itertools
import os
import re
UpperCamelCase = re.compile(R'''([A-Z]+)([A-Z][a-z])''')
UpperCamelCase = re.compile(R'''([a-z\d])([A-Z])''')
UpperCamelCase = re.compile(R'''(?<!_)_(?!_)''')
UpperCamelCase = re.compile(R'''(_{2,})''')
UpperCamelCase = R'''^\w+(\.\w+)*$'''
UpperCamelCase = R'''<>:/\|?*'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict:
A: str = _uppercase_uppercase_re.sub(r'''\1_\2''' , __lowercase )
A: int = _lowercase_uppercase_re.sub(r'''\1_\2''' , __lowercase )
return name.lower()
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: str = _single_underscore_re.split(__lowercase )
A: Optional[int] = [_multiple_underscores_re.split(__lowercase ) for n in name]
return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowercase ) if n != '''''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[str]:
if os.path.basename(__lowercase ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
return camelcase_to_snakecase(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str:
if os.path.basename(__lowercase ) != name:
raise ValueError(F"""Should be a dataset name, not a path: {name}""" )
if not re.match(_split_re , __lowercase ):
raise ValueError(F"""Split name should match '{_split_re}'' but got '{split}'.""" )
return F"""{filename_prefix_for_name(__lowercase )}-{split}"""
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None ) -> List[str]:
A: Any = filename_prefix_for_split(__lowercase , __lowercase )
if filetype_suffix:
prefix += F""".{filetype_suffix}"""
A: Union[str, Any] = os.path.join(__lowercase , __lowercase )
return F"""{filepath}*"""
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase=None , __lowercase=None ) -> Optional[Any]:
A: int = filename_prefix_for_split(__lowercase , __lowercase )
A: List[Any] = os.path.join(__lowercase , __lowercase )
if shard_lengths:
A: int = len(__lowercase )
A: List[str] = [F"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(__lowercase )]
if filetype_suffix:
A: int = [filename + F""".{filetype_suffix}""" for filename in filenames]
return filenames
else:
A: Optional[Any] = prefix
if filetype_suffix:
filename += F""".{filetype_suffix}"""
return [filename]
| 319 |
'''simple docstring'''
import argparse
import json
from pathlib import Path
import requests
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
BertTokenizer,
ViltConfig,
ViltForImageAndTextRetrieval,
ViltForImagesAndTextClassification,
ViltForMaskedLM,
ViltForQuestionAnswering,
ViltImageProcessor,
ViltProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]:
A: str = []
for i in range(config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") )
# embeddings
rename_keys.extend(
[
# text embeddings
('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''),
(
'''text_embeddings.position_embeddings.weight''',
'''vilt.embeddings.text_embeddings.position_embeddings.weight''',
),
('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''),
(
'''text_embeddings.token_type_embeddings.weight''',
'''vilt.embeddings.text_embeddings.token_type_embeddings.weight''',
),
('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''),
('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''),
# patch embeddings
('''transformer.cls_token''', '''vilt.embeddings.cls_token'''),
('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''),
('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''),
('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''),
# token type embeddings
('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''),
] )
# final layernorm + pooler
rename_keys.extend(
[
('''transformer.norm.weight''', '''vilt.layernorm.weight'''),
('''transformer.norm.bias''', '''vilt.layernorm.bias'''),
('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''),
('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''),
] )
# classifier head(s)
if vqa_model:
# classification head
rename_keys.extend(
[
('''vqa_classifier.0.weight''', '''classifier.0.weight'''),
('''vqa_classifier.0.bias''', '''classifier.0.bias'''),
('''vqa_classifier.1.weight''', '''classifier.1.weight'''),
('''vqa_classifier.1.bias''', '''classifier.1.bias'''),
('''vqa_classifier.3.weight''', '''classifier.3.weight'''),
('''vqa_classifier.3.bias''', '''classifier.3.bias'''),
] )
elif nlvr_model:
# classification head
rename_keys.extend(
[
('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''),
('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''),
('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''),
('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''),
('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''),
('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''),
] )
else:
pass
return rename_keys
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
for i in range(config.num_hidden_layers ):
A: Tuple = '''vilt.'''
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" )
A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" )
# next, add query, keys and values (in that order) to the state dict
A: Dict = in_proj_weight[
: config.hidden_size, :
]
A: int = in_proj_bias[: config.hidden_size]
A: Any = in_proj_weight[
config.hidden_size : config.hidden_size * 2, :
]
A: int = in_proj_bias[
config.hidden_size : config.hidden_size * 2
]
A: Optional[int] = in_proj_weight[
-config.hidden_size :, :
]
A: Optional[Any] = in_proj_bias[-config.hidden_size :]
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
A: Optional[int] = ['''head.weight''', '''head.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: List[Any] = dct.pop(__lowercase )
A: int = val
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str:
A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase )
A: Tuple = False
A: str = False
A: List[Any] = False
A: Optional[int] = False
if "vqa" in checkpoint_url:
A: Union[str, Any] = True
A: Union[str, Any] = 3_1_2_9
A: List[Any] = '''huggingface/label-files'''
A: Any = '''vqa2-id2label.json'''
A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()}
A: Any = idalabel
A: Optional[Any] = {v: k for k, v in idalabel.items()}
A: List[str] = ViltForQuestionAnswering(__lowercase )
elif "nlvr" in checkpoint_url:
A: Dict = True
A: str = 2
A: Union[str, Any] = {0: '''False''', 1: '''True'''}
A: Any = {v: k for k, v in config.idalabel.items()}
A: Optional[Any] = 3
A: Any = ViltForImagesAndTextClassification(__lowercase )
elif "irtr" in checkpoint_url:
A: Tuple = True
A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase )
elif "mlm_itm" in checkpoint_url:
A: Tuple = True
A: Optional[int] = ViltForMaskedLM(__lowercase )
else:
raise ValueError('''Unknown model type''' )
# load state_dict of original model, remove and rename some keys
A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict''']
A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase )
for src, dest in rename_keys:
rename_key(__lowercase , __lowercase , __lowercase )
read_in_q_k_v(__lowercase , __lowercase )
if mlm_model or irtr_model:
A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias''']
for k in ignore_keys:
state_dict.pop(__lowercase , __lowercase )
# load state dict into HuggingFace model
model.eval()
if mlm_model:
A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase )
assert missing_keys == ["mlm_score.decoder.bias"]
else:
model.load_state_dict(__lowercase )
# Define processor
A: Optional[Any] = ViltImageProcessor(size=3_8_4 )
A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' )
A: Optional[int] = ViltProcessor(__lowercase , __lowercase )
# Forward pass on example inputs (image + text)
if nlvr_model:
A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw )
A: Any = (
'''The left image contains twice the number of dogs as the right image, and at least two dogs in total are'''
''' standing.'''
)
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: List[str] = model(
input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , )
else:
A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw )
if mlm_model:
A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].'''
else:
A: Optional[int] = '''How many cats are there?'''
A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' )
A: Any = model(**__lowercase )
# Verify outputs
if mlm_model:
A: Any = torch.Size([1, 1_1, 3_0_5_2_2] )
A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify masked token prediction equals "cats"
A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item()
assert tokenizer.decode([predicted_id] ) == "cats"
elif vqa_model:
A: Any = torch.Size([1, 3_1_2_9] )
A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 )
# verify vqa prediction equals "2"
A: Dict = outputs.logits.argmax(-1 ).item()
assert model.config.idalabel[predicted_idx] == "2"
elif nlvr_model:
A: Union[str, Any] = torch.Size([1, 2] )
A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] )
assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 )
assert outputs.logits.shape == expected_shape
Path(__lowercase ).mkdir(exist_ok=__lowercase )
print(F"""Saving model and processor to {pytorch_dump_folder_path}""" )
model.save_pretrained(__lowercase )
processor.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''',
type=str,
help='''URL of the checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
UpperCamelCase = parser.parse_args()
convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 319 | 1 |
import warnings
from transformers import AutoTokenizer
from transformers.utils import is_torch_available
from transformers.utils.generic import ExplicitEnum
from ...processing_utils import ProcessorMixin
if is_torch_available():
import torch
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = '''char'''
__snake_case = '''bpe'''
__snake_case = '''wp'''
UpperCAmelCase__ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE)
class lowercase_ ( lowercase ):
'''simple docstring'''
__snake_case = ['''image_processor''', '''char_tokenizer''']
__snake_case = '''ViTImageProcessor'''
__snake_case = '''MgpstrTokenizer'''
def __init__( self : Optional[int] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , **__UpperCAmelCase : Optional[Any] ) ->Tuple:
"""simple docstring"""
a = None
if "feature_extractor" in kwargs:
warnings.warn(
'''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'''
''' instead.''' , __UpperCAmelCase , )
a = kwargs.pop('''feature_extractor''' )
a = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('''You need to specify an `image_processor`.''' )
if tokenizer is None:
raise ValueError('''You need to specify a `tokenizer`.''' )
a = tokenizer
a = AutoTokenizer.from_pretrained('''gpt2''' )
a = AutoTokenizer.from_pretrained('''bert-base-uncased''' )
super().__init__(__UpperCAmelCase , __UpperCAmelCase )
def __call__( self : List[str] , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : Dict=None , __UpperCAmelCase : Optional[Any]=None , **__UpperCAmelCase : List[str] ) ->List[Any]:
"""simple docstring"""
if images is None and text is None:
raise ValueError('''You need to specify either an `images` or `text` input to process.''' )
if images is not None:
a = self.image_processor(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is not None:
a = self.char_tokenizer(__UpperCAmelCase , return_tensors=__UpperCAmelCase , **__UpperCAmelCase )
if text is None:
return inputs
elif images is None:
return encodings
else:
a = encodings['''input_ids''']
return inputs
def __lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
a , a , a = sequences
a = char_preds.size(0 )
a , a = self._decode_helper(__UpperCAmelCase , '''char''' )
a , a = self._decode_helper(__UpperCAmelCase , '''bpe''' )
a , a = self._decode_helper(__UpperCAmelCase , '''wp''' )
a = []
a = []
for i in range(__UpperCAmelCase ):
a = [char_scores[i], bpe_scores[i], wp_scores[i]]
a = [char_strs[i], bpe_strs[i], wp_strs[i]]
a = scores.index(max(__UpperCAmelCase ) )
final_strs.append(strs[max_score_index] )
final_scores.append(scores[max_score_index] )
a = {}
a = final_strs
a = final_scores
a = char_strs
a = bpe_strs
a = wp_strs
return out
def __lowerCAmelCase ( self : int , __UpperCAmelCase : List[Any] , __UpperCAmelCase : str ) ->int:
"""simple docstring"""
if format == DecodeType.CHARACTER:
a = self.char_decode
a = 1
a = '''[s]'''
elif format == DecodeType.BPE:
a = self.bpe_decode
a = 2
a = '''#'''
elif format == DecodeType.WORDPIECE:
a = self.wp_decode
a = 102
a = '''[SEP]'''
else:
raise ValueError(F"""Format {format} is not supported.""" )
a , a = [], []
a = pred_logits.size(0 )
a = pred_logits.size(1 )
a , a = pred_logits.topk(1 , dim=-1 , largest=__UpperCAmelCase , sorted=__UpperCAmelCase )
a = preds_index.view(-1 , __UpperCAmelCase )[:, 1:]
a = decoder(__UpperCAmelCase )
a , a = torch.nn.functional.softmax(__UpperCAmelCase , dim=2 ).max(dim=2 )
a = preds_max_prob[:, 1:]
for index in range(__UpperCAmelCase ):
a = preds_str[index].find(__UpperCAmelCase )
a = preds_str[index][:pred_eos]
a = preds_index[index].cpu().tolist()
a = pred_index.index(__UpperCAmelCase ) if eos_token in pred_index else -1
a = preds_max_prob[index][: pred_eos_index + 1]
a = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0
dec_strs.append(__UpperCAmelCase )
conf_scores.append(__UpperCAmelCase )
return dec_strs, conf_scores
def __lowerCAmelCase ( self : List[str] , __UpperCAmelCase : str ) ->Union[str, Any]:
"""simple docstring"""
a = [seq.replace(''' ''' , '''''' ) for seq in self.char_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
def __lowerCAmelCase ( self : Tuple , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
return self.bpe_tokenizer.batch_decode(__UpperCAmelCase )
def __lowerCAmelCase ( self : Any , __UpperCAmelCase : List[Any] ) ->List[Any]:
"""simple docstring"""
a = [seq.replace(''' ''' , '''''' ) for seq in self.wp_tokenizer.batch_decode(__UpperCAmelCase )]
return decode_strs
| 0 |
'''simple docstring'''
import argparse
import json
import os
import numpy as np
import PIL
import requests
import tensorflow.keras.applications.efficientnet as efficientnet
import torch
from huggingface_hub import hf_hub_download
from PIL import Image
from tensorflow.keras.preprocessing import image
from transformers import (
EfficientNetConfig,
EfficientNetForImageClassification,
EfficientNetImageProcessor,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''b0''': efficientnet.EfficientNetBa,
'''b1''': efficientnet.EfficientNetBa,
'''b2''': efficientnet.EfficientNetBa,
'''b3''': efficientnet.EfficientNetBa,
'''b4''': efficientnet.EfficientNetBa,
'''b5''': efficientnet.EfficientNetBa,
'''b6''': efficientnet.EfficientNetBa,
'''b7''': efficientnet.EfficientNetBa,
}
UpperCamelCase = {
'''b0''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.0,
'''image_size''': 224,
'''dropout_rate''': 0.2,
'''dw_padding''': [],
},
'''b1''': {
'''hidden_dim''': 1280,
'''width_coef''': 1.0,
'''depth_coef''': 1.1,
'''image_size''': 240,
'''dropout_rate''': 0.2,
'''dw_padding''': [16],
},
'''b2''': {
'''hidden_dim''': 1408,
'''width_coef''': 1.1,
'''depth_coef''': 1.2,
'''image_size''': 260,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 8, 16],
},
'''b3''': {
'''hidden_dim''': 1536,
'''width_coef''': 1.2,
'''depth_coef''': 1.4,
'''image_size''': 300,
'''dropout_rate''': 0.3,
'''dw_padding''': [5, 18],
},
'''b4''': {
'''hidden_dim''': 1792,
'''width_coef''': 1.4,
'''depth_coef''': 1.8,
'''image_size''': 380,
'''dropout_rate''': 0.4,
'''dw_padding''': [6],
},
'''b5''': {
'''hidden_dim''': 2048,
'''width_coef''': 1.6,
'''depth_coef''': 2.2,
'''image_size''': 456,
'''dropout_rate''': 0.4,
'''dw_padding''': [13, 27],
},
'''b6''': {
'''hidden_dim''': 2304,
'''width_coef''': 1.8,
'''depth_coef''': 2.6,
'''image_size''': 528,
'''dropout_rate''': 0.5,
'''dw_padding''': [31],
},
'''b7''': {
'''hidden_dim''': 2560,
'''width_coef''': 2.0,
'''depth_coef''': 3.1,
'''image_size''': 600,
'''dropout_rate''': 0.5,
'''dw_padding''': [18],
},
}
def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict:
A: Tuple = EfficientNetConfig()
A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim''']
A: Optional[int] = CONFIG_MAP[model_name]['''width_coef''']
A: str = CONFIG_MAP[model_name]['''depth_coef''']
A: Dict = CONFIG_MAP[model_name]['''image_size''']
A: str = CONFIG_MAP[model_name]['''dropout_rate''']
A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding''']
A: Optional[Any] = '''huggingface/label-files'''
A: List[str] = '''imagenet-1k-id2label.json'''
A: Dict = 1_0_0_0
A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) )
A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()}
A: int = idalabel
A: Tuple = {v: k for k, v in idalabel.items()}
return config
def SCREAMING_SNAKE_CASE( ) -> Any:
A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw )
return im
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
A: List[str] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = EfficientNetImageProcessor(
size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , )
return preprocessor
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )]
A: List[str] = sorted(set(__lowercase ) )
A: Dict = len(__lowercase )
A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )}
A: Optional[int] = []
rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') )
rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') )
rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') )
rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') )
rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') )
for b in block_names:
A: int = block_name_mapping[b]
rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") )
rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") )
rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") )
rename_keys.append(
(F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") )
rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") )
rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") )
rename_keys.append(
(F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") )
rename_keys.append(
(F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") )
rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") )
rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") )
rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") )
rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") )
rename_keys.append(
(F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") )
rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") )
rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") )
rename_keys.append(
(F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") )
rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') )
rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') )
rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') )
rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') )
rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') )
A: Union[str, Any] = {}
for item in rename_keys:
if item[0] in original_param_names:
A: str = '''efficientnet.''' + item[1]
A: int = '''classifier.weight'''
A: Tuple = '''classifier.bias'''
return key_mapping
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple:
for key, value in tf_params.items():
if "normalization" in key:
continue
A: Union[str, Any] = key_mapping[key]
if "_conv" in key and "kernel" in key:
A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 )
elif "depthwise_kernel" in key:
A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 )
elif "kernel" in key:
A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) )
else:
A: Any = torch.from_numpy(__lowercase )
# Replace HF parameters with original TF model parameters
assert hf_params[hf_key].shape == new_hf_value.shape
hf_params[hf_key].copy_(__lowercase )
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple:
A: Optional[int] = model_classes[model_name](
include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , )
A: List[str] = original_model.trainable_variables
A: Optional[Any] = original_model.non_trainable_variables
A: Union[str, Any] = {param.name: param.numpy() for param in tf_params}
for param in tf_non_train_params:
A: int = param.numpy()
A: Tuple = list(tf_params.keys() )
# Load HuggingFace model
A: Dict = get_efficientnet_config(__lowercase )
A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval()
A: Dict = hf_model.state_dict()
# Create src-to-dst parameter name mapping dictionary
print('''Converting parameters...''' )
A: int = rename_keys(__lowercase )
replace_params(__lowercase , __lowercase , __lowercase )
# Initialize preprocessor and preprocess input image
A: List[Any] = convert_image_processor(__lowercase )
A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' )
# HF model inference
hf_model.eval()
with torch.no_grad():
A: str = hf_model(**__lowercase )
A: List[Any] = outputs.logits.detach().numpy()
# Original model inference
A: Any = False
A: List[Any] = CONFIG_MAP[model_name]['''image_size''']
A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST )
A: str = image.img_to_array(__lowercase )
A: Dict = np.expand_dims(__lowercase , axis=0 )
A: Any = original_model.predict(__lowercase )
# Check whether original and HF model outputs match -> np.allclose
assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same."
print('''Model outputs match!''' )
if save_model:
# Create folder to save model
if not os.path.isdir(__lowercase ):
os.mkdir(__lowercase )
# Save converted model and image processor
hf_model.save_pretrained(__lowercase )
preprocessor.save_pretrained(__lowercase )
if push_to_hub:
# Push model and image processor to hub
print(F"""Pushing converted {model_name} to the hub...""" )
A: int = F"""efficientnet-{model_name}"""
preprocessor.push_to_hub(__lowercase )
hf_model.push_to_hub(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--model_name''',
default='''b0''',
type=str,
help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''',
default='''hf_model''',
type=str,
help='''Path to the output PyTorch model directory.''',
)
parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''')
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''')
UpperCamelCase = parser.parse_args()
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
| 319 | 0 |
'''simple docstring'''
import warnings
from typing import Dict
import numpy as np
from ..utils import ExplicitEnum, add_end_docstrings, is_tf_available, is_torch_available
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> str:
'''simple docstring'''
return 1.0 / (1.0 + np.exp(-_outputs ))
def lowerCAmelCase_ ( snake_case_ : Optional[int] ) -> Dict:
'''simple docstring'''
UpperCAmelCase_ = np.max(_outputs , axis=-1 , keepdims=snake_case_ )
UpperCAmelCase_ = np.exp(_outputs - maxes )
return shifted_exp / shifted_exp.sum(axis=-1 , keepdims=snake_case_ )
class __A ( UpperCamelCase__ ):
a__ : List[str] = """sigmoid"""
a__ : Tuple = """softmax"""
a__ : Union[str, Any] = """none"""
@add_end_docstrings(
UpperCamelCase__ , r"""
return_all_scores (`bool`, *optional*, defaults to `False`):
Whether to return all prediction scores or just the one of the predicted class.
function_to_apply (`str`, *optional*, defaults to `\"default\"`):
The function to apply to the model outputs in order to retrieve the scores. Accepts four different values:
- `\"default\"`: if the model has a single label, will apply the sigmoid function on the output. If the model
has several labels, will apply the softmax function on the output.
- `\"sigmoid\"`: Applies the sigmoid function on the output.
- `\"softmax\"`: Applies the softmax function on the output.
- `\"none\"`: Does not apply any function on the output.
""" , )
class __A ( UpperCamelCase__ ):
a__ : Optional[Any] = False
a__ : List[str] = ClassificationFunction.NONE
def __init__(self : Dict , **__a : Any ):
super().__init__(**__a )
self.check_model_type(
TF_MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING
if self.framework == "tf"
else MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING )
def _lowercase (self : Dict , __a : Dict=None , __a : Any=None , __a : int="" , **__a : Dict ):
# Using "" as default argument because we're going to use `top_k=None` in user code to declare
# "No top_k"
UpperCAmelCase_ = tokenizer_kwargs
UpperCAmelCase_ = {}
if hasattr(self.model.config , "return_all_scores" ) and return_all_scores is None:
UpperCAmelCase_ = self.model.config.return_all_scores
if isinstance(__a , __a ) or top_k is None:
UpperCAmelCase_ = top_k
UpperCAmelCase_ = False
elif return_all_scores is not None:
warnings.warn(
"`return_all_scores` is now deprecated, if want a similar functionality use `top_k=None` instead of"
" `return_all_scores=True` or `top_k=1` instead of `return_all_scores=False`." , __a , )
if return_all_scores:
UpperCAmelCase_ = None
else:
UpperCAmelCase_ = 1
if isinstance(__a , __a ):
UpperCAmelCase_ = ClassificationFunction[function_to_apply.upper()]
if function_to_apply is not None:
UpperCAmelCase_ = function_to_apply
return preprocess_params, {}, postprocess_params
def __call__(self : Optional[int] , *__a : List[Any] , **__a : Tuple ):
UpperCAmelCase_ = super().__call__(*__a , **__a )
# TODO try and retrieve it in a nicer way from _sanitize_parameters.
UpperCAmelCase_ = "top_k" not in kwargs
if isinstance(args[0] , __a ) and _legacy:
# This pipeline is odd, and return a list when single item is run
return [result]
else:
return result
def _lowercase (self : Optional[Any] , __a : Dict , **__a : List[str] ):
UpperCAmelCase_ = self.framework
if isinstance(__a , __a ):
return self.tokenizer(**__a , return_tensors=__a , **__a )
elif isinstance(__a , __a ) and len(__a ) == 1 and isinstance(inputs[0] , __a ) and len(inputs[0] ) == 2:
# It used to be valid to use a list of list of list for text pairs, keeping this path for BC
return self.tokenizer(
text=inputs[0][0] , text_pair=inputs[0][1] , return_tensors=__a , **__a )
elif isinstance(__a , __a ):
# This is likely an invalid usage of the pipeline attempting to pass text pairs.
raise ValueError(
"The pipeline received invalid inputs, if you are trying to send text pairs, you can try to send a"
" dictionary `{\"text\": \"My text\", \"text_pair\": \"My pair\"}` in order to send a text pair." )
return self.tokenizer(__a , return_tensors=__a , **__a )
def _lowercase (self : Dict , __a : Optional[Any] ):
return self.model(**__a )
def _lowercase (self : Dict , __a : int , __a : int=None , __a : List[str]=1 , __a : List[str]=True ):
# `_legacy` is used to determine if we're running the naked pipeline and in backward
# compatibility mode, or if running the pipeline with `pipeline(..., top_k=1)` we're running
# the more natural result containing the list.
# Default value before `set_parameters`
if function_to_apply is None:
if self.model.config.problem_type == "multi_label_classification" or self.model.config.num_labels == 1:
UpperCAmelCase_ = ClassificationFunction.SIGMOID
elif self.model.config.problem_type == "single_label_classification" or self.model.config.num_labels > 1:
UpperCAmelCase_ = ClassificationFunction.SOFTMAX
elif hasattr(self.model.config , "function_to_apply" ) and function_to_apply is None:
UpperCAmelCase_ = self.model.config.function_to_apply
else:
UpperCAmelCase_ = ClassificationFunction.NONE
UpperCAmelCase_ = model_outputs["logits"][0]
UpperCAmelCase_ = outputs.numpy()
if function_to_apply == ClassificationFunction.SIGMOID:
UpperCAmelCase_ = sigmoid(__a )
elif function_to_apply == ClassificationFunction.SOFTMAX:
UpperCAmelCase_ = softmax(__a )
elif function_to_apply == ClassificationFunction.NONE:
UpperCAmelCase_ = outputs
else:
raise ValueError(f"""Unrecognized `function_to_apply` argument: {function_to_apply}""" )
if top_k == 1 and _legacy:
return {"label": self.model.config.idalabel[scores.argmax().item()], "score": scores.max().item()}
UpperCAmelCase_ = [
{"label": self.model.config.idalabel[i], "score": score.item()} for i, score in enumerate(__a )
]
if not _legacy:
dict_scores.sort(key=lambda __a : x["score"] , reverse=__a )
if top_k is not None:
UpperCAmelCase_ = dict_scores[:top_k]
return dict_scores
| 1 |
'''simple docstring'''
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = [
'''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''FocalNetForImageClassification''',
'''FocalNetForMaskedImageModeling''',
'''FocalNetBackbone''',
'''FocalNetModel''',
'''FocalNetPreTrainedModel''',
]
if TYPE_CHECKING:
from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_focalnet import (
FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST,
FocalNetBackbone,
FocalNetForImageClassification,
FocalNetForMaskedImageModeling,
FocalNetModel,
FocalNetPreTrainedModel,
)
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 0 |
'''simple docstring'''
import operator as op
lowerCamelCase : Dict = 'scaler.pt'
lowerCamelCase : Optional[Any] = 'pytorch_model'
lowerCamelCase : List[Any] = 'random_states'
lowerCamelCase : Union[str, Any] = 'optimizer'
lowerCamelCase : str = 'scheduler'
lowerCamelCase : int = 'pytorch_model.bin'
lowerCamelCase : Optional[Any] = 'pytorch_model.bin.index.json'
lowerCamelCase : List[Any] = 'model.safetensors'
lowerCamelCase : Any = 'model.safetensors.index.json'
lowerCamelCase : str = '1.10.2'
lowerCamelCase : List[str] = 'py38'
lowerCamelCase : List[Any] = '4.17.0'
lowerCamelCase : Union[str, Any] = ['ml.p3.16xlarge', 'ml.p3dn.24xlarge', 'ml.p4dn.24xlarge']
lowerCamelCase : Optional[int] = ['FULL_SHARD', 'SHARD_GRAD_OP', 'NO_SHARD', 'HYBRID_SHARD', 'HYBRID_SHARD_ZERO2']
lowerCamelCase : Any = ['TRANSFORMER_BASED_WRAP', 'SIZE_BASED_WRAP', 'NO_WRAP']
lowerCamelCase : Tuple = ['BACKWARD_PRE', 'BACKWARD_POST', 'NO_PREFETCH']
lowerCamelCase : Tuple = ['FULL_STATE_DICT', 'LOCAL_STATE_DICT', 'SHARDED_STATE_DICT']
lowerCamelCase : Optional[int] = '2.0.1'
lowerCamelCase : str = ['pdsh', 'standard', 'openmpi', 'mvapich']
lowerCamelCase : str = ['default', 'reduce-overhead', 'max-autotune']
lowerCamelCase : Optional[Any] = {'>': op.gt, '>=': op.ge, '==': op.eq, '!=': op.ne, '<=': op.le, '<': op.lt}
# These are the args for `torch.distributed.launch` for pytorch < 1.9
lowerCamelCase : List[Any] = [
'nnodes',
'nproc_per_node',
'rdzv_backend',
'rdzv_endpoint',
'rdzv_id',
'rdzv_conf',
'standalone',
'max_restarts',
'monitor_interval',
'start_method',
'role',
'module',
'm',
'no_python',
'run_path',
'log_dir',
'r',
'redirects',
't',
'tee',
'node_rank',
'master_addr',
'master_port',
]
lowerCamelCase : List[Any] = ['DEEPSPEED', 'MULTI_GPU', 'FSDP', 'MEGATRON_LM']
lowerCamelCase : Optional[Any] = ['DEEPSPEED', 'MULTI_XPU', 'FSDP']
| 2 |
'''simple docstring'''
from typing import Any, Dict, List, Union
from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from ..image_utils import load_image
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = Dict[str, Any]
UpperCamelCase = List[Prediction]
@add_end_docstrings(UpperCAmelCase_ )
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
if self.framework == "tf":
raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" )
requires_backends(self , '''vision''' )
self.check_model_type(
dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) )
def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
A: Any = {}
if "threshold" in kwargs:
A: List[Any] = kwargs['''threshold''']
return {}, {}, postprocess_kwargs
def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]:
'''simple docstring'''
return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]:
'''simple docstring'''
A: int = load_image(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = torch.IntTensor([[image.height, image.width]] )
A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' )
if self.tokenizer is not None:
A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' )
A: Any = target_size
return inputs
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]:
'''simple docstring'''
A: Tuple = model_inputs.pop('''target_size''' )
A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ )
A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} )
if self.tokenizer is not None:
A: Dict = model_inputs['''bbox''']
return model_outputs
def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]:
'''simple docstring'''
A: List[Any] = model_outputs['''target_size''']
if self.tokenizer is not None:
# This is a LayoutLMForTokenClassification variant.
# The OCR got the boxes and the model classified the words.
A , A: Union[str, Any] = target_size[0].tolist()
def unnormalize(SCREAMING_SNAKE_CASE_ : str ):
return self._get_bounding_box(
torch.Tensor(
[
(width * bbox[0] / 10_00),
(height * bbox[1] / 10_00),
(width * bbox[2] / 10_00),
(height * bbox[3] / 10_00),
] ) )
A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 )
A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()]
A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )]
A: Dict = ['''score''', '''label''', '''box''']
A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold]
else:
# This is a regular ForObjectDetectionModel
A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: List[str] = raw_annotations[0]
A: List[Any] = raw_annotation['''scores''']
A: List[Any] = raw_annotation['''labels''']
A: int = raw_annotation['''boxes''']
A: Any = scores.tolist()
A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels]
A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes]
# {"scores": [...], ...} --> [{"score":x, ...}, ...]
A: Tuple = ['''score''', '''label''', '''box''']
A: str = [
dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] )
]
return annotation
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]:
'''simple docstring'''
if self.framework != "pt":
raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' )
A , A , A , A: str = box.int().tolist()
A: str = {
'''xmin''': xmin,
'''ymin''': ymin,
'''xmax''': xmax,
'''ymax''': ymax,
}
return bbox
| 319 | 0 |
'''simple docstring'''
from .constants import (
MODEL_NAME,
OPTIMIZER_NAME,
RNG_STATE_NAME,
SAFE_WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SCALER_NAME,
SCHEDULER_NAME,
TORCH_LAUNCH_PARAMS,
WEIGHTS_INDEX_NAME,
WEIGHTS_NAME,
)
from .dataclasses import (
BnbQuantizationConfig,
ComputeEnvironment,
CustomDtype,
DeepSpeedPlugin,
DistributedDataParallelKwargs,
DistributedType,
DynamoBackend,
FPaRecipeKwargs,
FullyShardedDataParallelPlugin,
GradientAccumulationPlugin,
GradScalerKwargs,
InitProcessGroupKwargs,
KwargsHandler,
LoggerType,
MegatronLMPlugin,
PrecisionType,
ProjectConfiguration,
RNGType,
SageMakerDistributedType,
TensorInformation,
TorchDynamoPlugin,
)
from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env
from .imports import (
get_ccl_version,
is_abit_bnb_available,
is_abit_bnb_available,
is_aim_available,
is_bfaa_available,
is_bnb_available,
is_botoa_available,
is_ccl_available,
is_comet_ml_available,
is_datasets_available,
is_deepspeed_available,
is_fpa_available,
is_ipex_available,
is_megatron_lm_available,
is_mlflow_available,
is_mps_available,
is_npu_available,
is_rich_available,
is_safetensors_available,
is_sagemaker_available,
is_tensorboard_available,
is_tpu_available,
is_transformers_available,
is_wandb_available,
is_xpu_available,
)
from .modeling import (
check_device_map,
check_tied_parameters_in_config,
check_tied_parameters_on_same_device,
compute_module_sizes,
convert_file_size_to_int,
dtype_byte_size,
find_tied_parameters,
get_balanced_memory,
get_max_layer_size,
get_max_memory,
get_mixed_precision_context_manager,
id_tensor_storage,
infer_auto_device_map,
load_checkpoint_in_model,
load_offloaded_weights,
load_state_dict,
named_module_tensors,
retie_parameters,
set_module_tensor_to_device,
shard_checkpoint,
)
from .offload import (
OffloadedWeightsLoader,
PrefixedDataset,
extract_submodules_state_dict,
load_offloaded_weight,
offload_state_dict,
offload_weight,
save_offload_index,
)
from .operations import (
broadcast,
broadcast_object_list,
concatenate,
convert_outputs_to_fpaa,
convert_to_fpaa,
find_batch_size,
find_device,
gather,
gather_object,
get_data_structure,
honor_type,
initialize_tensors,
is_namedtuple,
is_tensor_information,
is_torch_tensor,
listify,
pad_across_processes,
recursively_apply,
reduce,
send_to_device,
slice_tensors,
)
from .versions import compare_versions, is_torch_version
if is_deepspeed_available():
from .deepspeed import (
DeepSpeedEngineWrapper,
DeepSpeedOptimizerWrapper,
DeepSpeedSchedulerWrapper,
DummyOptim,
DummyScheduler,
HfDeepSpeedConfig,
)
from .bnb import has_abit_bnb_layers, load_and_quantize_model
from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer
from .launch import (
PrepareForLaunch,
_filter_args,
prepare_deepspeed_cmd_env,
prepare_multi_gpu_env,
prepare_sagemager_args_inputs,
prepare_simple_launcher_cmd_env,
prepare_tpu,
)
from .megatron_lm import (
AbstractTrainStep,
BertTrainStep,
GPTTrainStep,
MegatronEngine,
MegatronLMDummyDataLoader,
MegatronLMDummyScheduler,
MegatronLMOptimizerWrapper,
MegatronLMSchedulerWrapper,
TaTrainStep,
avg_losses_across_data_parallel_group,
gather_across_data_parallel_groups,
)
from .megatron_lm import initialize as megatron_lm_initialize
from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader
from .megatron_lm import prepare_model as megatron_lm_prepare_model
from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer
from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler
from .memory import find_executable_batch_size, release_memory
from .other import (
extract_model_from_parallel,
get_pretty_name,
is_port_in_use,
merge_dicts,
patch_environment,
save,
wait_for_everyone,
write_basic_config,
)
from .random import set_seed, synchronize_rng_state, synchronize_rng_states
from .torch_xla import install_xla
from .tqdm import tqdm
from .transformer_engine import convert_model, has_transformer_engine_layers
| 3 |
'''simple docstring'''
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''',
'''YituTech/conv-bert-medium-small''': (
'''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json'''
),
'''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''',
# See all ConvBERT models at https://huggingface.co/models?filter=convbert
}
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Optional[Any] = """convbert"""
def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]:
'''simple docstring'''
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
A: Dict = vocab_size
A: Tuple = hidden_size
A: Optional[int] = num_hidden_layers
A: List[str] = num_attention_heads
A: int = intermediate_size
A: int = hidden_act
A: List[str] = hidden_dropout_prob
A: int = attention_probs_dropout_prob
A: Tuple = max_position_embeddings
A: Any = type_vocab_size
A: str = initializer_range
A: Union[str, Any] = layer_norm_eps
A: str = embedding_size
A: Optional[int] = head_ratio
A: List[Any] = conv_kernel_size
A: List[Any] = num_groups
A: Optional[int] = classifier_dropout
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
@property
def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]:
'''simple docstring'''
if self.task == "multiple-choice":
A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''}
else:
A: List[str] = {0: '''batch''', 1: '''sequence'''}
return OrderedDict(
[
('''input_ids''', dynamic_axis),
('''attention_mask''', dynamic_axis),
('''token_type_ids''', dynamic_axis),
] )
| 319 | 0 |
'''simple docstring'''
import os
__snake_case ={"""I""": 1, """V""": 5, """X""": 10, """L""": 50, """C""": 100, """D""": 500, """M""": 1_000}
def a_ ( lowerCamelCase : str ):
lowerCAmelCase = 0
lowerCAmelCase = 0
while index < len(lowerCamelCase ) - 1:
lowerCAmelCase = SYMBOLS[numerals[index]]
lowerCAmelCase = SYMBOLS[numerals[index + 1]]
if current_value < next_value:
total_value -= current_value
else:
total_value += current_value
index += 1
total_value += SYMBOLS[numerals[index]]
return total_value
def a_ ( lowerCamelCase : int ):
lowerCAmelCase = ''
lowerCAmelCase = num // 1000
numerals += m_count * "M"
num %= 1000
lowerCAmelCase = num // 100
if c_count == 9:
numerals += "CM"
c_count -= 9
elif c_count == 4:
numerals += "CD"
c_count -= 4
if c_count >= 5:
numerals += "D"
c_count -= 5
numerals += c_count * "C"
num %= 100
lowerCAmelCase = num // 10
if x_count == 9:
numerals += "XC"
x_count -= 9
elif x_count == 4:
numerals += "XL"
x_count -= 4
if x_count >= 5:
numerals += "L"
x_count -= 5
numerals += x_count * "X"
num %= 10
if num == 9:
numerals += "IX"
num -= 9
elif num == 4:
numerals += "IV"
num -= 4
if num >= 5:
numerals += "V"
num -= 5
numerals += num * "I"
return numerals
def a_ ( lowerCamelCase : str = "/p089_roman.txt" ):
lowerCAmelCase = 0
with open(os.path.dirname(lowerCamelCase ) + roman_numerals_filename ) as filea:
lowerCAmelCase = filea.readlines()
for line in lines:
lowerCAmelCase = line.strip()
lowerCAmelCase = parse_roman_numerals(lowerCamelCase )
lowerCAmelCase = generate_roman_numerals(lowerCamelCase )
savings += len(lowerCamelCase ) - len(lowerCamelCase )
return savings
if __name__ == "__main__":
print(F'''{solution() = }''')
| 4 |
'''simple docstring'''
from __future__ import annotations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if len(__lowercase ) < 2:
raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' )
if any(i <= 0 for i in nums ):
raise ValueError('''All values must be greater than 0''' )
A: Any = nums.copy()
copy_nums.sort()
return copy_nums[-1] < sum(copy_nums[:-1] )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 0 |
from __future__ import annotations
UpperCAmelCase__ = [
[-1, 0], # left
[0, -1], # down
[1, 0], # right
[0, 1], # up
]
def UpperCAmelCase_ ( __snake_case , __snake_case , __snake_case , __snake_case , __snake_case , ) -> tuple[list[list[int]], list[list[int]]]:
"""simple docstring"""
_lowercase =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) )
] # the reference grid
_lowercase =1
_lowercase =[
[0 for col in range(len(grid[0] ) )] for row in range(len(__snake_case ) )
] # the action grid
_lowercase =init[0]
_lowercase =init[1]
_lowercase =0
_lowercase =g + heuristic[x][y] # cost from starting cell to destination cell
_lowercase =[[f, g, x, y]]
_lowercase =False # flag that is set when search is complete
_lowercase =False # flag set if we can't find expand
while not found and not resign:
if len(__snake_case ) == 0:
raise ValueError('''Algorithm is unable to find solution''' )
else: # to choose the least costliest action so as to move closer to the goal
cell.sort()
cell.reverse()
_lowercase =cell.pop()
_lowercase =next_cell[2]
_lowercase =next_cell[3]
_lowercase =next_cell[1]
if x == goal[0] and y == goal[1]:
_lowercase =True
else:
for i in range(len(__snake_case ) ): # to try out different valid actions
_lowercase =x + DIRECTIONS[i][0]
_lowercase =y + DIRECTIONS[i][1]
if xa >= 0 and xa < len(__snake_case ) and ya >= 0 and ya < len(grid[0] ):
if closed[xa][ya] == 0 and grid[xa][ya] == 0:
_lowercase =g + cost
_lowercase =ga + heuristic[xa][ya]
cell.append([fa, ga, xa, ya] )
_lowercase =1
_lowercase =i
_lowercase =[]
_lowercase =goal[0]
_lowercase =goal[1]
invpath.append([x, y] ) # we get the reverse path from here
while x != init[0] or y != init[1]:
_lowercase =x - DIRECTIONS[action[x][y]][0]
_lowercase =y - DIRECTIONS[action[x][y]][1]
_lowercase =xa
_lowercase =ya
invpath.append([x, y] )
_lowercase =[]
for i in range(len(__snake_case ) ):
path.append(invpath[len(__snake_case ) - 1 - i] )
return path, action
if __name__ == "__main__":
UpperCAmelCase__ = [
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles
[0, 1, 0, 0, 0, 0],
[0, 1, 0, 0, 1, 0],
[0, 0, 0, 0, 1, 0],
]
UpperCAmelCase__ = [0, 0]
# all coordinates are given in format [y,x]
UpperCAmelCase__ = [len(grid) - 1, len(grid[0]) - 1]
UpperCAmelCase__ = 1
# the cost map which pushes the path closer to the goal
UpperCAmelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))]
for i in range(len(grid)):
for j in range(len(grid[0])):
UpperCAmelCase__ = abs(i - goal[0]) + abs(j - goal[1])
if grid[i][j] == 1:
# added extra penalty in the heuristic map
UpperCAmelCase__ = 99
UpperCAmelCase__ ,UpperCAmelCase__ = search(grid, init, goal, cost, heuristic)
print('''ACTION MAP''')
for i in range(len(action)):
print(action[i])
for i in range(len(path)):
print(path[i])
| 5 |
'''simple docstring'''
# tests directory-specific settings - this file is run automatically
# by pytest before any tests are run
import doctest
import sys
import warnings
from os.path import abspath, dirname, join
import _pytest
from transformers.testing_utils import HfDoctestModule, HfDocTestParser
# allow having multiple repository checkouts and not needing to remember to rerun
# 'pip install -e .[dev]' when switching between checkouts and running tests.
UpperCamelCase = abspath(join(dirname(__file__), '''src'''))
sys.path.insert(1, git_repo_path)
# silence FutureWarning warnings in tests since often we can't act on them until
# they become normal warnings - i.e. the tests still need to test the current functionality
warnings.simplefilter(action='''ignore''', category=FutureWarning)
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
config.addinivalue_line(
'''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' )
config.addinivalue_line(
'''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' )
config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' )
config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' )
config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' )
config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
from transformers.testing_utils import pytest_addoption_shared
pytest_addoption_shared(__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple:
from transformers.testing_utils import pytest_terminal_summary_main
A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' )
if make_reports:
pytest_terminal_summary_main(__lowercase , id=__lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any:
# If no tests are collected, pytest exists with code 5, which makes the CI fail.
if exitstatus == 5:
A: Tuple = 0
# Doctest custom flag to ignore output.
UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''')
UpperCamelCase = doctest.OutputChecker
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str:
'''simple docstring'''
if IGNORE_RESULT & optionflags:
return True
return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
UpperCamelCase = CustomOutputChecker
UpperCamelCase = HfDoctestModule
UpperCamelCase = HfDocTestParser
| 319 | 0 |
from collections.abc import Callable
import numpy as np
def __lowerCAmelCase ( a__ , a__ , a__ , a__ , a__ ) -> np.array:
__a = int(np.ceil((x_end - xa) / step_size ) )
__a = np.zeros((n + 1,) )
__a = ya
__a = xa
for k in range(a__ ):
__a = y[k] + step_size * ode_func(a__ , y[k] )
__a = y[k] + (
(step_size / 2) * (ode_func(a__ , y[k] ) + ode_func(x + step_size , a__ ))
)
x += step_size
return y
if __name__ == "__main__":
import doctest
doctest.testmod()
| 6 |
'''simple docstring'''
import heapq
import sys
import numpy as np
UpperCamelCase = tuple[int, int]
class lowerCAmelCase_ :
'''simple docstring'''
def __init__( self : List[Any] ) -> str:
'''simple docstring'''
A: Any = []
A: int = set()
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def _snake_case ( self : List[str] ) -> List[Any]:
'''simple docstring'''
return len(self.elements ) == 0
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]:
'''simple docstring'''
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(SCREAMING_SNAKE_CASE_ )
else:
# update
# print("update", item)
A: Optional[int] = []
((A) , (A)): str = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((A) , (A)): int = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any:
'''simple docstring'''
if item in self.set:
self.set.remove(SCREAMING_SNAKE_CASE_ )
A: str = []
((A) , (A)): List[str] = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((A) , (A)): Any = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
return self.elements[0][1]
def _snake_case ( self : int ) -> Union[str, Any]:
'''simple docstring'''
((A) , (A)): Dict = heapq.heappop(self.elements )
self.set.remove(SCREAMING_SNAKE_CASE_ )
return (priority, item)
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
# euclidean distance
A: List[str] = np.array(__lowercase )
A: Optional[int] = np.array(__lowercase )
return np.linalg.norm(a - b )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int:
# integer division by time variable
return consistent_heuristic(__lowercase , __lowercase ) // t
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]:
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]:
A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase )
return ans
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]:
A: Union[str, Any] = np.chararray((n, n) )
for i in range(__lowercase ):
for j in range(__lowercase ):
A: Union[str, Any] = '''*'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (j, (n - 1) - i) in blocks:
A: Optional[Any] = '''#'''
A: Tuple = '''-'''
A: List[str] = back_pointer[goal]
while x != start:
((A) , (A)): Tuple = x
# print(x)
A: List[str] = '''-'''
A: str = back_pointer[x]
A: Dict = '''-'''
for i in range(__lowercase ):
for j in range(__lowercase ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
A: List[str] = back_pointer[goal]
while x != start:
print(__lowercase , end=''' ''' )
A: Optional[int] = back_pointer[x]
print(__lowercase )
sys.exit()
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]:
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]:
for itera in range(__lowercase ):
open_list[itera].remove_element(__lowercase )
# print("s", s)
# print("j", j)
((A) , (A)): Tuple = s
A: Optional[Any] = (x - 1, y)
A: str = (x + 1, y)
A: List[Any] = (x, y + 1)
A: int = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(__lowercase ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(__lowercase )
A: int = -1
A: int = float('''inf''' )
if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1:
A: List[str] = g_function[s] + 1
A: List[str] = s
if neighbours not in close_list_anchor:
open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) )
if neighbours not in close_list_inad:
for var in range(1 , __lowercase ):
if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key(
__lowercase , 0 , __lowercase , __lowercase ):
open_list[j].put(
__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( ) -> Tuple:
A: str = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
UpperCamelCase = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
UpperCamelCase = make_common_ground()
UpperCamelCase = blocks_blk
# hyper parameters
UpperCamelCase = 1
UpperCamelCase = 1
UpperCamelCase = 20
UpperCamelCase = 3 # one consistent and two other inconsistent
# start and end destination
UpperCamelCase = (0, 0)
UpperCamelCase = (n - 1, n - 1)
UpperCamelCase = 1
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int:
A: int = {start: 0, goal: float('''inf''' )}
A: Union[str, Any] = {start: -1, goal: -1}
A: List[Any] = []
A: Union[str, Any] = set()
for i in range(__lowercase ):
open_list.append(PriorityQueue() )
open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) )
A: list[int] = []
A: list[int] = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , __lowercase ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A , A: Union[str, Any] = open_list[i].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_inad.append(__lowercase )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(__lowercase , __lowercase , __lowercase )
else:
A: Union[str, Any] = open_list[0].top_show()
visited.add(__lowercase )
expand_state(
__lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , )
close_list_anchor.append(__lowercase )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(__lowercase ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 319 | 0 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class A :
"""simple docstring"""
def __init__( self : Tuple,lowercase_ : list[tuple[float, float]] )-> Tuple:
'''simple docstring'''
A__ = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
A__ = len(lowercase_ ) - 1
def snake_case__ ( self : Dict,lowercase_ : float )-> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree,lowercase_ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowercase_ ),5 ) == 1
return output_values
def snake_case__ ( self : Union[str, Any],lowercase_ : float )-> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
A__ = self.basis_function(lowercase_ )
A__ = 0.0
A__ = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def snake_case__ ( self : Dict,lowercase_ : float = 0.01 )-> Optional[Any]:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
A__ = [] # x coordinates of points to plot
A__ = [] # y coordinates of points to plot
A__ = 0.0
while t <= 1:
A__ = self.bezier_curve_function(lowercase_ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
A__ = [i[0] for i in self.list_of_points]
A__ = [i[1] for i in self.list_of_points]
plt.plot(
lowercase_,lowercase_,color='blue',label='Curve of Degree ' + str(self.degree ),)
plt.scatter(lowercase_,lowercase_,color='red',label='Control Points' )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 7 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int:
A: Any = 1
A: Optional[Any] = 0
for divide_by_number in range(__lowercase , digit + 1 ):
A: list[int] = []
A: List[Any] = numerator
for _ in range(1 , digit + 1 ):
if now_divide in has_been_divided:
if longest_list_length < len(__lowercase ):
A: Any = len(__lowercase )
A: Dict = divide_by_number
else:
has_been_divided.append(__lowercase )
A: str = now_divide * 1_0 % divide_by_number
return the_digit
# Tests
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 0 |
def __SCREAMING_SNAKE_CASE (SCREAMING_SNAKE_CASE__ ):
snake_case_ = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 8 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
UpperCamelCase = {
'''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig''']
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''VisionEncoderDecoderModel''']
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''TFVisionEncoderDecoderModel''']
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCamelCase = ['''FlaxVisionEncoderDecoderModel''']
if TYPE_CHECKING:
from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel
else:
import sys
UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 319 | 0 |
def _UpperCamelCase ( lowercase__ ):
if num <= 0:
raise ValueError('''Input must be a positive integer''' )
__SCREAMING_SNAKE_CASE : Tuple = [True] * (num + 1)
__SCREAMING_SNAKE_CASE : Dict = 2
while p * p <= num:
if primes[p]:
for i in range(p * p , num + 1 , lowercase__ ):
__SCREAMING_SNAKE_CASE : str = False
p += 1
return [prime for prime in range(2 , num + 1 ) if primes[prime]]
if __name__ == "__main__":
import doctest
doctest.testmod()
__lowerCAmelCase : List[str] =int(input('Enter a positive integer: ').strip())
print(prime_sieve_eratosthenes(user_num))
| 9 |
'''simple docstring'''
import fire
from utils import calculate_rouge, save_json
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any:
A: Any = [x.strip() for x in open(__lowercase ).readlines()]
A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )]
A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase )
if save_path is not None:
save_json(__lowercase , __lowercase , indent=__lowercase )
return metrics # these print nicely
if __name__ == "__main__":
fire.Fire(calculate_rouge_path)
| 319 | 0 |
from typing import Any
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> list:
"""simple docstring"""
_validation(
__a , __a , __a , __a , __a , )
# Creates data structures and fill initial step
lowerCamelCase__: dict ={}
lowerCamelCase__: dict ={}
for state in states_space:
lowerCamelCase__: Optional[Any] =observations_space[0]
lowerCamelCase__: List[Any] =(
initial_probabilities[state] * emission_probabilities[state][observation]
)
lowerCamelCase__: int =None
# Fills the data structure with the probabilities of
# different transitions and pointers to previous states
for o in range(1 , len(__a ) ):
lowerCamelCase__: Tuple =observations_space[o]
lowerCamelCase__: Optional[Any] =observations_space[o - 1]
for state in states_space:
# Calculates the argmax for probability function
lowerCamelCase__: Tuple =""
lowerCamelCase__: Optional[Any] =-1
for k_state in states_space:
lowerCamelCase__: int =(
probabilities[(k_state, prior_observation)]
* transition_probabilities[k_state][state]
* emission_probabilities[state][observation]
)
if probability > max_probability:
lowerCamelCase__: List[str] =probability
lowerCamelCase__: int =k_state
# Update probabilities and pointers dicts
lowerCamelCase__: Any =(
probabilities[(arg_max, prior_observation)]
* transition_probabilities[arg_max][state]
* emission_probabilities[state][observation]
)
lowerCamelCase__: int =arg_max
# The final observation
lowerCamelCase__: Any =observations_space[len(__a ) - 1]
# argmax for given final observation
lowerCamelCase__: Optional[Any] =""
lowerCamelCase__: int =-1
for k_state in states_space:
lowerCamelCase__: Tuple =probabilities[(k_state, final_observation)]
if probability > max_probability:
lowerCamelCase__: List[Any] =probability
lowerCamelCase__: Dict =k_state
lowerCamelCase__: str =arg_max
# Process pointers backwards
lowerCamelCase__: Union[str, Any] =last_state
lowerCamelCase__: List[str] =[]
for o in range(len(__a ) - 1 , -1 , -1 ):
result.append(__a )
lowerCamelCase__: Union[str, Any] =pointers[previous, observations_space[o]]
result.reverse()
return result
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_not_empty(
__a , __a , __a , __a , __a , )
_validate_lists(__a , __a )
_validate_dicts(
__a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , ) -> None:
"""simple docstring"""
if not all(
[
observations_space,
states_space,
initial_probabilities,
transition_probabilities,
emission_probabilities,
] ):
raise ValueError("There's an empty parameter" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_list(__a , "observations_space" )
_validate_list(__a , "states_space" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Tuple =F"""{var_name} must be a list"""
raise ValueError(__a )
else:
for x in _object:
if not isinstance(__a , __a ):
lowerCamelCase__: str =F"""{var_name} must be a list of strings"""
raise ValueError(__a )
def lowerCAmelCase_ ( __a , __a , __a , ) -> None:
"""simple docstring"""
_validate_dict(__a , "initial_probabilities" , __a )
_validate_nested_dict(__a , "transition_probabilities" )
_validate_nested_dict(__a , "emission_probabilities" )
def lowerCAmelCase_ ( __a , __a ) -> None:
"""simple docstring"""
_validate_dict(_object , __a , __a )
for x in _object.values():
_validate_dict(__a , __a , __a , __a )
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> None:
"""simple docstring"""
if not isinstance(_object , __a ):
lowerCamelCase__: Optional[int] =F"""{var_name} must be a dict"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object ):
lowerCamelCase__: Tuple =F"""{var_name} all keys must be strings"""
raise ValueError(__a )
if not all(isinstance(__a , __a ) for x in _object.values() ):
lowerCamelCase__: Dict ="nested dictionary " if nested else ""
lowerCamelCase__: List[str] =F"""{var_name} {nested_text}all values must be {value_type.__name__}"""
raise ValueError(__a )
if __name__ == "__main__":
from doctest import testmod
testmod()
| 10 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list:
A: Dict = length or len(__lowercase )
A: Dict = False
for i in range(length - 1 ):
if list_data[i] > list_data[i + 1]:
A , A: Tuple = list_data[i + 1], list_data[i]
A: Union[str, Any] = True
return list_data if not swapped else bubble_sort(__lowercase , length - 1 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 319 | 0 |
import unittest
import torch
from diffusers import VQModel
from diffusers.utils import floats_tensor, torch_device
from diffusers.utils.testing_utils import enable_full_determinism
from .test_modeling_common import ModelTesterMixin, UNetTesterMixin
enable_full_determinism()
class lowerCAmelCase__ ( a , a , unittest.TestCase):
'''simple docstring'''
__SCREAMING_SNAKE_CASE = VQModel
__SCREAMING_SNAKE_CASE = "sample"
@property
def _lowerCamelCase ( self , __lowerCamelCase=(3_2, 3_2)) -> Optional[Any]:
_A : Optional[int] = 4
_A : Tuple = 3
_A : List[Any] = floats_tensor((batch_size, num_channels) + sizes).to(__lowerCamelCase)
return {"sample": image}
@property
def _lowerCamelCase ( self) -> int:
return (3, 3_2, 3_2)
@property
def _lowerCamelCase ( self) -> List[Any]:
return (3, 3_2, 3_2)
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : List[Any] = {
"block_out_channels": [3_2, 6_4],
"in_channels": 3,
"out_channels": 3,
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
"latent_channels": 3,
}
_A : int = self.dummy_input
return init_dict, inputs_dict
def _lowerCamelCase ( self) -> Union[str, Any]:
pass
def _lowerCamelCase ( self) -> Any:
pass
def _lowerCamelCase ( self) -> Any:
_A , _A : List[Any] = VQModel.from_pretrained("fusing/vqgan-dummy" , output_loading_info=__lowerCamelCase)
self.assertIsNotNone(__lowerCamelCase)
self.assertEqual(len(loading_info["missing_keys"]) , 0)
model.to(__lowerCamelCase)
_A : str = model(**self.dummy_input)
assert image is not None, "Make sure output is not None"
def _lowerCamelCase ( self) -> Union[str, Any]:
_A : Optional[Any] = VQModel.from_pretrained("fusing/vqgan-dummy")
model.to(__lowerCamelCase).eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
_A : Tuple = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size)
_A : Optional[int] = image.to(__lowerCamelCase)
with torch.no_grad():
_A : List[str] = model(__lowerCamelCase).sample
_A : int = output[0, -1, -3:, -3:].flatten().cpu()
# fmt: off
_A : Optional[Any] = torch.tensor([-0.0_1_5_3, -0.4_0_4_4, -0.1_8_8_0, -0.5_1_6_1, -0.2_4_1_8, -0.4_0_7_2, -0.1_6_1_2, -0.0_6_3_3, -0.0_1_4_3])
# fmt: on
self.assertTrue(torch.allclose(__lowerCamelCase , __lowerCamelCase , atol=1e-3))
| 11 |
'''simple docstring'''
import argparse
from collections import OrderedDict
from pathlib import Path
import torch
from transformers import (
VisualBertConfig,
VisualBertForMultipleChoice,
VisualBertForPreTraining,
VisualBertForQuestionAnswering,
VisualBertForVisualReasoning,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = [
('''bert.bert''', '''visual_bert'''),
('''bert.cls''', '''cls'''),
('''bert.classifier''', '''cls'''),
('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''),
('''position_embeddings_visual''', '''visual_position_embeddings'''),
('''projection''', '''visual_projection'''),
]
UpperCamelCase = [
'''nlvr2_coco_pre_trained.th''',
'''nlvr2_fine_tuned.th''',
'''nlvr2_pre_trained.th''',
'''vcr_coco_pre_train.th''',
'''vcr_fine_tune.th''',
'''vcr_pre_train.th''',
'''vqa_coco_pre_trained.th''',
'''vqa_fine_tuned.th''',
'''vqa_pre_trained.th''',
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
A: List[Any] = torch.load(__lowercase , map_location='''cpu''' )
return sd
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]:
A: Tuple = OrderedDict()
A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) )
# detector_d = OrderedDict()
for key in d:
if "detector" in key:
# detector_d[key.replace('detector.','')] = d[key]
continue
A: int = key
for name_pair in rename_keys_prefix:
A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] )
A: Union[str, Any] = d[key]
if key == "bert.cls.predictions.decoder.weight":
# Old bert code didn't have `decoder.bias`, but was added separately
A: int = new_d['''cls.predictions.bias''']
return new_d
@torch.no_grad()
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
assert (
checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS
), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}."""
# Get Config
if "pre" in checkpoint_path:
A: Optional[Any] = '''pretraining'''
if "vcr" in checkpoint_path:
A: Optional[int] = {'''visual_embedding_dim''': 5_1_2}
elif "vqa_advanced" in checkpoint_path:
A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8}
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8}
elif "nlvr" in checkpoint_path:
A: Tuple = {'''visual_embedding_dim''': 1_0_2_4}
else:
raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" )
else:
if "vcr" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 5_1_2}
A: List[str] = '''multichoice'''
elif "vqa_advanced" in checkpoint_path:
A: List[str] = {'''visual_embedding_dim''': 2_0_4_8}
A: Optional[int] = '''vqa_advanced'''
elif "vqa" in checkpoint_path:
A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9}
A: Union[str, Any] = '''vqa'''
elif "nlvr" in checkpoint_path:
A: Optional[int] = {
'''visual_embedding_dim''': 1_0_2_4,
'''num_labels''': 2,
}
A: str = '''nlvr'''
A: Union[str, Any] = VisualBertConfig(**__lowercase )
# Load State Dict
A: Union[str, Any] = load_state_dict(__lowercase )
A: str = get_new_dict(__lowercase , __lowercase )
if model_type == "pretraining":
A: Optional[Any] = VisualBertForPreTraining(__lowercase )
elif model_type == "vqa":
A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase )
elif model_type == "nlvr":
A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase )
elif model_type == "multichoice":
A: Any = VisualBertForMultipleChoice(__lowercase )
model.load_state_dict(__lowercase )
# Save Checkpoints
Path(__lowercase ).mkdir(exist_ok=__lowercase )
model.save_pretrained(__lowercase )
if __name__ == "__main__":
UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''')
parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''')
UpperCamelCase = parser.parse_args()
convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
| 319 | 0 |
from collections import OrderedDict
from typing import Any, Mapping, Optional
from ... import PreTrainedTokenizer, TensorType, is_torch_available
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfigWithPast
from ...utils import logging
UpperCAmelCase_ = logging.get_logger(__name__)
UpperCAmelCase_ = {
'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json',
# See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo
}
class lowerCamelCase__( __lowerCamelCase):
UpperCAmelCase__ : int = 'gpt_neo'
UpperCAmelCase__ : Union[str, Any] = ['past_key_values']
UpperCAmelCase__ : int = {'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers'}
def __init__( self: List[Any] , UpperCamelCase_: Union[str, Any]=5_02_57 , UpperCamelCase_: Any=20_48 , UpperCamelCase_: Optional[Any]=20_48 , UpperCamelCase_: Any=24 , UpperCamelCase_: int=[[["global", "local"], 12]] , UpperCamelCase_: Optional[int]=16 , UpperCamelCase_: str=None , UpperCamelCase_: Any=2_56 , UpperCamelCase_: List[str]="gelu_new" , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Optional[Any]=0.0 , UpperCamelCase_: Union[str, Any]=0.0 , UpperCamelCase_: Dict=0.1 , UpperCamelCase_: List[Any]=1E-5 , UpperCamelCase_: Optional[Any]=0.02 , UpperCamelCase_: int=True , UpperCamelCase_: Optional[Any]=5_02_56 , UpperCamelCase_: Dict=5_02_56 , **UpperCamelCase_: int , ):
__lowerCamelCase = vocab_size
__lowerCamelCase = max_position_embeddings
__lowerCamelCase = hidden_size
__lowerCamelCase = num_layers
__lowerCamelCase = num_heads
__lowerCamelCase = intermediate_size
__lowerCamelCase = window_size
__lowerCamelCase = activation_function
__lowerCamelCase = resid_dropout
__lowerCamelCase = embed_dropout
__lowerCamelCase = attention_dropout
__lowerCamelCase = classifier_dropout
__lowerCamelCase = layer_norm_epsilon
__lowerCamelCase = initializer_range
__lowerCamelCase = use_cache
__lowerCamelCase = bos_token_id
__lowerCamelCase = eos_token_id
__lowerCamelCase = attention_types
__lowerCamelCase = self.expand_attention_types_params(UpperCamelCase_ )
if len(self.attention_layers ) != self.num_layers:
raise ValueError(
"""Configuration for convolutional module is incorrect. """
"""It is required that `len(config.attention_layers)` == `config.num_layers` """
F'but is `len(config.attention_layers) = {len(self.attention_layers )}`, '
F'`config.num_layers = {self.num_layers}`. '
"""`config.attention_layers` is prepared using `config.attention_types`. """
"""Please verify the value of `config.attention_types` argument.""" )
super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ )
@staticmethod
def lowerCAmelCase__ ( UpperCamelCase_: Tuple ):
__lowerCamelCase = []
for item in attention_types:
for _ in range(item[1] ):
attentions.extend(item[0] )
return attentions
def lowerCamelCase__ ( A__ : int , A__ : Optional[Any] , A__ : Optional[int] , A__ : List[Any] ):
'''simple docstring'''
import torch
__lowerCamelCase = input.size()
__lowerCamelCase = len(A__ )
__lowerCamelCase = shape[dimension]
__lowerCamelCase = torch.arange(0 , A__ , A__ )
__lowerCamelCase = torch.div(sizedim - size , A__ , rounding_mode="""floor""" ) + 1
__lowerCamelCase = torch.arange(A__ ) + low_indices[:min_length][:, None]
__lowerCamelCase = [slice(A__ )] * rank
__lowerCamelCase = indices
__lowerCamelCase = input[s]
__lowerCamelCase = list(range(0 , rank + 1 ) )
perm.append(perm.pop(dimension + 1 ) )
return sliced.permute(A__ )
def lowerCamelCase__ ( A__ : Optional[int] , A__ : List[str] ):
'''simple docstring'''
import torch
__lowerCamelCase = torch.arange(1 , A__ )
__lowerCamelCase = torch.remainder(A__ , A__ )
__lowerCamelCase = remainders == 0
__lowerCamelCase = candidates[divisor_indices]
__lowerCamelCase = torch.max(A__ )
return largest_divisor, torch.div(A__ , A__ , rounding_mode="""floor""" )
class lowerCamelCase__( __lowerCamelCase):
@property
def lowerCAmelCase__ ( self: Any ):
__lowerCamelCase = OrderedDict({"""input_ids""": {0: """batch""", 1: """sequence"""}} )
if self.use_past:
self.fill_with_past_key_values_(UpperCamelCase_ , direction="""inputs""" )
__lowerCamelCase = {0: """batch""", 1: """past_sequence + sequence"""}
else:
__lowerCamelCase = {0: """batch""", 1: """sequence"""}
return common_inputs
@property
def lowerCAmelCase__ ( self: Dict ):
return self._config.num_heads
def lowerCAmelCase__ ( self: Tuple , UpperCamelCase_: PreTrainedTokenizer , UpperCamelCase_: int = -1 , UpperCamelCase_: int = -1 , UpperCamelCase_: bool = False , UpperCamelCase_: Optional[TensorType] = None , ):
__lowerCamelCase = super(UpperCamelCase_ , self ).generate_dummy_inputs(
UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ )
# We need to order the input in the way they appears in the forward()
__lowerCamelCase = OrderedDict({"""input_ids""": common_inputs["""input_ids"""]} )
# Need to add the past_keys
if self.use_past:
if not is_torch_available():
raise ValueError("""Cannot generate dummy past_keys inputs without PyTorch installed.""" )
else:
import torch
__lowerCamelCase, __lowerCamelCase = common_inputs["""input_ids"""].shape
# Not using the same length for past_key_values
__lowerCamelCase = seqlen + 2
__lowerCamelCase = (
batch,
self.num_attention_heads,
past_key_values_length,
self._config.hidden_size // self.num_attention_heads,
)
__lowerCamelCase = [
(torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(self.num_layers )
]
__lowerCamelCase = common_inputs["""attention_mask"""]
if self.use_past:
__lowerCamelCase = ordered_inputs["""attention_mask"""].dtype
__lowerCamelCase = torch.cat(
[ordered_inputs["""attention_mask"""], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 )
return ordered_inputs
@property
def lowerCAmelCase__ ( self: Optional[Any] ):
return 13
| 12 |
'''simple docstring'''
from itertools import permutations
def SCREAMING_SNAKE_CASE( __lowercase ) -> bool:
if num[3] % 2 != 0:
return False
if (num[2] + num[3] + num[4]) % 3 != 0:
return False
if num[5] % 5 != 0:
return False
A: int = [7, 1_1, 1_3, 1_7]
for i, test in enumerate(__lowercase ):
if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0:
return False
return True
def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int:
return sum(
int(''''''.join(map(__lowercase , __lowercase ) ) )
for num in permutations(range(__lowercase ) )
if is_substring_divisible(__lowercase ) )
if __name__ == "__main__":
print(f'{solution() = }')
| 319 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
lowerCAmelCase : List[Any] = None
lowerCAmelCase : str = logging.get_logger(__name__)
lowerCAmelCase : Union[str, Any] = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
lowerCAmelCase : Optional[Any] = {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""",
},
}
# TODO(PVP) - this should be removed in Transformers v5
lowerCAmelCase : str = {
"""t5-small""": 512,
"""t5-base""": 512,
"""t5-large""": 512,
"""t5-3b""": 512,
"""t5-11b""": 512,
}
class __lowercase ( UpperCAmelCase_ ):
"""simple docstring"""
_UpperCAmelCase : Any = VOCAB_FILES_NAMES
_UpperCAmelCase : Dict = PRETRAINED_VOCAB_FILES_MAP
_UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
_UpperCAmelCase : str = ['''input_ids''', '''attention_mask''']
_UpperCAmelCase : Optional[int] = TaTokenizer
_UpperCAmelCase : List[int] = []
def __init__( self : Any , lowerCAmelCase__ : Optional[int]=None , lowerCAmelCase__ : Dict=None , lowerCAmelCase__ : int="</s>" , lowerCAmelCase__ : List[Any]="<unk>" , lowerCAmelCase__ : str="<pad>" , lowerCAmelCase__ : List[Any]=100 , lowerCAmelCase__ : List[Any]=None , **lowerCAmelCase__ : Tuple , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE_: Optional[int] = [F"<extra_id_{i}>" for i in range(lowerCAmelCase__)]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
SCREAMING_SNAKE_CASE_: List[str] = len(set(filter(lambda lowerCAmelCase__: bool("extra_id_" in str(lowerCAmelCase__)) , lowerCAmelCase__)))
if extra_tokens != extra_ids:
raise ValueError(
F"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are"
" provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids"
" tokens")
super().__init__(
lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , extra_ids=lowerCAmelCase__ , additional_special_tokens=lowerCAmelCase__ , **lowerCAmelCase__ , )
SCREAMING_SNAKE_CASE_: Dict = vocab_file
SCREAMING_SNAKE_CASE_: Dict = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE_: List[str] = extra_ids
@staticmethod
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Any):
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
SCREAMING_SNAKE_CASE_: List[str] = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
"This tokenizer was incorrectly instantiated with a model max length of"
F" {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this"
" behavior is kept to avoid breaking backwards compatibility when padding/encoding with"
" `truncation is True`.\n- Be aware that you SHOULD NOT rely on"
F" {pretrained_model_name_or_path} automatically truncating your input to"
F" {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences"
F" longer than {deprecated_max_model_length} you can either instantiate this tokenizer with"
" `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please"
" instantiate this tokenizer with `model_max_length` set to your preferred value." , lowerCAmelCase__ , )
return max_model_length
def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[str] = None):
if not self.can_save_slow_tokenizer:
raise ValueError(
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
"tokenizer.")
if not os.path.isdir(lowerCAmelCase__):
logger.error(F"Vocabulary path ({save_directory}) should be a directory")
return
SCREAMING_SNAKE_CASE_: Tuple = os.path.join(
lowerCAmelCase__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"])
if os.path.abspath(self.vocab_file) != os.path.abspath(lowerCAmelCase__):
copyfile(self.vocab_file , lowerCAmelCase__)
logger.info(F"Copy vocab file to {out_vocab_file}")
return (out_vocab_file,)
def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None):
SCREAMING_SNAKE_CASE_: Optional[int] = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
SCREAMING_SNAKE_CASE_: Optional[int] = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , lowerCAmelCase__ : List[int] , lowerCAmelCase__ : Optional[List[int]] = None):
SCREAMING_SNAKE_CASE_: List[Any] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos) * [0]
return len(token_ids_a + eos + token_ids_a + eos) * [0]
def _SCREAMING_SNAKE_CASE ( self : List[str]):
return list(
set(filter(lambda lowerCAmelCase__: bool(re.search(R"<extra_id_\d+>" , lowerCAmelCase__)) is not None , self.additional_special_tokens)))
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]):
return [self.convert_tokens_to_ids(lowerCAmelCase__) for token in self.get_sentinel_tokens()]
| 13 |
'''simple docstring'''
import json
import os
from functools import lru_cache
from typing import List, Optional, Tuple
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
UpperCamelCase = {
'''vocab_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json'''
),
},
'''merges_file''': {
'''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''',
'''allenai/longformer-large-4096''': (
'''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-finetuned-triviaqa''': (
'''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt'''
),
'''allenai/longformer-base-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
'''allenai/longformer-large-4096-extra.pos.embd.only''': (
'''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt'''
),
},
}
UpperCamelCase = {
'''allenai/longformer-base-4096''': 4096,
'''allenai/longformer-large-4096''': 4096,
'''allenai/longformer-large-4096-finetuned-triviaqa''': 4096,
'''allenai/longformer-base-4096-extra.pos.embd.only''': 4096,
'''allenai/longformer-large-4096-extra.pos.embd.only''': 4096,
}
@lru_cache()
# Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode
def SCREAMING_SNAKE_CASE( ) -> Dict:
A: Dict = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
A: Union[str, Any] = bs[:]
A: List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(__lowercase )
cs.append(2**8 + n )
n += 1
A: List[Any] = [chr(__lowercase ) for n in cs]
return dict(zip(__lowercase , __lowercase ) )
def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]:
A: Optional[Any] = set()
A: Tuple = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
A: List[Any] = char
return pairs
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : int = VOCAB_FILES_NAMES
UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""]
def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]:
'''simple docstring'''
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token
A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token
A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token
A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token
super().__init__(
errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle:
A: str = json.load(SCREAMING_SNAKE_CASE_ )
A: str = {v: k for k, v in self.encoder.items()}
A: Union[str, Any] = errors # how to handle errors in decoding
A: Optional[int] = bytes_to_unicode()
A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()}
with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle:
A: int = merges_handle.read().split('''\n''' )[1:-1]
A: str = [tuple(merge.split() ) for merge in bpe_merges]
A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Union[str, Any] = {}
A: Tuple = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
return len(self.encoder )
def _snake_case ( self : Optional[Any] ) -> int:
'''simple docstring'''
return dict(self.encoder , **self.added_tokens_encoder )
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
A: str = tuple(SCREAMING_SNAKE_CASE_ )
A: str = get_pairs(SCREAMING_SNAKE_CASE_ )
if not pairs:
return token
while True:
A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
A , A: Optional[Any] = bigram
A: Tuple = []
A: List[Any] = 0
while i < len(SCREAMING_SNAKE_CASE_ ):
try:
A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
A: int = j
if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ )
A: Any = new_word
if len(SCREAMING_SNAKE_CASE_ ) == 1:
break
else:
A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ )
A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ )
A: str = word
return word
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]:
'''simple docstring'''
A: Dict = []
for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ):
A: Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) )
return bpe_tokens
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]:
'''simple docstring'''
return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) )
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str:
'''simple docstring'''
return self.decoder.get(SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ )
A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(SCREAMING_SNAKE_CASE_ ):
logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" )
return
A: Union[str, Any] = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
A: int = os.path.join(
SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' )
A: Any = 0
with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ):
if index != token_index:
logger.warning(
f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."""
''' Please check that the tokenizer is not corrupted!''' )
A: Union[str, Any] = token_index
writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
A: int = [self.cls_token_id]
A: str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ )
if token_ids_a is None:
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1]
def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
A: Dict = [self.sep_token_id]
A: Optional[Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int:
'''simple docstring'''
A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()):
A: List[Any] = ''' ''' + text
return (text, kwargs)
| 319 | 0 |
from __future__ import annotations
import typing
from collections.abc import Iterable
import numpy as np
_lowerCamelCase : str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
_lowerCamelCase : Tuple = typing.Union[np.floataa, int, float] # noqa: UP007
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return np.sqrt(np.sum((np.asarray(lowercase_ ) - np.asarray(lowercase_ )) ** 2 ) )
def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> VectorOut:
"""simple docstring"""
return sum((va - va) ** 2 for va, va in zip(lowercase_ , lowercase_ ) ) ** (1 / 2)
if __name__ == "__main__":
def SCREAMING_SNAKE_CASE ( ) -> None:
"""simple docstring"""
from timeit import timeit
print('''Without Numpy''' )
print(
timeit(
'''euclidean_distance_no_np([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
print('''With Numpy''' )
print(
timeit(
'''euclidean_distance([1, 2, 3], [4, 5, 6])''' , number=10_000 , globals=globals() , ) )
benchmark()
| 14 |
'''simple docstring'''
def SCREAMING_SNAKE_CASE( __lowercase ) -> int:
if not isinstance(__lowercase , __lowercase ):
raise TypeError('''only integers accepted as input''' )
else:
A: str = str(abs(__lowercase ) )
A: int = [list(__lowercase ) for char in range(len(__lowercase ) )]
for index in range(len(__lowercase ) ):
num_transpositions[index].pop(__lowercase )
return max(
int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions )
if __name__ == "__main__":
__import__('''doctest''').testmod()
| 319 | 0 |
import math
def UpperCAmelCase ( a_ , a_ ) -> float:
"""simple docstring"""
if (
not isinstance(a_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * power_factor
def UpperCAmelCase ( a_ , a_ ) -> float:
"""simple docstring"""
if (
not isinstance(a_ , (int, float) )
or power_factor < -1
or power_factor > 1
):
raise ValueError("power_factor must be a valid float value between -1 and 1." )
return apparent_power * math.sqrt(1 - power_factor**2 )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 15 |
'''simple docstring'''
from __future__ import annotations
import math
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2:
raise Exception('''Matrices are not 2x2''' )
A: str = [
[a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]],
[a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]],
]
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]:
return [
[matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )]
for row in range(len(__lowercase ) )
]
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]:
if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0:
raise Exception('''Odd matrices are not supported!''' )
A: Union[str, Any] = len(__lowercase )
A: str = matrix_length // 2
A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )]
A: Optional[Any] = [
[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase )
]
A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )]
A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )]
return top_left, top_right, bot_left, bot_right
def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]:
return len(__lowercase ), len(matrix[0] )
def SCREAMING_SNAKE_CASE( __lowercase ) -> None:
print('''\n'''.join(str(__lowercase ) for line in matrix ) )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase ) == (2, 2):
return default_matrix_multiplication(__lowercase , __lowercase )
A , A , A , A: Union[str, Any] = split_matrix(__lowercase )
A , A , A , A: List[Any] = split_matrix(__lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase )
A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) )
A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) )
A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
A: Any = matrix_addition(__lowercase , __lowercase )
A: List[Any] = matrix_addition(__lowercase , __lowercase )
A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase )
# construct the new matrix from our 4 quadrants
A: Union[str, Any] = []
for i in range(len(__lowercase ) ):
new_matrix.append(top_left[i] + top_right[i] )
for i in range(len(__lowercase ) ):
new_matrix.append(bot_left[i] + bot_right[i] )
return new_matrix
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list:
if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]:
A: int = (
'''Unable to multiply these matrices, please check the dimensions.\n'''
F"""Matrix A: {matrixa}\n"""
F"""Matrix B: {matrixa}"""
)
raise Exception(__lowercase )
A: str = matrix_dimensions(__lowercase )
A: str = matrix_dimensions(__lowercase )
if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]:
return [matrixa, matrixa]
A: Union[str, Any] = max(*__lowercase , *__lowercase )
A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) )
A: List[Any] = matrixa
A: Tuple = matrixa
# Adding zeros to the matrices so that the arrays dimensions are the same and also
# power of 2
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
new_matrixa[i].append(0 )
else:
new_matrixa.append([0] * maxim )
A: Any = actual_strassen(__lowercase , __lowercase )
# Removing the additional zeros
for i in range(0 , __lowercase ):
if i < dimensiona[0]:
for _ in range(dimensiona[1] , __lowercase ):
final_matrix[i].pop()
else:
final_matrix.pop()
return final_matrix
if __name__ == "__main__":
UpperCamelCase = [
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 4, 3, 1],
[2, 3, 6, 7],
[3, 1, 2, 4],
[2, 3, 4, 5],
[6, 2, 3, 1],
]
UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]]
print(strassen(matrixa, matrixa))
| 319 | 0 |
"""simple docstring"""
import argparse
import re
import requests
import torch
# git clone https://github.com/salesforce/BLIP.git
from models.blip import blip_decoder
from models.blip_itm import blip_itm
from models.blip_vqa import blip_vqa
from PIL import Image
from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode
from transformers import (
BertTokenizer,
BlipConfig,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
)
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase ) -> Tuple:
lowercase__ : Optional[int] = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg'''
lowercase__ : List[str] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ).convert('''RGB''' )
lowercase__ : Any = transforms.Compose(
[
transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ),
transforms.ToTensor(),
transforms.Normalize((0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3) , (0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1) ),
] )
lowercase__ : Dict = transform(__lowerCamelCase ).unsqueeze(0 ).to(__lowerCamelCase )
return image
def __UpperCAmelCase ( __lowerCamelCase ) -> List[Any]:
if "visual_encoder" in key:
lowercase__ : Any = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , __lowerCamelCase )
if "blocks" in key:
lowercase__ : List[str] = re.sub(r'''blocks''' , '''layers''' , __lowerCamelCase )
if "attn" in key:
lowercase__ : List[str] = re.sub(r'''attn''' , '''self_attn''' , __lowerCamelCase )
if "norm1" in key:
lowercase__ : Dict = re.sub(r'''norm1''' , '''layer_norm1''' , __lowerCamelCase )
if "norm2" in key:
lowercase__ : Optional[Any] = re.sub(r'''norm2''' , '''layer_norm2''' , __lowerCamelCase )
if "encoder.norm" in key:
lowercase__ : Union[str, Any] = re.sub(r'''encoder.norm''' , '''post_layernorm''' , __lowerCamelCase )
if "encoder.patch_embed.proj" in key:
lowercase__ : int = re.sub(r'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , __lowerCamelCase )
if "encoder.pos_embed" in key:
lowercase__ : int = re.sub(r'''encoder.pos_embed''' , '''embeddings.position_embedding''' , __lowerCamelCase )
if "encoder.cls_token" in key:
lowercase__ : Dict = re.sub(r'''encoder.cls_token''' , '''embeddings.class_embedding''' , __lowerCamelCase )
if "self_attn" in key:
lowercase__ : Optional[int] = re.sub(r'''self_attn.proj''' , '''self_attn.projection''' , __lowerCamelCase )
return key
@torch.no_grad()
def __UpperCAmelCase ( __lowerCamelCase , __lowerCamelCase=None ) -> Optional[int]:
if config_path is not None:
lowercase__ : Union[str, Any] = BlipConfig.from_pretrained(__lowerCamelCase )
else:
lowercase__ : str = BlipConfig(projection_dim=5_12 , text_config={} , vision_config={} )
lowercase__ : Dict = BlipForConditionalGeneration(__lowerCamelCase ).eval()
lowercase__ : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth'''
lowercase__ : Optional[int] = blip_decoder(pretrained=__lowerCamelCase , image_size=3_84 , vit='''base''' )
lowercase__ : Optional[int] = pt_model.eval()
lowercase__ : Union[str, Any] = pt_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ : Any = modified_state_dict.pop(__lowerCamelCase )
lowercase__ : Union[str, Any] = rename_key(__lowerCamelCase )
lowercase__ : Union[str, Any] = value
hf_model.load_state_dict(__lowerCamelCase )
lowercase__ : int = 3_84
lowercase__ : Optional[int] = load_demo_image(image_size=__lowerCamelCase , device='''cpu''' )
lowercase__ : str = BertTokenizer.from_pretrained('''bert-base-uncased''' )
lowercase__ : Dict = tokenizer(['''a picture of'''] ).input_ids
lowercase__ : Tuple = hf_model.generate(__lowerCamelCase , __lowerCamelCase )
assert out[0].tolist() == [3_05_22, 10_37, 38_61, 19_97, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02]
lowercase__ : Tuple = hf_model.generate(__lowerCamelCase )
assert out[0].tolist() == [3_05_22, 10_37, 24_50, 35_64, 20_06, 19_96, 35_09, 20_07, 20_14, 38_99, 1_02]
if pytorch_dump_folder_path is not None:
hf_model.save_pretrained(__lowerCamelCase )
# model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth'
lowercase__ : int = (
'''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth'''
)
lowercase__ : Optional[Any] = blip_vqa(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit='''base''' )
vqa_model.eval()
lowercase__ : Optional[Any] = vqa_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ : str = modified_state_dict.pop(__lowerCamelCase )
lowercase__ : Optional[Any] = rename_key(__lowerCamelCase )
lowercase__ : List[Any] = value
lowercase__ : Tuple = BlipForQuestionAnswering(__lowerCamelCase )
hf_vqa_model.load_state_dict(__lowerCamelCase )
lowercase__ : Union[str, Any] = ['''How many dogs are in this image?''']
lowercase__ : Tuple = tokenizer(__lowerCamelCase , return_tensors='''pt''' ).input_ids
lowercase__ : Optional[int] = hf_vqa_model.generate(__lowerCamelCase , __lowerCamelCase )
print(tokenizer.decode(answer[0] ) )
assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]"
if pytorch_dump_folder_path is not None:
hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' )
lowercase__ : Any = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth'''
lowercase__ : str = blip_itm(pretrained=__lowerCamelCase , image_size=__lowerCamelCase , vit='''base''' )
itm_model.eval()
lowercase__ : str = itm_model.state_dict()
for key in modified_state_dict.copy():
lowercase__ : str = modified_state_dict.pop(__lowerCamelCase )
lowercase__ : List[Any] = rename_key(__lowerCamelCase )
lowercase__ : Union[str, Any] = value
lowercase__ : Union[str, Any] = BlipForImageTextRetrieval(__lowerCamelCase )
lowercase__ : Any = ['''A picture of a woman with a dog sitting in a beach''']
lowercase__ : Optional[Any] = tokenizer(
__lowerCamelCase , return_tensors='''pt''' , padding='''max_length''' , truncation=__lowerCamelCase , max_length=35 , ).input_ids
hf_itm_model.load_state_dict(__lowerCamelCase )
hf_itm_model.eval()
lowercase__ : Optional[Any] = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase )
lowercase__ : Any = hf_itm_model(__lowerCamelCase , __lowerCamelCase , use_itm_head=__lowerCamelCase )
assert out[0].item() == 0.2_1_1_0_6_8_7_4_9_4_2_7_7_9_5_4
assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.4_5_6_9_8_8_4_5_3_8_6_5_0_5_1_2_7
if pytorch_dump_folder_path is not None:
hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' )
if __name__ == "__main__":
lowerCAmelCase_ = argparse.ArgumentParser()
parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.')
parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert')
lowerCAmelCase_ = parser.parse_args()
convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
| 16 |
'''simple docstring'''
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : torch.FloatTensor
UpperCamelCase_ : Optional[torch.FloatTensor] = None
class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ):
'''simple docstring'''
UpperCamelCase_ : Tuple = 2
@register_to_config
def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]:
'''simple docstring'''
A: Union[str, Any] = sigma_max
# setable values
A: int = None
A: np.IntTensor = None
A: torch.FloatTensor = None # sigma(t_i)
def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = num_inference_steps
A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy()
A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ )
A: str = [
(
self.config.sigma_max**2
* (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1))
)
for i in self.timesteps
]
A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]:
'''simple docstring'''
if self.config.s_min <= sigma <= self.config.s_max:
A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 )
else:
A: List[str] = 0
# sample eps ~ N(0, S_noise^2 * I)
A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device )
A: Optional[Any] = sigma + gamma * sigma
A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps)
return sample_hat, sigma_hat
def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: Union[str, Any] = sample_hat + sigma_hat * model_output
A: str = (sample_hat - pred_original_sample) / sigma_hat
A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]:
'''simple docstring'''
A: int = sample_prev + sigma_prev * model_output
A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev
A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr)
if not return_dict:
return (sample_prev, derivative)
return KarrasVeOutput(
prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict:
'''simple docstring'''
raise NotImplementedError()
| 319 | 0 |
"""simple docstring"""
import unittest
from transformers import MraConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
if is_torch_available():
import torch
from transformers import (
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
MraModel,
)
from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCAmelCase :
"""simple docstring"""
def __init__( self : str, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[str]=2, UpperCAmelCase__ : str=8, UpperCAmelCase__ : int=True, UpperCAmelCase__ : str=True, UpperCAmelCase__ : Optional[int]=True, UpperCAmelCase__ : Any=True, UpperCAmelCase__ : Tuple=9_9, UpperCAmelCase__ : Dict=1_6, UpperCAmelCase__ : Optional[int]=5, UpperCAmelCase__ : Any=2, UpperCAmelCase__ : int=3_6, UpperCAmelCase__ : List[Any]="gelu", UpperCAmelCase__ : str=0.0, UpperCAmelCase__ : Dict=0.0, UpperCAmelCase__ : List[str]=5_1_2, UpperCAmelCase__ : Optional[int]=1_6, UpperCAmelCase__ : Tuple=2, UpperCAmelCase__ : Tuple=0.02, UpperCAmelCase__ : int=3, UpperCAmelCase__ : Tuple=4, UpperCAmelCase__ : List[Any]=None, ):
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
def _lowercase ( self : str ):
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.vocab_size )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size], self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length], self.num_labels )
__lowercase = ids_tensor([self.batch_size], self.num_choices )
__lowercase = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _lowercase ( self : Optional[Any] ):
return MraConfig(
vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCAmelCase__, initializer_range=self.initializer_range, )
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.get_config()
__lowercase = 3_0_0
return config
def _lowercase ( self : List[str] ):
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = self.prepare_config_and_inputs()
__lowercase = True
__lowercase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
__lowercase = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 )
return (
config,
input_ids,
token_type_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def _lowercase ( self : List[Any], UpperCAmelCase__ : Dict, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Dict ):
__lowercase = MraModel(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__, token_type_ids=UpperCAmelCase__ )
__lowercase = model(UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Tuple, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Optional[Any], ):
__lowercase = True
__lowercase = MraModel(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, encoder_attention_mask=UpperCAmelCase__, )
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, encoder_hidden_states=UpperCAmelCase__, )
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) )
def _lowercase ( self : Dict, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : str, UpperCAmelCase__ : int ):
__lowercase = MraForMaskedLM(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) )
def _lowercase ( self : str, UpperCAmelCase__ : Dict, UpperCAmelCase__ : Any, UpperCAmelCase__ : Optional[Any], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : str, UpperCAmelCase__ : List[str] ):
__lowercase = MraForQuestionAnswering(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, start_positions=UpperCAmelCase__, end_positions=UpperCAmelCase__, )
self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) )
def _lowercase ( self : str, UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Any, UpperCAmelCase__ : List[str], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Tuple ):
__lowercase = self.num_labels
__lowercase = MraForSequenceClassification(UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) )
def _lowercase ( self : Optional[int], UpperCAmelCase__ : int, UpperCAmelCase__ : Tuple, UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[Any], UpperCAmelCase__ : List[str], UpperCAmelCase__ : Optional[int], UpperCAmelCase__ : Optional[Any] ):
__lowercase = self.num_labels
__lowercase = MraForTokenClassification(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = model(UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__ )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) )
def _lowercase ( self : Optional[Any], UpperCAmelCase__ : Any, UpperCAmelCase__ : int, UpperCAmelCase__ : Dict, UpperCAmelCase__ : int, UpperCAmelCase__ : Union[str, Any], UpperCAmelCase__ : Tuple, UpperCAmelCase__ : Tuple ):
__lowercase = self.num_choices
__lowercase = MraForMultipleChoice(config=UpperCAmelCase__ )
model.to(UpperCAmelCase__ )
model.eval()
__lowercase = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
__lowercase = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
__lowercase = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous()
__lowercase = model(
UpperCAmelCase__, attention_mask=UpperCAmelCase__, token_type_ids=UpperCAmelCase__, labels=UpperCAmelCase__, )
self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) )
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_torch
class _lowerCAmelCase ( lowercase ,unittest.TestCase ):
"""simple docstring"""
__UpperCAmelCase : Optional[int] = (
(
MraModel,
MraForMaskedLM,
MraForMultipleChoice,
MraForQuestionAnswering,
MraForSequenceClassification,
MraForTokenClassification,
)
if is_torch_available()
else ()
)
__UpperCAmelCase : Any = False
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : Union[str, Any] = False
__UpperCAmelCase : List[Any] = False
__UpperCAmelCase : List[Any] = ()
def _lowercase ( self : List[Any] ):
__lowercase = MraModelTester(self )
__lowercase = ConfigTester(self, config_class=UpperCAmelCase__, hidden_size=3_7 )
def _lowercase ( self : Any ):
self.config_tester.run_common_tests()
def _lowercase ( self : Union[str, Any] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
__lowercase = type
self.model_tester.create_and_check_model(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*UpperCAmelCase__ )
def _lowercase ( self : Tuple ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase__ )
def _lowercase ( self : List[str] ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*UpperCAmelCase__ )
def _lowercase ( self : int ):
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase__ )
@slow
def _lowercase ( self : Any ):
for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = MraModel.from_pretrained(UpperCAmelCase__ )
self.assertIsNotNone(UpperCAmelCase__ )
@unittest.skip(reason="MRA does not output attentions" )
def _lowercase ( self : Union[str, Any] ):
return
@require_torch
class _lowerCAmelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _lowercase ( self : Tuple ):
__lowercase = MraModel.from_pretrained("uw-madison/mra-base-512-4" )
__lowercase = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )[0]
__lowercase = torch.Size((1, 2_5_6, 7_6_8) )
self.assertEqual(output.shape, UpperCAmelCase__ )
__lowercase = torch.tensor(
[[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
@slow
def _lowercase ( self : Union[str, Any] ):
__lowercase = MraForMaskedLM.from_pretrained("uw-madison/mra-base-512-4" )
__lowercase = torch.arange(2_5_6 ).unsqueeze(0 )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )[0]
__lowercase = 5_0_2_6_5
__lowercase = torch.Size((1, 2_5_6, vocab_size) )
self.assertEqual(output.shape, UpperCAmelCase__ )
__lowercase = torch.tensor(
[[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
@slow
def _lowercase ( self : Tuple ):
__lowercase = MraForMaskedLM.from_pretrained("uw-madison/mra-base-4096-8-d3" )
__lowercase = torch.arange(4_0_9_6 ).unsqueeze(0 )
with torch.no_grad():
__lowercase = model(UpperCAmelCase__ )[0]
__lowercase = 5_0_2_6_5
__lowercase = torch.Size((1, 4_0_9_6, vocab_size) )
self.assertEqual(output.shape, UpperCAmelCase__ )
__lowercase = torch.tensor(
[[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] )
self.assertTrue(torch.allclose(output[:, :3, :3], UpperCAmelCase__, atol=1E-4 ) )
| 17 |
'''simple docstring'''
import json
import logging
import math
import os
import sys
from dataclasses import dataclass, field
from typing import Optional
from datasets import Dataset, load_dataset
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_FOR_MASKED_LM_MAPPING,
AutoConfig,
AutoModelForMaskedLM,
AutoTokenizer,
DataCollatorForWholeWordMask,
HfArgumentParser,
Trainer,
TrainingArguments,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint, is_main_process
UpperCamelCase = logging.getLogger(__name__)
UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys())
UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The model checkpoint for weights initialization.Don't set if you want to train a model from scratch."""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Override some existing default config settings when a model is trained from scratch. Example: """
"""n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index"""
)
} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , )
UpperCamelCase_ : str = field(
default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Will use the token generated when running `huggingface-cli login` (necessary to use this script """
"""with private models)."""
)
} , )
def _snake_case ( self : Tuple ) -> List[Any]:
'''simple docstring'''
if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None):
raise ValueError(
'''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' )
@dataclass
class lowerCAmelCase_ :
'''simple docstring'''
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} )
UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : Optional[str] = field(
default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} )
UpperCamelCase_ : Optional[int] = field(
default=5 , metadata={
"""help""": """The percentage of the train set used as validation set in case there's no validation split"""
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""The maximum total input sequence length after tokenization. Sequences longer """
"""than this will be truncated. Default to the max input length of the model."""
)
} , )
UpperCamelCase_ : Optional[int] = field(
default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , )
UpperCamelCase_ : float = field(
default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} )
UpperCamelCase_ : bool = field(
default=UpperCAmelCase_ , metadata={
"""help""": (
"""Whether to pad all samples to `max_seq_length`. """
"""If False, will pad the samples dynamically when batching to the maximum length in the batch."""
)
} , )
def _snake_case ( self : List[Any] ) -> Optional[int]:
'''simple docstring'''
if self.train_file is not None:
A: Tuple = self.train_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file."
if self.validation_file is not None:
A: str = self.validation_file.split('''.''' )[-1]
assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file."
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]:
with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f:
A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())]
assert len(__lowercase ) == len(__lowercase )
A: Optional[int] = {c: dataset[c] for c in dataset.column_names}
A: Union[str, Any] = refs
return Dataset.from_dict(__lowercase )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ):
# If we pass only one argument to the script and it's the path to a json file,
# let's parse it to get our arguments.
A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) )
else:
A , A , A: List[Any] = parser.parse_args_into_dataclasses()
# Detecting last checkpoint.
A: Any = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
A: Any = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F"""Output directory ({training_args.output_dir}) already exists and is not empty. """
'''Use --overwrite_output_dir to overcome.''' )
elif last_checkpoint is not None:
logger.info(
F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """
'''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' )
# Setup logging
logging.basicConfig(
format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , )
logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN )
# Log on each process the small summary:
logger.warning(
F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"""
+ F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" )
# Set the verbosity to info of the Transformers logger (on main process only):
if is_main_process(training_args.local_rank ):
transformers.utils.logging.set_verbosity_info()
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
logger.info('''Training/evaluation parameters %s''' , __lowercase )
# Set seed before initializing model.
set_seed(training_args.seed )
# Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below)
# or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/
# (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use the column called 'text' or the first column if no column called
# 'text' is found. You can easily tweak this behavior (see below).
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name )
if "validation" not in datasets.keys():
A: int = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , )
A: Dict = load_dataset(
data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , )
else:
A: Any = {}
if data_args.train_file is not None:
A: int = data_args.train_file
if data_args.validation_file is not None:
A: Optional[int] = data_args.validation_file
A: List[str] = data_args.train_file.split('''.''' )[-1]
if extension == "txt":
A: int = '''text'''
A: Any = load_dataset(__lowercase , data_files=__lowercase )
# See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Load pretrained model and tokenizer
#
# Distributed training:
# The .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
A: Dict = {
'''cache_dir''': model_args.cache_dir,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.config_name:
A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase )
elif model_args.model_name_or_path:
A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
A: str = CONFIG_MAPPING[model_args.model_type]()
logger.warning('''You are instantiating a new config instance from scratch.''' )
if model_args.config_overrides is not None:
logger.info(F"""Overriding config: {model_args.config_overrides}""" )
config.update_from_string(model_args.config_overrides )
logger.info(F"""New config: {config}""" )
A: Tuple = {
'''cache_dir''': model_args.cache_dir,
'''use_fast''': model_args.use_fast_tokenizer,
'''revision''': model_args.model_revision,
'''use_auth_token''': True if model_args.use_auth_token else None,
}
if model_args.tokenizer_name:
A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase )
elif model_args.model_name_or_path:
A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase )
else:
raise ValueError(
'''You are instantiating a new tokenizer from scratch. This is not supported by this script.'''
'''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' )
if model_args.model_name_or_path:
A: List[Any] = AutoModelForMaskedLM.from_pretrained(
model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
else:
logger.info('''Training new model from scratch''' )
A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase )
model.resize_token_embeddings(len(__lowercase ) )
# Preprocessing the datasets.
# First we tokenize all the texts.
if training_args.do_train:
A: int = datasets['''train'''].column_names
else:
A: str = datasets['''validation'''].column_names
A: Tuple = '''text''' if '''text''' in column_names else column_names[0]
A: List[str] = '''max_length''' if data_args.pad_to_max_length else False
def tokenize_function(__lowercase ):
# Remove empty lines
A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()]
return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length )
A: str = datasets.map(
__lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , )
# Add the chinese references if provided
if data_args.train_ref_file is not None:
A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file )
if data_args.validation_ref_file is not None:
A: Dict = add_chinese_references(
tokenized_datasets['''validation'''] , data_args.validation_ref_file )
# If we have ref files, need to avoid it removed by trainer
A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file
if has_ref:
A: List[Any] = False
# Data collator
# This one will take care of randomly masking the tokens.
A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability )
# Initialize our Trainer
A: Optional[int] = Trainer(
model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , )
# Training
if training_args.do_train:
if last_checkpoint is not None:
A: Optional[int] = last_checkpoint
elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ):
A: str = model_args.model_name_or_path
else:
A: List[str] = None
A: str = trainer.train(resume_from_checkpoint=__lowercase )
trainer.save_model() # Saves the tokenizer too for easy upload
A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Train results *****''' )
for key, value in sorted(train_result.metrics.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
# Need to save the state, since Trainer.save_model saves only the tokenizer with the model
trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) )
# Evaluation
A: Optional[int] = {}
if training_args.do_eval:
logger.info('''*** Evaluate ***''' )
A: Optional[Any] = trainer.evaluate()
A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] )
A: Dict = perplexity
A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' )
if trainer.is_world_process_zero():
with open(__lowercase , '''w''' ) as writer:
logger.info('''***** Eval results *****''' )
for key, value in sorted(results.items() ):
logger.info(F""" {key} = {value}""" )
writer.write(F"""{key} = {value}\n""" )
return results
def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]:
# For xla_spawn (TPUs)
main()
if __name__ == "__main__":
main()
| 319 | 0 |
from __future__ import annotations
import os
import tempfile
import unittest
from transformers import ConvBertConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TFConvBertForMaskedLM,
TFConvBertForMultipleChoice,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertModel,
)
class a__ :
def __init__( self : Optional[int],_A : Dict,_A : List[str]=13,_A : List[str]=7,_A : int=True,_A : str=True,_A : Union[str, Any]=True,_A : Tuple=True,_A : Dict=99,_A : Tuple=32,_A : Tuple=2,_A : Tuple=4,_A : Optional[Any]=37,_A : str="gelu",_A : Dict=0.1,_A : List[Any]=0.1,_A : List[str]=512,_A : str=16,_A : int=2,_A : Dict=0.02,_A : List[Any]=3,_A : Optional[Any]=4,_A : Optional[int]=None,):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = parent
SCREAMING_SNAKE_CASE_ : Any = 13
SCREAMING_SNAKE_CASE_ : List[str] = 7
SCREAMING_SNAKE_CASE_ : Dict = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : Tuple = True
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : List[str] = 99
SCREAMING_SNAKE_CASE_ : Tuple = 384
SCREAMING_SNAKE_CASE_ : Optional[Any] = 2
SCREAMING_SNAKE_CASE_ : Any = 4
SCREAMING_SNAKE_CASE_ : str = 37
SCREAMING_SNAKE_CASE_ : Optional[Any] = "gelu"
SCREAMING_SNAKE_CASE_ : List[Any] = 0.1
SCREAMING_SNAKE_CASE_ : Union[str, Any] = 0.1
SCREAMING_SNAKE_CASE_ : Dict = 512
SCREAMING_SNAKE_CASE_ : int = 16
SCREAMING_SNAKE_CASE_ : Optional[int] = 2
SCREAMING_SNAKE_CASE_ : Any = 0.02
SCREAMING_SNAKE_CASE_ : str = 3
SCREAMING_SNAKE_CASE_ : int = 4
SCREAMING_SNAKE_CASE_ : Dict = 128
SCREAMING_SNAKE_CASE_ : Any = 2
SCREAMING_SNAKE_CASE_ : Tuple = 9
SCREAMING_SNAKE_CASE_ : List[Any] = 1
SCREAMING_SNAKE_CASE_ : Any = None
def __UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size, self.seq_length],self.vocab_size )
SCREAMING_SNAKE_CASE_ : Any = None
if self.use_input_mask:
SCREAMING_SNAKE_CASE_ : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] )
SCREAMING_SNAKE_CASE_ : List[str] = None
if self.use_token_type_ids:
SCREAMING_SNAKE_CASE_ : List[Any] = ids_tensor([self.batch_size, self.seq_length],self.type_vocab_size )
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : Dict = None
SCREAMING_SNAKE_CASE_ : str = None
if self.use_labels:
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.type_sequence_label_size )
SCREAMING_SNAKE_CASE_ : Dict = ids_tensor([self.batch_size, self.seq_length],self.num_labels )
SCREAMING_SNAKE_CASE_ : List[str] = ids_tensor([self.batch_size],self.num_choices )
SCREAMING_SNAKE_CASE_ : Any = ConvBertConfig(
vocab_size=self.vocab_size,hidden_size=self.hidden_size,num_hidden_layers=self.num_hidden_layers,num_attention_heads=self.num_attention_heads,intermediate_size=self.intermediate_size,hidden_act=self.hidden_act,hidden_dropout_prob=self.hidden_dropout_prob,attention_probs_dropout_prob=self.attention_probs_dropout_prob,max_position_embeddings=self.max_position_embeddings,type_vocab_size=self.type_vocab_size,initializer_range=self.initializer_range,return_dict=_A,)
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __UpperCamelCase ( self : Optional[int],_A : List[Any],_A : int,_A : Tuple,_A : Optional[int],_A : Union[str, Any],_A : Union[str, Any],_A : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertModel(config=_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
SCREAMING_SNAKE_CASE_ : str = [input_ids, input_mask]
SCREAMING_SNAKE_CASE_ : List[str] = model(_A )
SCREAMING_SNAKE_CASE_ : Dict = model(_A )
self.parent.assertEqual(result.last_hidden_state.shape,(self.batch_size, self.seq_length, self.hidden_size) )
def __UpperCamelCase ( self : Dict,_A : Dict,_A : int,_A : Union[str, Any],_A : List[Any],_A : int,_A : str,_A : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = TFConvBertForMaskedLM(config=_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : List[Any] = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.vocab_size) )
def __UpperCamelCase ( self : Any,_A : Optional[int],_A : List[Any],_A : Union[str, Any],_A : List[Any],_A : Union[str, Any],_A : Optional[int],_A : Dict ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.num_labels
SCREAMING_SNAKE_CASE_ : Any = TFConvBertForSequenceClassification(config=_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Optional[Any] = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_labels) )
def __UpperCamelCase ( self : int,_A : int,_A : Dict,_A : List[str],_A : Tuple,_A : Dict,_A : Optional[int],_A : int ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Optional[Any] = self.num_choices
SCREAMING_SNAKE_CASE_ : Optional[int] = TFConvBertForMultipleChoice(config=_A )
SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : Any = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.tile(tf.expand_dims(_A,1 ),(1, self.num_choices, 1) )
SCREAMING_SNAKE_CASE_ : int = {
"input_ids": multiple_choice_inputs_ids,
"attention_mask": multiple_choice_input_mask,
"token_type_ids": multiple_choice_token_type_ids,
}
SCREAMING_SNAKE_CASE_ : int = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.num_choices) )
def __UpperCamelCase ( self : List[Any],_A : Union[str, Any],_A : int,_A : Optional[int],_A : str,_A : str,_A : Tuple,_A : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.num_labels
SCREAMING_SNAKE_CASE_ : Union[str, Any] = TFConvBertForTokenClassification(config=_A )
SCREAMING_SNAKE_CASE_ : Tuple = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : str = model(_A )
self.parent.assertEqual(result.logits.shape,(self.batch_size, self.seq_length, self.num_labels) )
def __UpperCamelCase ( self : List[Any],_A : int,_A : List[str],_A : List[Any],_A : Any,_A : Optional[int],_A : List[str],_A : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = TFConvBertForQuestionAnswering(config=_A )
SCREAMING_SNAKE_CASE_ : Dict = {
"input_ids": input_ids,
"attention_mask": input_mask,
"token_type_ids": token_type_ids,
}
SCREAMING_SNAKE_CASE_ : Any = model(_A )
self.parent.assertEqual(result.start_logits.shape,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape,(self.batch_size, self.seq_length) )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Any = self.prepare_config_and_inputs()
(
(
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) , (
SCREAMING_SNAKE_CASE_
) ,
) : List[Any] = config_and_inputs
SCREAMING_SNAKE_CASE_ : Any = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
return config, inputs_dict
@require_tf
class a__ ( A__ , A__ , unittest.TestCase ):
A = (
(
TFConvBertModel,
TFConvBertForMaskedLM,
TFConvBertForQuestionAnswering,
TFConvBertForSequenceClassification,
TFConvBertForTokenClassification,
TFConvBertForMultipleChoice,
)
if is_tf_available()
else ()
)
A = (
{
'feature-extraction': TFConvBertModel,
'fill-mask': TFConvBertForMaskedLM,
'question-answering': TFConvBertForQuestionAnswering,
'text-classification': TFConvBertForSequenceClassification,
'token-classification': TFConvBertForTokenClassification,
'zero-shot': TFConvBertForSequenceClassification,
}
if is_tf_available()
else {}
)
A = False
A = False
A = False
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = TFConvBertModelTester(self )
SCREAMING_SNAKE_CASE_ : Tuple = ConfigTester(self,config_class=_A,hidden_size=37 )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
self.config_tester.run_common_tests()
def __UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_A )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*_A )
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_multiple_choice(*_A )
def __UpperCamelCase ( self : str ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*_A )
def __UpperCamelCase ( self : List[str] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*_A )
def __UpperCamelCase ( self : Optional[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*_A )
@slow
def __UpperCamelCase ( self : Optional[int] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : Any = True
if hasattr(_A,"use_cache" ):
SCREAMING_SNAKE_CASE_ : List[Any] = True
SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Optional[Any] = getattr(self.model_tester,"key_length",_A )
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : List[str] = self._prepare_for_class(_A,_A )
SCREAMING_SNAKE_CASE_ : List[Any] = model_class(_A )
SCREAMING_SNAKE_CASE_ : Optional[int] = len(model(_A ) )
with tempfile.TemporaryDirectory() as tmpdirname:
model.save_pretrained(_A,saved_model=_A )
SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.join(_A,"saved_model","1" )
SCREAMING_SNAKE_CASE_ : Tuple = tf.keras.models.load_model(_A )
SCREAMING_SNAKE_CASE_ : str = model(_A )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE_ : Optional[Any] = outputs["encoder_hidden_states"]
SCREAMING_SNAKE_CASE_ : str = outputs["encoder_attentions"]
else:
SCREAMING_SNAKE_CASE_ : Any = outputs["hidden_states"]
SCREAMING_SNAKE_CASE_ : List[str] = outputs["attentions"]
self.assertEqual(len(_A ),_A )
SCREAMING_SNAKE_CASE_ : Any = getattr(
self.model_tester,"expected_num_hidden_layers",self.model_tester.num_hidden_layers + 1 )
self.assertEqual(len(_A ),_A )
self.assertListEqual(
list(output_hidden_states[0].shape[-2:] ),[self.model_tester.seq_length, self.model_tester.hidden_size],)
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(output_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],)
@slow
def __UpperCamelCase ( self : List[Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : str = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
self.assertIsNotNone(_A )
def __UpperCamelCase ( self : Tuple ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE_ : List[str] = True
SCREAMING_SNAKE_CASE_ : List[str] = getattr(self.model_tester,"decoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Any = getattr(self.model_tester,"encoder_seq_length",self.model_tester.seq_length )
SCREAMING_SNAKE_CASE_ : Optional[int] = getattr(self.model_tester,"key_length",_A )
SCREAMING_SNAKE_CASE_ : int = getattr(self.model_tester,"key_length",_A )
def check_decoder_attentions_output(_A : Dict ):
SCREAMING_SNAKE_CASE_ : int = len(_A )
self.assertEqual(out_len % 2,0 )
SCREAMING_SNAKE_CASE_ : Tuple = outputs.decoder_attentions
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(decoder_attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length],)
def check_encoder_attentions_output(_A : Tuple ):
SCREAMING_SNAKE_CASE_ : int = [
t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions)
]
self.assertEqual(len(_A ),self.model_tester.num_hidden_layers )
self.assertListEqual(
list(attentions[0].shape[-3:] ),[self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length],)
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE_ : Optional[Any] = True
SCREAMING_SNAKE_CASE_ : Optional[Any] = False
SCREAMING_SNAKE_CASE_ : Tuple = model_class(_A )
SCREAMING_SNAKE_CASE_ : Any = model(self._prepare_for_class(_A,_A ) )
SCREAMING_SNAKE_CASE_ : Tuple = len(_A )
self.assertEqual(config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
if self.is_encoder_decoder:
SCREAMING_SNAKE_CASE_ : Optional[Any] = model_class(_A )
SCREAMING_SNAKE_CASE_ : int = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(config.output_hidden_states,_A )
check_decoder_attentions_output(_A )
# Check that output attentions can also be changed via the config
del inputs_dict["output_attentions"]
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : int = model_class(_A )
SCREAMING_SNAKE_CASE_ : List[str] = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
# Check attention is always last and order is fine
SCREAMING_SNAKE_CASE_ : str = True
SCREAMING_SNAKE_CASE_ : int = True
SCREAMING_SNAKE_CASE_ : Dict = model_class(_A )
SCREAMING_SNAKE_CASE_ : str = model(self._prepare_for_class(_A,_A ) )
self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1),len(_A ) )
self.assertEqual(model.config.output_hidden_states,_A )
check_encoder_attentions_output(_A )
@require_tf
class a__ ( unittest.TestCase ):
@slow
def __UpperCamelCase ( self : Union[str, Any] ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ : List[str] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" )
SCREAMING_SNAKE_CASE_ : int = tf.constant([[0, 1, 2, 3, 4, 5]] )
SCREAMING_SNAKE_CASE_ : Tuple = model(_A )[0]
SCREAMING_SNAKE_CASE_ : List[Any] = [1, 6, 768]
self.assertEqual(output.shape,_A )
SCREAMING_SNAKE_CASE_ : Union[str, Any] = tf.constant(
[
[
[-0.03475493, -0.4686034, -0.30638832],
[0.22637248, -0.26988646, -0.7423424],
[0.10324868, -0.45013508, -0.58280784],
]
] )
tf.debugging.assert_near(output[:, :3, :3],_A,atol=1E-4 )
| 18 |
'''simple docstring'''
import json
import os
import unittest
from typing import Tuple
from transformers import WavaVecaPhonemeCTCTokenizer
from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES
from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput
from transformers.testing_utils import require_phonemizer
from ...test_tokenization_common import TokenizerTesterMixin
@require_phonemizer
class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ):
'''simple docstring'''
UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer
UpperCamelCase_ : Tuple = False
def _snake_case ( self : str ) -> Union[str, Any]:
'''simple docstring'''
super().setUp()
A: Optional[int] = (
'''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː '''
'''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː '''
'''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 '''
'''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ '''
'''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ '''
'''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ '''
'''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ '''
'''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ '''
'''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ '''
'''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ '''
'''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ '''
'''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ '''
'''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4'''
).split(''' ''' )
A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) )
A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''}
A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp:
fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' )
def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]:
'''simple docstring'''
A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )]
A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) )
if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length:
A: int = toks[:max_length]
if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0:
while len(SCREAMING_SNAKE_CASE_ ) < min_length:
A: Dict = toks + toks
# toks_str = [t[1] for t in toks]
A: Union[str, Any] = [t[0] for t in toks]
# Ensure consistency
A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1:
A: int = (
tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
+ ''' '''
+ tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )
)
if with_prefix_space:
A: Tuple = ''' ''' + output_txt
A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ )
return output_txt, output_ids
def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict:
'''simple docstring'''
kwargs.update(self.special_tokens_map )
return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> Optional[Any]:
'''simple docstring'''
A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
# check adding a single token
tokenizer.add_tokens('''xxx''' )
A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token
tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] )
A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa
A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3)
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Any = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
def _snake_case ( self : Tuple ) -> Dict:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: List[str] = '''Hello how are you'''
A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : Dict ) -> Optional[Any]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: Optional[Any] = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98],
[24, 22, 5, 24, 22, 5, 77],
]
A: List[str] = tokenizer.decode(sample_ids[0] )
A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
def _snake_case ( self : Any ) -> Optional[int]:
'''simple docstring'''
A: int = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: List[Any] = '''Hello how are you'''
A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' )
def _snake_case ( self : List[str] ) -> int:
'''simple docstring'''
A: Optional[Any] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Optional[Any] = '''Hello how are you'''
A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids )
def _snake_case ( self : Dict ) -> Any:
'''simple docstring'''
A: Optional[int] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
A: str = [
[11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98],
[tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77],
]
# fmt: on
# decode with word_del_token filter
A: Tuple = tokenizer.decode(sample_ids[0] )
A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] )
# decode with no word_del_token filter
A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] )
def _snake_case ( self : int ) -> List[str]:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Union[str, Any] = '''Hello how are you'''
A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Any:
'''simple docstring'''
A: Dict = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
A: Any = '''Hello how are you'''
A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' )
A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : List[str] ) -> Optional[Any]:
'''simple docstring'''
A: List[str] = self.tokenizer_class.from_pretrained(
'''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ )
A: List[Any] = '''Hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids
A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' )
def _snake_case ( self : str ) -> str:
'''simple docstring'''
A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
A: str = '''Hello how Are you'''
A: Union[str, Any] = '''hello how are you'''
A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def _snake_case ( self : int ) -> List[Any]:
'''simple docstring'''
A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' )
tokenizer.add_tokens(['''!''', '''?'''] )
tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} )
# fmt: off
A: Tuple = [
[11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94],
[24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94],
]
# fmt: on
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] )
@staticmethod
def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple:
'''simple docstring'''
A: Any = [d[key] for d in offsets]
return retrieved_list
def _snake_case ( self : Any ) -> Tuple:
'''simple docstring'''
A: str = self.get_tokenizer(word_delimiter_token='''|''' )
tokenizer.add_tokens('''|''' )
# fmt: off
# ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ"
A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98]
# fmt: on
A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ )
# check Wav2Vec2CTCTokenizerOutput keys for char
self.assertEqual(len(outputs.keys() ) , 2 )
self.assertTrue('''text''' in outputs )
self.assertTrue('''char_offsets''' in outputs )
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
# check that order of chars is correct and identical for both outputs
self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] )
# check that offsets are actually correct for char
# 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token,
# 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] )
self.assertListEqual(
self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] )
def _snake_case ( self : Any ) -> List[Any]:
'''simple docstring'''
A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' )
def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ):
self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) )
self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) )
# transform list to ModelOutput
A: Dict = WavaVecaPhonemeCTCTokenizerOutput(
{k: [d[k] for d in outputs_list] for k in outputs_list[0]} )
self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] )
def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ):
if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ):
[recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )]
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
if "char_offsets" in outputs_batch:
recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] )
# fmt: off
A: int = [
[11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34],
[24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34],
]
# fmt: on
# We assume that `decode` works as expected. All we will check now is
# the output type is correct and the output is identical to `decode`
# char
A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ )
A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids]
check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
@unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' )
def _snake_case ( self : int ) -> int:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' )
def _snake_case ( self : str ) -> Any:
'''simple docstring'''
pass
@unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' )
def _snake_case ( self : List[str] ) -> List[str]:
'''simple docstring'''
pass
@unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' )
def _snake_case ( self : Dict ) -> List[Any]:
'''simple docstring'''
pass
def _snake_case ( self : Tuple ) -> Any:
'''simple docstring'''
A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: str = tokenizer.vocab_size
A: str = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
# We usually have added tokens from the start in tests because our vocab fixtures are
# smaller than the original vocabs - let's not assert this
# self.assertEqual(vocab_size, all_size)
A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd''']
A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) )
A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''}
A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ )
A: Optional[Any] = tokenizer.vocab_size
A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ )
self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) )
self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) )
A: int = tokenizer.encode(
'''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ )
self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 )
self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[0] , tokens[1] )
self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 )
self.assertGreater(tokens[-3] , tokens[-4] )
self.assertEqual(tokens[0] , tokenizer.eos_token_id )
self.assertEqual(tokens[-3] , tokenizer.pad_token_id )
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : List[Any] ) -> Optional[Any]:
'''simple docstring'''
pass
@unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' )
def _snake_case ( self : Tuple ) -> Optional[Any]:
'''simple docstring'''
pass
def _snake_case ( self : str ) -> Tuple:
'''simple docstring'''
A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ )
for tokenizer in tokenizers:
with self.subTest(f"""{tokenizer.__class__.__name__}""" ):
A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t''']
A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ )
self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
| 319 | 0 |
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
from accelerate.utils import ComputeEnvironment
from .cluster import get_cluster_input
from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401
from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401
from .sagemaker import get_sagemaker_input
__A ='''Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine'''
def lowerCamelCase_ ( ):
lowerCamelCase_ = _ask_options(
"In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , )
if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER:
lowerCamelCase_ = get_sagemaker_input()
else:
lowerCamelCase_ = get_cluster_input()
return config
def lowerCamelCase_ ( lowerCamelCase__=None ):
if subparsers is not None:
lowerCamelCase_ = subparsers.add_parser("config" , description=lowerCamelCase__ )
else:
lowerCamelCase_ = argparse.ArgumentParser("Accelerate config command" , description=lowerCamelCase__ )
parser.add_argument(
"--config_file" , default=lowerCamelCase__ , help=(
"The path to use to store the config file. Will default to a file named default_config.yaml in the cache "
"location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have "
"such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed "
"with 'huggingface'."
) , )
if subparsers is not None:
parser.set_defaults(func=lowerCamelCase__ )
return parser
def lowerCamelCase_ ( lowerCamelCase__ ):
lowerCamelCase_ = get_user_input()
if args.config_file is not None:
lowerCamelCase_ = args.config_file
else:
if not os.path.isdir(lowerCamelCase__ ):
os.makedirs(lowerCamelCase__ )
lowerCamelCase_ = default_yaml_config_file
if config_file.endswith(".json" ):
config.to_json_file(lowerCamelCase__ )
else:
config.to_yaml_file(lowerCamelCase__ )
print(F'accelerate configuration saved at {config_file}' )
def lowerCamelCase_ ( ):
lowerCamelCase_ = config_command_parser()
lowerCamelCase_ = parser.parse_args()
config_command(lowerCamelCase__ )
if __name__ == "__main__":
main()
| 19 |
'''simple docstring'''
import warnings
from ...utils import logging
from .image_processing_beit import BeitImageProcessor
UpperCamelCase = logging.get_logger(__name__)
class lowerCAmelCase_ ( UpperCAmelCase_ ):
'''simple docstring'''
def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None:
'''simple docstring'''
warnings.warn(
'''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please'''
''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , )
super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
| 319 | 0 |
def _snake_case( SCREAMING_SNAKE_CASE__ ) -> int:
lowercase : Any = hex_num.strip()
if not hex_num:
raise ValueError("""No value was passed to the function""" )
lowercase : int = hex_num[0] == """-"""
if is_negative:
lowercase : List[Any] = hex_num[1:]
try:
lowercase : str = int(SCREAMING_SNAKE_CASE__ , 16 )
except ValueError:
raise ValueError("""Invalid value was passed to the function""" )
lowercase : Dict = """"""
while int_num > 0:
lowercase : str = str(int_num % 2 ) + bin_str
int_num >>= 1
return int(("""-""" + bin_str) if is_negative else bin_str )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 20 |
'''simple docstring'''
import os
import pytest
from transformers.dynamic_module_utils import get_imports
UpperCamelCase = '''
import os
'''
UpperCamelCase = '''
def foo():
import os
return False
'''
UpperCamelCase = '''
def foo():
def bar():
if True:
import os
return False
return bar()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
def foo():
try:
import bar
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except (ImportError, AttributeError):
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except ImportError as e:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
except:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
raise ValueError()
'''
UpperCamelCase = '''
import os
try:
import bar
import baz
except ImportError:
x = 1
raise ValueError()
'''
UpperCamelCase = [
TOP_LEVEL_IMPORT,
IMPORT_IN_FUNCTION,
DEEPLY_NESTED_IMPORT,
TOP_LEVEL_TRY_IMPORT,
GENERIC_EXCEPT_IMPORT,
MULTILINE_TRY_IMPORT,
MULTILINE_BOTH_IMPORT,
MULTIPLE_EXCEPTS_IMPORT,
EXCEPT_AS_IMPORT,
TRY_IMPORT_IN_FUNCTION,
]
@pytest.mark.parametrize('''case''' , __lowercase )
def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict:
A: Tuple = os.path.join(__lowercase , '''test_file.py''' )
with open(__lowercase , '''w''' ) as _tmp_file:
_tmp_file.write(__lowercase )
A: List[Any] = get_imports(__lowercase )
assert parsed_imports == ["os"]
| 319 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.