code
stringlengths
87
55.2k
code_codestyle
int64
0
349
style_context
stringlengths
135
49.1k
style_context_codestyle
int64
0
349
label
int64
0
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A__ = logging.get_logger(__name__) def _UpperCAmelCase ( snake_case , snake_case=False , snake_case=False , snake_case=False ): """simple docstring""" _lowerCAmelCase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'transformer.blocks.{i}.norm1.weight', F'vilt.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm1.bias', F'vilt.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.weight', F'vilt.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'transformer.blocks.{i}.attn.proj.bias', F'vilt.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.norm2.weight', F'vilt.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'transformer.blocks.{i}.norm2.bias', F'vilt.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append( (F'transformer.blocks.{i}.mlp.fc1.weight', F'vilt.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc1.bias', F'vilt.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.weight', F'vilt.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'transformer.blocks.{i}.mlp.fc2.bias', F'vilt.encoder.layer.{i}.output.dense.bias') ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" for i in range(config.num_hidden_layers ): _lowerCAmelCase = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowerCAmelCase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.weight' ) _lowerCAmelCase = state_dict.pop(F'transformer.blocks.{i}.attn.qkv.bias' ) # next, add query, keys and values (in that order) to the state dict _lowerCAmelCase = in_proj_weight[ : config.hidden_size, : ] _lowerCAmelCase = in_proj_bias[: config.hidden_size] _lowerCAmelCase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowerCAmelCase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowerCAmelCase = in_proj_weight[ -config.hidden_size :, : ] _lowerCAmelCase = in_proj_bias[-config.hidden_size :] def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = dct.pop(__lowercase ) _lowerCAmelCase = val @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=__lowercase ) _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False if "vqa" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = 31_29 _lowerCAmelCase = '''huggingface/label-files''' _lowerCAmelCase = '''vqa2-id2label.json''' _lowerCAmelCase = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="""dataset""" ) , """r""" ) ) _lowerCAmelCase = {int(__lowercase ): v for k, v in idalabel.items()} _lowerCAmelCase = idalabel _lowerCAmelCase = {v: k for k, v in idalabel.items()} _lowerCAmelCase = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = 2 _lowerCAmelCase = {0: '''False''', 1: '''True'''} _lowerCAmelCase = {v: k for k, v in config.idalabel.items()} _lowerCAmelCase = 3 _lowerCAmelCase = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: _lowerCAmelCase = True _lowerCAmelCase = ViltForMaskedLM(__lowercase ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowercase , map_location="""cpu""" )['''state_dict'''] _lowerCAmelCase = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: _lowerCAmelCase = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: _lowerCAmelCase = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor _lowerCAmelCase = ViltImageProcessor(size=3_84 ) _lowerCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _lowerCAmelCase = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: _lowerCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=__lowercase ).raw ) _lowerCAmelCase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=__lowercase ).raw ) _lowerCAmelCase = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) _lowerCAmelCase = processor(__lowercase , __lowercase , return_tensors="""pt""" ) _lowerCAmelCase = processor(__lowercase , __lowercase , return_tensors="""pt""" ) _lowerCAmelCase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _lowerCAmelCase = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=__lowercase ).raw ) if mlm_model: _lowerCAmelCase = '''a bunch of [MASK] laying on a [MASK].''' else: _lowerCAmelCase = '''How many cats are there?''' _lowerCAmelCase = processor(__lowercase , __lowercase , return_tensors="""pt""" ) _lowerCAmelCase = model(**__lowercase ) # Verify outputs if mlm_model: _lowerCAmelCase = torch.Size([1, 11, 3_05_22] ) _lowerCAmelCase = torch.tensor([-12.50_61, -12.51_23, -12.51_74] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" _lowerCAmelCase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _lowerCAmelCase = torch.Size([1, 31_29] ) _lowerCAmelCase = torch.tensor([-15.94_95, -18.14_72, -10.30_41] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" _lowerCAmelCase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _lowerCAmelCase = torch.Size([1, 2] ) _lowerCAmelCase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'Saving model and processor to {pytorch_dump_folder_path}' ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt""", type=str, help="""URL of the checkpoint you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) A__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase = 0 ): """simple docstring""" lowerCAmelCase__ : Dict = length or len(__lowercase ) lowerCAmelCase__ : Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: lowerCAmelCase__ : Tuple = list_data[i + 1], list_data[i] lowerCAmelCase__ : Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
37
'''simple docstring''' from itertools import permutations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A: int = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int: return sum( int(''''''.join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
319
0
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports SCREAMING_SNAKE_CASE_: Tuple ='\nimport os\n' SCREAMING_SNAKE_CASE_: Any ='\ndef foo():\n import os\n return False\n' SCREAMING_SNAKE_CASE_: List[str] ='\ndef foo():\n def bar():\n if True:\n import os\n return False\n return bar()\n' SCREAMING_SNAKE_CASE_: str ='\nimport os\n\ntry:\n import bar\nexcept ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: Tuple ='\nimport os\n\ndef foo():\n try:\n import bar\n except ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: List[Any] ='\nimport os\n\ntry:\n import bar\nexcept (ImportError, AttributeError):\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: str ='\nimport os\n\ntry:\n import bar\nexcept ImportError as e:\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: Any ='\nimport os\n\ntry:\n import bar\nexcept:\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: Any ='\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: List[Any] ='\nimport os\n\ntry:\n import bar\n import baz\nexcept ImportError:\n x = 1\n raise ValueError()\n' SCREAMING_SNAKE_CASE_: Optional[int] =[ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize("case" , __lowercase ) def lowerCAmelCase_ ( snake_case_ : Any , snake_case_ : List[Any] ) -> Dict: '''simple docstring''' UpperCAmelCase_ = os.path.join(__lowercase , "test_file.py" ) with open(__lowercase , "w" ) as _tmp_file: _tmp_file.write(__lowercase ) UpperCAmelCase_ = get_imports(__lowercase ) assert parsed_imports == ["os"]
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
0
from __future__ import annotations from collections.abc import Callable _SCREAMING_SNAKE_CASE = list[list[float | int]] def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> Matrix: '''simple docstring''' UpperCamelCase = len(__lowercase ) UpperCamelCase = [[0 for _ in range(size + 1 )] for _ in range(__lowercase )] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for row in range(__lowercase ): for col in range(__lowercase ): UpperCamelCase = matrix[row][col] UpperCamelCase = vector[row][0] UpperCamelCase = 0 UpperCamelCase = 0 while row < size and col < size: # pivoting UpperCamelCase = max((abs(augmented[rowa][col] ), rowa) for rowa in range(__lowercase , __lowercase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: UpperCamelCase = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , __lowercase ): UpperCamelCase = augmented[rowa][col] / augmented[row][col] UpperCamelCase = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , __lowercase ): for row in range(__lowercase ): UpperCamelCase = augmented[row][col] / augmented[col][col] for cola in range(__lowercase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(__lowercase ) ] def lowercase( UpperCamelCase_ ) -> Callable[[int], int]: '''simple docstring''' UpperCamelCase = len(__lowercase ) UpperCamelCase = [[0 for _ in range(__lowercase )] for _ in range(__lowercase )] UpperCamelCase = [[0] for _ in range(__lowercase )] UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 for x_val, y_val in enumerate(__lowercase ): for col in range(__lowercase ): UpperCamelCase = (x_val + 1) ** (size - col - 1) UpperCamelCase = y_val UpperCamelCase = solve(__lowercase , __lowercase ) def interpolated_func(UpperCamelCase_ ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(__lowercase ) ) return interpolated_func def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def lowercase( UpperCamelCase_ = question_function , UpperCamelCase_ = 10 ) -> int: '''simple docstring''' UpperCamelCase = [func(__lowercase ) for x_val in range(1 , order + 1 )] UpperCamelCase = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] UpperCamelCase = 0 UpperCamelCase = 42 UpperCamelCase = 42 for poly in polynomials: UpperCamelCase = 1 while func(__lowercase ) == poly(__lowercase ): x_val += 1 ret += poly(__lowercase ) return ret if __name__ == "__main__": print(F'''{solution() = }''')
343
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
import warnings from ...utils import logging from .image_processing_flava import FlavaImageProcessor lowerCAmelCase : Tuple = logging.get_logger(__name__) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[Any] , *lowerCAmelCase__ : Optional[int] , **lowerCAmelCase__ : Optional[Any]): warnings.warn( "The class FlavaFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please" " use FlavaImageProcessor instead." , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class UpperCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): @register_to_config def __init__( self, *, lowerCAmelCase__ = 4, lowerCAmelCase__ = 768, lowerCAmelCase__, lowerCAmelCase__, ) -> Tuple: super().__init__() snake_case_ = nn.Parameter(torch.zeros(SCREAMING_SNAKE_CASE_)) # parameters for additional clip time embeddings snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_) snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_) # parameters for encoder hidden states snake_case_ = clip_extra_context_tokens snake_case_ = nn.Linear( SCREAMING_SNAKE_CASE_, self.clip_extra_context_tokens * cross_attention_dim) snake_case_ = nn.Linear(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_) snake_case_ = nn.LayerNorm(SCREAMING_SNAKE_CASE_) def a_ ( self, *, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__, lowerCAmelCase__) -> List[Any]: if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings snake_case_ = image_embeddings.shape[0] snake_case_ = self.learned_classifier_free_guidance_embeddings.unsqueeze(0) snake_case_ = classifier_free_guidance_embeddings.expand( SCREAMING_SNAKE_CASE_, -1) snake_case_ = torch.cat([classifier_free_guidance_embeddings, image_embeddings], dim=0) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] snake_case_ = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... snake_case_ = self.embedding_proj(SCREAMING_SNAKE_CASE_) snake_case_ = self.clip_image_embeddings_project_to_time_embeddings(SCREAMING_SNAKE_CASE_) snake_case_ = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" snake_case_ = self.clip_extra_context_tokens_proj(SCREAMING_SNAKE_CASE_) snake_case_ = clip_extra_context_tokens.reshape(SCREAMING_SNAKE_CASE_, -1, self.clip_extra_context_tokens) snake_case_ = clip_extra_context_tokens.permute(0, 2, 1) snake_case_ = self.encoder_hidden_states_proj(SCREAMING_SNAKE_CASE_) snake_case_ = self.text_encoder_hidden_states_norm(SCREAMING_SNAKE_CASE_) snake_case_ = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states], dim=1) return text_encoder_hidden_states, additive_clip_time_embeddings
69
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DiffusionPipeline, EulerDiscreteScheduler, StableDiffusionXLImgaImgPipeline, UNetaDConditionModel, ) from diffusers.utils import floats_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = StableDiffusionXLImgaImgPipeline _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"""height""", """width"""} _SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {"""latents"""} _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS _SCREAMING_SNAKE_CASE = IMAGE_TO_IMAGE_IMAGE_PARAMS def A ( self : Any ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , addition_embed_type='text_time' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=8_0 , cross_attention_dim=6_4 , ) UpperCamelCase = EulerDiscreteScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='scaled_linear' , timestep_spacing='leading' , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=3_2 , ) UpperCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' , local_files_only=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''text_encoder_2''': text_encoder_a, '''tokenizer_2''': tokenizer_a, # "safety_checker": None, # "feature_extractor": None, } return components def A ( self : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any]=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 3_2, 3_2) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = image / 2 + 0.5 if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 5.0, '''output_type''': '''numpy''', '''strength''': 0.7_5, } return inputs def A ( self : Dict ): """simple docstring""" UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 3_2, 3_2, 3) UpperCamelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def A ( self : Union[str, Any] ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def A ( self : Dict ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def A ( self : List[Any] ): """simple docstring""" pass def A ( self : int ): """simple docstring""" UpperCamelCase = self.get_dummy_components() UpperCamelCase = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) # forward without prompt embeds UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = 3 * ['''this is a negative prompt'''] UpperCamelCase = negative_prompt UpperCamelCase = 3 * [inputs['''prompt''']] UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.images[0, -3:, -3:, -1] # forward with prompt embeds UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = 3 * ['''this is a negative prompt'''] UpperCamelCase = 3 * [inputs.pop('prompt' )] ( UpperCamelCase ) = sd_pipe.encode_prompt(SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe( **SCREAMING_SNAKE_CASE_ , prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = output.images[0, -3:, -3:, -1] # make sure that it's equal assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @slow @require_torch_gpu class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Optional[Any] ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def A ( self : Union[str, Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any]="cpu" , UpperCamelCase__ : Tuple=torch.floataa , UpperCamelCase__ : Union[str, Any]=0 ): """simple docstring""" UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 4, 6_4, 6_4) ) UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def A ( self : Any ): """simple docstring""" UpperCamelCase = DiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-base' ) pipe.to(SCREAMING_SNAKE_CASE_ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.get_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE_ ).images UpperCamelCase = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 5_1_2, 5_1_2, 3) UpperCamelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] ) assert np.abs(image_slice - expected_slice ).max() < 7E-3
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase ={"""configuration_vit_msn""": ["""VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ViTMSNConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ """VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST""", """ViTMSNModel""", """ViTMSNForImageClassification""", """ViTMSNPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_vit_msn import VIT_MSN_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMSNConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_msn import ( VIT_MSN_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMSNForImageClassification, ViTMSNModel, ViTMSNPreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
287
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
import os import time import numpy as np import onnxruntime as ort _UpperCAmelCase : List[str] = """1""" _UpperCAmelCase : Optional[int] = """0""" _UpperCAmelCase : Tuple = """1""" _UpperCAmelCase : Optional[Any] = ort.SessionOptions() _UpperCAmelCase : Tuple = ort.GraphOptimizationLevel.ORT_DISABLE_ALL print("""Create inference session...""") _UpperCAmelCase : Optional[Any] = ["""TensorrtExecutionProvider""", """CUDAExecutionProvider"""] _UpperCAmelCase : Any = ort.InferenceSession("""model.onnx""", sess_options=sess_opt, providers=execution_provider) _UpperCAmelCase : Any = ort.RunOptions() _UpperCAmelCase : Dict = 1_28 _UpperCAmelCase : Union[str, Any] = 1 _UpperCAmelCase : Union[str, Any] = np.ones((batch, sequence), dtype=np.intaa) _UpperCAmelCase : Optional[Any] = np.ones((batch, sequence), dtype=np.intaa) _UpperCAmelCase : Tuple = np.ones((batch, sequence), dtype=np.intaa) print("""Warm up phase...""") sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Start inference...""") _UpperCAmelCase : Optional[int] = time.time() _UpperCAmelCase : Union[str, Any] = 20_00 _UpperCAmelCase : Tuple = {} for iter in range(max_iters): _UpperCAmelCase : Optional[Any] = sess.run( None, { sess.get_inputs()[0].name: input_ids, sess.get_inputs()[1].name: attention_mask, sess.get_inputs()[2].name: token_type_ids, }, run_options=run_opt, ) print("""Average Inference Time = {:.3f} ms""".format((time.time() - start_time) * 10_00 / max_iters))
50
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
0
def _A ( _lowercase ) -> int: """simple docstring""" if not isinstance(__lowercase , __lowercase ): raise TypeError('only integers accepted as input' ) else: __UpperCamelCase = str(abs(__lowercase ) ) __UpperCamelCase = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' if not isinstance(__lowercase , __lowercase ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(__lowercase , __lowercase ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) __UpperCAmelCase = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(__lowercase ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process A__ = logging.getLogger(__name__) A__ = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) A__ = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class __lowerCAmelCase : __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''The model checkpoint for weights initialization.Don\'t set if you want to train a model from scratch.''' ) } , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''If training from scratch, pass a model type from the list: ''' + ''', '''.join(UpperCAmelCase_ )} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''Override some existing default config settings when a model is trained from scratch. Example: ''' '''n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index''' ) } , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'''} , ) __lowerCamelCase = field( default='''main''' , metadata={'''help''': '''The specific model version to use (can be a branch name, tag name or commit id).'''} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''Will use the token generated when running `huggingface-cli login` (necessary to use this script ''' '''with private models).''' ) } , ) def snake_case ( self ): """simple docstring""" if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( """--config_overrides can\'t be used in combination with --config_name or --model_name_or_path""" ) @dataclass class __lowerCAmelCase : __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''The name of the dataset to use (via the datasets library).'''} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''The configuration name of the dataset to use (via the datasets library).'''} ) __lowerCamelCase = field(default=UpperCAmelCase_ , metadata={'''help''': '''The input training data file (a text file).'''} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''An optional input evaluation data file to evaluate the perplexity on (a text file).'''} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''An optional input train ref data file for whole word masking in Chinese.'''} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''An optional input validation ref data file for whole word masking in Chinese.'''} , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''Overwrite the cached training and evaluation sets'''} ) __lowerCamelCase = field( default=5 , metadata={ '''help''': '''The percentage of the train set used as validation set in case there\'s no validation split''' } , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated. Default to the max input length of the model.''' ) } , ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={'''help''': '''The number of processes to use for the preprocessing.'''} , ) __lowerCamelCase = field( default=0.15 , metadata={'''help''': '''Ratio of tokens to mask for masked language modeling loss'''} ) __lowerCamelCase = field( default=UpperCAmelCase_ , metadata={ '''help''': ( '''Whether to pad all samples to `max_seq_length`. ''' '''If False, will pad the samples dynamically when batching to the maximum length in the batch.''' ) } , ) def snake_case ( self ): """simple docstring""" if self.train_file is not None: _lowerCAmelCase = self.train_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: _lowerCAmelCase = self.validation_file.split(""".""" )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" with open(__lowercase , """r""" , encoding="""utf-8""" ) as f: _lowerCAmelCase = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) _lowerCAmelCase = {c: dataset[c] for c in dataset.column_names} _lowerCAmelCase = refs return Dataset.from_dict(__lowercase ) def _UpperCAmelCase ( ): """simple docstring""" _lowerCAmelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase = parser.parse_args_into_dataclasses() # Detecting last checkpoint. _lowerCAmelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to overcome.""" ) elif last_checkpoint is not None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info("""Training/evaluation parameters %s""" , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCAmelCase = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): _lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[:{data_args.validation_split_percentage}%]' , ) _lowerCAmelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F'train[{data_args.validation_split_percentage}%:]' , ) else: _lowerCAmelCase = {} if data_args.train_file is not None: _lowerCAmelCase = data_args.train_file if data_args.validation_file is not None: _lowerCAmelCase = data_args.validation_file _lowerCAmelCase = data_args.train_file.split(""".""" )[-1] if extension == "txt": _lowerCAmelCase = '''text''' _lowerCAmelCase = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: _lowerCAmelCase = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: _lowerCAmelCase = CONFIG_MAPPING[model_args.model_type]() logger.warning("""You are instantiating a new config instance from scratch.""" ) if model_args.config_overrides is not None: logger.info(F'Overriding config: {model_args.config_overrides}' ) config.update_from_string(model_args.config_overrides ) logger.info(F'New config: {config}' ) _lowerCAmelCase = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: _lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: _lowerCAmelCase = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( """You are instantiating a new tokenizer from scratch. This is not supported by this script.""" """You can do it from another script, save it, and load it from here, using --tokenizer_name.""" ) if model_args.model_name_or_path: _lowerCAmelCase = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info("""Training new model from scratch""" ) _lowerCAmelCase = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: _lowerCAmelCase = datasets['''train'''].column_names else: _lowerCAmelCase = datasets['''validation'''].column_names _lowerCAmelCase = '''text''' if '''text''' in column_names else column_names[0] _lowerCAmelCase = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(snake_case ): # Remove empty lines _lowerCAmelCase = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples["""text"""] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) _lowerCAmelCase = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: _lowerCAmelCase = add_chinese_references(tokenized_datasets["""train"""] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: _lowerCAmelCase = add_chinese_references( tokenized_datasets["""validation"""] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer _lowerCAmelCase = data_args.train_ref_file or data_args.validation_ref_file if has_ref: _lowerCAmelCase = False # Data collator # This one will take care of randomly masking the tokens. _lowerCAmelCase = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer _lowerCAmelCase = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets["""train"""] if training_args.do_train else None , eval_dataset=tokenized_datasets["""validation"""] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: _lowerCAmelCase = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): _lowerCAmelCase = model_args.model_name_or_path else: _lowerCAmelCase = None _lowerCAmelCase = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload _lowerCAmelCase = os.path.join(training_args.output_dir , """train_results.txt""" ) if trainer.is_world_process_zero(): with open(__lowercase , """w""" ) as writer: logger.info("""***** Train results *****""" ) for key, value in sorted(train_result.metrics.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , """trainer_state.json""" ) ) # Evaluation _lowerCAmelCase = {} if training_args.do_eval: logger.info("""*** Evaluate ***""" ) _lowerCAmelCase = trainer.evaluate() _lowerCAmelCase = math.exp(eval_output["""eval_loss"""] ) _lowerCAmelCase = perplexity _lowerCAmelCase = os.path.join(training_args.output_dir , """eval_results_mlm_wwm.txt""" ) if trainer.is_world_process_zero(): with open(__lowercase , """w""" ) as writer: logger.info("""***** Eval results *****""" ) for key, value in sorted(results.items() ): logger.info(F' {key} = {value}' ) writer.write(F'{key} = {value}\n' ) return results def _UpperCAmelCase ( snake_case ): """simple docstring""" main() if __name__ == "__main__": main()
82
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
'''simple docstring''' from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A ( UpperCAmelCase_ , unittest.TestCase ): a__ : Tuple = GPTSanJapaneseTokenizer a__ : str = False a__ : Any = {"""do_clean_text""": False, """add_prefix_space""": False} def _lowercase (self : Optional[int] ): super().setUp() # fmt: off UpperCAmelCase_ = ['''こん''', '''こんに''', '''にちは''', '''ばんは''', '''世界,㔺界''', '''、''', '''。''', '''<BR>''', '''<SP>''', '''<TAB>''', '''<URL>''', '''<EMAIL>''', '''<TEL>''', '''<DATE>''', '''<PRICE>''', '''<BLOCK>''', '''<KIGOU>''', '''<U2000U2BFF>''', '''<|emoji1|>''', '''<unk>''', '''<|bagoftoken|>''', '''<|endoftext|>'''] # fmt: on UpperCAmelCase_ = {'''emoji''': {'''\ud83d\ude00''': '''<|emoji1|>'''}, '''emoji_inv''': {'''<|emoji1|>''': '''\ud83d\ude00'''}} # 😀 UpperCAmelCase_ = {'''unk_token''': '''<unk>'''} UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCAmelCase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["emoji_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) with open(self.emoji_file , "w" ) as emoji_writer: emoji_writer.write(json.dumps(SCREAMING_SNAKE_CASE_ ) ) def _lowercase (self : Any , **__a : str ): kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self : Optional[int] , __a : List[Any] ): UpperCAmelCase_ = '''こんにちは、世界。 \nこんばんは、㔺界。😀''' UpperCAmelCase_ = '''こんにちは、世界。 \nこんばんは、世界。😀''' return input_text, output_text def _lowercase (self : int , __a : Any ): UpperCAmelCase_ = self.get_input_output_texts(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) return text, ids def _lowercase (self : List[Any] ): pass # TODO add if relevant def _lowercase (self : List[Any] ): pass # TODO add if relevant def _lowercase (self : int ): pass # TODO add if relevant def _lowercase (self : Tuple ): UpperCAmelCase_ = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ = '''こんにちは、世界。 こんばんは、㔺界。''' UpperCAmelCase_ = ['''こん''', '''にちは''', '''、''', '''世界''', '''。''', '''<SP>''', '''こん''', '''ばんは''', '''、''', '''㔺界''', '''。'''] UpperCAmelCase_ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids without special tokens UpperCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing conversion to ids with special tokens UpperCAmelCase_ = tokens + [tokenizer.unk_token] UpperCAmelCase_ = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase_ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.get_tokenizer() # Testing tokenization UpperCAmelCase_ = '''こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。''' UpperCAmelCase_ = '''こんにちは、、、、世界。こんばんは、、、、世界。''' UpperCAmelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self : Dict ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ = '''こんにちは、世界。''' UpperCAmelCase_ = '''こんばんは、㔺界。😀''' UpperCAmelCase_ = '''こんにちは、世界。こんばんは、世界。😀''' UpperCAmelCase_ = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase_ = tokenizer.encode("" , prefix_text=prefix_text + input_text ) UpperCAmelCase_ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self : Optional[int] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) # Testing tokenization UpperCAmelCase_ = '''こんにちは、世界。''' UpperCAmelCase_ = '''こんばんは、㔺界。😀''' UpperCAmelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 UpperCAmelCase_ = len(tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) - 2 UpperCAmelCase_ = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase_ = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase_ = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase_ = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase_ = tokenizer("" , prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , prefix_text=SCREAMING_SNAKE_CASE_ ).token_type_ids self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def _lowercase (self : List[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ = tokenizer.encode("あンいワ" ) UpperCAmelCase_ = tokenizer.encode("" , prefix_text="あンいワ" ) UpperCAmelCase_ = tokenizer.encode("いワ" , prefix_text="あン" ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(tokenizer.decode(SCREAMING_SNAKE_CASE_ ) , tokenizer.decode(SCREAMING_SNAKE_CASE_ ) ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(x_token_a[1] , x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] , x_token_a[3] ) # SEG token @slow def _lowercase (self : Optional[Any] ): UpperCAmelCase_ = self.tokenizer_class.from_pretrained("Tanrei/GPTSAN-japanese" ) UpperCAmelCase_ = [['''武田信玄''', '''は、'''], ['''織田信長''', '''の配下の、''']] UpperCAmelCase_ = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = tokenizer.batch_encode_plus(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ ) # fmt: off UpperCAmelCase_ = [[35993, 8640, 25948, 35998, 30647, 35675, 35999, 35999], [35993, 10382, 9868, 35998, 30646, 9459, 30646, 35675]] UpperCAmelCase_ = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase_ = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token.attention_mask , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.input_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.token_type_ids , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(x_token_a.attention_mask , SCREAMING_SNAKE_CASE_ ) def _lowercase (self : Any ): pass def _lowercase (self : str ): pass
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _SCREAMING_SNAKE_CASE = { """configuration_blip""": [ """BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BlipConfig""", """BlipTextConfig""", """BlipVisionConfig""", ], """processing_blip""": ["""BlipProcessor"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""BlipImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """BlipModel""", """BlipPreTrainedModel""", """BlipForConditionalGeneration""", """BlipForQuestionAnswering""", """BlipVisionModel""", """BlipTextModel""", """BlipForImageTextRetrieval""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFBlipModel""", """TFBlipPreTrainedModel""", """TFBlipForConditionalGeneration""", """TFBlipForQuestionAnswering""", """TFBlipVisionModel""", """TFBlipTextModel""", """TFBlipForImageTextRetrieval""", ] if TYPE_CHECKING: from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig from .processing_blip import BlipProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_blip import BlipImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip import ( BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, BlipModel, BlipPreTrainedModel, BlipTextModel, BlipVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_blip import ( TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFBlipForConditionalGeneration, TFBlipForImageTextRetrieval, TFBlipForQuestionAnswering, TFBlipModel, TFBlipPreTrainedModel, TFBlipTextModel, TFBlipVisionModel, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
343
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP lowerCAmelCase : str = logging.get_logger(__name__) # pylint: disable=invalid-name lowerCAmelCase : Optional[int] = """ Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained(\"kandinsky-community/Kandinsky-2-1-prior\") >>> pipe_prior.to(\"cuda\") >>> prompt = \"red cat, 4k photo\" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained(\"kandinsky-community/kandinsky-2-1\") >>> pipe.to(\"cuda\") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save(\"cat.png\") ``` """ def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=8 ): SCREAMING_SNAKE_CASE_: str = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE_: List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : MultilingualCLIP , lowerCAmelCase__ : XLMRobertaTokenizer , lowerCAmelCase__ : UNetaDConditionModel , lowerCAmelCase__ : Union[DDIMScheduler, DDPMScheduler] , lowerCAmelCase__ : VQModel , ): super().__init__() self.register_modules( text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , movq=SCREAMING_SNAKE_CASE_ , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = 2 ** (len(self.movq.config.block_out_channels) - 1) def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Tuple): if latents is None: SCREAMING_SNAKE_CASE_: Optional[int] = randn_tensor(SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}") SCREAMING_SNAKE_CASE_: Union[str, Any] = latents.to(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: List[str] = latents * scheduler.init_noise_sigma return latents def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str]=None , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = len(SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_: str = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="max_length" , truncation=SCREAMING_SNAKE_CASE_ , max_length=77 , return_attention_mask=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: Optional[Any] = text_inputs.input_ids SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , padding="longest" , return_tensors="pt").input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: int = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}") SCREAMING_SNAKE_CASE_: List[str] = text_input_ids.to(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: List[str] = text_inputs.attention_mask.to(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Dict = self.text_encoder( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[int] = prompt_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) SCREAMING_SNAKE_CASE_: List[str] = text_encoder_hidden_states.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) SCREAMING_SNAKE_CASE_: Optional[int] = text_mask.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_: List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE_: Union[str, Any] = [''''''] * batch_size elif type(SCREAMING_SNAKE_CASE_) is not type(SCREAMING_SNAKE_CASE_): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(SCREAMING_SNAKE_CASE_)} !=" F" {type(SCREAMING_SNAKE_CASE_)}.") elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: int = [negative_prompt] elif batch_size != len(SCREAMING_SNAKE_CASE_): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(SCREAMING_SNAKE_CASE_)}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`.") else: SCREAMING_SNAKE_CASE_: Tuple = negative_prompt SCREAMING_SNAKE_CASE_: List[Any] = self.tokenizer( SCREAMING_SNAKE_CASE_ , padding="max_length" , max_length=77 , truncation=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: List[str] = uncond_input.input_ids.to(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: List[str] = uncond_input.attention_mask.to(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[Any] = self.text_encoder( input_ids=SCREAMING_SNAKE_CASE_ , attention_mask=SCREAMING_SNAKE_CASE_) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_: str = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_: Any = negative_prompt_embeds.repeat(1 , SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[int] = negative_prompt_embeds.view(batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: int = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE_: Any = uncond_text_encoder_hidden_states.repeat(1 , SCREAMING_SNAKE_CASE_ , 1) SCREAMING_SNAKE_CASE_: Optional[Any] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , SCREAMING_SNAKE_CASE_ , -1) SCREAMING_SNAKE_CASE_: List[str] = uncond_text_mask.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_: str = torch.cat([negative_prompt_embeds, prompt_embeds]) SCREAMING_SNAKE_CASE_: Any = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states]) SCREAMING_SNAKE_CASE_: Dict = torch.cat([uncond_text_mask, text_mask]) return prompt_embeds, text_encoder_hidden_states, text_mask def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : Any=0): if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`") SCREAMING_SNAKE_CASE_: Dict = torch.device(F"cuda:{gpu_id}") SCREAMING_SNAKE_CASE_: str = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase__ : Union[str, Any]=0): if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0"): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.") SCREAMING_SNAKE_CASE_: List[str] = torch.device(F"cuda:{gpu_id}") if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=SCREAMING_SNAKE_CASE_) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_: Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE_: Dict = cpu_offload_with_hook(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_) if self.safety_checker is not None: SCREAMING_SNAKE_CASE_: List[str] = cpu_offload_with_hook(self.safety_checker , SCREAMING_SNAKE_CASE_ , prev_module_hook=SCREAMING_SNAKE_CASE_) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_: str = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def _SCREAMING_SNAKE_CASE ( self : List[str]): if not hasattr(self.unet , "_hf_hook"): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , "_hf_hook") and hasattr(module._hf_hook , "execution_device") and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device) return self.device @torch.no_grad() @replace_example_docstring(SCREAMING_SNAKE_CASE_) def __call__( self : Optional[Any] , lowerCAmelCase__ : Union[str, List[str]] , lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase__ : Union[torch.FloatTensor, List[torch.FloatTensor]] , lowerCAmelCase__ : Optional[Union[str, List[str]]] = None , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 512 , lowerCAmelCase__ : int = 100 , lowerCAmelCase__ : float = 4.0 , lowerCAmelCase__ : int = 1 , lowerCAmelCase__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase__ : Optional[torch.FloatTensor] = None , lowerCAmelCase__ : Optional[str] = "pil" , lowerCAmelCase__ : bool = True , ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: Tuple = 1 elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: int = len(SCREAMING_SNAKE_CASE_) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(SCREAMING_SNAKE_CASE_)}") SCREAMING_SNAKE_CASE_: Optional[int] = self._execution_device SCREAMING_SNAKE_CASE_: Union[str, Any] = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_: str = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_: Any = self._encode_prompt( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: Union[str, Any] = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): SCREAMING_SNAKE_CASE_: Dict = torch.cat(SCREAMING_SNAKE_CASE_ , dim=0) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_: int = image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) SCREAMING_SNAKE_CASE_: int = negative_image_embeds.repeat_interleave(SCREAMING_SNAKE_CASE_ , dim=0) SCREAMING_SNAKE_CASE_: int = torch.cat([negative_image_embeds, image_embeds] , dim=0).to( dtype=prompt_embeds.dtype , device=SCREAMING_SNAKE_CASE_) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_ , device=SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Dict = self.scheduler.timesteps SCREAMING_SNAKE_CASE_: Tuple = self.unet.config.in_channels SCREAMING_SNAKE_CASE_: Union[str, Any] = get_new_h_w(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.movq_scale_factor) # create initial latent SCREAMING_SNAKE_CASE_: Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler , ) for i, t in enumerate(self.progress_bar(SCREAMING_SNAKE_CASE_)): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_: str = torch.cat([latents] * 2) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_: Dict = {'''text_embeds''': prompt_embeds, '''image_embeds''': image_embeds} SCREAMING_SNAKE_CASE_: int = self.unet( sample=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , encoder_hidden_states=SCREAMING_SNAKE_CASE_ , added_cond_kwargs=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_: Any = noise_pred.split(latents.shape[1] , dim=1) SCREAMING_SNAKE_CASE_: List[Any] = noise_pred.chunk(2) SCREAMING_SNAKE_CASE_: Union[str, Any] = variance_pred.chunk(2) SCREAMING_SNAKE_CASE_: Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_: Any = torch.cat([noise_pred, variance_pred_text] , dim=1) if not ( hasattr(self.scheduler.config , "variance_type") and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_: str = noise_pred.split(latents.shape[1] , dim=1) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_: List[Any] = self.scheduler.step( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , ).prev_sample # post-processing SCREAMING_SNAKE_CASE_: Any = self.movq.decode(SCREAMING_SNAKE_CASE_ , force_not_quantize=SCREAMING_SNAKE_CASE_)['''sample'''] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}") if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_: List[Any] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_: Optional[Any] = image.clamp(0 , 1) SCREAMING_SNAKE_CASE_: List[Any] = image.cpu().permute(0 , 2 , 3 , 1).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_: List[Any] = self.numpy_to_pil(SCREAMING_SNAKE_CASE_) if not return_dict: return (image,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE_)
13
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase = { '''configuration_encodec''': [ '''ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''EncodecConfig''', ], '''feature_extraction_encodec''': ['''EncodecFeatureExtractor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase = [ '''ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST''', '''EncodecModel''', '''EncodecPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_encodec import ( ENCODEC_PRETRAINED_CONFIG_ARCHIVE_MAP, EncodecConfig, ) from .feature_extraction_encodec import EncodecFeatureExtractor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encodec import ( ENCODEC_PRETRAINED_MODEL_ARCHIVE_LIST, EncodecModel, EncodecPreTrainedModel, ) else: import sys __UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=UpperCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = ["""keras_nlp"""] def __init__( self : Optional[int] , *UpperCamelCase__ : Optional[Any] , **UpperCamelCase__ : Dict ): """simple docstring""" requires_backends(self , ['keras_nlp'] )
28
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): def count_of_possible_combinations(lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(__lowercase ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): def count_of_possible_combinations_with_dp_array( lowerCamelCase, lowerCamelCase ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCamelCase : Optional[int] = sum( count_of_possible_combinations_with_dp_array(target - item, __lowercase ) for item in array ) lowerCamelCase : Optional[int] = answer return answer lowerCamelCase : Any = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(__lowercase, __lowercase ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : int = [0] * (target + 1) lowerCamelCase : Optional[Any] = 1 for i in range(1, target + 1 ): for j in range(__lowercase ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _lowerCamelCase =3 _lowerCamelCase =5 _lowerCamelCase =[1, 2, 5] print(combination_sum_iv(n, array, target))
287
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int: A: Any = 1 A: Optional[Any] = 0 for divide_by_number in range(__lowercase , digit + 1 ): A: list[int] = [] A: List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): A: Any = len(__lowercase ) A: Dict = divide_by_number else: has_been_divided.append(__lowercase ) A: str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase : def __init__( self : Optional[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Dict=100 , UpperCAmelCase : int=13 , UpperCAmelCase : Tuple=30 , UpperCAmelCase : Dict=2 , UpperCAmelCase : Any=3 , UpperCAmelCase : Any=True , UpperCAmelCase : int=True , UpperCAmelCase : List[str]=32 , UpperCAmelCase : str=4 , UpperCAmelCase : Dict=4 , UpperCAmelCase : List[Any]=37 , UpperCAmelCase : str="gelu" , UpperCAmelCase : Any=0.1 , UpperCAmelCase : Dict=0.1 , UpperCAmelCase : Any=10 , UpperCAmelCase : int=0.0_2 , UpperCAmelCase : List[str]=3 , UpperCAmelCase : List[str]=None , UpperCAmelCase : Dict=[0, 1, 2, 3] , ) -> str: lowerCamelCase__ : Dict = parent lowerCamelCase__ : Optional[Any] = 100 lowerCamelCase__ : Dict = batch_size lowerCamelCase__ : Union[str, Any] = image_size lowerCamelCase__ : Tuple = patch_size lowerCamelCase__ : Optional[Any] = num_channels lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : str = hidden_size lowerCamelCase__ : Optional[Any] = num_hidden_layers lowerCamelCase__ : List[Any] = num_attention_heads lowerCamelCase__ : Dict = intermediate_size lowerCamelCase__ : List[str] = hidden_act lowerCamelCase__ : Any = hidden_dropout_prob lowerCamelCase__ : Optional[Any] = attention_probs_dropout_prob lowerCamelCase__ : Optional[int] = type_sequence_label_size lowerCamelCase__ : Dict = initializer_range lowerCamelCase__ : str = scope lowerCamelCase__ : Any = out_indices lowerCamelCase__ : Dict = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) lowerCamelCase__ : Dict = (image_size // patch_size) ** 2 lowerCamelCase__ : Tuple = num_patches + 1 def A_ ( self : Any ) -> str: lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = None lowerCamelCase__ : str = None if self.use_labels: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : Union[str, Any] = self.get_config() return config, pixel_values, labels, pixel_labels def A_ ( self : int ) -> Union[str, Any]: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE_ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def A_ ( self : Any , UpperCAmelCase : Optional[int] , UpperCAmelCase : Tuple , UpperCAmelCase : List[str] , UpperCAmelCase : Any ) -> Optional[Any]: lowerCamelCase__ : List[str] = BeitModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ : Optional[int] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A_ ( self : str , UpperCAmelCase : int , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Dict , UpperCAmelCase : Dict ) -> List[str]: lowerCamelCase__ : Union[str, Any] = BeitForMaskedImageModeling(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ : Union[str, Any] = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def A_ ( self : List[Any] , UpperCAmelCase : Optional[int] , UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Optional[Any] ) -> List[Any]: lowerCamelCase__ : Optional[Any] = self.type_sequence_label_size lowerCamelCase__ : Dict = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ : int = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images lowerCamelCase__ : int = 1 lowerCamelCase__ : str = BeitForImageClassification(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase__ : Tuple = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def A_ ( self : Dict , UpperCAmelCase : int , UpperCAmelCase : List[str] , UpperCAmelCase : Any , UpperCAmelCase : List[str] ) -> Union[str, Any]: lowerCamelCase__ : Optional[Any] = self.num_labels lowerCamelCase__ : Union[str, Any] = BeitForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase__ : str = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) lowerCamelCase__ : Dict = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def A_ ( self : List[str] ) -> Dict: lowerCamelCase__ : str = self.prepare_config_and_inputs() lowerCamelCase__ : Optional[int] = config_and_inputs lowerCamelCase__ : Tuple = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( UpperCAmelCase_, UpperCAmelCase_, unittest.TestCase ): UpperCAmelCase__ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) UpperCAmelCase__ = ( { """feature-extraction""": BeitModel, """image-classification""": BeitForImageClassification, """image-segmentation""": BeitForSemanticSegmentation, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def A_ ( self : Tuple ) -> Any: lowerCamelCase__ : str = BeitModelTester(self ) lowerCamelCase__ : Any = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ , hidden_size=37 ) def A_ ( self : Union[str, Any] ) -> Dict: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def A_ ( self : int ) -> Dict: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def A_ ( self : Tuple ) -> Optional[int]: pass def A_ ( self : Tuple ) -> List[Any]: lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase__ : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE_ , nn.Linear ) ) def A_ ( self : Optional[int] ) -> Optional[Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Optional[int] = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : str = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def A_ ( self : int ) -> Union[str, Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def A_ ( self : List[str] ) -> List[Any]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*SCREAMING_SNAKE_CASE_ ) def A_ ( self : int ) -> int: lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) def A_ ( self : Optional[int] ) -> Optional[int]: lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*SCREAMING_SNAKE_CASE_ ) def A_ ( self : List[Any] ) -> Union[str, Any]: if not self.model_tester.is_training: return lowerCamelCase__ : str = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling]: continue lowerCamelCase__ : Optional[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() lowerCamelCase__ : str = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def A_ ( self : Optional[Any] ) -> Any: lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return lowerCamelCase__ : List[str] = False lowerCamelCase__ : List[str] = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(SCREAMING_SNAKE_CASE_ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue lowerCamelCase__ : List[Any] = model_class(SCREAMING_SNAKE_CASE_ ) model.gradient_checkpointing_enable() model.to(SCREAMING_SNAKE_CASE_ ) model.train() lowerCamelCase__ : Optional[int] = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() def A_ ( self : Optional[int] ) -> Tuple: lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Any = _config_zero_init(SCREAMING_SNAKE_CASE_ ) for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(config=SCREAMING_SNAKE_CASE_ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def A_ ( self : int ) -> Any: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : Tuple = BeitModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase ): @cached_property def A_ ( self : Union[str, Any] ) -> Any: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def A_ ( self : str ) -> Optional[int]: lowerCamelCase__ : str = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Union[str, Any] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).pixel_values.to(SCREAMING_SNAKE_CASE_ ) # prepare bool_masked_pos lowerCamelCase__ : List[str] = torch.ones((1, 196) , dtype=torch.bool ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Union[str, Any] = model(pixel_values=SCREAMING_SNAKE_CASE_ , bool_masked_pos=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = outputs.logits # verify the logits lowerCamelCase__ : Optional[int] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[str] = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-2 ) ) @slow def A_ ( self : Optional[Any] ) -> Optional[Any]: lowerCamelCase__ : Optional[int] = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[str] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Any = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : int = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[Any] = outputs.logits # verify the logits lowerCamelCase__ : Any = torch.Size((1, 1000) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Union[str, Any] = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) lowerCamelCase__ : Tuple = 281 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def A_ ( self : Any ) -> List[str]: lowerCamelCase__ : Dict = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Optional[Any] = prepare_img() lowerCamelCase__ : Tuple = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[int] = outputs.logits # verify the logits lowerCamelCase__ : Optional[int] = torch.Size((1, 21841) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) lowerCamelCase__ : Dict = 2396 self.assertEqual(logits.argmax(-1 ).item() , SCREAMING_SNAKE_CASE_ ) @slow def A_ ( self : Optional[Any] ) -> int: lowerCamelCase__ : Optional[int] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowerCamelCase__ : Dict = model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[str] = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=640 , do_center_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : str = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : Optional[int] = Image.open(ds[0]['file'] ) lowerCamelCase__ : str = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = outputs.logits # verify the logits lowerCamelCase__ : int = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: lowerCamelCase__ : Dict = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=SCREAMING_SNAKE_CASE_ , ) else: lowerCamelCase__ : Tuple = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=SCREAMING_SNAKE_CASE_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) ) @slow def A_ ( self : Union[str, Any] ) -> Tuple: lowerCamelCase__ : List[str] = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) lowerCamelCase__ : Optional[Any] = model.to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Union[str, Any] = BeitImageProcessor(do_resize=SCREAMING_SNAKE_CASE_ , size=640 , do_center_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Dict = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) lowerCamelCase__ : Optional[Any] = Image.open(ds[0]['file'] ) lowerCamelCase__ : List[str] = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ).to(SCREAMING_SNAKE_CASE_ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = outputs.logits.detach().cpu() lowerCamelCase__ : Dict = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(500, 300)] ) lowerCamelCase__ : Dict = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[str] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def _A ( _lowercase="" ) -> str: """simple docstring""" __UpperCamelCase = tempfile.mkdtemp() return os.path.join(__lowercase , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = torch.rand(12,dtype=torch.floataa ) - 0.5 __UpperCamelCase = AgentAudio(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_,agent_type.to_raw(),atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) # Ensure that the file contains the same value as the original tensor __UpperCamelCase = sf.read(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_,torch.tensor(SCREAMING_SNAKE_CASE_ ),atol=1E-4 ) ) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = torch.rand(12,dtype=torch.floataa ) - 0.5 __UpperCamelCase = get_new_path(suffix='.wav' ) sf.write(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_,1_6000 ) __UpperCamelCase = AgentAudio(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_,agent_type.to_raw(),atol=1E-4 ) ) self.assertEqual(agent_type.to_string(),SCREAMING_SNAKE_CASE_ ) @require_vision @require_torch class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = torch.randint(0,256,(64, 64, 3) ) __UpperCamelCase = AgentImage(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_,agent_type._tensor,atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw(),Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '''000000039769.png''' __UpperCamelCase = Image.open(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) def snake_case_ ( self: Optional[Any] ): '''simple docstring''' __UpperCamelCase = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '''000000039769.png''' __UpperCamelCase = Image.open(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = AgentImage(SCREAMING_SNAKE_CASE_ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(SCREAMING_SNAKE_CASE_ ) ) class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = '''Hey!''' __UpperCamelCase = AgentText(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,agent_type.to_string() ) self.assertEqual(SCREAMING_SNAKE_CASE_,agent_type.to_raw() ) self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ )
310
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
0
import json import os import tempfile from transformers.testing_utils import check_json_file_has_correct_format class A_ : '''simple docstring''' a__ = None def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) __UpperCAmelCase = json.loads(feat_extract.to_json_string() ) for key, value in self.feat_extract_dict.items(): self.assertEqual(obj[key] , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ (self ) -> List[str]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = os.path.join(SCREAMING_SNAKE_CASE_ , '''feat_extract.json''' ) feat_extract_first.to_json_file(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.feature_extraction_class.from_json_file(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase = feat_extract_first.save_pretrained(SCREAMING_SNAKE_CASE_ )[0] check_json_file_has_correct_format(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = self.feature_extraction_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertEqual(feat_extract_second.to_dict() , feat_extract_first.to_dict() ) def lowerCAmelCase_ (self ) -> str: __UpperCAmelCase = self.feature_extraction_class() self.assertIsNotNone(SCREAMING_SNAKE_CASE_ )
333
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import argparse import os import torch from transformers import FlavaImageCodebook, FlavaImageCodebookConfig def _UpperCAmelCase ( snake_case , snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = s.rsplit(__lowercase , __lowercase ) return new.join(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return sum(param.float().sum() if """encoder.embeddings""" not in key else 0 for key, param in state_dict.items() ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = {} _lowerCAmelCase = ['''group_1''', '''group_2''', '''group_3''', '''group_4'''] for key, value in state_dict.items(): for group_key in group_keys: if group_key in key: _lowerCAmelCase = key.replace(F'{group_key}.' , F'{group_key}.group.' ) if "res_path" in key: _lowerCAmelCase = key.replace("""res_path.""" , """res_path.path.""" ) if key.endswith(""".w""" ): _lowerCAmelCase = rreplace(__lowercase , """.w""" , """.weight""" , 1 ) if key.endswith(""".b""" ): _lowerCAmelCase = rreplace(__lowercase , """.b""" , """.bias""" , 1 ) _lowerCAmelCase = value.float() return upgrade @torch.no_grad() def _UpperCAmelCase ( snake_case , snake_case , snake_case=None , snake_case=True ): """simple docstring""" from dall_e import Encoder _lowerCAmelCase = Encoder() if os.path.exists(__lowercase ): _lowerCAmelCase = torch.load(__lowercase ) else: _lowerCAmelCase = torch.hub.load_state_dict_from_url(__lowercase ) if isinstance(__lowercase , __lowercase ): _lowerCAmelCase = ckpt.state_dict() encoder.load_state_dict(__lowercase ) if config_path is not None: _lowerCAmelCase = FlavaImageCodebookConfig.from_pretrained(__lowercase ) else: _lowerCAmelCase = FlavaImageCodebookConfig() _lowerCAmelCase = FlavaImageCodebook(__lowercase ).eval() _lowerCAmelCase = encoder.state_dict() _lowerCAmelCase = upgrade_state_dict(__lowercase ) hf_model.load_state_dict(__lowercase ) _lowerCAmelCase = hf_model.state_dict() _lowerCAmelCase = count_parameters(__lowercase ) _lowerCAmelCase = count_parameters(__lowercase ) assert torch.allclose(__lowercase , __lowercase , atol=1E-3 ) if save_checkpoint: hf_model.save_pretrained(__lowercase ) else: return hf_state_dict if __name__ == "__main__": A__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") A__ = parser.parse_args() convert_dalle_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase=False ): """simple docstring""" lowerCAmelCase__ : Any = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""deit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""deit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""deit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""deit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""deit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""deit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""deit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""deit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""deit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""deit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" lowerCAmelCase__ : Dict = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=False ): """simple docstring""" for i in range(config.num_hidden_layers ): if base_model: lowerCAmelCase__ : Tuple = '''''' else: lowerCAmelCase__ : Dict = '''deit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCAmelCase__ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) lowerCAmelCase__ : Tuple = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowerCAmelCase__ : Optional[int] = in_proj_weight[ : config.hidden_size, : ] lowerCAmelCase__ : Dict = in_proj_bias[: config.hidden_size] lowerCAmelCase__ : int = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCAmelCase__ : List[Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCAmelCase__ : int = in_proj_weight[ -config.hidden_size :, : ] lowerCAmelCase__ : Dict = in_proj_bias[-config.hidden_size :] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = dct.pop(__lowercase ) lowerCAmelCase__ : Any = val def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowerCAmelCase__ : List[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase__ : Optional[int] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = DeiTConfig() # all deit models have fine-tuned heads lowerCAmelCase__ : int = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size lowerCAmelCase__ : Union[str, Any] = 1000 lowerCAmelCase__ : Union[str, Any] = '''huggingface/label-files''' lowerCAmelCase__ : List[str] = '''imagenet-1k-id2label.json''' lowerCAmelCase__ : Optional[int] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type="""dataset""" ) , """r""" ) ) lowerCAmelCase__ : List[Any] = {int(__lowercase ): v for k, v in idalabel.items()} lowerCAmelCase__ : Dict = idalabel lowerCAmelCase__ : Union[str, Any] = {v: k for k, v in idalabel.items()} lowerCAmelCase__ : Dict = int(deit_name[-6:-4] ) lowerCAmelCase__ : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): lowerCAmelCase__ : Optional[int] = 192 lowerCAmelCase__ : Optional[Any] = 768 lowerCAmelCase__ : Optional[int] = 12 lowerCAmelCase__ : Union[str, Any] = 3 elif deit_name[9:].startswith("""small""" ): lowerCAmelCase__ : str = 384 lowerCAmelCase__ : List[str] = 1536 lowerCAmelCase__ : int = 12 lowerCAmelCase__ : List[str] = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): lowerCAmelCase__ : Optional[Any] = 1024 lowerCAmelCase__ : List[Any] = 4096 lowerCAmelCase__ : Optional[int] = 24 lowerCAmelCase__ : Dict = 16 # load original model from timm lowerCAmelCase__ : int = timm.create_model(__lowercase , pretrained=__lowercase ) timm_model.eval() # load state_dict of original model, remove and rename some keys lowerCAmelCase__ : int = timm_model.state_dict() lowerCAmelCase__ : List[str] = create_rename_keys(__lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase , __lowercase ) # load HuggingFace model lowerCAmelCase__ : Any = DeiTForImageClassificationWithTeacher(__lowercase ).eval() model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by DeiTImageProcessor lowerCAmelCase__ : Optional[int] = int( (256 / 224) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 lowerCAmelCase__ : List[str] = DeiTImageProcessor(size=__lowercase , crop_size=config.image_size ) lowerCAmelCase__ : Optional[int] = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowerCAmelCase__ : Any = encoding['''pixel_values'''] lowerCAmelCase__ : int = model(__lowercase ) lowerCAmelCase__ : str = timm_model(__lowercase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(__lowercase , outputs.logits , atol=1e-3 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(f"""Saving model {deit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--deit_name''', default='''vit_deit_base_distilled_patch16_224''', type=str, help='''Name of the DeiT timm model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCAmelCase = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
37
'''simple docstring''' from itertools import permutations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A: int = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int: return sum( int(''''''.join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
319
0
'''simple docstring''' import gc import unittest from diffusers import FlaxStableDiffusionInpaintPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class __A ( unittest.TestCase ): def _lowercase (self : Any ): super().tearDown() gc.collect() def _lowercase (self : List[str] ): UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-inpaint/init_image.png" ) UpperCAmelCase_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png" ) UpperCAmelCase_ = '''xvjiarui/stable-diffusion-2-inpainting''' UpperCAmelCase_ = FlaxStableDiffusionInpaintPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = '''Face of a yellow cat, high resolution, sitting on a park bench''' UpperCAmelCase_ = jax.random.PRNGKey(0 ) UpperCAmelCase_ = 50 UpperCAmelCase_ = jax.device_count() UpperCAmelCase_ = num_samples * [prompt] UpperCAmelCase_ = num_samples * [init_image] UpperCAmelCase_ = num_samples * [mask_image] UpperCAmelCase_ = pipeline.prepare_inputs(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # shard inputs and rng UpperCAmelCase_ = replicate(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = jax.random.split(SCREAMING_SNAKE_CASE_ , jax.device_count() ) UpperCAmelCase_ = shard(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = shard(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = shard(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = pipeline( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , jit=SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = output.images.reshape(SCREAMING_SNAKE_CASE_ , 512 , 512 , 3 ) UpperCAmelCase_ = images[0, 253:256, 253:256, -1] UpperCAmelCase_ = jnp.asarray(jax.device_get(image_slice.flatten() ) ) UpperCAmelCase_ = jnp.array( [0.3_61_13_07, 0.37_64_97_36, 0.3_75_74_08, 0.38_21_39_53, 0.39_29_51_67, 0.3_84_16_31, 0.41_55_49_78, 0.4_13_74_75, 0.4_21_70_84] ) print(f"""output_slice: {output_slice}""" ) assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
0
import os from collections.abc import Iterator def lowercase( UpperCamelCase_ = "." ) -> Iterator[str]: '''simple docstring''' for dir_path, dir_names, filenames in os.walk(__lowercase ): UpperCamelCase = [d for d in dir_names if d != '''scripts''' and d[0] not in '''._'''] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowercase )[1] in (".py", ".ipynb"): yield os.path.join(__lowercase , __lowercase ).lstrip("""./""" ) def lowercase( UpperCamelCase_ ) -> Optional[int]: '''simple docstring''' return f"""{i * " "}*""" if i else "\n##" def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' UpperCamelCase = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowercase ) or old_parts[i] != new_part) and new_part: print(f"""{md_prefix(__lowercase )} {new_part.replace("_" , " " ).title()}""" ) return new_path def lowercase( UpperCamelCase_ = "." ) -> None: '''simple docstring''' UpperCamelCase = '''''' for filepath in sorted(good_file_paths(__lowercase ) ): UpperCamelCase = os.path.split(__lowercase ) if filepath != old_path: UpperCamelCase = print_path(__lowercase , __lowercase ) UpperCamelCase = (filepath.count(os.sep ) + 1) if filepath else 0 UpperCamelCase = f"""{filepath}/{filename}""".replace(""" """ , """%20""" ) UpperCamelCase = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(f"""{md_prefix(__lowercase )} [{filename}]({url})""" ) if __name__ == "__main__": print_directory_md(""".""")
343
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
from queue import PriorityQueue from typing import Any import numpy as np def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ): for nxt, d in graph[v]: if nxt in visited_forward: continue SCREAMING_SNAKE_CASE_: Optional[Any] = cst_fwd.get(__lowercase , np.inf ) SCREAMING_SNAKE_CASE_: Dict = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) SCREAMING_SNAKE_CASE_: str = new_cost_f SCREAMING_SNAKE_CASE_: List[str] = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: SCREAMING_SNAKE_CASE_: int = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = -1 SCREAMING_SNAKE_CASE_: Optional[Any] = set() SCREAMING_SNAKE_CASE_: List[str] = set() SCREAMING_SNAKE_CASE_: int = {source: 0} SCREAMING_SNAKE_CASE_: Optional[int] = {destination: 0} SCREAMING_SNAKE_CASE_: Tuple = {source: None} SCREAMING_SNAKE_CASE_: Tuple = {destination: None} SCREAMING_SNAKE_CASE_: PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE_: PriorityQueue[Any] = PriorityQueue() SCREAMING_SNAKE_CASE_: Optional[Any] = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): SCREAMING_SNAKE_CASE_: List[Any] = queue_forward.get() visited_forward.add(__lowercase ) SCREAMING_SNAKE_CASE_: List[Any] = queue_backward.get() visited_backward.add(__lowercase ) SCREAMING_SNAKE_CASE_: str = pass_and_relaxation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) SCREAMING_SNAKE_CASE_: Optional[Any] = pass_and_relaxation( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: SCREAMING_SNAKE_CASE_: Union[str, Any] = shortest_distance return shortest_path_distance lowerCAmelCase : List[Any] = { """B""": [["""C""", 1]], """C""": [["""D""", 1]], """D""": [["""F""", 1]], """E""": [["""B""", 1], ["""G""", 2]], """F""": [], """G""": [["""F""", 1]], } lowerCAmelCase : Optional[Any] = { """B""": [["""E""", 1]], """C""": [["""B""", 1]], """D""": [["""C""", 1]], """F""": [["""D""", 1], ["""G""", 1]], """E""": [[None, np.inf]], """G""": [["""E""", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" import argparse from pathlib import Path from transformers import AutoConfig, AutoTokenizer, RagConfig, RagSequenceForGeneration, RagTokenForGeneration def UpperCAmelCase ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , ) -> Optional[int]: if config_name_or_path is None: snake_case_ = '''facebook/rag-token-base''' if model_type == '''rag_token''' else '''facebook/rag-sequence-base''' if generator_tokenizer_name_or_path is None: snake_case_ = generator_name_or_path if question_encoder_tokenizer_name_or_path is None: snake_case_ = question_encoder_name_or_path snake_case_ = RagTokenForGeneration if model_type == '''rag_token''' else RagSequenceForGeneration # Save model. snake_case_ = RagConfig.from_pretrained(__lowercase ) snake_case_ = AutoConfig.from_pretrained(__lowercase ) snake_case_ = AutoConfig.from_pretrained(__lowercase ) snake_case_ = gen_config snake_case_ = question_encoder_config snake_case_ = model_class.from_pretrained_question_encoder_generator( __lowercase , __lowercase , config=__lowercase ) rag_model.save_pretrained(__lowercase ) # Sanity check. model_class.from_pretrained(__lowercase ) # Save tokenizers. snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) gen_tokenizer.save_pretrained(dest_dir / 'generator_tokenizer/' ) snake_case_ = AutoTokenizer.from_pretrained(__lowercase ) question_encoder_tokenizer.save_pretrained(dest_dir / 'question_encoder_tokenizer/' ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() parser.add_argument( '''--model_type''', choices=['''rag_sequence''', '''rag_token'''], required=True, type=str, help='''RAG model type: rag_sequence, rag_token''', ) parser.add_argument('''--dest''', type=str, required=True, help='''Path to the output checkpoint directory.''') parser.add_argument('''--generator_name_or_path''', type=str, required=True, help='''Generator model identifier''') parser.add_argument( '''--question_encoder_name_or_path''', type=str, required=True, help='''Question encoder model identifier''' ) parser.add_argument( '''--generator_tokenizer_name_or_path''', type=str, help='''Generator tokenizer identifier, if not specified, resolves to ``generator_name_or_path``''', ) parser.add_argument( '''--question_encoder_tokenizer_name_or_path''', type=str, help='''Question encoder tokenizer identifier, if not specified, resolves to ``question_encoder_name_or_path``''', ) parser.add_argument( '''--config_name_or_path''', type=str, help=( '''Identifier of the model config to use, if not provided, resolves to a base config for a given''' ''' ``model_type``''' ), ) __UpperCamelCase = parser.parse_args() __UpperCamelCase = Path(args.dest) dest_dir.mkdir(exist_ok=True) consolidate( args.model_type, args.generator_name_or_path, args.question_encoder_name_or_path, dest_dir, args.config_name_or_path, args.generator_tokenizer_name_or_path, args.question_encoder_tokenizer_name_or_path, )
69
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : List[Any] = get_tests_dir("fixtures/test_sentencepiece.model") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = XLMRobertaTokenizer _SCREAMING_SNAKE_CASE = XLMRobertaTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def A ( self : int ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self : Dict ): """simple docstring""" UpperCamelCase = '''<pad>''' UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def A ( self : Tuple ): """simple docstring""" UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1_0_0_2 ) def A ( self : Optional[Any] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_0_0_2 ) def A ( self : List[Any] ): """simple docstring""" UpperCamelCase = XLMRobertaTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.tokenize('This is a test' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [2_8_5, 4_6, 1_0, 1_7_0, 3_8_2]] , ) UpperCamelCase = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) UpperCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 2_1, 8_4, 5_5, 2_4, 1_9, 7, 2, 6_0_2, 3_4_7, 3_4_7, 3_4_7, 3, 1_2, 6_6, 4_6, 7_2, 8_0, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def A ( self : Optional[Any] ): """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) UpperCamelCase = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase = tempfile.mkdtemp() UpperCamelCase = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @cached_property def A ( self : str ): """simple docstring""" return XLMRobertaTokenizer.from_pretrained('xlm-roberta-base' ) def A ( self : List[str] ): """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(SCREAMING_SNAKE_CASE_ , f.name ) UpperCamelCase = XLMRobertaTokenizer(f.name , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = pickle.dumps(SCREAMING_SNAKE_CASE_ ) pickle.loads(SCREAMING_SNAKE_CASE_ ) def A ( self : Union[str, Any] ): """simple docstring""" if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = '''I was born in 92000, and this is falsé.''' UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.get_rust_tokenizer() UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = rust_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = '''Hello World!''' UpperCamelCase = [0, 3_5_3_7_8, 6_6_6_1, 3_8, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) UpperCamelCase = [ 0, 3_2_9_3, 8_3, 1_0, 4_5_5_2, 4_9_8_9, 7_9_8_6, 6_7_8, 1_0, 5_9_1_5, 1_1_1, 1_7_9_4_5_9, 1_2_4_8_5_0, 4, 6_0_4_4, 2_3_7, 1_2, 6, 5, 6, 4, 6_7_8_0, 7_0_5, 1_5, 1_3_8_8, 4_4, 3_7_8, 1_0_1_1_4, 7_1_1, 1_5_2, 2_0, 6, 5, 2_2_3_7_6, 6_4_2, 1_2_2_1, 1_5_1_9_0, 3_4_1_5_3, 4_5_0, 5_6_0_8, 9_5_9, 1_1_1_9, 5_7_7_0_2, 1_3_6, 1_8_6, 4_7, 1_0_9_8, 2_9_3_6_7, 4_7, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_0_4_4, 2_3_7, 6_2_8_4, 5_0_9_0_1, 5_2_8, 3_1, 9_0, 3_4, 9_2_7, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def A ( self : Optional[int] ): """simple docstring""" UpperCamelCase = {'''input_ids''': [[0, 1_1_0_6_2, 8_2_7_7_2, 7, 1_5, 8_2_7_7_2, 5_3_8, 5_1_5_2_9, 2_3_7, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 2_1_5_1_7_5, 1_3_1_4, 1_3_6, 1_7_1_9_8, 1_2_9_0, 2_0_6, 9, 5_6_3_5_9, 4_2, 1_2_2_0_0_9, 9, 1_6_4_6_6, 1_6, 8_7_3_4_4, 4_5_3_7, 9, 4_7_1_7, 7_8_3_8_1, 6, 1_5_9_9_5_8, 7, 1_5, 2_4_4_8_0, 6_1_8, 4, 5_2_7, 2_2_6_9_3, 5_4_2_8, 4, 2_7_7_7, 2_4_4_8_0, 9_8_7_4, 4, 4_3_5_2_3, 5_9_4, 4, 8_0_3, 1_8_3_9_2, 3_3_1_8_9, 1_8, 4, 4_3_5_2_3, 2_4_4_4_7, 1_2_3_9_9, 1_0_0, 2_4_9_5_5, 8_3_6_5_8, 9_6_2_6, 1_4_4_0_5_7, 1_5, 8_3_9, 2_2_3_3_5, 1_6, 1_3_6, 2_4_9_5_5, 8_3_6_5_8, 8_3_4_7_9, 1_5, 3_9_1_0_2, 7_2_4, 1_6, 6_7_8, 6_4_5, 2_7_8_9, 1_3_2_8, 4_5_8_9, 4_2, 1_2_2_0_0_9, 1_1_5_7_7_4, 2_3, 8_0_5, 1_3_2_8, 4_6_8_7_6, 7, 1_3_6, 5_3_8_9_4, 1_9_4_0, 4_2_2_2_7, 4_1_1_5_9, 1_7_7_2_1, 8_2_3, 4_2_5, 4, 2_7_5_1_2, 9_8_7_2_2, 2_0_6, 1_3_6, 5_5_3_1, 4_9_7_0, 9_1_9, 1_7_3_3_6, 5, 2], [0, 2_0_0_8_0, 6_1_8, 8_3, 8_2_7_7_5, 4_7, 4_7_9, 9, 1_5_1_7, 7_3, 5_3_8_9_4, 3_3_3, 8_0_5_8_1, 1_1_0_1_1_7, 1_8_8_1_1, 5_2_5_6, 1_2_9_5, 5_1, 1_5_2_5_2_6, 2_9_7, 7_9_8_6, 3_9_0, 1_2_4_4_1_6, 5_3_8, 3_5_4_3_1, 2_1_4, 9_8, 1_5_0_4_4, 2_5_7_3_7, 1_3_6, 7_1_0_8, 4_3_7_0_1, 2_3, 7_5_6, 1_3_5_3_5_5, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_8_1, 6_3_7_7_3, 1_1_9_4_5_5, 6, 1_4_7_7_9_7, 8_8_2_0_3, 7, 6_4_5, 7_0, 2_1, 3_2_8_5, 1_0_2_6_9, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name='xlm-roberta-base' , revision='d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3' , )
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
import os import platform import sys _lowerCamelCase ="""3""" print("""Python version:""", sys.version) print("""OS platform:""", platform.platform()) print("""OS architecture:""", platform.machine()) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) except ImportError: print("""Torch version:""", None) try: import transformers print("""transformers version:""", transformers.__version__) except ImportError: print("""transformers version:""", None)
287
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class lowerCAmelCase ( UpperCAmelCase_ ): UpperCAmelCase__ = """Wav2Vec2FeatureExtractor""" UpperCAmelCase__ = """AutoTokenizer""" def __init__( self : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] ) -> Any: super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Any = self.feature_extractor lowerCamelCase__ : Any = False @classmethod def A_ ( cls : List[str] , UpperCAmelCase : List[str] , **UpperCAmelCase : Any ) -> str: try: return super().from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) except OSError: warnings.warn( F"""Loading a tokenizer inside {cls.__name__} from a config that does not""" ' include a `tokenizer_class` attribute is deprecated and will be ' 'removed in v5. Please add `\'tokenizer_class\': \'Wav2Vec2CTCTokenizer\'`' ' attribute to either your `config.json` or `tokenizer_config.json` ' 'file to suppress this warning: ' , SCREAMING_SNAKE_CASE_ , ) lowerCamelCase__ : List[Any] = WavaVecaFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = WavaVecaCTCTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return cls(feature_extractor=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ ) def __call__( self : int , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : List[Any] ) -> str: if self._in_target_context_manager: return self.current_processor(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) lowerCamelCase__ : Optional[int] = kwargs.pop('raw_speech' ) else: lowerCamelCase__ : int = kwargs.pop('audio' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Tuple = kwargs.pop('sampling_rate' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : int = kwargs.pop('text' , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase__ : Dict = args[0] lowerCamelCase__ : int = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: lowerCamelCase__ : Optional[Any] = self.feature_extractor(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , sampling_rate=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None: lowerCamelCase__ : List[Any] = self.tokenizer(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase__ : Optional[int] = encodings['''input_ids'''] return inputs def A_ ( self : Optional[int] , *UpperCAmelCase : Tuple , **UpperCAmelCase : Optional[Any] ) -> Union[str, Any]: if self._in_target_context_manager: return self.current_processor.pad(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[int] = kwargs.pop('input_features' , SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Optional[Any] = kwargs.pop('labels' , SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: lowerCamelCase__ : Any = args[0] lowerCamelCase__ : int = args[1:] if input_features is not None: lowerCamelCase__ : Dict = self.feature_extractor.pad(SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if labels is not None: lowerCamelCase__ : Dict = self.tokenizer.pad(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase__ : List[str] = labels['''input_ids'''] return input_features def A_ ( self : Any , *UpperCAmelCase : List[str] , **UpperCAmelCase : Optional[Any] ) -> Optional[Any]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def A_ ( self : Union[str, Any] , *UpperCAmelCase : str , **UpperCAmelCase : str ) -> Dict: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @contextmanager def A_ ( self : Optional[int] ) -> Dict: warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Union[str, Any] = self.tokenizer yield lowerCamelCase__ : int = self.feature_extractor lowerCamelCase__ : Dict = False
50
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
0
import argparse import json import os import pickle import shutil import numpy as np import torch from distiller import Distiller from lm_seqs_dataset import LmSeqsDataset from transformers import ( BertConfig, BertForMaskedLM, BertTokenizer, DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer, GPTaConfig, GPTaLMHeadModel, GPTaTokenizer, RobertaConfig, RobertaForMaskedLM, RobertaTokenizer, ) from utils import git_log, init_gpu_params, logger, set_seed __snake_case = { '''distilbert''': (DistilBertConfig, DistilBertForMaskedLM, DistilBertTokenizer), '''roberta''': (RobertaConfig, RobertaForMaskedLM, RobertaTokenizer), '''bert''': (BertConfig, BertForMaskedLM, BertTokenizer), '''gpt2''': (GPTaConfig, GPTaLMHeadModel, GPTaTokenizer), } def _A ( _lowercase ) -> Tuple: """simple docstring""" assert (args.mlm and args.alpha_mlm > 0.0) or (not args.mlm and args.alpha_mlm == 0.0) assert (args.alpha_mlm > 0.0 and args.alpha_clm == 0.0) or (args.alpha_mlm == 0.0 and args.alpha_clm > 0.0) if args.mlm: assert os.path.isfile(args.token_counts ) assert (args.student_type in ["roberta", "distilbert"]) and (args.teacher_type in ["roberta", "bert"]) else: assert (args.student_type in ["gpt2"]) and (args.teacher_type in ["gpt2"]) assert args.teacher_type == args.student_type or ( args.student_type == "distilbert" and args.teacher_type == "bert" ) assert os.path.isfile(args.student_config ) if args.student_pretrained_weights is not None: assert os.path.isfile(args.student_pretrained_weights ) if args.freeze_token_type_embds: assert args.student_type in ["roberta"] assert args.alpha_ce >= 0.0 assert args.alpha_mlm >= 0.0 assert args.alpha_clm >= 0.0 assert args.alpha_mse >= 0.0 assert args.alpha_cos >= 0.0 assert args.alpha_ce + args.alpha_mlm + args.alpha_clm + args.alpha_mse + args.alpha_cos > 0.0 def _A ( _lowercase , _lowercase ) -> Dict: """simple docstring""" if args.student_type == "roberta": __UpperCamelCase = False elif args.student_type == "gpt2": __UpperCamelCase = False def _A ( _lowercase , _lowercase ) -> Any: """simple docstring""" if args.student_type == "roberta": __UpperCamelCase = False def _A ( ) -> Dict: """simple docstring""" __UpperCamelCase = argparse.ArgumentParser(description='Training' ) parser.add_argument('--force' , action='store_true' , help='Overwrite dump_path if it already exists.' ) parser.add_argument( '--dump_path' , type=__lowercase , required=__lowercase , help='The output directory (log, checkpoints, parameters, etc.)' ) parser.add_argument( '--data_file' , type=__lowercase , required=__lowercase , help='The binarized file (tokenized + tokens_to_ids) and grouped by sequence.' , ) parser.add_argument( '--student_type' , type=__lowercase , choices=['distilbert', 'roberta', 'gpt2'] , required=__lowercase , help='The student type (DistilBERT, RoBERTa).' , ) parser.add_argument('--student_config' , type=__lowercase , required=__lowercase , help='Path to the student configuration.' ) parser.add_argument( '--student_pretrained_weights' , default=__lowercase , type=__lowercase , help='Load student initialization checkpoint.' ) parser.add_argument( '--teacher_type' , choices=['bert', 'roberta', 'gpt2'] , required=__lowercase , help='Teacher type (BERT, RoBERTa).' ) parser.add_argument('--teacher_name' , type=__lowercase , required=__lowercase , help='The teacher model.' ) parser.add_argument('--temperature' , default=2.0 , type=__lowercase , help='Temperature for the softmax temperature.' ) parser.add_argument( '--alpha_ce' , default=0.5 , type=__lowercase , help='Linear weight for the distillation loss. Must be >=0.' ) parser.add_argument( '--alpha_mlm' , default=0.0 , type=__lowercase , help='Linear weight for the MLM loss. Must be >=0. Should be used in conjunction with `mlm` flag.' , ) parser.add_argument('--alpha_clm' , default=0.5 , type=__lowercase , help='Linear weight for the CLM loss. Must be >=0.' ) parser.add_argument('--alpha_mse' , default=0.0 , type=__lowercase , help='Linear weight of the MSE loss. Must be >=0.' ) parser.add_argument( '--alpha_cos' , default=0.0 , type=__lowercase , help='Linear weight of the cosine embedding loss. Must be >=0.' ) parser.add_argument( '--mlm' , action='store_true' , help='The LM step: MLM or CLM. If `mlm` is True, the MLM is used over CLM.' ) parser.add_argument( '--mlm_mask_prop' , default=0.15 , type=__lowercase , help='Proportion of tokens for which we need to make a prediction.' , ) parser.add_argument('--word_mask' , default=0.8 , type=__lowercase , help='Proportion of tokens to mask out.' ) parser.add_argument('--word_keep' , default=0.1 , type=__lowercase , help='Proportion of tokens to keep.' ) parser.add_argument('--word_rand' , default=0.1 , type=__lowercase , help='Proportion of tokens to randomly replace.' ) parser.add_argument( '--mlm_smoothing' , default=0.7 , type=__lowercase , help='Smoothing parameter to emphasize more rare tokens (see XLM, similar to word2vec).' , ) parser.add_argument('--token_counts' , type=__lowercase , help='The token counts in the data_file for MLM.' ) parser.add_argument( '--restrict_ce_to_mask' , action='store_true' , help='If true, compute the distillation loss only the [MLM] prediction distribution.' , ) parser.add_argument( '--freeze_pos_embs' , action='store_true' , help='Freeze positional embeddings during distillation. For student_type in [\'roberta\', \'gpt2\'] only.' , ) parser.add_argument( '--freeze_token_type_embds' , action='store_true' , help='Freeze token type embeddings during distillation if existent. For student_type in [\'roberta\'] only.' , ) parser.add_argument('--n_epoch' , type=__lowercase , default=3 , help='Number of pass on the whole dataset.' ) parser.add_argument('--batch_size' , type=__lowercase , default=5 , help='Batch size (for each process).' ) parser.add_argument( '--group_by_size' , action='store_false' , help='If true, group sequences that have similar length into the same batch. Default is true.' , ) parser.add_argument( '--gradient_accumulation_steps' , type=__lowercase , default=50 , help='Gradient accumulation for larger training batches.' , ) parser.add_argument('--warmup_prop' , default=0.05 , type=__lowercase , help='Linear warmup proportion.' ) parser.add_argument('--weight_decay' , default=0.0 , type=__lowercase , help='Weight decay if we apply some.' ) parser.add_argument('--learning_rate' , default=5e-4 , type=__lowercase , help='The initial learning rate for Adam.' ) parser.add_argument('--adam_epsilon' , default=1e-6 , type=__lowercase , help='Epsilon for Adam optimizer.' ) parser.add_argument('--max_grad_norm' , default=5.0 , type=__lowercase , help='Max gradient norm.' ) parser.add_argument('--initializer_range' , default=0.02 , type=__lowercase , help='Random initialization range.' ) parser.add_argument( '--fp16' , action='store_true' , help='Whether to use 16-bit (mixed) precision (through NVIDIA apex) instead of 32-bit' , ) parser.add_argument( '--fp16_opt_level' , type=__lowercase , default='O1' , help=( 'For fp16: Apex AMP optimization level selected in [\'O0\', \'O1\', \'O2\', and \'O3\'].' 'See details at https://nvidia.github.io/apex/amp.html' ) , ) parser.add_argument('--n_gpu' , type=__lowercase , default=1 , help='Number of GPUs in the node.' ) parser.add_argument('--local_rank' , type=__lowercase , default=-1 , help='Distributed training - Local rank' ) parser.add_argument('--seed' , type=__lowercase , default=56 , help='Random seed' ) parser.add_argument('--log_interval' , type=__lowercase , default=5_00 , help='Tensorboard logging interval.' ) parser.add_argument('--checkpoint_interval' , type=__lowercase , default=40_00 , help='Checkpoint interval.' ) __UpperCamelCase = parser.parse_args() sanity_checks(__lowercase ) # ARGS # init_gpu_params(__lowercase ) set_seed(__lowercase ) if args.is_master: if os.path.exists(args.dump_path ): if not args.force: raise ValueError( f'''Serialization dir {args.dump_path} already exists, but you have not precised wheter to overwrite''' ' itUse `--force` if you want to overwrite it' ) else: shutil.rmtree(args.dump_path ) if not os.path.exists(args.dump_path ): os.makedirs(args.dump_path ) logger.info(f'''Experiment will be dumped and logged in {args.dump_path}''' ) # SAVE PARAMS # logger.info(f'''Param: {args}''' ) with open(os.path.join(args.dump_path , 'parameters.json' ) , 'w' ) as f: json.dump(vars(__lowercase ) , __lowercase , indent=4 ) git_log(args.dump_path ) __UpperCamelCase = MODEL_CLASSES[args.student_type] __UpperCamelCase = MODEL_CLASSES[args.teacher_type] # TOKENIZER # __UpperCamelCase = teacher_tokenizer_class.from_pretrained(args.teacher_name ) __UpperCamelCase = {} for tok_name, tok_symbol in tokenizer.special_tokens_map.items(): __UpperCamelCase = tokenizer.all_special_tokens.index(__lowercase ) __UpperCamelCase = tokenizer.all_special_ids[idx] logger.info(f'''Special tokens {special_tok_ids}''' ) __UpperCamelCase = special_tok_ids __UpperCamelCase = tokenizer.max_model_input_sizes[args.teacher_name] # DATA LOADER # logger.info(f'''Loading data from {args.data_file}''' ) with open(args.data_file , 'rb' ) as fp: __UpperCamelCase = pickle.load(__lowercase ) if args.mlm: logger.info(f'''Loading token counts from {args.token_counts} (already pre-computed)''' ) with open(args.token_counts , 'rb' ) as fp: __UpperCamelCase = pickle.load(__lowercase ) __UpperCamelCase = np.maximum(__lowercase , 1 ) ** -args.mlm_smoothing for idx in special_tok_ids.values(): __UpperCamelCase = 0.0 # do not predict special tokens __UpperCamelCase = torch.from_numpy(__lowercase ) else: __UpperCamelCase = None __UpperCamelCase = LmSeqsDataset(params=__lowercase , data=__lowercase ) logger.info('Data loader created.' ) # STUDENT # logger.info(f'''Loading student config from {args.student_config}''' ) __UpperCamelCase = student_config_class.from_pretrained(args.student_config ) __UpperCamelCase = True if args.student_pretrained_weights is not None: logger.info(f'''Loading pretrained weights from {args.student_pretrained_weights}''' ) __UpperCamelCase = student_model_class.from_pretrained(args.student_pretrained_weights , config=__lowercase ) else: __UpperCamelCase = student_model_class(__lowercase ) if args.n_gpu > 0: student.to(f'''cuda:{args.local_rank}''' ) logger.info('Student loaded.' ) # TEACHER # __UpperCamelCase = teacher_model_class.from_pretrained(args.teacher_name , output_hidden_states=__lowercase ) if args.n_gpu > 0: teacher.to(f'''cuda:{args.local_rank}''' ) logger.info(f'''Teacher loaded from {args.teacher_name}.''' ) # FREEZING # if args.freeze_pos_embs: freeze_pos_embeddings(__lowercase , __lowercase ) if args.freeze_token_type_embds: freeze_token_type_embeddings(__lowercase , __lowercase ) # SANITY CHECKS # assert student.config.vocab_size == teacher.config.vocab_size assert student.config.hidden_size == teacher.config.hidden_size assert student.config.max_position_embeddings == teacher.config.max_position_embeddings if args.mlm: assert token_probs.size(0 ) == stu_architecture_config.vocab_size # DISTILLER # torch.cuda.empty_cache() __UpperCamelCase = Distiller( params=__lowercase , dataset=__lowercase , token_probs=__lowercase , student=__lowercase , teacher=__lowercase ) distiller.train() logger.info('Let\'s go get some drinks.' ) if __name__ == "__main__": main()
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
import argparse import os import torch from transformers.utils import WEIGHTS_NAME A_ : int = ['small', 'medium', 'large'] A_ : int = 'lm_head.decoder.weight' A_ : Optional[Any] = 'lm_head.weight' def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = torch.load(__lowercase ) __UpperCAmelCase = d.pop(__lowercase ) os.makedirs(__lowercase , exist_ok=__lowercase ) torch.save(__lowercase , os.path.join(__lowercase , __lowercase ) ) if __name__ == "__main__": A_ : Optional[int] = argparse.ArgumentParser() parser.add_argument('--dialogpt_path', default='.', type=str) A_ : Dict = parser.parse_args() for MODEL in DIALOGPT_MODELS: A_ : Tuple = os.path.join(args.dialogpt_path, F"""{MODEL}_ft.pkl""") A_ : Any = F"""./DialoGPT-{MODEL}""" convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
from ...configuration_utils import PretrainedConfig from ...utils import logging A__ = logging.get_logger(__name__) A__ = { """facebook/vit-mae-base""": """https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json""", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class __lowerCAmelCase ( UpperCAmelCase_ ): __lowerCamelCase = """vit_mae""" def __init__( self , _snake_case=768 , _snake_case=12 , _snake_case=12 , _snake_case=3072 , _snake_case="gelu" , _snake_case=0.0 , _snake_case=0.0 , _snake_case=0.02 , _snake_case=1e-12 , _snake_case=224 , _snake_case=16 , _snake_case=3 , _snake_case=True , _snake_case=16 , _snake_case=512 , _snake_case=8 , _snake_case=2048 , _snake_case=0.75 , _snake_case=False , **_snake_case , ): """simple docstring""" super().__init__(**SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = initializer_range _lowerCAmelCase = layer_norm_eps _lowerCAmelCase = image_size _lowerCAmelCase = patch_size _lowerCAmelCase = num_channels _lowerCAmelCase = qkv_bias _lowerCAmelCase = decoder_num_attention_heads _lowerCAmelCase = decoder_hidden_size _lowerCAmelCase = decoder_num_hidden_layers _lowerCAmelCase = decoder_intermediate_size _lowerCAmelCase = mask_ratio _lowerCAmelCase = norm_pix_loss
82
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets _lowerCAmelCase = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' _lowerCAmelCase = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' _lowerCAmelCase = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" return float((preds == labels).mean() ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = simple_accuracy(__lowercase , __lowercase ) lowerCAmelCase__ : str = float(fa_score(y_true=__lowercase , y_pred=__lowercase ) ) return { "accuracy": acc, "f1": fa, } def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Optional[int] = np.array(__lowercase ) lowerCAmelCase__ : Optional[Any] = np.array(__lowercase ) lowerCAmelCase__ : int = en_sentvecs.shape[0] # mean centering lowerCAmelCase__ : str = en_sentvecs - np.mean(__lowercase , axis=0 ) lowerCAmelCase__ : Tuple = in_sentvecs - np.mean(__lowercase , axis=0 ) lowerCAmelCase__ : str = cdist(__lowercase , __lowercase , """cosine""" ) lowerCAmelCase__ : Union[str, Any] = np.array(range(__lowercase ) ) lowerCAmelCase__ : Any = sim.argsort(axis=1 )[:, :10] lowerCAmelCase__ : Dict = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class lowerCAmelCase_( datasets.Metric ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> int: if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { """predictions""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), """references""": datasets.Value("""int64""" ) if self.config_name != """cvit-mkb-clsr""" else datasets.Sequence(datasets.Value("""float32""" ) ), } ) ,codebase_urls=[] ,reference_urls=[] ,format="""numpy""" if self.config_name != """cvit-mkb-clsr""" else None ,) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ) -> List[Any]: if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", """ """\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", """ """\"wiki-ner\"]""" )
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_pegasus import PegasusTokenizer else: SCREAMING_SNAKE_CASE_: str =None SCREAMING_SNAKE_CASE_: Optional[int] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: List[Any] ='▁' SCREAMING_SNAKE_CASE_: Optional[Any] ={'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_: str ={ 'vocab_file': {'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/spiece.model'}, 'tokenizer_file': { 'google/pegasus-xsum': 'https://huggingface.co/google/pegasus-xsum/resolve/main/tokenizer.json' }, } SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'google/pegasus-xsum': 5_12, } class __A ( UpperCAmelCase_ ): a__ : Tuple = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = PegasusTokenizer a__ : str = ["""input_ids""", """attention_mask"""] def __init__(self : Optional[int] , __a : int=None , __a : Optional[int]=None , __a : Union[str, Any]="<pad>" , __a : List[str]="</s>" , __a : str="<unk>" , __a : Dict="<mask_2>" , __a : List[Any]="<mask_1>" , __a : List[str]=None , __a : str=103 , **__a : Any , ): UpperCAmelCase_ = offset if additional_special_tokens is not None: if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError( f"""additional_special_tokens should be of type {type(SCREAMING_SNAKE_CASE_ )}, but is""" f""" {type(SCREAMING_SNAKE_CASE_ )}""" ) UpperCAmelCase_ = ( ([mask_token_sent] + additional_special_tokens) if mask_token_sent not in additional_special_tokens and mask_token_sent is not None else additional_special_tokens ) # fill additional tokens with ..., <unk_token_102> in case not all additional tokens are already taken additional_special_tokens_extended += [ f"""<unk_{i}>""" for i in range(len(SCREAMING_SNAKE_CASE_ ) , self.offset - 1 ) ] if len(set(SCREAMING_SNAKE_CASE_ ) ) != len(SCREAMING_SNAKE_CASE_ ): raise ValueError( "Please make sure that the provided additional_special_tokens do not contain an incorrectly" f""" shifted list of <unk_x> tokens. Found {additional_special_tokens_extended}.""" ) UpperCAmelCase_ = additional_special_tokens_extended else: UpperCAmelCase_ = [mask_token_sent] if mask_token_sent is not None else [] additional_special_tokens += [f"""<unk_{i}>""" for i in range(2 , self.offset )] super().__init__( SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , mask_token_sent=SCREAMING_SNAKE_CASE_ , offset=SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def _lowercase (self : Optional[int] , __a : Any ): UpperCAmelCase_ = set(self.all_special_ids ) # call it once instead of inside list comp all_special_ids.remove(self.unk_token_id ) # <unk> is only sometimes special if all_special_ids != set(range(len(self.additional_special_tokens ) + 3 ) ): raise ValueError( "There should be 3 special tokens: mask_token, pad_token, and eos_token +" f""" {len(self.additional_special_tokens )} additional_special_tokens, but got {all_special_ids}""" ) return [1 if x in all_special_ids else 0 for x in seq] def _lowercase (self : List[str] , __a : List , __a : Optional[List] = None , __a : bool = False ): if already_has_special_tokens: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) elif token_ids_a is None: return self._special_token_mask(SCREAMING_SNAKE_CASE_ ) + [1] else: return self._special_token_mask(token_ids_a + token_ids_a ) + [1] def _lowercase (self : Any , __a : int , __a : Optional[int]=None ): if token_ids_a is None: return token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return token_ids_a + token_ids_a + [self.eos_token_id] def _lowercase (self : Optional[int] , __a : str , __a : Optional[str] = None ): if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase_ = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Optional[int] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : int , **lowerCamelCase_ : Tuple ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Tuple , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : List[str] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : List[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Any , *lowerCamelCase_ : str , **lowerCamelCase_ : List[Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Dict , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Optional[int] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : str , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : List[Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : int , *lowerCamelCase_ : Dict , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : int , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Tuple , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : Tuple ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Dict , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : str ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Union[str, Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[int] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Any , *lowerCamelCase_ : Dict , **lowerCamelCase_ : Tuple ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : List[str] , *lowerCamelCase_ : int , **lowerCamelCase_ : Dict ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Optional[Any] , *lowerCamelCase_ : List[Any] , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) class SCREAMING_SNAKE_CASE_ ( metaclass=UpperCAmelCase_ ): __lowerCAmelCase = ["""flax"""] def __init__( self : Optional[Any] , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): """simple docstring""" requires_backends(self , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : Any , *lowerCamelCase_ : Tuple , **lowerCamelCase_ : int ): """simple docstring""" requires_backends(cls , ["""flax"""] ) @classmethod def lowerCamelCase_ ( cls : str , *lowerCamelCase_ : Optional[int] , **lowerCamelCase_ : Optional[int] ): """simple docstring""" requires_backends(cls , ["""flax"""] )
343
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
import collections import gzip import os import urllib import numpy from tensorflow.python.framework import dtypes, random_seed from tensorflow.python.platform import gfile from tensorflow.python.util.deprecation import deprecated lowerCAmelCase : str = collections.namedtuple("""_Datasets""", ["""train""", """validation""", """test"""]) # CVDF mirror of http://yann.lecun.com/exdb/mnist/ lowerCAmelCase : List[Any] = """https://storage.googleapis.com/cvdf-datasets/mnist/""" def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Optional[int] = numpy.dtype(numpy.uintaa ).newbyteorder(">" ) return numpy.frombuffer(bytestream.read(4 ) , dtype=__lowercase )[0] @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def A_ ( _UpperCAmelCase ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: SCREAMING_SNAKE_CASE_: Union[str, Any] = _readaa(__lowercase ) if magic != 20_51: raise ValueError( "Invalid magic number %d in MNIST image file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE_: Optional[int] = _readaa(__lowercase ) SCREAMING_SNAKE_CASE_: List[str] = _readaa(__lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] = _readaa(__lowercase ) SCREAMING_SNAKE_CASE_: Any = bytestream.read(rows * cols * num_images ) SCREAMING_SNAKE_CASE_: List[str] = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) SCREAMING_SNAKE_CASE_: int = data.reshape(__lowercase , __lowercase , __lowercase , 1 ) return data @deprecated(__lowercase , "Please use tf.one_hot on tensors." ) def A_ ( _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: int = labels_dense.shape[0] SCREAMING_SNAKE_CASE_: Any = numpy.arange(__lowercase ) * num_classes SCREAMING_SNAKE_CASE_: int = numpy.zeros((num_labels, num_classes) ) SCREAMING_SNAKE_CASE_: int = 1 return labels_one_hot @deprecated(__lowercase , "Please use tf.data to implement this functionality." ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=10 ): print("Extracting" , f.name ) with gzip.GzipFile(fileobj=__lowercase ) as bytestream: SCREAMING_SNAKE_CASE_: Union[str, Any] = _readaa(__lowercase ) if magic != 20_49: raise ValueError( "Invalid magic number %d in MNIST label file: %s" % (magic, f.name) ) SCREAMING_SNAKE_CASE_: Dict = _readaa(__lowercase ) SCREAMING_SNAKE_CASE_: List[str] = bytestream.read(__lowercase ) SCREAMING_SNAKE_CASE_: List[Any] = numpy.frombuffer(__lowercase , dtype=numpy.uinta ) if one_hot: return _dense_to_one_hot(__lowercase , __lowercase ) return labels class __lowercase : """simple docstring""" @deprecated( SCREAMING_SNAKE_CASE_ , "Please use alternatives such as official/mnist/_DataSet.py" " from tensorflow/models." , ) def __init__( self : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : str=False , lowerCAmelCase__ : Optional[Any]=False , lowerCAmelCase__ : Tuple=dtypes.floataa , lowerCAmelCase__ : Dict=True , lowerCAmelCase__ : List[str]=None , ): SCREAMING_SNAKE_CASE_: Union[str, Any] = random_seed.get_seed(SCREAMING_SNAKE_CASE_) # If op level seed is not set, use whatever graph level seed is returned numpy.random.seed(seeda if seed is None else seeda) SCREAMING_SNAKE_CASE_: Tuple = dtypes.as_dtype(SCREAMING_SNAKE_CASE_).base_dtype if dtype not in (dtypes.uinta, dtypes.floataa): raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype) if fake_data: SCREAMING_SNAKE_CASE_: int = 1_0000 SCREAMING_SNAKE_CASE_: Tuple = one_hot else: assert ( images.shape[0] == labels.shape[0] ), F"images.shape: {images.shape} labels.shape: {labels.shape}" SCREAMING_SNAKE_CASE_: int = images.shape[0] # Convert shape from [num examples, rows, columns, depth] # to [num examples, rows*columns] (assuming depth == 1) if reshape: assert images.shape[3] == 1 SCREAMING_SNAKE_CASE_: Optional[int] = images.reshape( images.shape[0] , images.shape[1] * images.shape[2]) if dtype == dtypes.floataa: # Convert from [0, 255] -> [0.0, 1.0]. SCREAMING_SNAKE_CASE_: int = images.astype(numpy.floataa) SCREAMING_SNAKE_CASE_: List[Any] = numpy.multiply(SCREAMING_SNAKE_CASE_ , 1.0 / 255.0) SCREAMING_SNAKE_CASE_: int = images SCREAMING_SNAKE_CASE_: List[Any] = labels SCREAMING_SNAKE_CASE_: List[str] = 0 SCREAMING_SNAKE_CASE_: List[str] = 0 @property def _SCREAMING_SNAKE_CASE ( self : Union[str, Any]): return self._images @property def _SCREAMING_SNAKE_CASE ( self : Tuple): return self._labels @property def _SCREAMING_SNAKE_CASE ( self : Optional[int]): return self._num_examples @property def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): return self._epochs_completed def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict=False , lowerCAmelCase__ : List[str]=True): if fake_data: SCREAMING_SNAKE_CASE_: List[Any] = [1] * 784 SCREAMING_SNAKE_CASE_: Any = [1] + [0] * 9 if self.one_hot else 0 return ( [fake_image for _ in range(SCREAMING_SNAKE_CASE_)], [fake_label for _ in range(SCREAMING_SNAKE_CASE_)], ) SCREAMING_SNAKE_CASE_: str = self._index_in_epoch # Shuffle for the first epoch if self._epochs_completed == 0 and start == 0 and shuffle: SCREAMING_SNAKE_CASE_: Union[str, Any] = numpy.arange(self._num_examples) numpy.random.shuffle(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[Any] = self.images[perma] SCREAMING_SNAKE_CASE_: Any = self.labels[perma] # Go to the next epoch if start + batch_size > self._num_examples: # Finished epoch self._epochs_completed += 1 # Get the rest examples in this epoch SCREAMING_SNAKE_CASE_: Union[str, Any] = self._num_examples - start SCREAMING_SNAKE_CASE_: int = self._images[start : self._num_examples] SCREAMING_SNAKE_CASE_: Dict = self._labels[start : self._num_examples] # Shuffle the data if shuffle: SCREAMING_SNAKE_CASE_: Optional[Any] = numpy.arange(self._num_examples) numpy.random.shuffle(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: str = self.images[perm] SCREAMING_SNAKE_CASE_: Dict = self.labels[perm] # Start next epoch SCREAMING_SNAKE_CASE_: List[Any] = 0 SCREAMING_SNAKE_CASE_: List[str] = batch_size - rest_num_examples SCREAMING_SNAKE_CASE_: List[str] = self._index_in_epoch SCREAMING_SNAKE_CASE_: Tuple = self._images[start:end] SCREAMING_SNAKE_CASE_: Optional[Any] = self._labels[start:end] return ( numpy.concatenate((images_rest_part, images_new_part) , axis=0), numpy.concatenate((labels_rest_part, labels_new_part) , axis=0), ) else: self._index_in_epoch += batch_size SCREAMING_SNAKE_CASE_: int = self._index_in_epoch return self._images[start:end], self._labels[start:end] @deprecated(__lowercase , "Please write your own downloading logic." ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): if not gfile.Exists(__lowercase ): gfile.MakeDirs(__lowercase ) SCREAMING_SNAKE_CASE_: Tuple = os.path.join(__lowercase , __lowercase ) if not gfile.Exists(__lowercase ): urllib.request.urlretrieve(__lowercase , __lowercase ) # noqa: S310 with gfile.GFile(__lowercase ) as f: SCREAMING_SNAKE_CASE_: List[str] = f.size() print("Successfully downloaded" , __lowercase , __lowercase , "bytes." ) return filepath @deprecated( __lowercase , "Please use alternatives such as:" " tensorflow_datasets.load(\'mnist\')" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase=False , _UpperCAmelCase=False , _UpperCAmelCase=dtypes.floataa , _UpperCAmelCase=True , _UpperCAmelCase=50_00 , _UpperCAmelCase=None , _UpperCAmelCase=DEFAULT_SOURCE_URL , ): if fake_data: def fake(): return _DataSet( [] , [] , fake_data=__lowercase , one_hot=__lowercase , dtype=__lowercase , seed=__lowercase ) SCREAMING_SNAKE_CASE_: int = fake() SCREAMING_SNAKE_CASE_: int = fake() SCREAMING_SNAKE_CASE_: Union[str, Any] = fake() return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase ) if not source_url: # empty string check SCREAMING_SNAKE_CASE_: Tuple = DEFAULT_SOURCE_URL SCREAMING_SNAKE_CASE_: Union[str, Any] = '''train-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE_: List[Any] = '''train-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE_: Any = '''t10k-images-idx3-ubyte.gz''' SCREAMING_SNAKE_CASE_: Dict = '''t10k-labels-idx1-ubyte.gz''' SCREAMING_SNAKE_CASE_: Dict = _maybe_download( __lowercase , __lowercase , source_url + train_images_file ) with gfile.Open(__lowercase , "rb" ) as f: SCREAMING_SNAKE_CASE_: Optional[int] = _extract_images(__lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = _maybe_download( __lowercase , __lowercase , source_url + train_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: SCREAMING_SNAKE_CASE_: Optional[Any] = _extract_labels(__lowercase , one_hot=__lowercase ) SCREAMING_SNAKE_CASE_: Any = _maybe_download( __lowercase , __lowercase , source_url + test_images_file ) with gfile.Open(__lowercase , "rb" ) as f: SCREAMING_SNAKE_CASE_: Any = _extract_images(__lowercase ) SCREAMING_SNAKE_CASE_: List[Any] = _maybe_download( __lowercase , __lowercase , source_url + test_labels_file ) with gfile.Open(__lowercase , "rb" ) as f: SCREAMING_SNAKE_CASE_: Optional[int] = _extract_labels(__lowercase , one_hot=__lowercase ) if not 0 <= validation_size <= len(__lowercase ): SCREAMING_SNAKE_CASE_: Dict = ( '''Validation size should be between 0 and ''' f"{len(__lowercase )}. Received: {validation_size}." ) raise ValueError(__lowercase ) SCREAMING_SNAKE_CASE_: Tuple = train_images[:validation_size] SCREAMING_SNAKE_CASE_: List[str] = train_labels[:validation_size] SCREAMING_SNAKE_CASE_: List[str] = train_images[validation_size:] SCREAMING_SNAKE_CASE_: Optional[Any] = train_labels[validation_size:] SCREAMING_SNAKE_CASE_: Union[str, Any] = {'''dtype''': dtype, '''reshape''': reshape, '''seed''': seed} SCREAMING_SNAKE_CASE_: int = _DataSet(__lowercase , __lowercase , **__lowercase ) SCREAMING_SNAKE_CASE_: Tuple = _DataSet(__lowercase , __lowercase , **__lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = _DataSet(__lowercase , __lowercase , **__lowercase ) return _Datasets(train=__lowercase , validation=__lowercase , test=__lowercase )
13
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" from math import sqrt def UpperCAmelCase ( UpperCAmelCase ) -> int: snake_case_ = 0 for i in range(1 , int(sqrt(__lowercase ) + 1 ) ): if n % i == 0 and i != sqrt(__lowercase ): total += i + n // i elif i == sqrt(__lowercase ): total += i return total - n def UpperCAmelCase ( UpperCAmelCase = 10000 ) -> int: snake_case_ = sum( i for i in range(1 , __lowercase ) if sum_of_divisors(sum_of_divisors(__lowercase ) ) == i and sum_of_divisors(__lowercase ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
'''simple docstring''' def __lowerCamelCase ( A__ , A__ ) -> int: """simple docstring""" return int((input_a, input_a).count(1 ) != 0 ) def __lowerCamelCase ( ) -> None: """simple docstring""" assert or_gate(0 , 0 ) == 0 assert or_gate(0 , 1 ) == 1 assert or_gate(1 , 0 ) == 1 assert or_gate(1 , 1 ) == 1 if __name__ == "__main__": print(or_gate(0, 1)) print(or_gate(1, 0)) print(or_gate(0, 0)) print(or_gate(1, 1))
28
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation _lowerCamelCase =logging.get_logger(__name__) _lowerCamelCase ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCamelCase ={ """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } _lowerCamelCase ={ """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class A__ ( UpperCAmelCase_): _UpperCAmelCase : Any = VOCAB_FILES_NAMES _UpperCAmelCase : List[str] = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCAmelCase : Union[str, Any] = ["""input_ids""", """attention_mask"""] _UpperCAmelCase : Optional[int] = GPTaTokenizer def __init__( self , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__="<|endoftext|>" , __magic_name__=False , **__magic_name__ , ): super().__init__( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , tokenizer_file=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) lowerCamelCase : Optional[int] = kwargs.pop("""add_bos_token""" , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , SCREAMING_SNAKE_CASE_ ) != add_prefix_space: lowerCamelCase : Any = getattr(SCREAMING_SNAKE_CASE_ , pre_tok_state.pop("""type""" ) ) lowerCamelCase : Tuple = add_prefix_space lowerCamelCase : List[Any] = pre_tok_class(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = add_prefix_space def UpperCamelCase__ ( self , *__magic_name__ , **__magic_name__ ): lowerCamelCase : str = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , *__magic_name__ , **__magic_name__ ): lowerCamelCase : str = kwargs.get("""is_split_into_words""" , SCREAMING_SNAKE_CASE_ ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__ = None ): lowerCamelCase : List[str] = self._tokenizer.model.save(SCREAMING_SNAKE_CASE_ , name=SCREAMING_SNAKE_CASE_ ) return tuple(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : List[Any] = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [self.eos_token_id] ) if len(SCREAMING_SNAKE_CASE_ ) > self.model_max_length: lowerCamelCase : Union[str, Any] = input_ids[-self.model_max_length :] return input_ids
287
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int: A: Any = 1 A: Optional[Any] = 0 for divide_by_number in range(__lowercase , digit + 1 ): A: list[int] = [] A: List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): A: Any = len(__lowercase ) A: Dict = divide_by_number else: has_been_divided.append(__lowercase ) A: str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
0
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _UpperCAmelCase : str = False try: _UpperCAmelCase : Dict = _is_package_available("""google.colab""") except ModuleNotFoundError: pass @input.register class lowerCAmelCase : def __init__( self : Dict , UpperCAmelCase : str = None , UpperCAmelCase : list = [] ) -> int: lowerCamelCase__ : Any = 0 lowerCamelCase__ : Dict = choices lowerCamelCase__ : Optional[int] = prompt if sys.platform == "win32": lowerCamelCase__ : Optional[int] = '''*''' else: lowerCamelCase__ : int = '''➔ ''' def A_ ( self : List[Any] , UpperCAmelCase : Dict , UpperCAmelCase : str = "" ) -> List[str]: if sys.platform != "win32": writeColor(self.choices[index] , 32 , SCREAMING_SNAKE_CASE_ ) else: forceWrite(self.choices[index] , SCREAMING_SNAKE_CASE_ ) def A_ ( self : List[str] , UpperCAmelCase : int ) -> Optional[Any]: if index == self.position: forceWrite(F""" {self.arrow_char} """ ) self.write_choice(SCREAMING_SNAKE_CASE_ ) else: forceWrite(F""" {self.choices[index]}""" ) reset_cursor() def A_ ( self : List[Any] , UpperCAmelCase : Direction , UpperCAmelCase : int = 1 ) -> str: lowerCamelCase__ : Tuple = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(SCREAMING_SNAKE_CASE_ ) move_cursor(SCREAMING_SNAKE_CASE_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['up'] ) def A_ ( self : str ) -> Optional[int]: self.move_direction(Direction.UP ) @input.mark(KEYMAP['down'] ) def A_ ( self : Union[str, Any] ) -> Dict: self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['newline'] ) def A_ ( self : List[Any] ) -> Optional[Any]: move_cursor(len(self.choices ) - self.position , 'DOWN' ) return self.position @input.mark(KEYMAP['interrupt'] ) def A_ ( self : Tuple ) -> int: move_cursor(len(self.choices ) - self.position , 'DOWN' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(SCREAMING_SNAKE_CASE_ )] for number in range(10 )] ) def A_ ( self : Union[str, Any] ) -> List[Any]: lowerCamelCase__ : Dict = int(chr(self.current_selection ) ) lowerCamelCase__ : Dict = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , SCREAMING_SNAKE_CASE_ ) else: return else: return def A_ ( self : List[str] , UpperCAmelCase : int = 0 ) -> Union[str, Any]: if self.prompt: linebreak() forceWrite(self.prompt , '\n' ) if in_colab: forceWrite('Please input a choice index (starting from 0), and press enter' , '\n' ) else: forceWrite('Please select a choice using the arrow or number keys, and selecting with enter' , '\n' ) lowerCamelCase__ : Union[str, Any] = default_choice for i in range(len(self.choices ) ): self.print_choice(SCREAMING_SNAKE_CASE_ ) forceWrite('\n' ) move_cursor(len(self.choices ) - self.position , 'UP' ) with cursor.hide(): while True: if in_colab: try: lowerCamelCase__ : str = int(builtins.input() ) except ValueError: lowerCamelCase__ : List[str] = default_choice else: lowerCamelCase__ : Optional[int] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , 'UP' ) clear_line() self.write_choice(SCREAMING_SNAKE_CASE_ , '\n' ) return choice
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
import math import unittest def _A ( _lowercase ) -> bool: """simple docstring""" assert isinstance(__lowercase , __lowercase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class __lowerCamelCase (unittest.TestCase ): def snake_case_ ( self: List[Any] ): '''simple docstring''' self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def snake_case_ ( self: Dict ): '''simple docstring''' with self.assertRaises(SCREAMING_SNAKE_CASE_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ),'Zero doesn\'t have any positive factors, primes must have exactly two.',) self.assertFalse( is_prime(1 ),'One only has 1 positive factor, primes must have exactly two.',) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
310
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
0
A_ : Any = {str(digit): digit**5 for digit in range(10)} def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(__lowercase ) ) def __a ( ) -> int: '''simple docstring''' return sum( number for number in range(1_0_0_0 , 1_0_0_0_0_0_0 ) if number == digits_fifth_powers_sum(__lowercase ) ) if __name__ == "__main__": print(solution())
333
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def _UpperCAmelCase ( snake_case , snake_case , snake_case ): """simple docstring""" _lowerCAmelCase = AlbertConfig.from_json_file(__lowercase ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = AlbertForPreTraining(__lowercase ) # Load weights from tf checkpoint load_tf_weights_in_albert(__lowercase , __lowercase , __lowercase ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowercase ) if __name__ == "__main__": A__ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A__ = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase = { '''configuration_mobilenet_v2''': [ '''MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileNetV2Config''', '''MobileNetV2OnnxConfig''', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ['''MobileNetV2FeatureExtractor'''] _lowerCAmelCase = ['''MobileNetV2ImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ '''MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileNetV2ForImageClassification''', '''MobileNetV2ForSemanticSegmentation''', '''MobileNetV2Model''', '''MobileNetV2PreTrainedModel''', '''load_tf_weights_in_mobilenet_v2''', ] if TYPE_CHECKING: from .configuration_mobilenet_va import ( MOBILENET_V2_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileNetVaConfig, MobileNetVaOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilenet_va import MobileNetVaFeatureExtractor from .image_processing_mobilenet_va import MobileNetVaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilenet_va import ( MOBILENET_V2_PRETRAINED_MODEL_ARCHIVE_LIST, MobileNetVaForImageClassification, MobileNetVaForSemanticSegmentation, MobileNetVaModel, MobileNetVaPreTrainedModel, load_tf_weights_in_mobilenet_va, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
37
'''simple docstring''' from itertools import permutations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A: int = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int: return sum( int(''''''.join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
319
0
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate SCREAMING_SNAKE_CASE_: List[Any] =trt.Logger(trt.Logger.WARNING) SCREAMING_SNAKE_CASE_: Optional[int] =absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) SCREAMING_SNAKE_CASE_: Any =logging.getLogger(__name__) SCREAMING_SNAKE_CASE_: Dict =argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=3_84, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=1_28, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) SCREAMING_SNAKE_CASE_: Union[str, Any] =parser.parse_args() if args.tokenizer_name: SCREAMING_SNAKE_CASE_: str =AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) SCREAMING_SNAKE_CASE_: Any =args.per_device_eval_batch_size SCREAMING_SNAKE_CASE_: List[Any] =(args.eval_batch_size, args.max_seq_length) # TRT Engine properties SCREAMING_SNAKE_CASE_: Optional[int] =True SCREAMING_SNAKE_CASE_: int ='temp_engine/bert-fp32.engine' if args.fpaa: SCREAMING_SNAKE_CASE_: List[str] ='temp_engine/bert-fp16.engine' if args.inta: SCREAMING_SNAKE_CASE_: Union[str, Any] ='temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') SCREAMING_SNAKE_CASE_: List[str] =1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network SCREAMING_SNAKE_CASE_: Any =[network.get_input(i) for i in range(network.num_inputs)] SCREAMING_SNAKE_CASE_: Optional[int] =[_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: SCREAMING_SNAKE_CASE_: Union[str, Any] =1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) SCREAMING_SNAKE_CASE_: Dict =builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) SCREAMING_SNAKE_CASE_: str =builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : Union[str, Any] , snake_case_ : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[int] , snake_case_ : str ) -> List[str]: '''simple docstring''' UpperCAmelCase_ = np.asarray(inputs["input_ids"] , dtype=np.intaa ) UpperCAmelCase_ = np.asarray(inputs["attention_mask"] , dtype=np.intaa ) UpperCAmelCase_ = np.asarray(inputs["token_type_ids"] , dtype=np.intaa ) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , __lowercase ) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , __lowercase ) # start time UpperCAmelCase_ = time.time() # Run inference context.execute_async( bindings=[int(__lowercase ) for d_inp in d_inputs] + [int(__lowercase ), int(__lowercase )] , stream_handle=stream.handle ) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) cuda.memcpy_dtoh_async(__lowercase , __lowercase , __lowercase ) # Synchronize the stream and take time stream.synchronize() # end time UpperCAmelCase_ = time.time() UpperCAmelCase_ = end_time - start_time UpperCAmelCase_ = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. SCREAMING_SNAKE_CASE_: Optional[int] =Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. SCREAMING_SNAKE_CASE_: str =load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. SCREAMING_SNAKE_CASE_: Optional[Any] =raw_datasets['validation'].column_names SCREAMING_SNAKE_CASE_: List[Any] ='question' if 'question' in column_names else column_names[0] SCREAMING_SNAKE_CASE_: Union[str, Any] ='context' if 'context' in column_names else column_names[1] SCREAMING_SNAKE_CASE_: str ='answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). SCREAMING_SNAKE_CASE_: str =tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the" f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) SCREAMING_SNAKE_CASE_: List[str] =min(args.max_seq_length, tokenizer.model_max_length) def lowerCAmelCase_ ( snake_case_ : str ) -> List[Any]: '''simple docstring''' UpperCAmelCase_ = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. UpperCAmelCase_ = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="only_second" if pad_on_right else "only_first" , max_length=__lowercase , stride=args.doc_stride , return_overflowing_tokens=__lowercase , return_offsets_mapping=__lowercase , padding="max_length" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. UpperCAmelCase_ = tokenized_examples.pop("overflow_to_sample_mapping" ) # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. UpperCAmelCase_ = [] for i in range(len(tokenized_examples["input_ids"] ) ): # Grab the sequence corresponding to that example (to know what is the context and what is the question). UpperCAmelCase_ = tokenized_examples.sequence_ids(__lowercase ) UpperCAmelCase_ = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. UpperCAmelCase_ = sample_mapping[i] tokenized_examples["example_id"].append(examples["id"][sample_index] ) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. UpperCAmelCase_ = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["offset_mapping"][i] ) ] return tokenized_examples SCREAMING_SNAKE_CASE_: Tuple =raw_datasets['validation'] # Validation Feature Creation SCREAMING_SNAKE_CASE_: Optional[int] =eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) SCREAMING_SNAKE_CASE_: Dict =default_data_collator SCREAMING_SNAKE_CASE_: Dict =eval_dataset.remove_columns(['example_id', 'offset_mapping']) SCREAMING_SNAKE_CASE_: Any =DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCAmelCase_ ( snake_case_ : Optional[int] , snake_case_ : Any , snake_case_ : int , snake_case_ : Any="eval" ) -> Tuple: '''simple docstring''' UpperCAmelCase_ = postprocess_qa_predictions( examples=__lowercase , features=__lowercase , predictions=__lowercase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=__lowercase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: UpperCAmelCase_ = [ {'''id''': k, '''prediction_text''': v, '''no_answer_probability''': 0.0} for k, v in predictions.items() ] else: UpperCAmelCase_ = [{'''id''': k, '''prediction_text''': v} for k, v in predictions.items()] UpperCAmelCase_ = [{'''id''': ex['''id'''], '''answers''': ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=__lowercase , label_ids=__lowercase ) SCREAMING_SNAKE_CASE_: int =load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' return trt.volume(engine.get_binding_shape(__lowercase ) ) * engine.get_binding_dtype(__lowercase ).itemsize # Allocate device memory for inputs and outputs. SCREAMING_SNAKE_CASE_: Union[str, Any] =[cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer SCREAMING_SNAKE_CASE_: Optional[Any] =cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) SCREAMING_SNAKE_CASE_: Optional[int] =cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) SCREAMING_SNAKE_CASE_: Dict =cuda.mem_alloc(h_outputa.nbytes) SCREAMING_SNAKE_CASE_: Union[str, Any] =cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. SCREAMING_SNAKE_CASE_: List[str] =cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f" Num examples = {len(eval_dataset)}") logger.info(f" Batch size = {args.per_device_eval_batch_size}") SCREAMING_SNAKE_CASE_: Optional[Any] =0.0 SCREAMING_SNAKE_CASE_: Dict =0 SCREAMING_SNAKE_CASE_: Tuple =timeit.default_timer() SCREAMING_SNAKE_CASE_: List[Any] =None for step, batch in enumerate(eval_dataloader): SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Tuple =model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_: Any =outputs SCREAMING_SNAKE_CASE_: int =torch.tensor(start_logits) SCREAMING_SNAKE_CASE_: Optional[Any] =torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.pad_across_processes(start_logits, dim=1, pad_index=-1_00) SCREAMING_SNAKE_CASE_: Union[str, Any] =accelerator.pad_across_processes(end_logits, dim=1, pad_index=-1_00) SCREAMING_SNAKE_CASE_: List[Any] =(accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) SCREAMING_SNAKE_CASE_: List[Any] =logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-1_00) if all_preds is not None: SCREAMING_SNAKE_CASE_: Dict =nested_truncate(all_preds, len(eval_dataset)) SCREAMING_SNAKE_CASE_: int =timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 10_00 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 10_00)) logger.info('Total Number of Inference = %d', niter) SCREAMING_SNAKE_CASE_: str =post_processing_function(eval_examples, eval_dataset, all_preds) SCREAMING_SNAKE_CASE_: List[str] =metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"Evaluation metrics: {eval_metric}")
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
0
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ ): def __init__( self : Union[str, Any] , *lowerCamelCase_ : List[str] , **lowerCamelCase_ : Union[str, Any] ): """simple docstring""" warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
343
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse("""0.12.2"""): raise Exception("""requires fairseq >= 0.12.2""") if version.parse(fairseq.__version__) > version.parse("""2"""): raise Exception("""requires fairseq < v2""") logging.set_verbosity_info() lowerCAmelCase : Optional[int] = logging.get_logger(__name__) lowerCAmelCase : List[Any] = """Hello, World!""" lowerCAmelCase : int = """en_XX""" def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[str] = Path("data_bin" ) SCREAMING_SNAKE_CASE_: str = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(__lowercase ).parent ) , checkpoint_file=Path(__lowercase ).name , _name="xmod_base" , arch="xmod_base" , task="multilingual_masked_lm" , data_name_or_path=str(__lowercase ) , bpe="sentencepiece" , sentencepiece_model=str(Path(__lowercase ).parent / "sentencepiece.bpe.model" ) , src_dict=str(data_dir / "dict.txt" ) , ) xmod.eval() # disable dropout print(__lowercase ) SCREAMING_SNAKE_CASE_: Any = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE_: List[Any] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , "bottleneck" , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE_: str = xmod.model.classification_heads['''mnli'''].out_proj.weight.shape[0] print("Our X-MOD config:" , __lowercase ) SCREAMING_SNAKE_CASE_: Any = XmodForSequenceClassification(__lowercase ) if classification_head else XmodForMaskedLM(__lowercase ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE_: List[str] = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE_: List[str] = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE_: Dict = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE_: str = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE_: List[Any] = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE_: Any = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE_: str = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError("Dimensions of self-attention weights do not match." ) SCREAMING_SNAKE_CASE_: int = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE_: Dict = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE_: Tuple = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError("Dimensions of self-attention output weights do not match." ) SCREAMING_SNAKE_CASE_: Tuple = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE_: Dict = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE_: Optional[Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of intermediate weights do not match." ) SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE_: Optional[int] = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError("Dimensions of feed-forward weights do not match." ) SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod_layer.fca.weight SCREAMING_SNAKE_CASE_: Optional[Any] = xmod_layer.fca.bias SCREAMING_SNAKE_CASE_: Optional[int] = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[Any] = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE_: Any = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE_: List[Any] = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError("Lists of language adapters do not match." ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE_: Union[str, Any] = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_: Tuple = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE_: str = from_adapter.fca.weight SCREAMING_SNAKE_CASE_: int = from_adapter.fca.bias SCREAMING_SNAKE_CASE_: Tuple = from_adapter.fca.weight SCREAMING_SNAKE_CASE_: List[str] = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE_: str = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE_: Dict = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE_: Tuple = xmod.model.classification_heads['''mnli'''].dense.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.classification_heads['''mnli'''].dense.bias SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.classification_heads['''mnli'''].out_proj.weight SCREAMING_SNAKE_CASE_: int = xmod.model.classification_heads['''mnli'''].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE_: Union[str, Any] = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE_: Dict = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE_: Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE_: List[str] = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE_: int = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE_: Dict = xmod.encode(__lowercase ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(__lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = model(__lowercase )[0] if classification_head: SCREAMING_SNAKE_CASE_: int = xmod.model.classification_heads['''mnli'''](xmod.extract_features(__lowercase ) ) else: SCREAMING_SNAKE_CASE_: str = xmod.model(__lowercase , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE_: List[Any] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"max_absolute_diff = {max_absolute_diff}" ) # ~ 1e-7 SCREAMING_SNAKE_CASE_: List[str] = torch.allclose(__lowercase , __lowercase , atol=1e-3 ) print("Do both models output the same tensors?" , "🔥" if success else "💩" ) if not success: raise Exception("Something went wRoNg" ) Path(__lowercase ).mkdir(parents=__lowercase , exist_ok=__lowercase ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__lowercase ) if __name__ == "__main__": lowerCAmelCase : str = argparse.ArgumentParser() # Required parameters parser.add_argument( """--xmod_checkpoint_path""", default=None, type=str, required=True, help="""Path the official PyTorch dump.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument( """--classification_head""", action="""store_true""", help="""Whether to convert a final classification head.""" ) lowerCAmelCase : Tuple = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" from __future__ import annotations def UpperCAmelCase ( UpperCAmelCase ) -> list[int]: snake_case_ = [True] * limit snake_case_ = False snake_case_ = False snake_case_ = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): snake_case_ = i * 2 while index < limit: snake_case_ = False snake_case_ = index + i snake_case_ = [2] for i in range(3 , __lowercase , 2 ): if is_prime[i]: primes.append(__lowercase ) return primes def UpperCAmelCase ( UpperCAmelCase = 1000000 ) -> int: snake_case_ = prime_sieve(__lowercase ) snake_case_ = 0 snake_case_ = 0 for i in range(len(__lowercase ) ): for j in range(i + length , len(__lowercase ) ): snake_case_ = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: snake_case_ = j - i snake_case_ = sol return largest if __name__ == "__main__": print(F"""{solution() = }""")
69
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
'''simple docstring''' import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = VideoToVideoSDPipeline _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"""video"""} ) - {"""image""", """width""", """height"""} _SCREAMING_SNAKE_CASE = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"""video"""} ) - {"""image"""} _SCREAMING_SNAKE_CASE = PipelineTesterMixin.required_optional_params - {"""latents"""} _SCREAMING_SNAKE_CASE = False # No `output_type`. _SCREAMING_SNAKE_CASE = frozenset( [ """num_inference_steps""", """generator""", """latents""", """return_dict""", """callback""", """callback_steps""", ] ) def A ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) UpperCamelCase = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'CrossAttnDownBlock3D', 'DownBlock3D') , up_block_types=('UpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D', 'CrossAttnUpBlock3D') , cross_attention_dim=3_2 , attention_head_dim=4 , ) UpperCamelCase = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=SCREAMING_SNAKE_CASE_ , set_alpha_to_one=SCREAMING_SNAKE_CASE_ , ) torch.manual_seed(0 ) UpperCamelCase = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='gelu' , projection_dim=5_1_2 , ) UpperCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def A ( self : Optional[Any] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : List[str]=0 ): """simple docstring""" UpperCamelCase = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ ) if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def A ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator UpperCamelCase = self.get_dummy_components() UpperCamelCase = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = '''np''' UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ ).frames UpperCamelCase = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) UpperCamelCase = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def A ( self : Any ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE_ , expected_max_diff=5E-3 ) @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='Batching needs to be properly figured out first for this pipeline.' ) def A ( self : Tuple ): """simple docstring""" pass @unittest.skip(reason='`num_images_per_prompt` argument is not supported for this pipeline.' ) def A ( self : Dict ): """simple docstring""" pass def A ( self : List[Any] ): """simple docstring""" return super().test_progress_bar() @slow @skip_mps class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" def A ( self : Tuple ): """simple docstring""" UpperCamelCase = VideoToVideoSDPipeline.from_pretrained('cerspense/zeroscope_v2_XL' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames UpperCamelCase = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = video.to('cuda' ) UpperCamelCase = '''Spiderman is surfing''' UpperCamelCase = pipe(SCREAMING_SNAKE_CASE_ , video=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , num_inference_steps=3 , output_type='pt' ).frames UpperCamelCase = np.array([-1.0_4_5_8_9_8_4, -1.1_2_7_9_2_9_7, -0.9_6_6_3_0_8_6, -0.9_1_5_0_3_9_0_6, -0.7_5_0_9_7_6_5_6] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1E-2
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _lowerCamelCase ="""pt""" elif is_tf_available(): _lowerCamelCase ="""tf""" else: _lowerCamelCase ="""jax""" class A__ ( UpperCAmelCase_ , unittest.TestCase): _UpperCAmelCase : Optional[Any] = ByTaTokenizer _UpperCAmelCase : List[str] = False def UpperCamelCase__ ( self ): super().setUp() lowerCamelCase : int = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def UpperCamelCase__ ( self ): return ByTaTokenizer.from_pretrained("""google/byt5-small""" ) def UpperCamelCase__ ( self , **__magic_name__ ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=False , __magic_name__=2_0 , __magic_name__=5 ): lowerCamelCase : Dict = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): try: lowerCamelCase : str = tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) lowerCamelCase : Tuple = list(filter(lambda __magic_name__ : re.match(r"""^[ a-zA-Z]+$""" , t[1] ) , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase : Optional[int] = list(filter(lambda __magic_name__ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: lowerCamelCase : Optional[Any] = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: lowerCamelCase : str = toks + toks # toks_str = [t[1] for t in toks] lowerCamelCase : Tuple = [t[0] for t in toks] # Ensure consistency lowerCamelCase : Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: lowerCamelCase : Tuple = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: lowerCamelCase : str = ''' ''' + output_txt lowerCamelCase : List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = self.ta_base_tokenizer lowerCamelCase : List[str] = tokenizer(["""hi</s>""", """I went to the gym</s>""", """</s>"""] ) lowerCamelCase : str = tokenizer(["""hi""", """I went to the gym""", """"""] ) self.assertListEqual(batch_with_eos_added["""input_ids"""] , batch_without_eos_added["""input_ids"""] ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[int] = self.ta_base_tokenizer lowerCamelCase : List[Any] = '''Unicode €.''' lowerCamelCase : Any = tokenizer(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded["""input_ids"""] , SCREAMING_SNAKE_CASE_ ) # decoding lowerCamelCase : List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , """Unicode €.</s>""" ) lowerCamelCase : Optional[int] = tokenizer("""e è é ê ë""" ) lowerCamelCase : List[Any] = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded["""input_ids"""] , SCREAMING_SNAKE_CASE_ ) # decoding lowerCamelCase : Optional[int] = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , """e è é ê ë</s>""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """e è é ê ë</s>""" ) def UpperCamelCase__ ( self ): lowerCamelCase : Union[str, Any] = self.ta_base_tokenizer lowerCamelCase : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] # fmt: off lowerCamelCase : int = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on lowerCamelCase : int = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if FRAMEWORK != "jax": lowerCamelCase : Optional[int] = list(batch.input_ids.numpy()[0] ) else: lowerCamelCase : Optional[int] = list(batch.input_ids.tolist()[0] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = self.ta_base_tokenizer lowerCamelCase : int = ['''A long paragraph for summarization.''', '''Another paragraph for summarization.'''] lowerCamelCase : str = tokenizer(SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , SCREAMING_SNAKE_CASE_ ) self.assertIn("""attention_mask""" , SCREAMING_SNAKE_CASE_ ) self.assertNotIn("""decoder_input_ids""" , SCREAMING_SNAKE_CASE_ ) self.assertNotIn("""decoder_attention_mask""" , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self ): lowerCamelCase : Dict = self.ta_base_tokenizer lowerCamelCase : Any = [ '''Summary of the text.''', '''Another summary.''', ] lowerCamelCase : Any = tokenizer( text_target=SCREAMING_SNAKE_CASE_ , max_length=3_2 , padding="""max_length""" , truncation=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) self.assertEqual(3_2 , targets["""input_ids"""].shape[1] ) def UpperCamelCase__ ( self ): lowerCamelCase : Optional[Any] = self.ta_base_tokenizer lowerCamelCase : Dict = ['''A long paragraph for summarization. </s>'''] lowerCamelCase : Tuple = ['''Summary of the text. </s>'''] # fmt: off lowerCamelCase : Tuple = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] lowerCamelCase : Optional[Any] = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on lowerCamelCase : Union[str, Any] = tokenizer(SCREAMING_SNAKE_CASE_ , text_target=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch["""input_ids"""][0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch["""labels"""][0] ) def UpperCamelCase__ ( self ): lowerCamelCase : Any = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test lowerCamelCase : Optional[Any] = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase : List[Any] = tempfile.mkdtemp() lowerCamelCase : List[Any] = ''' He is very happy, UNwant\u00E9d,running''' lowerCamelCase : Any = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[str] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : int = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc lowerCamelCase : Tuple = tempfile.mkdtemp() lowerCamelCase : Optional[int] = ''' He is very happy, UNwant\u00E9d,running''' tokenizer.add_tokens(["""bim""", """bambam"""] ) lowerCamelCase : Any = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) lowerCamelCase : str = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Union[str, Any] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = after_tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) lowerCamelCase : Optional[int] = tokenizer.__class__.from_pretrained(SCREAMING_SNAKE_CASE_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase : Any = json.load(SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: lowerCamelCase : Union[str, Any] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Dict = [F'''<extra_id_{i}>''' for i in range(1_2_5 )] lowerCamelCase : Optional[int] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] lowerCamelCase : List[Any] = added_tokens_extra_ids + [ '''an_additional_special_token''' ] with open(os.path.join(SCREAMING_SNAKE_CASE_ , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) with open(os.path.join(SCREAMING_SNAKE_CASE_ , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files lowerCamelCase : str = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained lowerCamelCase : Tuple = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=SCREAMING_SNAKE_CASE_ )] lowerCamelCase : str = tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , additional_special_tokens=SCREAMING_SNAKE_CASE_ , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(SCREAMING_SNAKE_CASE_ ) lowerCamelCase : List[Any] = tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertTrue(tokenizer.decode([2_5_5] ) == """""" ) def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): pass def UpperCamelCase__ ( self ): lowerCamelCase : List[str] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase : List[str] = ['''t''', '''h''', '''i''', '''s''', ''' ''', '''i''', '''s''', ''' ''', '''a''', ''' ''', '''t''', '''e''', '''x''', '''t''', '''</s>'''] lowerCamelCase : int = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self ): lowerCamelCase : Tuple = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): lowerCamelCase : Any = [ '''bos_token''', '''eos_token''', '''unk_token''', '''sep_token''', '''pad_token''', '''cls_token''', '''mask_token''', ] lowerCamelCase : str = 0 lowerCamelCase : List[Any] = tokenizer.convert_ids_to_tokens( SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) for attr in attributes_list: setattr(SCREAMING_SNAKE_CASE_ , attr + """_id""" , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , attr + """_id""" ) , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , attr + """_id""" , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(getattr(SCREAMING_SNAKE_CASE_ , attr + """_id""" ) , SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens_ids""" , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens""" ) , [] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens_ids""" ) , [] ) setattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens_ids""" , [token_id_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens""" ) , [token_to_test_setters] ) self.assertListEqual(getattr(SCREAMING_SNAKE_CASE_ , """additional_special_tokens_ids""" ) , [token_id_to_test_setters] )
287
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
import numpy as np from cva import COLOR_BGR2GRAY, cvtColor, imread from numpy import array, uinta from PIL import Image from digital_image_processing import change_contrast as cc from digital_image_processing import convert_to_negative as cn from digital_image_processing import sepia as sp from digital_image_processing.dithering import burkes as bs from digital_image_processing.edge_detection import canny from digital_image_processing.filters import convolve as conv from digital_image_processing.filters import gaussian_filter as gg from digital_image_processing.filters import local_binary_pattern as lbp from digital_image_processing.filters import median_filter as med from digital_image_processing.filters import sobel_filter as sob from digital_image_processing.resize import resize as rs _UpperCAmelCase : str = imread(R"""digital_image_processing/image_data/lena_small.jpg""") _UpperCAmelCase : Dict = cvtColor(img, COLOR_BGR2GRAY) def SCREAMING_SNAKE_CASE ( ) -> Tuple: lowerCamelCase__ : Union[str, Any] = cn.convert_to_negative(__lowercase ) # assert negative_img array for at least one True assert negative_img.any() def SCREAMING_SNAKE_CASE ( ) -> int: with Image.open('digital_image_processing/image_data/lena_small.jpg' ) as img: # Work around assertion for response assert str(cc.change_contrast(__lowercase , 110 ) ).startswith( '<PIL.Image.Image image mode=RGB size=100x100 at' ) def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : List[Any] = canny.gen_gaussian_kernel(9 , sigma=1.4 ) # Assert ambiguous array assert resp.all() def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : List[str] = imread('digital_image_processing/image_data/lena_small.jpg' , 0 ) # assert ambiguous array for all == True assert canny_img.all() lowerCamelCase__ : Any = canny.canny(__lowercase ) # assert canny array for at least one True assert canny_array.any() def SCREAMING_SNAKE_CASE ( ) -> Optional[int]: assert gg.gaussian_filter(__lowercase , 5 , sigma=0.9 ).all() def SCREAMING_SNAKE_CASE ( ) -> str: # laplace diagonals lowerCamelCase__ : Optional[Any] = array([[0.25, 0.5, 0.25], [0.5, -3, 0.5], [0.25, 0.5, 0.25]] ) lowerCamelCase__ : Optional[int] = conv.img_convolve(__lowercase , __lowercase ).astype(__lowercase ) assert res.any() def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: assert med.median_filter(__lowercase , 3 ).any() def SCREAMING_SNAKE_CASE ( ) -> Dict: lowerCamelCase__ : Optional[Any] = sob.sobel_filter(__lowercase ) assert grad.any() and theta.any() def SCREAMING_SNAKE_CASE ( ) -> Optional[Any]: lowerCamelCase__ : str = sp.make_sepia(__lowercase , 20 ) assert sepia.all() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" ) -> int: lowerCamelCase__ : List[Any] = bs.Burkes(imread(__lowercase , 1 ) , 120 ) burkes.process() assert burkes.output_img.any() def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = "digital_image_processing/image_data/lena_small.jpg" , ) -> str: lowerCamelCase__ : str = rs.NearestNeighbour(imread(__lowercase , 1 ) , 400 , 200 ) nn.process() assert nn.output.any() def SCREAMING_SNAKE_CASE ( ) -> List[str]: lowerCamelCase__ : List[Any] = '''digital_image_processing/image_data/lena.jpg''' # Reading the image and converting it to grayscale. lowerCamelCase__ : Union[str, Any] = imread(__lowercase , 0 ) # Test for get_neighbors_pixel function() return not None lowerCamelCase__ : Optional[Any] = 0 lowerCamelCase__ : List[str] = 0 lowerCamelCase__ : Tuple = image[x_coordinate][y_coordinate] lowerCamelCase__ : Tuple = lbp.get_neighbors_pixel( __lowercase , __lowercase , __lowercase , __lowercase ) assert neighbors_pixels is not None # Test for local_binary_pattern function() # Create a numpy array as the same height and width of read image lowerCamelCase__ : Any = np.zeros((image.shape[0], image.shape[1]) ) # Iterating through the image and calculating the local binary pattern value # for each pixel. for i in range(0 , image.shape[0] ): for j in range(0 , image.shape[1] ): lowerCamelCase__ : Union[str, Any] = lbp.local_binary_value(__lowercase , __lowercase , __lowercase ) assert lbp_image.any()
50
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
0
import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class __lowerCamelCase (UpperCAmelCase_ , unittest.TestCase ): _lowercase = WavaVecaPhonemeCTCTokenizer _lowercase = False def snake_case_ ( self: str ): '''simple docstring''' super().setUp() __UpperCamelCase = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(' ' ) __UpperCamelCase = dict(zip(SCREAMING_SNAKE_CASE_,range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __UpperCamelCase = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} __UpperCamelCase = os.path.join(self.tmpdirname,VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file,'w',encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) def snake_case_ ( self: Union[str, Any],A_: List[str],A_: Tuple=False,A_: Any=20,A_: Optional[int]=5 ): '''simple docstring''' __UpperCamelCase = [(i, tokenizer.decode([i],clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] __UpperCamelCase = list(filter(lambda A_ : [t[0]] == tokenizer.encode(t[1],do_phonemize=SCREAMING_SNAKE_CASE_ ),SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: __UpperCamelCase = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: __UpperCamelCase = toks + toks # toks_str = [t[1] for t in toks] __UpperCamelCase = [t[0] for t in toks] # Ensure consistency __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_,clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: __UpperCamelCase = ( tokenizer.decode([toks_ids[0]],clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:],clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: __UpperCamelCase = ''' ''' + output_txt __UpperCamelCase = tokenizer.encode(SCREAMING_SNAKE_CASE_,add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def snake_case_ ( self: Optional[int],**A_: int ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname,**SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) # check adding a single token tokenizer.add_tokens('xxx' ) __UpperCamelCase = tokenizer('m xxx ɪ',do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_,[13, 392, 17] ) # xxx should be last token tokenizer.add_tokens(['aaa', 'bbb', 'ccc'] ) __UpperCamelCase = tokenizer('m aaa ɪ ccc',do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_,[13, 393, 17, 395] ) # aaa and ccc should be after xxx and 2 after aaa __UpperCamelCase = tokenizer('maɪ c',do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_,[3, 200] ) # mai should be <unk> (=3) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) self.assertEqual(SCREAMING_SNAKE_CASE_,'h ə l oʊ h aʊ ɑːɹ j uː' ) def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids,tokenizer(SCREAMING_SNAKE_CASE_,do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def snake_case_ ( self: Union[str, Any] ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) __UpperCamelCase = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] __UpperCamelCase = tokenizer.decode(sample_ids[0] ) __UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_,['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) self.assertEqual(SCREAMING_SNAKE_CASE_,'h ə l oʊ | h aʊ | ɑːɹ | j uː |' ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids,tokenizer(SCREAMING_SNAKE_CASE_,do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def snake_case_ ( self: Dict ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off __UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter __UpperCamelCase = tokenizer.decode(sample_ids[0] ) __UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_,['k s ɾ ɾ l ɭʲ', 'j ð s j ð s oːɹ'] ) # decode with no word_del_token filter __UpperCamelCase = tokenizer.decode(sample_ids[0],filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_,filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_,['k s ɾ | ɾ l | ɭʲ', '| j ð | s j ð s oːɹ'] ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) __UpperCamelCase = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids,filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token='|' ) tokenizer.add_tokens('|' ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer.phonemize(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ) __UpperCamelCase = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids,filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join([p.strip() for p in phonemes.split(' |' )] ).strip(),SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self: List[str] ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained( 'facebook/wav2vec2-lv-60-espeak-cv-ft',word_delimiter_token=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = '''Hello how are you''' __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_,phonemizer_lang='en-us' ).input_ids __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_,phonemizer_lang='fr-fr' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,'h ə l oʊ h aʊ ɑːɹ j uː' ) self.assertEqual(SCREAMING_SNAKE_CASE_,'ɛ l o h aʊ a ʁ j u' ) def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) __UpperCamelCase = '''Hello how Are you''' __UpperCamelCase = '''hello how are you''' __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids __UpperCamelCase = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self: int ): '''simple docstring''' __UpperCamelCase = self.tokenizer_class.from_pretrained('facebook/wav2vec2-lv-60-espeak-cv-ft' ) tokenizer.add_tokens(['!', '?'] ) tokenizer.add_special_tokens({'cls_token': '$$$'} ) # fmt: off __UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 392, 392, 393, 392, 392, 393, 394, 394], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 394, 394], ] # fmt: on __UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,['k s ɾ ɾ l ɭʲ!?!? $$$', 'j ð s j ð s oːɹ $$$'] ) @staticmethod def snake_case_ ( A_: Optional[Any],A_: Optional[int] ): '''simple docstring''' __UpperCamelCase = [d[key] for d in offsets] return retrieved_list def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.get_tokenizer(word_delimiter_token='|' ) tokenizer.add_tokens('|' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" __UpperCamelCase = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on __UpperCamelCase = tokenizer.decode(SCREAMING_SNAKE_CASE_,output_char_offsets=SCREAMING_SNAKE_CASE_,filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ),2 ) self.assertTrue('text' in outputs ) self.assertTrue('char_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(' '.join(self.get_from_offsets(outputs['char_offsets'],'char' ) ),outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'],'char' ),['k', 's', 'ɾ', 'ɾ', '|', 'ɾ', 'l', '|', 'ɭʲ'] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['char_offsets'],'start_offset' ),[0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['char_offsets'],'end_offset' ),[1, 4, 6, 9, 10, 12, 15, 16, 17] ) def snake_case_ ( self: Any ): '''simple docstring''' __UpperCamelCase = self.get_tokenizer(word_delimiter_token='|' ) def check_list_tuples_equal(A_: Optional[int],A_: Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0],SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput __UpperCamelCase = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['text'],outputs_batch_a['text'] ) def recursive_check(A_: Optional[Any],A_: List[str] ): if isinstance(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['char_offsets'],outputs_batch_a['char_offsets'] ) # fmt: off __UpperCamelCase = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char __UpperCamelCase = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_,output_char_offsets=SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = [tokenizer.decode(SCREAMING_SNAKE_CASE_,output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) @unittest.skip('Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes' ) def snake_case_ ( self: int ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeTokenizer always puts spaces between phonemes' ) def snake_case_ ( self: str ): '''simple docstring''' pass @unittest.skip('encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency' ) def snake_case_ ( self: List[str] ): '''simple docstring''' pass @unittest.skip('Wav2Vec2PhonemeModel has no max model length => no testing' ) def snake_case_ ( self: Dict ): '''simple docstring''' pass def snake_case_ ( self: Tuple ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = tokenizer.vocab_size __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_,0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) __UpperCamelCase = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] __UpperCamelCase = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.vocab_size __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_,0 ) self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_,all_size + len(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = tokenizer.encode('aaaaa bbbbbb low cccccccccdddddddd l',add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ),4 ) self.assertGreater(tokens[0],tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3],tokenizer.vocab_size - 1 ) __UpperCamelCase = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} __UpperCamelCase = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) __UpperCamelCase = tokenizer.vocab_size __UpperCamelCase = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_,0 ) self.assertEqual(SCREAMING_SNAKE_CASE_,SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_,len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_,all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) __UpperCamelCase = tokenizer.encode( '>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l',add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ),6 ) self.assertGreater(tokens[0],tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0],tokens[1] ) self.assertGreater(tokens[-3],tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3],tokens[-4] ) self.assertEqual(tokens[0],tokenizer.eos_token_id ) self.assertEqual(tokens[-3],tokenizer.pad_token_id ) @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def snake_case_ ( self: List[Any] ): '''simple docstring''' pass @unittest.skip('The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.' ) def snake_case_ ( self: Tuple ): '''simple docstring''' pass def snake_case_ ( self: str ): '''simple docstring''' __UpperCamelCase = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_,do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(F'''{tokenizer.__class__.__name__}''' ): __UpperCamelCase = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] __UpperCamelCase = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['text'],SCREAMING_SNAKE_CASE_ )
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = SwinConfig(image_size=1_9_2 ) if "base" in model_name: __UpperCAmelCase = 6 __UpperCAmelCase = 1_2_8 __UpperCAmelCase = (2, 2, 1_8, 2) __UpperCAmelCase = (4, 8, 1_6, 3_2) elif "large" in model_name: __UpperCAmelCase = 1_2 __UpperCAmelCase = 1_9_2 __UpperCAmelCase = (2, 2, 1_8, 2) __UpperCAmelCase = (6, 1_2, 2_4, 4_8) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __UpperCAmelCase = window_size __UpperCAmelCase = embed_dim __UpperCAmelCase = depths __UpperCAmelCase = num_heads return config def __a ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: '''simple docstring''' if "encoder.mask_token" in name: __UpperCAmelCase = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __UpperCAmelCase = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __UpperCAmelCase = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __UpperCAmelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __UpperCAmelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCAmelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCAmelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCAmelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCAmelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __UpperCAmelCase = '''layernorm.weight''' if name == "encoder.norm.bias": __UpperCAmelCase = '''layernorm.bias''' if "decoder" in name: pass else: __UpperCAmelCase = '''swin.''' + name return name def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): __UpperCAmelCase = orig_state_dict.pop(__lowercase ) if "attn_mask" in key: pass elif "qkv" in key: __UpperCAmelCase = key.split('''.''' ) __UpperCAmelCase = int(key_split[2] ) __UpperCAmelCase = int(key_split[4] ) __UpperCAmelCase = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCAmelCase = val[:dim, :] __UpperCAmelCase = val[ dim : dim * 2, : ] __UpperCAmelCase = val[-dim:, :] else: __UpperCAmelCase = val[ :dim ] __UpperCAmelCase = val[ dim : dim * 2 ] __UpperCAmelCase = val[ -dim: ] else: __UpperCAmelCase = val return orig_state_dict def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = torch.load(__lowercase , map_location='''cpu''' )['''model'''] __UpperCAmelCase = get_swin_config(__lowercase ) __UpperCAmelCase = SwinForMaskedImageModeling(__lowercase ) model.eval() __UpperCAmelCase = convert_state_dict(__lowercase , __lowercase ) model.load_state_dict(__lowercase ) __UpperCAmelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __UpperCAmelCase = ViTImageProcessor(size={'''height''': 1_9_2, '''width''': 1_9_2} ) __UpperCAmelCase = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) __UpperCAmelCase = image_processor(images=__lowercase , return_tensors='''pt''' ) with torch.no_grad(): __UpperCAmelCase = model(**__lowercase ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if push_to_hub: print(f'''Pushing model and image processor for {model_name} to hub''' ) model.push_to_hub(f'''microsoft/{model_name}''' ) image_processor.push_to_hub(f'''microsoft/{model_name}''' ) if __name__ == "__main__": A_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A_ : Optional[int] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
import unittest from transformers.models.xlm_prophetnet.tokenization_xlm_prophetnet import SPIECE_UNDERLINE, XLMProphetNetTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin A__ = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class __lowerCAmelCase ( UpperCAmelCase_ , unittest.TestCase ): __lowerCamelCase = XLMProphetNetTokenizer __lowerCamelCase = False __lowerCamelCase = True def snake_case ( self ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing _lowerCAmelCase = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = '''[PAD]''' _lowerCAmelCase = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """[PAD]""" ) self.assertEqual(vocab_keys[1] , """[CLS]""" ) self.assertEqual(vocab_keys[-1] , """j""" ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1012 ) def snake_case ( self ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1012 ) def snake_case ( self ): """simple docstring""" _lowerCAmelCase = XLMProphetNetTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) _lowerCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) _lowerCAmelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, -9, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, -9, 4] ] , ) _lowerCAmelCase = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """[UNK]""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """[UNK]""", """.""", ] , ) @cached_property def snake_case ( self ): """simple docstring""" return XLMProphetNetTokenizer.from_pretrained("""microsoft/xprophetnet-large-wiki100-cased""" ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = '''Hello World!''' _lowerCAmelCase = [35389, 6672, 49, 2] self.assertListEqual(SCREAMING_SNAKE_CASE_ , self.big_tokenizer.encode(SCREAMING_SNAKE_CASE_ ) ) @slow def snake_case ( self ): """simple docstring""" _lowerCAmelCase = {'''input_ids''': [[11073, 82783, 18, 26, 82783, 549, 51540, 248, 17209, 1301, 217, 20, 215186, 1325, 147, 17209, 1301, 217, 20, 56370, 53, 122020, 20, 16477, 27, 87355, 4548, 20, 4728, 78392, 17, 159969, 18, 26, 24491, 629, 15, 538, 22704, 5439, 15, 2788, 24491, 9885, 15, 43534, 605, 15, 814, 18403, 33200, 29, 15, 43534, 24458, 12410, 111, 24966, 83669, 9637, 144068, 26, 850, 22346, 27, 147, 24966, 83669, 83490, 26, 39113, 735, 27, 689, 656, 2800, 1339, 4600, 53, 122020, 115785, 34, 816, 1339, 46887, 18, 147, 53905, 1951, 42238, 41170, 17732, 834, 436, 15, 27523, 98733, 217, 147, 5542, 4981, 930, 17347, 16, 2], [20091, 629, 94, 82786, 58, 490, 20, 1528, 84, 53905, 344, 80592, 110128, 18822, 5267, 1306, 62, 152537, 308, 7997, 401, 124427, 549, 35442, 225, 109, 15055, 25748, 147, 7119, 43712, 34, 767, 135366, 18, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [592, 63784, 119466, 17, 147808, 88214, 18, 656, 81, 32, 3296, 10280, 16, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE_ , model_name="""microsoft/xprophetnet-large-wiki100-cased""" , revision="""1acad1643ddd54a44df6a1b797ada8373685d90e""" , )
82
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
'''simple docstring''' import json import os import re import unicodedata from json.encoder import INFINITY from typing import Any, Dict, List, Optional, Tuple, Union import numpy as np import regex from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_flax_available, is_tf_available, is_torch_available, logging from ...utils.generic import _is_jax, _is_numpy _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''artists_file''': '''artists.json''', '''lyrics_file''': '''lyrics.json''', '''genres_file''': '''genres.json''', } _lowerCAmelCase = { '''artists_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/artists.json''', }, '''genres_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/genres.json''', }, '''lyrics_file''': { '''jukebox''': '''https://huggingface.co/ArthurZ/jukebox/blob/main/lyrics.json''', }, } _lowerCAmelCase = { '''jukebox''': 512, } class lowerCAmelCase_( UpperCAmelCase_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[str] = PRETRAINED_LYRIC_TOKENS_SIZES __lowercase : Optional[int] = ["""input_ids""", """attention_mask"""] def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=["v3", "v2", "v2"] ,__UpperCAmelCase=512 ,__UpperCAmelCase=5 ,__UpperCAmelCase="<|endoftext|>" ,**__UpperCAmelCase ,) -> Tuple: lowerCAmelCase__ : Union[str, Any] = AddedToken(SCREAMING_SNAKE_CASE_ ,lstrip=SCREAMING_SNAKE_CASE_ ,rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) else unk_token super().__init__( unk_token=SCREAMING_SNAKE_CASE_ ,n_genres=SCREAMING_SNAKE_CASE_ ,version=SCREAMING_SNAKE_CASE_ ,max_n_lyric_tokens=SCREAMING_SNAKE_CASE_ ,**SCREAMING_SNAKE_CASE_ ,) lowerCAmelCase__ : Optional[int] = version lowerCAmelCase__ : Tuple = max_n_lyric_tokens lowerCAmelCase__ : Union[str, Any] = n_genres with open(SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : List[Any] = json.load(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : Optional[int] = json.load(SCREAMING_SNAKE_CASE_ ) with open(SCREAMING_SNAKE_CASE_ ,encoding="""utf-8""" ) as vocab_handle: lowerCAmelCase__ : Optional[Any] = json.load(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = R'''[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+''' # In v2, we had a n_vocab=80 and in v3 we missed + and so n_vocab=79 of characters. if len(self.lyrics_encoder ) == 79: lowerCAmelCase__ : Optional[Any] = oov.replace(R"""\-\'""" ,R"""\-+\'""" ) lowerCAmelCase__ : Optional[Any] = regex.compile(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Tuple = {v: k for k, v in self.artists_encoder.items()} lowerCAmelCase__ : Dict = {v: k for k, v in self.genres_encoder.items()} lowerCAmelCase__ : Optional[int] = {v: k for k, v in self.lyrics_encoder.items()} @property def UpperCAmelCase_ ( self ) -> Tuple: return len(self.artists_encoder ) + len(self.genres_encoder ) + len(self.lyrics_encoder ) def UpperCAmelCase_ ( self ) -> List[Any]: return dict(self.artists_encoder ,self.genres_encoder ,self.lyrics_encoder ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Tuple: lowerCAmelCase__ : List[Any] = [self.artists_encoder.get(SCREAMING_SNAKE_CASE_ ,0 ) for artist in list_artists] for genres in range(len(SCREAMING_SNAKE_CASE_ ) ): lowerCAmelCase__ : Optional[int] = [self.genres_encoder.get(SCREAMING_SNAKE_CASE_ ,0 ) for genre in list_genres[genres]] lowerCAmelCase__ : Union[str, Any] = list_genres[genres] + [-1] * (self.n_genres - len(list_genres[genres] )) lowerCAmelCase__ : Optional[Any] = [[self.lyrics_encoder.get(SCREAMING_SNAKE_CASE_ ,0 ) for character in list_lyrics[0]], [], []] return artists_id, list_genres, lyric_ids def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> Union[str, Any]: return list(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Optional[Any] = self.prepare_for_tokenization(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = self._tokenize(SCREAMING_SNAKE_CASE_ ) return artist, genre, lyrics def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = False ) -> Tuple[str, str, str, Dict[str, Any]]: for idx in range(len(self.version ) ): if self.version[idx] == "v3": lowerCAmelCase__ : Tuple = artists[idx].lower() lowerCAmelCase__ : str = [genres[idx].lower()] else: lowerCAmelCase__ : str = self._normalize(artists[idx] ) + '''.v2''' lowerCAmelCase__ : Dict = [ self._normalize(SCREAMING_SNAKE_CASE_ ) + '''.v2''' for genre in genres[idx].split("""_""" ) ] # split is for the full dictionary with combined genres if self.version[0] == "v2": lowerCAmelCase__ : Any = regex.compile(R"""[^A-Za-z0-9.,:;!?\-\'\"()\[\] \t\n]+""" ) lowerCAmelCase__ : int = '''ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789.,:;!?-+\'\"()[] \t\n''' lowerCAmelCase__ : List[str] = {vocab[index]: index + 1 for index in range(len(SCREAMING_SNAKE_CASE_ ) )} lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : Any = len(SCREAMING_SNAKE_CASE_ ) + 1 lowerCAmelCase__ : int = self.vocab lowerCAmelCase__ : Optional[Any] = {v: k for k, v in self.vocab.items()} lowerCAmelCase__ : List[Any] = '''''' else: lowerCAmelCase__ : Tuple = regex.compile(R"""[^A-Za-z0-9.,:;!?\-+\'\"()\[\] \t\n]+""" ) lowerCAmelCase__ : Optional[int] = self._run_strip_accents(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = lyrics.replace("""\\""" ,"""\n""" ) lowerCAmelCase__ : Tuple = self.out_of_vocab.sub("""""" ,SCREAMING_SNAKE_CASE_ ), [], [] return artists, genres, lyrics def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> int: lowerCAmelCase__ : str = unicodedata.normalize("""NFD""" ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : List[Any] = [] for char in text: lowerCAmelCase__ : int = unicodedata.category(SCREAMING_SNAKE_CASE_ ) if cat == "Mn": continue output.append(SCREAMING_SNAKE_CASE_ ) return "".join(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: lowerCAmelCase__ : Optional[int] = ( [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord("""a""" ) ,ord("""z""" ) + 1 )] + [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord("""A""" ) ,ord("""Z""" ) + 1 )] + [chr(SCREAMING_SNAKE_CASE_ ) for i in range(ord("""0""" ) ,ord("""9""" ) + 1 )] + ['''.'''] ) lowerCAmelCase__ : str = frozenset(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Dict = re.compile(R"""_+""" ) lowerCAmelCase__ : List[str] = ''''''.join([c if c in accepted else """_""" for c in text.lower()] ) lowerCAmelCase__ : Union[str, Any] = pattern.sub("""_""" ,SCREAMING_SNAKE_CASE_ ).strip("""_""" ) return text def UpperCAmelCase_ ( self ,__UpperCAmelCase ) -> str: return " ".join(SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = False ) -> Optional[int]: if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = TensorType(SCREAMING_SNAKE_CASE_ ) # Get a function reference for the correct framework if tensor_type == TensorType.TENSORFLOW: if not is_tf_available(): raise ImportError( """Unable to convert output to TensorFlow tensors format, TensorFlow is not installed.""" ) import tensorflow as tf lowerCAmelCase__ : Any = tf.constant lowerCAmelCase__ : int = tf.is_tensor elif tensor_type == TensorType.PYTORCH: if not is_torch_available(): raise ImportError("""Unable to convert output to PyTorch tensors format, PyTorch is not installed.""" ) import torch lowerCAmelCase__ : Optional[int] = torch.tensor lowerCAmelCase__ : str = torch.is_tensor elif tensor_type == TensorType.JAX: if not is_flax_available(): raise ImportError("""Unable to convert output to JAX tensors format, JAX is not installed.""" ) import jax.numpy as jnp # noqa: F811 lowerCAmelCase__ : List[Any] = jnp.array lowerCAmelCase__ : Optional[Any] = _is_jax else: lowerCAmelCase__ : str = np.asarray lowerCAmelCase__ : Dict = _is_numpy # Do the tensor conversion in batch try: if prepend_batch_axis: lowerCAmelCase__ : List[str] = [inputs] if not is_tensor(SCREAMING_SNAKE_CASE_ ): lowerCAmelCase__ : List[Any] = as_tensor(SCREAMING_SNAKE_CASE_ ) except: # noqa E722 raise ValueError( """Unable to create tensor, you should probably activate truncation and/or padding """ """with \'padding=True\' \'truncation=True\' to have batched tensors with the same length.""" ) return inputs def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase="" ,__UpperCAmelCase="pt" ) -> BatchEncoding: lowerCAmelCase__ : Tuple = [0, 0, 0] lowerCAmelCase__ : Optional[Any] = [artist] * len(self.version ) lowerCAmelCase__ : Union[str, Any] = [genres] * len(self.version ) lowerCAmelCase__ : Union[str, Any] = self.tokenize(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : str = self._convert_token_to_id(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : int = [-INFINITY] * len(full_tokens[-1] ) lowerCAmelCase__ : Dict = [ self.convert_to_tensors( [input_ids + [artists_id[i]] + genres_ids[i] + full_tokens[i]] ,tensor_type=SCREAMING_SNAKE_CASE_ ) for i in range(len(self.version ) ) ] return BatchEncoding({"""input_ids""": input_ids, """attention_masks""": attention_masks} ) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCAmelCase__ : List[str] = os.path.join( SCREAMING_SNAKE_CASE_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""artists_file"""] ) with open(SCREAMING_SNAKE_CASE_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.artists_encoder ,ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""genres_file"""] ) with open(SCREAMING_SNAKE_CASE_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.genres_encoder ,ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) lowerCAmelCase__ : List[str] = os.path.join( SCREAMING_SNAKE_CASE_ ,(filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""lyrics_file"""] ) with open(SCREAMING_SNAKE_CASE_ ,"""w""" ,encoding="""utf-8""" ) as f: f.write(json.dumps(self.lyrics_encoder ,ensure_ascii=SCREAMING_SNAKE_CASE_ ) ) return (artists_file, genres_file, lyrics_file) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : Tuple = self.artists_decoder.get(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase__ : Union[str, Any] = [self.genres_decoder.get(SCREAMING_SNAKE_CASE_ ) for genre in genres_index] lowerCAmelCase__ : Tuple = [self.lyrics_decoder.get(SCREAMING_SNAKE_CASE_ ) for character in lyric_index] return artist, genres, lyrics
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) SCREAMING_SNAKE_CASE_: Optional[Any] ={ 'configuration_vision_encoder_decoder': ['VisionEncoderDecoderConfig', 'VisionEncoderDecoderOnnxConfig'] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: str =['VisionEncoderDecoderModel'] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Dict =['TFVisionEncoderDecoderModel'] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =['FlaxVisionEncoderDecoderModel'] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
import itertools import os import re _SCREAMING_SNAKE_CASE = re.compile(r"""([A-Z]+)([A-Z][a-z])""") _SCREAMING_SNAKE_CASE = re.compile(r"""([a-z\d])([A-Z])""") _SCREAMING_SNAKE_CASE = re.compile(r"""(?<!_)_(?!_)""") _SCREAMING_SNAKE_CASE = re.compile(r"""(_{2,})""") _SCREAMING_SNAKE_CASE = r"""^\w+(\.\w+)*$""" _SCREAMING_SNAKE_CASE = r"""<>:/\|?*""" def lowercase( UpperCamelCase_ ) -> Dict: '''simple docstring''' UpperCamelCase = _uppercase_uppercase_re.sub(R"""\1_\2""" , __lowercase ) UpperCamelCase = _lowercase_uppercase_re.sub(R"""\1_\2""" , __lowercase ) return name.lower() def lowercase( UpperCamelCase_ ) -> int: '''simple docstring''' UpperCamelCase = _single_underscore_re.split(__lowercase ) UpperCamelCase = [_multiple_underscores_re.split(__lowercase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowercase ) if n != """""" ) def lowercase( UpperCamelCase_ ) -> List[str]: '''simple docstring''' if os.path.basename(__lowercase ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) return camelcase_to_snakecase(__lowercase ) def lowercase( UpperCamelCase_ , UpperCamelCase_ ) -> str: '''simple docstring''' if os.path.basename(__lowercase ) != name: raise ValueError(f"""Should be a dataset name, not a path: {name}""" ) if not re.match(_split_re , __lowercase ): raise ValueError(f"""Split name should match '{_split_re}'' but got '{split}'.""" ) return f"""{filename_prefix_for_name(__lowercase )}-{split}""" def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None ) -> List[str]: '''simple docstring''' UpperCamelCase = filename_prefix_for_split(__lowercase , __lowercase ) if filetype_suffix: prefix += f""".{filetype_suffix}""" UpperCamelCase = os.path.join(__lowercase , __lowercase ) return f"""{filepath}*""" def lowercase( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=None , UpperCamelCase_=None ) -> Optional[Any]: '''simple docstring''' UpperCamelCase = filename_prefix_for_split(__lowercase , __lowercase ) UpperCamelCase = os.path.join(__lowercase , __lowercase ) if shard_lengths: UpperCamelCase = len(__lowercase ) UpperCamelCase = [f"""{prefix}-{shard_id:05d}-of-{num_shards:05d}""" for shard_id in range(__lowercase )] if filetype_suffix: UpperCamelCase = [filename + f""".{filetype_suffix}""" for filename in filenames] return filenames else: UpperCamelCase = prefix if filetype_suffix: filename += f""".{filetype_suffix}""" return [filename]
343
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
from __future__ import annotations from pprint import pformat from typing import Generic, TypeVar lowerCAmelCase : Optional[Any] = TypeVar("""T""") class __lowercase ( Generic[T] ): """simple docstring""" def __init__( self : Tuple , lowerCAmelCase__ : bool = True): SCREAMING_SNAKE_CASE_: dict[T, list[T]] = {} # dictionary of lists SCREAMING_SNAKE_CASE_: Optional[Any] = directed def _SCREAMING_SNAKE_CASE ( self : Dict , lowerCAmelCase__ : T , lowerCAmelCase__ : T): if not self.directed: # For undirected graphs # if both source vertex and destination vertex are both present in the # adjacency list, add destination vertex to source vertex list of adjacent # vertices and add source vertex to destination vertex list of adjacent # vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_) self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_) # if only source vertex is present in adjacency list, add destination vertex # to source vertex list of adjacent vertices, then create a new vertex with # destination vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: str = [source_vertex] # if only destination vertex is present in adjacency list, add source vertex # to destination vertex list of adjacent vertices, then create a new vertex # with source vertex as key and assign a list containing the source vertex # as it's first adjacent vertex. elif destination_vertex in self.adj_list: self.adj_list[destination_vertex].append(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Union[str, Any] = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and assign a list # containing the destination vertex as it's first adjacent vertex also # create a new vertex with destination vertex as key and assign a list # containing the source vertex as it's first adjacent vertex. else: SCREAMING_SNAKE_CASE_: str = [destination_vertex] SCREAMING_SNAKE_CASE_: int = [source_vertex] else: # For directed graphs # if both source vertex and destination vertex are present in adjacency # list, add destination vertex to source vertex list of adjacent vertices. if source_vertex in self.adj_list and destination_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_) # if only source vertex is present in adjacency list, add destination # vertex to source vertex list of adjacent vertices and create a new vertex # with destination vertex as key, which has no adjacent vertex elif source_vertex in self.adj_list: self.adj_list[source_vertex].append(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: Optional[int] = [] # if only destination vertex is present in adjacency list, create a new # vertex with source vertex as key and assign a list containing destination # vertex as first adjacent vertex elif destination_vertex in self.adj_list: SCREAMING_SNAKE_CASE_: str = [destination_vertex] # if both source vertex and destination vertex are not present in adjacency # list, create a new vertex with source vertex as key and a list containing # destination vertex as it's first adjacent vertex. Then create a new vertex # with destination vertex as key, which has no adjacent vertex else: SCREAMING_SNAKE_CASE_: List[str] = [destination_vertex] SCREAMING_SNAKE_CASE_: Dict = [] return self def __repr__( self : Union[str, Any]): return pformat(self.adj_list)
13
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" def UpperCAmelCase ( UpperCAmelCase ) -> list: snake_case_ = len(__lowercase ) for i in range(1 , __lowercase ): snake_case_ = collection[i] snake_case_ = 0 snake_case_ = i - 1 while low <= high: snake_case_ = (low + high) // 2 if val < collection[mid]: snake_case_ = mid - 1 else: snake_case_ = mid + 1 for j in range(__lowercase , __lowercase , -1 ): snake_case_ = collection[j - 1] snake_case_ = val return collection if __name__ == "__main__": __UpperCamelCase = input('''Enter numbers separated by a comma:\n''').strip() __UpperCamelCase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
'''simple docstring''' import os # Precomputes a list of the 100 first triangular numbers _lowerCamelCase : Any = [int(0.5 * n * (n + 1)) for n in range(1, 101)] def __lowerCamelCase ( ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = os.path.dirname(os.path.realpath(__lowercase ) ) UpperCamelCase = os.path.join(__lowercase , 'words.txt' ) UpperCamelCase = '''''' with open(__lowercase ) as f: UpperCamelCase = f.readline() UpperCamelCase = [word.strip('"' ) for word in words.strip('\r\n' ).split(',' )] UpperCamelCase = [ word for word in [sum(ord(__lowercase ) - 64 for x in word ) for word in words] if word in TRIANGULAR_NUMBERS ] return len(__lowercase ) if __name__ == "__main__": print(solution())
28
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
from abc import ABC, abstractmethod from argparse import ArgumentParser class A__ ( UpperCAmelCase_): @staticmethod @abstractmethod def UpperCamelCase__ ( __magic_name__ ): raise NotImplementedError() @abstractmethod def UpperCamelCase__ ( self ): raise NotImplementedError()
287
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int: A: Any = 1 A: Optional[Any] = 0 for divide_by_number in range(__lowercase , digit + 1 ): A: list[int] = [] A: List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): A: Any = len(__lowercase ) A: Dict = divide_by_number else: has_been_divided.append(__lowercase ) A: str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
0
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> str: if "model" in orig_key: lowerCamelCase__ : List[Any] = orig_key.replace('model.' , '' ) if "norm1" in orig_key: lowerCamelCase__ : str = orig_key.replace('norm1' , 'attention.output.LayerNorm' ) if "norm2" in orig_key: lowerCamelCase__ : int = orig_key.replace('norm2' , 'output.LayerNorm' ) if "norm" in orig_key: lowerCamelCase__ : Any = orig_key.replace('norm' , 'LayerNorm' ) if "transformer" in orig_key: lowerCamelCase__ : List[Any] = orig_key.split('.' )[0].split('_' )[-1] lowerCamelCase__ : int = orig_key.replace(F"""transformer_{layer_num}""" , F"""encoder.layer.{layer_num}""" ) if "mha.attn" in orig_key: lowerCamelCase__ : Union[str, Any] = orig_key.replace('mha.attn' , 'attention.self' ) if "mha" in orig_key: lowerCamelCase__ : Tuple = orig_key.replace('mha' , 'attention' ) if "W_q" in orig_key: lowerCamelCase__ : Tuple = orig_key.replace('W_q' , 'self.query' ) if "W_k" in orig_key: lowerCamelCase__ : Union[str, Any] = orig_key.replace('W_k' , 'self.key' ) if "W_v" in orig_key: lowerCamelCase__ : Union[str, Any] = orig_key.replace('W_v' , 'self.value' ) if "ff1" in orig_key: lowerCamelCase__ : List[Any] = orig_key.replace('ff1' , 'intermediate.dense' ) if "ff2" in orig_key: lowerCamelCase__ : Dict = orig_key.replace('ff2' , 'output.dense' ) if "ff" in orig_key: lowerCamelCase__ : List[Any] = orig_key.replace('ff' , 'output.dense' ) if "mlm_class" in orig_key: lowerCamelCase__ : Optional[Any] = orig_key.replace('mlm.mlm_class' , 'cls.predictions.decoder' ) if "mlm" in orig_key: lowerCamelCase__ : Any = orig_key.replace('mlm' , 'cls.predictions.transform' ) if "cls" not in orig_key: lowerCamelCase__ : List[str] = '''yoso.''' + orig_key return orig_key def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase ) -> Union[str, Any]: for key in orig_state_dict.copy().keys(): lowerCamelCase__ : int = orig_state_dict.pop(__lowercase ) if ("pooler" in key) or ("sen_class" in key): continue else: lowerCamelCase__ : List[str] = val lowerCamelCase__ : Any = orig_state_dict['''cls.predictions.decoder.bias'''] lowerCamelCase__ : Tuple = torch.arange(__lowercase ).expand((1, -1) ) + 2 return orig_state_dict def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) -> Optional[Any]: lowerCamelCase__ : Dict = torch.load(__lowercase , map_location='cpu' )['''model_state_dict'''] lowerCamelCase__ : List[Any] = YosoConfig.from_json_file(__lowercase ) lowerCamelCase__ : str = YosoForMaskedLM(__lowercase ) lowerCamelCase__ : List[str] = convert_checkpoint_helper(config.max_position_embeddings , __lowercase ) print(model.load_state_dict(__lowercase ) ) model.eval() model.save_pretrained(__lowercase ) print(F"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) if __name__ == "__main__": _UpperCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to YOSO pytorch checkpoint.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for YOSO model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _UpperCAmelCase : Optional[int] = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
import math from datetime import datetime, timedelta def _A ( _lowercase ) -> datetime: """simple docstring""" __UpperCamelCase = year % 19 __UpperCamelCase = year % 4 __UpperCamelCase = year % 7 __UpperCamelCase = math.floor(year / 1_00 ) __UpperCamelCase = math.floor((13 + 8 * leap_day_inhibits) / 25 ) __UpperCamelCase = leap_day_inhibits / 4 __UpperCamelCase = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 __UpperCamelCase = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 __UpperCamelCase = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon __UpperCamelCase = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(__lowercase , 4 , 18 ) else: return datetime(__lowercase , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (1_9_9_4, 2_0_0_0, 2_0_1_0, 2_0_2_1, 2_0_2_3): __snake_case = '''will be''' if year > datetime.now().year else '''was''' print(f"""Easter in {year} {tense} {gauss_easter(year)}""")
310
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
0
from manim import * class A_ ( UpperCAmelCase_ ): '''simple docstring''' def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = Rectangle(height=0.5 , width=0.5 ) __UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) __UpperCAmelCase = Rectangle(height=0.25 , width=0.25 ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''CPU''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [mem.copy() for i in range(4 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''GPU''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) gpu.move_to([-1, -1, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''Model''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) model.move_to([3, -1.0, 0] ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [] __UpperCAmelCase = [] for i, rect in enumerate(SCREAMING_SNAKE_CASE_ ): __UpperCAmelCase = fill.copy().set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) target.move_to(SCREAMING_SNAKE_CASE_ ) model_arr.append(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(SCREAMING_SNAKE_CASE_ , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(SCREAMING_SNAKE_CASE_ ) self.add(*SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = [meta_mem.copy() for i in range(6 )] __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(*SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = VGroup(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0 ) __UpperCAmelCase = Text('''Disk''' , font_size=24 ) __UpperCAmelCase = Group(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).arrange(SCREAMING_SNAKE_CASE_ , buff=0.5 , aligned_edge=SCREAMING_SNAKE_CASE_ ) disk.move_to([-4, -1.25, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) __UpperCAmelCase = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(SCREAMING_SNAKE_CASE_ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = Square(0.3 ) input.set_fill(SCREAMING_SNAKE_CASE_ , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , SCREAMING_SNAKE_CASE_ , buff=0.5 ) self.play(Write(SCREAMING_SNAKE_CASE_ ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=SCREAMING_SNAKE_CASE_ , buff=0.02 ) self.play(MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.play(FadeOut(SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = Arrow(start=SCREAMING_SNAKE_CASE_ , end=SCREAMING_SNAKE_CASE_ , color=SCREAMING_SNAKE_CASE_ , buff=0.5 ) a.next_to(model_arr[0].get_left() , SCREAMING_SNAKE_CASE_ , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) __UpperCAmelCase = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) ) __UpperCAmelCase = {'''run_time''': 1, '''fade_in''': True, '''fade_out''': True, '''buff''': 0.02} self.play( Write(SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_cpu_arr[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) __UpperCAmelCase = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , SCREAMING_SNAKE_CASE_ , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) __UpperCAmelCase = AnimationGroup( FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , FadeIn(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , lag_ratio=0.2 ) self.play(SCREAMING_SNAKE_CASE_ ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: __UpperCAmelCase = 0.7 self.play( Circumscribe(model_arr[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i] , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(model_arr[i + 1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(cpu_left_col_base[-1] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , Circumscribe(gpu_rect[0] , color=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) __UpperCAmelCase = a_c __UpperCAmelCase = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(SCREAMING_SNAKE_CASE_ ) , FadeOut(SCREAMING_SNAKE_CASE_ , run_time=0.5 ) , ) __UpperCAmelCase = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(SCREAMING_SNAKE_CASE_ , run_time=3 ) , MoveToTarget(SCREAMING_SNAKE_CASE_ ) ) self.wait()
333
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import pickle import numpy as np from matplotlib import pyplot as plt class __lowerCAmelCase : def __init__( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=0.2 , _snake_case=0.2 ): """simple docstring""" _lowerCAmelCase = bp_numa _lowerCAmelCase = bp_numa _lowerCAmelCase = bp_numa _lowerCAmelCase = conva_get[:2] _lowerCAmelCase = conva_get[2] _lowerCAmelCase = size_pa _lowerCAmelCase = rate_w _lowerCAmelCase = rate_t _lowerCAmelCase = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] _lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) _lowerCAmelCase = -2 * np.random.rand(self.conva[1] ) + 1 _lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 _lowerCAmelCase = -2 * np.random.rand(self.num_bpa ) + 1 def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(SCREAMING_SNAKE_CASE_ , """wb""" ) as f: pickle.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) print(F'Model saved: {save_path}' ) @classmethod def snake_case ( cls , _snake_case ): """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , """rb""" ) as f: _lowerCAmelCase = pickle.load(SCREAMING_SNAKE_CASE_ ) # noqa: S301 _lowerCAmelCase = model_dic.get("""conv1""" ) conv_get.append(model_dic.get("""step_conv1""" ) ) _lowerCAmelCase = model_dic.get("""size_pooling1""" ) _lowerCAmelCase = model_dic.get("""num_bp1""" ) _lowerCAmelCase = model_dic.get("""num_bp2""" ) _lowerCAmelCase = model_dic.get("""num_bp3""" ) _lowerCAmelCase = model_dic.get("""rate_weight""" ) _lowerCAmelCase = model_dic.get("""rate_thre""" ) # create model instance _lowerCAmelCase = CNN(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # modify model parameter _lowerCAmelCase = model_dic.get("""w_conv1""" ) _lowerCAmelCase = model_dic.get("""wkj""" ) _lowerCAmelCase = model_dic.get("""vji""" ) _lowerCAmelCase = model_dic.get("""thre_conv1""" ) _lowerCAmelCase = model_dic.get("""thre_bp2""" ) _lowerCAmelCase = model_dic.get("""thre_bp3""" ) return conv_ins def snake_case ( self , _snake_case ): """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def snake_case ( self , _snake_case ): """simple docstring""" return round(SCREAMING_SNAKE_CASE_ , 3 ) def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = convs[0] _lowerCAmelCase = convs[1] _lowerCAmelCase = np.shape(SCREAMING_SNAKE_CASE_ )[0] # get the data slice of original image data, data_focus _lowerCAmelCase = [] for i_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE_ ): for j_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(SCREAMING_SNAKE_CASE_ ) # calculate the feature map of every single kernel, and saved as list of matrix _lowerCAmelCase = [] _lowerCAmelCase = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = [] for i_focus in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = np.asmatrix(SCREAMING_SNAKE_CASE_ ).reshape( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) data_featuremap.append(SCREAMING_SNAKE_CASE_ ) # expanding the data slice to One dimenssion _lowerCAmelCase = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) return focus_list, data_featuremap def snake_case ( self , _snake_case , _snake_case , _snake_case="average_pool" ): """simple docstring""" _lowerCAmelCase = len(featuremaps[0] ) _lowerCAmelCase = int(size_map / size_pooling ) _lowerCAmelCase = [] for i_map in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = featuremaps[i_map] _lowerCAmelCase = [] for i_focus in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for j_focus in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(SCREAMING_SNAKE_CASE_ ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(SCREAMING_SNAKE_CASE_ ) ) _lowerCAmelCase = np.asmatrix(SCREAMING_SNAKE_CASE_ ).reshape(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) featuremap_pooled.append(SCREAMING_SNAKE_CASE_ ) return featuremap_pooled def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] for i in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = np.shape(data[i] ) _lowerCAmelCase = data[i].reshape(1 , shapes[0] * shapes[1] ) _lowerCAmelCase = data_listed.getA().tolist()[0] data_expanded.extend(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) return data_expanded def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = np.asarray(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = np.shape(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" _lowerCAmelCase = [] _lowerCAmelCase = 0 for i_map in range(SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = np.ones((size_map, size_map) ) for i in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): for j in range(0 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = pd_pool[ i_pool ] _lowerCAmelCase = i_pool + 1 _lowerCAmelCase = np.multiply( SCREAMING_SNAKE_CASE_ , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(SCREAMING_SNAKE_CASE_ ) return pd_all def snake_case ( self , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case=bool ): """simple docstring""" print("""----------------------Start Training-------------------------""" ) print((""" - - Shape: Train_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) print((""" - - Shape: Teach_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) _lowerCAmelCase = 0 _lowerCAmelCase = [] _lowerCAmelCase = 10000 while rp < n_repeat and mse >= error_accuracy: _lowerCAmelCase = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(SCREAMING_SNAKE_CASE_ ) ): # print('------------Learning Image: %d--------------'%p) _lowerCAmelCase = np.asmatrix(datas_train[p] ) _lowerCAmelCase = np.asarray(datas_teach[p] ) _lowerCAmelCase = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) _lowerCAmelCase = np.shape(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = self._expand(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = data_bp_input _lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , self.vji.T ) - self.thre_bpa _lowerCAmelCase = self.sig(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , self.wkj.T ) - self.thre_bpa _lowerCAmelCase = self.sig(SCREAMING_SNAKE_CASE_ ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- _lowerCAmelCase = np.multiply( (data_teach - bp_outa) , np.multiply(SCREAMING_SNAKE_CASE_ , (1 - bp_outa) ) ) _lowerCAmelCase = np.multiply( np.dot(SCREAMING_SNAKE_CASE_ , self.wkj ) , np.multiply(SCREAMING_SNAKE_CASE_ , (1 - bp_outa) ) ) _lowerCAmelCase = np.dot(SCREAMING_SNAKE_CASE_ , self.vji ) _lowerCAmelCase = pd_i_all / (self.size_poolinga * self.size_poolinga) _lowerCAmelCase = pd_conva_pooled.T.getA().tolist() _lowerCAmelCase = self._calculate_gradient_from_pool( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): _lowerCAmelCase = self._expand_mat(pd_conva_all[k_conv] ) _lowerCAmelCase = self.rate_weight * np.dot(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) _lowerCAmelCase = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer _lowerCAmelCase = self.wkj + pd_k_all.T * bp_outa * self.rate_weight _lowerCAmelCase = self.vji + pd_j_all.T * bp_outa * self.rate_weight _lowerCAmelCase = self.thre_bpa - pd_k_all * self.rate_thre _lowerCAmelCase = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image _lowerCAmelCase = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) _lowerCAmelCase = rp + 1 _lowerCAmelCase = error_count / patterns all_mse.append(SCREAMING_SNAKE_CASE_ ) def draw_error(): _lowerCAmelCase = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(SCREAMING_SNAKE_CASE_ , """+-""" ) plt.plot(SCREAMING_SNAKE_CASE_ , """r--""" ) plt.xlabel("""Learning Times""" ) plt.ylabel("""All_mse""" ) plt.grid(SCREAMING_SNAKE_CASE_ , alpha=0.5 ) plt.show() print("""------------------Training Complished---------------------""" ) print((""" - - Training epoch: """, rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = [] print("""-------------------Start Testing-------------------------""" ) print((""" - - Shape: Test_Data """, np.shape(SCREAMING_SNAKE_CASE_ )) ) for p in range(len(SCREAMING_SNAKE_CASE_ ) ): _lowerCAmelCase = np.asmatrix(datas_test[p] ) _lowerCAmelCase = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) _lowerCAmelCase = self._expand(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = data_bp_input _lowerCAmelCase = bp_outa * self.vji.T - self.thre_bpa _lowerCAmelCase = self.sig(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = bp_outa * self.wkj.T - self.thre_bpa _lowerCAmelCase = self.sig(SCREAMING_SNAKE_CASE_ ) produce_out.extend(bp_outa.getA().tolist() ) _lowerCAmelCase = [list(map(self.do_round , SCREAMING_SNAKE_CASE_ ) ) for each in produce_out] return np.asarray(SCREAMING_SNAKE_CASE_ ) def snake_case ( self , _snake_case ): """simple docstring""" _lowerCAmelCase = np.asmatrix(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = self.convolute( SCREAMING_SNAKE_CASE_ , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) _lowerCAmelCase = self.pooling(SCREAMING_SNAKE_CASE_ , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" for attribute in key.split(""".""" ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models lowerCAmelCase__ : List[str] = '''lm_head''' lowerCAmelCase__ : Tuple = getattr(__lowercase , __lowercase ) if weight_type is not None: lowerCAmelCase__ : List[Any] = getattr(__lowercase , __lowercase ).shape else: lowerCAmelCase__ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": lowerCAmelCase__ : Any = value elif weight_type == "weight_g": lowerCAmelCase__ : Dict = value elif weight_type == "weight_v": lowerCAmelCase__ : Tuple = value elif weight_type == "bias": lowerCAmelCase__ : int = value else: lowerCAmelCase__ : int = value logger.info(f"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : Any = [] lowerCAmelCase__ : Dict = fairseq_model.state_dict() lowerCAmelCase__ : List[Any] = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): lowerCAmelCase__ : Optional[Any] = False if "conv_layers" in name: load_conv_layer( __lowercase , __lowercase , __lowercase , __lowercase , hf_model.config.feat_extract_norm == """group""" , ) lowerCAmelCase__ : Dict = True else: for key, mapped_key in MAPPING.items(): lowerCAmelCase__ : Tuple = '''unispeech.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: lowerCAmelCase__ : Union[str, Any] = True if "*" in mapped_key: lowerCAmelCase__ : Optional[int] = name.split(__lowercase )[0].split(""".""" )[-2] lowerCAmelCase__ : Union[str, Any] = mapped_key.replace("""*""" , __lowercase ) if "weight_g" in name: lowerCAmelCase__ : Union[str, Any] = '''weight_g''' elif "weight_v" in name: lowerCAmelCase__ : str = '''weight_v''' elif "bias" in name: lowerCAmelCase__ : Optional[int] = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj lowerCAmelCase__ : Tuple = '''weight''' else: lowerCAmelCase__ : Tuple = None set_recursively(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) continue if not is_used: unused_weights.append(__lowercase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCAmelCase__ : List[str] = full_name.split("""conv_layers.""" )[-1] lowerCAmelCase__ : List[str] = name.split(""".""" ) lowerCAmelCase__ : List[str] = int(items[0] ) lowerCAmelCase__ : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) lowerCAmelCase__ : str = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) lowerCAmelCase__ : int = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) lowerCAmelCase__ : Dict = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) lowerCAmelCase__ : Optional[Any] = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__lowercase ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=True ): """simple docstring""" if config_path is not None: lowerCAmelCase__ : Optional[int] = UniSpeechConfig.from_pretrained(__lowercase ) else: lowerCAmelCase__ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: lowerCAmelCase__ : int = Dictionary.load_from_json(__lowercase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowerCAmelCase__ : str = target_dict.pad_index lowerCAmelCase__ : Union[str, Any] = target_dict.bos_index lowerCAmelCase__ : List[Any] = target_dict.eos_index lowerCAmelCase__ : Tuple = len(target_dict.symbols ) lowerCAmelCase__ : Any = os.path.join(__lowercase , """vocab.json""" ) if not os.path.isdir(__lowercase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(__lowercase ) ) return os.makedirs(__lowercase , exist_ok=__lowercase ) lowerCAmelCase__ : List[str] = target_dict.indices # fairseq has the <pad> and <s> switched lowerCAmelCase__ : Tuple = 42 lowerCAmelCase__ : Union[str, Any] = 43 with open(__lowercase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(__lowercase , __lowercase ) lowerCAmelCase__ : Optional[int] = WavaVecaPhonemeCTCTokenizer( __lowercase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=__lowercase , ) lowerCAmelCase__ : Optional[Any] = True if config.feat_extract_norm == '''layer''' else False lowerCAmelCase__ : Any = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=__lowercase , return_attention_mask=__lowercase , ) lowerCAmelCase__ : str = WavaVecaProcessor(feature_extractor=__lowercase , tokenizer=__lowercase ) processor.save_pretrained(__lowercase ) lowerCAmelCase__ : List[Any] = UniSpeechForCTC(__lowercase ) else: lowerCAmelCase__ : Union[str, Any] = UniSpeechForPreTraining(__lowercase ) if is_finetuned: lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path} ) else: lowerCAmelCase__ : Optional[int] = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) lowerCAmelCase__ : Tuple = model[0].eval() recursively_load_weights(__lowercase , __lowercase , __lowercase ) hf_unispeech.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
37
'''simple docstring''' from itertools import permutations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A: int = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int: return sum( int(''''''.join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
319
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_: Any ={ 'configuration_upernet': ['UperNetConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: List[str] =[ 'UperNetForSemanticSegmentation', 'UperNetPreTrainedModel', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys SCREAMING_SNAKE_CASE_: Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
0
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase = RoCBertTokenizer __lowerCAmelCase = None __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = filter_non_english def lowerCamelCase_ ( self : List[str] ): """simple docstring""" super().setUp() UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] UpperCamelCase = {} UpperCamelCase = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = i UpperCamelCase = i UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.word_shape_file , """w""" , encoding="""utf-8""" ) as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""" ) as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase = tokenizer.tokenize("""你好[SEP]你是谁""" ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) , [5, 6, 2, 5, 7, 8] ) def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase_ ( self : str ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def lowerCamelCase_ ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" UpperCamelCase = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] UpperCamelCase = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = i UpperCamelCase = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def lowerCamelCase_ ( self : int ): """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def lowerCamelCase_ ( self : str ): """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def lowerCamelCase_ ( self : Any ): """simple docstring""" UpperCamelCase = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) if self.test_rust_tokenizer: UpperCamelCase = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = f"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" UpperCamelCase = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) UpperCamelCase = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""" ) else False UpperCamelCase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = ['''的''', '''人''', '''有'''] UpperCamelCase = ''''''.join(SCREAMING_SNAKE_CASE_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): UpperCamelCase = True UpperCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = False UpperCamelCase = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) # it is expected that only the first Chinese character is not preceded by "##". UpperCamelCase = [ f"""##{token}""" if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_ ) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @slow def lowerCamelCase_ ( self : int ): """simple docstring""" UpperCamelCase = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) UpperCamelCase = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowerCamelCase_ ( self : List[str] ): """simple docstring""" UpperCamelCase = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): UpperCamelCase = '''你好,你是谁''' UpperCamelCase = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
343
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase : List[Any] = logging.get_logger() @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : nn.Module _UpperCAmelCase : List[nn.Module] = field(default_factory=UpperCAmelCase_ ) _UpperCAmelCase : list = field(default_factory=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Any , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Tensor , lowerCAmelCase__ : Tensor): SCREAMING_SNAKE_CASE_: Tuple = len(list(m.modules())) == 1 or isinstance(SCREAMING_SNAKE_CASE_ , nn.Convad) or isinstance(SCREAMING_SNAKE_CASE_ , nn.BatchNormad) if has_not_submodules: self.traced.append(SCREAMING_SNAKE_CASE_) def __call__( self : str , lowerCAmelCase__ : Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(SCREAMING_SNAKE_CASE_) [x.remove() for x in self.handles] return self @property def _SCREAMING_SNAKE_CASE ( self : Any): return list(filter(lambda lowerCAmelCase__: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class __lowercase : """simple docstring""" _UpperCAmelCase : nn.Module _UpperCAmelCase : nn.Module _UpperCAmelCase : int = 1 _UpperCAmelCase : List = field(default_factory=UpperCAmelCase_ ) _UpperCAmelCase : List = field(default_factory=UpperCAmelCase_ ) _UpperCAmelCase : bool = True def __call__( self : List[str] , lowerCAmelCase__ : Tensor): SCREAMING_SNAKE_CASE_: str = Tracker(self.dest)(SCREAMING_SNAKE_CASE_).parametrized SCREAMING_SNAKE_CASE_: List[str] = Tracker(self.src)(SCREAMING_SNAKE_CASE_).parametrized SCREAMING_SNAKE_CASE_: str = list(filter(lambda lowerCAmelCase__: type(SCREAMING_SNAKE_CASE_) not in self.src_skip , SCREAMING_SNAKE_CASE_)) SCREAMING_SNAKE_CASE_: int = list(filter(lambda lowerCAmelCase__: type(SCREAMING_SNAKE_CASE_) not in self.dest_skip , SCREAMING_SNAKE_CASE_)) if len(SCREAMING_SNAKE_CASE_) != len(SCREAMING_SNAKE_CASE_) and self.raise_if_mismatch: raise Exception( F"Numbers of operations are different. Source module has {len(SCREAMING_SNAKE_CASE_)} operations while" F" destination module has {len(SCREAMING_SNAKE_CASE_)}.") for dest_m, src_m in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F"Transfered from={src_m} to={dest_m}") class __lowercase ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , lowerCAmelCase__ : nn.Module): super().__init__() SCREAMING_SNAKE_CASE_: List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(("conv1", model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith("block"), F"Unexpected layer name {k}" SCREAMING_SNAKE_CASE_: Optional[Any] = len(SCREAMING_SNAKE_CASE_) + 1 feature_blocks.append((F"res{block_index}", v)) SCREAMING_SNAKE_CASE_: Optional[Any] = nn.ModuleDict(SCREAMING_SNAKE_CASE_) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowerCAmelCase__ : Tensor): return get_trunk_forward_outputs( SCREAMING_SNAKE_CASE_ , out_feat_keys=SCREAMING_SNAKE_CASE_ , feature_blocks=self._feature_blocks , ) class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase__ : str): SCREAMING_SNAKE_CASE_: Optional[int] = x.split("-") return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : List[str] , lowerCAmelCase__ : str): if x not in self: SCREAMING_SNAKE_CASE_: int = self.convert_name_to_timm(SCREAMING_SNAKE_CASE_) SCREAMING_SNAKE_CASE_: int = partial(lambda: (timm.create_model(SCREAMING_SNAKE_CASE_ , pretrained=SCREAMING_SNAKE_CASE_).eval(), None)) else: SCREAMING_SNAKE_CASE_: Dict = super().__getitem__(SCREAMING_SNAKE_CASE_) return val class __lowercase ( UpperCAmelCase_ ): """simple docstring""" def __getitem__( self : Tuple , lowerCAmelCase__ : str): if "seer" in x and "in1k" not in x: SCREAMING_SNAKE_CASE_: Tuple = RegNetModel else: SCREAMING_SNAKE_CASE_: str = RegNetForImageClassification return val def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): for from_key, to_key in keys: SCREAMING_SNAKE_CASE_: Any = from_state_dict[from_key].clone() print(f"Copied key={from_key} to={to_key}" ) return to_state_dict def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = True , ): print(f"Converting {name}..." ) with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = from_model_func() SCREAMING_SNAKE_CASE_: Union[str, Any] = our_model_func(__lowercase ).eval() SCREAMING_SNAKE_CASE_: str = ModuleTransfer(src=__lowercase , dest=__lowercase , raise_if_mismatch=__lowercase ) SCREAMING_SNAKE_CASE_: Tuple = torch.randn((1, 3, 2_24, 2_24) ) module_transfer(__lowercase ) if from_state_dict is not None: SCREAMING_SNAKE_CASE_: str = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE_: List[Any] = [('''0.clf.0.weight''', '''classifier.1.weight'''), ('''0.clf.0.bias''', '''classifier.1.bias''')] SCREAMING_SNAKE_CASE_: Dict = manually_copy_vissl_head(__lowercase , our_model.state_dict() , __lowercase ) our_model.load_state_dict(__lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] = our_model(__lowercase , output_hidden_states=__lowercase ) SCREAMING_SNAKE_CASE_: Any = ( our_outputs.logits if isinstance(__lowercase , __lowercase ) else our_outputs.last_hidden_state ) SCREAMING_SNAKE_CASE_: Optional[Any] = from_model(__lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] = from_output[-1] if type(__lowercase ) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: SCREAMING_SNAKE_CASE_: Any = our_outputs.hidden_states[-1] assert torch.allclose(__lowercase , __lowercase ), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add model" , use_temp_dir=__lowercase , ) SCREAMING_SNAKE_CASE_: Dict = 2_24 if '''seer''' not in name else 3_84 # we can use the convnext one SCREAMING_SNAKE_CASE_: Dict = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" , size=__lowercase ) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message="Add image processor" , use_temp_dir=__lowercase , ) print(f"Pushed {name}" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = True ): SCREAMING_SNAKE_CASE_: Any = '''imagenet-1k-id2label.json''' SCREAMING_SNAKE_CASE_: List[str] = 10_00 SCREAMING_SNAKE_CASE_: Optional[Any] = (1, num_labels) SCREAMING_SNAKE_CASE_: List[Any] = '''huggingface/label-files''' SCREAMING_SNAKE_CASE_: str = num_labels SCREAMING_SNAKE_CASE_: Optional[int] = json.load(open(cached_download(hf_hub_url(__lowercase , __lowercase , repo_type="dataset" ) ) , "r" ) ) SCREAMING_SNAKE_CASE_: Dict = {int(__lowercase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: Tuple = idalabel SCREAMING_SNAKE_CASE_: Optional[Any] = {v: k for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_: List[str] = partial(__lowercase , num_labels=__lowercase , idalabel=__lowercase , labelaid=__lowercase ) SCREAMING_SNAKE_CASE_: Union[str, Any] = { '''regnet-x-002''': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 , layer_type="x" ), '''regnet-x-004''': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 1_60, 3_84] , groups_width=16 , layer_type="x" ), '''regnet-x-006''': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 2_40, 5_28] , groups_width=24 , layer_type="x" ), '''regnet-x-008''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 1_28, 2_88, 6_72] , groups_width=16 , layer_type="x" ), '''regnet-x-016''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 1_68, 4_08, 9_12] , groups_width=24 , layer_type="x" ), '''regnet-x-032''': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 1_92, 4_32, 10_08] , groups_width=48 , layer_type="x" ), '''regnet-x-040''': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 2_40, 5_60, 13_60] , groups_width=40 , layer_type="x" ), '''regnet-x-064''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 3_92, 7_84, 16_24] , groups_width=56 , layer_type="x" ), '''regnet-x-080''': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 2_40, 7_20, 19_20] , groups_width=1_20 , layer_type="x" ), '''regnet-x-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 , layer_type="x" ), '''regnet-x-160''': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[2_56, 5_12, 8_96, 20_48] , groups_width=1_28 , layer_type="x" ), '''regnet-x-320''': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[3_36, 6_72, 13_44, 25_20] , groups_width=1_68 , layer_type="x" ), # y variant '''regnet-y-002''': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 1_52, 3_68] , groups_width=8 ), '''regnet-y-004''': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 1_04, 2_08, 4_40] , groups_width=8 ), '''regnet-y-006''': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 1_12, 2_56, 6_08] , groups_width=16 ), '''regnet-y-008''': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 1_28, 3_20, 7_68] , groups_width=16 ), '''regnet-y-016''': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 1_20, 3_36, 8_88] , groups_width=24 ), '''regnet-y-032''': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 2_16, 5_76, 15_12] , groups_width=24 ), '''regnet-y-040''': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[1_28, 1_92, 5_12, 10_88] , groups_width=64 ), '''regnet-y-064''': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[1_44, 2_88, 5_76, 12_96] , groups_width=72 ), '''regnet-y-080''': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[1_68, 4_48, 8_96, 20_16] , groups_width=56 ), '''regnet-y-120''': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[2_24, 4_48, 8_96, 22_40] , groups_width=1_12 ), '''regnet-y-160''': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[2_24, 4_48, 12_32, 30_24] , groups_width=1_12 ), '''regnet-y-320''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), # models created by SEER -> https://arxiv.org/abs/2202.08360 '''regnet-y-320-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer''': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer''': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer''': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), # finetuned on imagenet '''regnet-y-320-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[2_32, 6_96, 13_92, 37_12] , groups_width=2_32 ), '''regnet-y-640-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[3_28, 9_84, 19_68, 49_20] , groups_width=3_28 ), '''regnet-y-1280-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[5_28, 10_56, 29_04, 73_92] , groups_width=2_64 ), '''regnet-y-2560-seer-in1k''': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[6_40, 16_96, 25_44, 50_88] , groups_width=6_40 ), '''regnet-y-10b-seer-in1k''': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[20_20, 40_40, 1_11_10, 2_82_80] , groups_width=10_10 ), } SCREAMING_SNAKE_CASE_: Dict = NameToOurModelFuncMap() SCREAMING_SNAKE_CASE_: Union[str, Any] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(_UpperCAmelCase , _UpperCAmelCase ) -> Tuple[nn.Module, Dict]: SCREAMING_SNAKE_CASE_: Any = torch.hub.load_state_dict_from_url(__lowercase , model_dir=str(__lowercase ) , map_location="cpu" ) SCREAMING_SNAKE_CASE_: Any = model_func() # check if we have a head, if yes add it SCREAMING_SNAKE_CASE_: Optional[Any] = files['''classy_state_dict''']['''base_model''']['''model'''] SCREAMING_SNAKE_CASE_: List[Any] = model_state_dict['''trunk'''] model.load_state_dict(__lowercase ) return model.eval(), model_state_dict["heads"] # pretrained SCREAMING_SNAKE_CASE_: str = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_: List[str] = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_: Optional[int] = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE_: str = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.5_2 ) ) ) , ) # IN1K finetuned SCREAMING_SNAKE_CASE_: Optional[Any] = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_: Union[str, Any] = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaagf() ) , ) SCREAMING_SNAKE_CASE_: int = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch" , lambda: FakeRegNetVisslWrapper(RegNetYaaagf() ) , ) SCREAMING_SNAKE_CASE_: Dict = partial( __lowercase , "https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch" , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=10_10 , w_a=17_44 , w_a=6_20.83 , w_m=2.5_2 ) ) ) , ) if model_name: convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , __lowercase , __lowercase , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( __lowercase , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , __lowercase , __lowercase , __lowercase , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default=None, type=str, help=( """The name of the model you wish to convert, it must be one of the supported regnet* architecture,""" """ currently: regnetx-*, regnety-*. If `None`, all of them will the converted.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=Path, required=True, help="""Path to the output PyTorch model directory.""", ) parser.add_argument( """--push_to_hub""", default=True, type=bool, required=False, help="""If True, push model and image processor to the hub.""", ) lowerCAmelCase : Tuple = parser.parse_args() lowerCAmelCase : Optional[int] = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class UpperCamelCase ( unittest.TestCase ): def a_ ( self) -> int: snake_case_ = inspect.getfile(accelerate.test_utils) snake_case_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_script.py']) snake_case_ = os.path.sep.join( mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_distributed_data_loop.py']) snake_case_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ['scripts', 'test_ops.py']) @require_multi_gpu def a_ ( self) -> Dict: print(f'Found {torch.cuda.device_count()} devices.') snake_case_ = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.test_file_path] with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy()) @require_multi_gpu def a_ ( self) -> Optional[int]: print(f'Found {torch.cuda.device_count()} devices.') snake_case_ = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.operation_file_path] print(f'Command: {cmd}') with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy()) @require_multi_gpu def a_ ( self) -> List[str]: snake_case_ = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__)] with patch_environment(omp_num_threads=1): execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy()) @require_multi_gpu def a_ ( self) -> Any: print(f'Found {torch.cuda.device_count()} devices, using 2 devices only') snake_case_ = ['''torchrun''', f'--nproc_per_node={torch.cuda.device_count()}', self.data_loop_file_path] with patch_environment(omp_num_threads=1, cuda_visible_devices='0,1'): execute_subprocess_async(SCREAMING_SNAKE_CASE_, env=os.environ.copy()) if __name__ == "__main__": __UpperCamelCase = Accelerator() __UpperCamelCase = (accelerator.state.process_index + 2, 10) __UpperCamelCase = torch.randint(0, 10, shape).to(accelerator.device) __UpperCamelCase = '''''' __UpperCamelCase = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." __UpperCamelCase = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." __UpperCamelCase = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
69
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, List, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import TensorType, logging if TYPE_CHECKING: from ...onnx.config import PatchingSpec from ...tokenization_utils_base import PreTrainedTokenizerBase _lowerCamelCase : Optional[int] = logging.get_logger(__name__) _lowerCamelCase : Dict = { "allenai/longformer-base-4096": "https://huggingface.co/allenai/longformer-base-4096/resolve/main/config.json", "allenai/longformer-large-4096": "https://huggingface.co/allenai/longformer-large-4096/resolve/main/config.json", "allenai/longformer-large-4096-finetuned-triviaqa": ( "https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/config.json" ), "allenai/longformer-base-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/config.json" ), "allenai/longformer-large-4096-extra.pos.embd.only": ( "https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = """longformer""" def __init__( self : List[Any] , UpperCamelCase__ : Union[List[int], int] = 5_1_2 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 1 , UpperCamelCase__ : int = 0 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : int = 3_0_5_2_2 , UpperCamelCase__ : int = 7_6_8 , UpperCamelCase__ : int = 1_2 , UpperCamelCase__ : int = 1_2 , UpperCamelCase__ : int = 3_0_7_2 , UpperCamelCase__ : str = "gelu" , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : float = 0.1 , UpperCamelCase__ : int = 5_1_2 , UpperCamelCase__ : int = 2 , UpperCamelCase__ : float = 0.0_2 , UpperCamelCase__ : float = 1E-1_2 , UpperCamelCase__ : bool = False , **UpperCamelCase__ : Union[str, Any] , ): """simple docstring""" super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase = attention_window UpperCamelCase = sep_token_id UpperCamelCase = bos_token_id UpperCamelCase = eos_token_id UpperCamelCase = vocab_size UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = intermediate_size UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = max_position_embeddings UpperCamelCase = type_vocab_size UpperCamelCase = initializer_range UpperCamelCase = layer_norm_eps UpperCamelCase = onnx_export class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" def __init__( self : List[str] , UpperCamelCase__ : "PretrainedConfig" , UpperCamelCase__ : str = "default" , UpperCamelCase__ : "List[PatchingSpec]" = None ): """simple docstring""" super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = True @property def A ( self : List[str] ): """simple docstring""" if self.task == "multiple-choice": UpperCamelCase = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: UpperCamelCase = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ('global_attention_mask', dynamic_axis), ] ) @property def A ( self : Tuple ): """simple docstring""" UpperCamelCase = super().outputs if self.task == "default": UpperCamelCase = {0: '''batch'''} return outputs @property def A ( self : Tuple ): """simple docstring""" return 1E-4 @property def A ( self : Tuple ): """simple docstring""" return max(super().default_onnx_opset , 1_4 ) def A ( self : Dict , UpperCamelCase__ : "PreTrainedTokenizerBase" , UpperCamelCase__ : int = -1 , UpperCamelCase__ : int = -1 , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[TensorType] = None , ): """simple docstring""" UpperCamelCase = super().generate_dummy_inputs( preprocessor=SCREAMING_SNAKE_CASE_ , batch_size=SCREAMING_SNAKE_CASE_ , seq_length=SCREAMING_SNAKE_CASE_ , is_pair=SCREAMING_SNAKE_CASE_ , framework=SCREAMING_SNAKE_CASE_ ) import torch # for some reason, replacing this code by inputs["global_attention_mask"] = torch.randint(2, inputs["input_ids"].shape, dtype=torch.int64) # makes the export fail randomly UpperCamelCase = torch.zeros_like(inputs['input_ids'] ) # make every second token global UpperCamelCase = 1 return inputs
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class A__ : def __init__( self , __magic_name__ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden lowerCamelCase : Dict = deepcopy(SCREAMING_SNAKE_CASE_ ) elif os.path.exists(SCREAMING_SNAKE_CASE_ ): with io.open(SCREAMING_SNAKE_CASE_ , """r""" , encoding="""utf-8""" ) as f: lowerCamelCase : Dict = json.load(SCREAMING_SNAKE_CASE_ ) else: try: lowerCamelCase : Optional[int] = baseaa.urlsafe_baadecode(SCREAMING_SNAKE_CASE_ ).decode("""utf-8""" ) lowerCamelCase : Any = json.loads(SCREAMING_SNAKE_CASE_ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F'''Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}''' ) lowerCamelCase : Union[str, Any] = config self.set_stage_and_offload() def UpperCamelCase__ ( self ): lowerCamelCase : List[Any] = self.get_value("""zero_optimization.stage""" , -1 ) # offload lowerCamelCase : str = False if self.is_zeroa() or self.is_zeroa(): lowerCamelCase : List[str] = set(["""cpu""", """nvme"""] ) lowerCamelCase : Dict = set( [ self.get_value("""zero_optimization.offload_optimizer.device""" ), self.get_value("""zero_optimization.offload_param.device""" ), ] ) if len(offload_devices & offload_devices_valid ) > 0: lowerCamelCase : Optional[Any] = True def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : int = self.config # find the config node of interest if it exists lowerCamelCase : Optional[Any] = ds_key_long.split(""".""" ) lowerCamelCase : Tuple = nodes.pop() for node in nodes: lowerCamelCase : int = config.get(SCREAMING_SNAKE_CASE_ ) if config is None: return None, ds_key return config, ds_key def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=None ): lowerCamelCase : Any = self.find_config_node(SCREAMING_SNAKE_CASE_ ) if config is None: return default return config.get(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ , __magic_name__=False ): lowerCamelCase : Union[str, Any] = self.config # find the config node of interest if it exists lowerCamelCase : List[str] = ds_key_long.split(""".""" ) for node in nodes: lowerCamelCase : Tuple = config lowerCamelCase : List[str] = config.get(SCREAMING_SNAKE_CASE_ ) if config is None: if must_exist: raise ValueError(F'''Can\'t find {ds_key_long} entry in the config: {self.config}''' ) else: return # if found remove it if parent_config is not None: parent_config.pop(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : Optional[int] = self.get_value(SCREAMING_SNAKE_CASE_ ) return False if value is None else bool(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self , __magic_name__ ): lowerCamelCase : Dict = self.get_value(SCREAMING_SNAKE_CASE_ ) return False if value is None else not bool(SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self ): return self._stage == 2 def UpperCamelCase__ ( self ): return self._stage == 3 def UpperCamelCase__ ( self ): return self._offload class A__ : def __init__( self , __magic_name__ ): lowerCamelCase : List[Any] = engine def UpperCamelCase__ ( self , __magic_name__ , **__magic_name__ ): self.engine.backward(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class A__ ( UpperCAmelCase_): def __init__( self , __magic_name__ ): super().__init__(SCREAMING_SNAKE_CASE_ , device_placement=SCREAMING_SNAKE_CASE_ , scaler=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Tuple = hasattr(self.optimizer , """overflow""" ) def UpperCamelCase__ ( self , __magic_name__=None ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def UpperCamelCase__ ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def UpperCamelCase__ ( self ): if self.__has_overflow__: return self.optimizer.overflow return False class A__ ( UpperCAmelCase_): def __init__( self , __magic_name__ , __magic_name__ ): super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase__ ( self ): pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class A__ : def __init__( self , __magic_name__ , __magic_name__=0.001 , __magic_name__=0 , **__magic_name__ ): lowerCamelCase : List[Any] = params lowerCamelCase : Tuple = lr lowerCamelCase : Union[str, Any] = weight_decay lowerCamelCase : Optional[int] = kwargs class A__ : def __init__( self , __magic_name__ , __magic_name__=None , __magic_name__=0 , **__magic_name__ ): lowerCamelCase : Any = optimizer lowerCamelCase : str = total_num_steps lowerCamelCase : Optional[int] = warmup_num_steps lowerCamelCase : Optional[int] = kwargs
287
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter _UpperCAmelCase : Any = logging.get_logger(__name__) _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Tuple = {} _UpperCAmelCase : Optional[int] = {} def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None , ) -> str: lowerCamelCase__ : Union[str, Any] = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( F"""Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})""" ) lowerCamelCase__ : Union[str, Any] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( F"""Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})""" ) lowerCamelCase__ : Optional[int] = format_type def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = None ) -> Optional[Any]: lowerCamelCase__ : List[Any] = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): lowerCamelCase__ : List[str] = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=["""python"""]) _register_formatter(ArrowFormatter, """arrow""", aliases=["""pa""", """pyarrow"""]) _register_formatter(NumpyFormatter, """numpy""", aliases=["""np"""]) _register_formatter(PandasFormatter, """pandas""", aliases=["""pd"""]) _register_formatter(CustomFormatter, """custom""") if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, """torch""", aliases=["""pt""", """pytorch"""]) else: _UpperCAmelCase : int = ValueError("""PyTorch needs to be installed to be able to return PyTorch tensors.""") _register_unavailable_formatter(_torch_error, """torch""", aliases=["""pt""", """pytorch"""]) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, """tensorflow""", aliases=["""tf"""]) else: _UpperCAmelCase : Union[str, Any] = ValueError("""Tensorflow needs to be installed to be able to return Tensorflow tensors.""") _register_unavailable_formatter(_tf_error, """tensorflow""", aliases=["""tf"""]) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, """jax""", aliases=[]) else: _UpperCAmelCase : Tuple = ValueError("""JAX needs to be installed to be able to return JAX arrays.""") _register_unavailable_formatter(_jax_error, """jax""", aliases=[]) def SCREAMING_SNAKE_CASE ( _UpperCAmelCase ) -> Optional[str]: if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def SCREAMING_SNAKE_CASE ( _UpperCAmelCase , **_UpperCAmelCase ) -> Formatter: lowerCamelCase__ : int = get_format_type_from_alias(__lowercase ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**__lowercase ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( F"""Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got '{format_type}'""" )
50
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
0
from __future__ import annotations __snake_case = tuple[int, int, int] __snake_case = tuple[str, str, str] # used alphabet -------------------------- # from string.ascii_uppercase __snake_case = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' # -------------------------- default selection -------------------------- # rotors -------------------------- __snake_case = '''EGZWVONAHDCLFQMSIPJBYUKXTR''' __snake_case = '''FOBHMDKEXQNRAULPGSJVTYICZW''' __snake_case = '''ZJXESIUQLHAVRMDOYGTNFWPBKC''' # reflector -------------------------- __snake_case = { '''A''': '''N''', '''N''': '''A''', '''B''': '''O''', '''O''': '''B''', '''C''': '''P''', '''P''': '''C''', '''D''': '''Q''', '''Q''': '''D''', '''E''': '''R''', '''R''': '''E''', '''F''': '''S''', '''S''': '''F''', '''G''': '''T''', '''T''': '''G''', '''H''': '''U''', '''U''': '''H''', '''I''': '''V''', '''V''': '''I''', '''J''': '''W''', '''W''': '''J''', '''K''': '''X''', '''X''': '''K''', '''L''': '''Y''', '''Y''': '''L''', '''M''': '''Z''', '''Z''': '''M''', } # -------------------------- extra rotors -------------------------- __snake_case = '''RMDJXFUWGISLHVTCQNKYPBEZOA''' __snake_case = '''SGLCPQWZHKXAREONTFBVIYJUDM''' __snake_case = '''HVSICLTYKQUBXDWAJZOMFGPREN''' __snake_case = '''RZWQHFMVDBKICJLNTUXAGYPSOE''' __snake_case = '''LFKIJODBEGAMQPXVUHYSTCZRWN''' __snake_case = '''KOAEGVDHXPQZMLFTYWJNBRCIUS''' def _A ( _lowercase , _lowercase , _lowercase ) -> tuple[RotorPositionT, RotorSelectionT, dict[str, str]]: """simple docstring""" if (unique_rotsel := len(set(__lowercase ) )) < 3: __UpperCamelCase = f'''Please use 3 unique rotors (not {unique_rotsel})''' raise Exception(__lowercase ) # Checks if rotor positions are valid __UpperCamelCase = rotpos if not 0 < rotorposa <= len(__lowercase ): __UpperCamelCase = f'''First rotor position is not within range of 1..26 ({rotorposa}''' raise ValueError(__lowercase ) if not 0 < rotorposa <= len(__lowercase ): __UpperCamelCase = f'''Second rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__lowercase ) if not 0 < rotorposa <= len(__lowercase ): __UpperCamelCase = f'''Third rotor position is not within range of 1..26 ({rotorposa})''' raise ValueError(__lowercase ) # Validates string and returns dict __UpperCamelCase = _plugboard(__lowercase ) return rotpos, rotsel, pbdict def _A ( _lowercase ) -> dict[str, str]: """simple docstring""" if not isinstance(__lowercase , __lowercase ): __UpperCamelCase = f'''Plugboard setting isn\'t type string ({type(__lowercase )})''' raise TypeError(__lowercase ) elif len(__lowercase ) % 2 != 0: __UpperCamelCase = f'''Odd number of symbols ({len(__lowercase )})''' raise Exception(__lowercase ) elif pbstring == "": return {} pbstring.replace(' ' , '' ) # Checks if all characters are unique __UpperCamelCase = set() for i in pbstring: if i not in abc: __UpperCamelCase = f'''\'{i}\' not in list of symbols''' raise Exception(__lowercase ) elif i in tmppbl: __UpperCamelCase = f'''Duplicate symbol ({i})''' raise Exception(__lowercase ) else: tmppbl.add(__lowercase ) del tmppbl # Created the dictionary __UpperCamelCase = {} for j in range(0 , len(__lowercase ) - 1 , 2 ): __UpperCamelCase = pbstring[j + 1] __UpperCamelCase = pbstring[j] return pb def _A ( _lowercase , _lowercase , _lowercase = (rotora, rotora, rotora) , _lowercase = "" , ) -> str: """simple docstring""" __UpperCamelCase = text.upper() __UpperCamelCase = _validator( __lowercase , __lowercase , plugb.upper() ) __UpperCamelCase = rotor_position __UpperCamelCase = rotor_selection rotorposa -= 1 rotorposa -= 1 rotorposa -= 1 __UpperCamelCase = [] # encryption/decryption process -------------------------- for symbol in text: if symbol in abc: # 1st plugboard -------------------------- if symbol in plugboard: __UpperCamelCase = plugboard[symbol] # rotor ra -------------------------- __UpperCamelCase = abc.index(__lowercase ) + rotorposa __UpperCamelCase = rotora[index % len(__lowercase )] # rotor rb -------------------------- __UpperCamelCase = abc.index(__lowercase ) + rotorposa __UpperCamelCase = rotora[index % len(__lowercase )] # rotor rc -------------------------- __UpperCamelCase = abc.index(__lowercase ) + rotorposa __UpperCamelCase = rotora[index % len(__lowercase )] # reflector -------------------------- # this is the reason you don't need another machine to decipher __UpperCamelCase = reflector[symbol] # 2nd rotors __UpperCamelCase = abc[rotora.index(__lowercase ) - rotorposa] __UpperCamelCase = abc[rotora.index(__lowercase ) - rotorposa] __UpperCamelCase = abc[rotora.index(__lowercase ) - rotorposa] # 2nd plugboard if symbol in plugboard: __UpperCamelCase = plugboard[symbol] # moves/resets rotor positions rotorposa += 1 if rotorposa >= len(__lowercase ): __UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(__lowercase ): __UpperCamelCase = 0 rotorposa += 1 if rotorposa >= len(__lowercase ): __UpperCamelCase = 0 # else: # pass # Error could be also raised # raise ValueError( # 'Invalid symbol('+repr(symbol)+')') result.append(__lowercase ) return "".join(__lowercase ) if __name__ == "__main__": __snake_case = '''This is my Python script that emulates the Enigma machine from WWII.''' __snake_case = (1, 1, 1) __snake_case = '''pictures''' __snake_case = (rotora, rotora, rotora) __snake_case = enigma(message, rotor_pos, rotor_sel, pb) print('''Encrypted message:''', en) print('''Decrypted message:''', enigma(en, rotor_pos, rotor_sel, pb))
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller A_ : Dict = 3 def __a ( SCREAMING_SNAKE_CASE ) -> int: '''simple docstring''' print('''Generating primitive root of p''' ) while True: __UpperCAmelCase = random.randrange(3 , __lowercase ) if pow(__lowercase , 2 , __lowercase ) == 1: continue if pow(__lowercase , __lowercase , __lowercase ) == 1: continue return g def __a ( SCREAMING_SNAKE_CASE ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: '''simple docstring''' print('''Generating prime p...''' ) __UpperCAmelCase = rabin_miller.generate_large_prime(__lowercase ) # select large prime number. __UpperCAmelCase = primitive_root(__lowercase ) # one primitive root on modulo p. __UpperCAmelCase = random.randrange(3 , __lowercase ) # private_key -> have to be greater than 2 for safety. __UpperCAmelCase = cryptomath.find_mod_inverse(pow(__lowercase , __lowercase , __lowercase ) , __lowercase ) __UpperCAmelCase = (key_size, e_a, e_a, p) __UpperCAmelCase = (key_size, d) return public_key, private_key def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( f'''\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() __UpperCAmelCase = generate_key(__lowercase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' , '''w''' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' , '''w''' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def __a ( ) -> None: '''simple docstring''' print('''Making key files...''' ) make_key_files('''elgamal''' , 2_0_4_8 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
import inspect import tempfile from collections import OrderedDict, UserDict from collections.abc import MutableMapping from contextlib import ExitStack, contextmanager from dataclasses import fields from enum import Enum from typing import Any, ContextManager, List, Tuple import numpy as np from .import_utils import is_flax_available, is_tf_available, is_torch_available, is_torch_fx_proxy if is_flax_available(): import jax.numpy as jnp class __lowerCAmelCase ( UpperCAmelCase_ ): def __get__( self , _snake_case , _snake_case=None ): """simple docstring""" if obj is None: return self if self.fget is None: raise AttributeError("""unreadable attribute""" ) _lowerCAmelCase = '''__cached_''' + self.fget.__name__ _lowerCAmelCase = getattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if cached is None: _lowerCAmelCase = self.fget(SCREAMING_SNAKE_CASE_ ) setattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) return cached def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = val.lower() if val in {"y", "yes", "t", "true", "on", "1"}: return 1 if val in {"n", "no", "f", "false", "off", "0"}: return 0 raise ValueError(F'invalid truth value {val!r}' ) def _UpperCAmelCase ( snake_case ): """simple docstring""" if is_torch_fx_proxy(__lowercase ): return True if is_torch_available(): import torch if isinstance(__lowercase , torch.Tensor ): return True if is_tf_available(): import tensorflow as tf if isinstance(__lowercase , tf.Tensor ): return True if is_flax_available(): import jax.numpy as jnp from jax.core import Tracer if isinstance(__lowercase , (jnp.ndarray, Tracer) ): return True return isinstance(__lowercase , np.ndarray ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return isinstance(__lowercase , np.ndarray ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return _is_numpy(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import torch return isinstance(__lowercase , torch.Tensor ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_torch_available() else _is_torch(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import torch return isinstance(__lowercase , torch.device ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_torch_available() else _is_torch_device(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import torch if isinstance(__lowercase , __lowercase ): if hasattr(__lowercase , __lowercase ): _lowerCAmelCase = getattr(__lowercase , __lowercase ) else: return False return isinstance(__lowercase , torch.dtype ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_torch_available() else _is_torch_dtype(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import tensorflow as tf return isinstance(__lowercase , tf.Tensor ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_tf_available() else _is_tensorflow(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import tensorflow as tf # the `is_symbolic_tensor` predicate is only available starting with TF 2.14 if hasattr(__lowercase , """is_symbolic_tensor""" ): return tf.is_symbolic_tensor(__lowercase ) return type(__lowercase ) == tf.Tensor def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_tf_available() else _is_tf_symbolic_tensor(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" import jax.numpy as jnp # noqa: F811 return isinstance(__lowercase , jnp.ndarray ) def _UpperCAmelCase ( snake_case ): """simple docstring""" return False if not is_flax_available() else _is_jax(__lowercase ) def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(__lowercase , (dict, UserDict) ): return {k: to_py_obj(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return [to_py_obj(__lowercase ) for o in obj] elif is_tf_tensor(__lowercase ): return obj.numpy().tolist() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().tolist() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ).tolist() elif isinstance(__lowercase , (np.ndarray, np.number) ): # tolist also works on 0d np arrays return obj.tolist() else: return obj def _UpperCAmelCase ( snake_case ): """simple docstring""" if isinstance(__lowercase , (dict, UserDict) ): return {k: to_numpy(__lowercase ) for k, v in obj.items()} elif isinstance(__lowercase , (list, tuple) ): return np.array(__lowercase ) elif is_tf_tensor(__lowercase ): return obj.numpy() elif is_torch_tensor(__lowercase ): return obj.detach().cpu().numpy() elif is_jax_tensor(__lowercase ): return np.asarray(__lowercase ) else: return obj class __lowerCAmelCase ( UpperCAmelCase_ ): def snake_case ( self ): """simple docstring""" _lowerCAmelCase = fields(self ) # Safety and consistency checks if not len(SCREAMING_SNAKE_CASE_ ): raise ValueError(F'{self.__class__.__name__} has no fields.' ) if not all(field.default is None for field in class_fields[1:] ): raise ValueError(F'{self.__class__.__name__} should not have more than one required field.' ) _lowerCAmelCase = getattr(self , class_fields[0].name ) _lowerCAmelCase = all(getattr(self , field.name ) is None for field in class_fields[1:] ) if other_fields_are_none and not is_tensor(SCREAMING_SNAKE_CASE_ ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = first_field.items() _lowerCAmelCase = True else: try: _lowerCAmelCase = iter(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = True except TypeError: _lowerCAmelCase = False # if we provided an iterator as first field and the iterator is a (key, value) iterator # set the associated fields if first_field_iterator: for idx, element in enumerate(SCREAMING_SNAKE_CASE_ ): if ( not isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ) or not len(SCREAMING_SNAKE_CASE_ ) == 2 or not isinstance(element[0] , SCREAMING_SNAKE_CASE_ ) ): if idx == 0: # If we do not have an iterator of key/values, set it as attribute _lowerCAmelCase = first_field else: # If we have a mixed iterator, raise an error raise ValueError( F'Cannot set key/value for {element}. It needs to be a tuple (key, value).' ) break setattr(self , element[0] , element[1] ) if element[1] is not None: _lowerCAmelCase = element[1] elif first_field is not None: _lowerCAmelCase = first_field else: for field in class_fields: _lowerCAmelCase = getattr(self , field.name ) if v is not None: _lowerCAmelCase = v def __delitem__( self , *_snake_case , **_snake_case ): """simple docstring""" raise Exception(F'You cannot use ``__delitem__`` on a {self.__class__.__name__} instance.' ) def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" raise Exception(F'You cannot use ``setdefault`` on a {self.__class__.__name__} instance.' ) def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" raise Exception(F'You cannot use ``pop`` on a {self.__class__.__name__} instance.' ) def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" raise Exception(F'You cannot use ``update`` on a {self.__class__.__name__} instance.' ) def __getitem__( self , _snake_case ): """simple docstring""" if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = dict(self.items() ) return inner_dict[k] else: return self.to_tuple()[k] def __setattr__( self , _snake_case , _snake_case ): """simple docstring""" if name in self.keys() and value is not None: # Don't call self.__setitem__ to avoid recursion errors super().__setitem__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) super().__setattr__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __setitem__( self , _snake_case , _snake_case ): """simple docstring""" super().__setitem__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Don't call self.__setattr__ to avoid recursion errors super().__setattr__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def snake_case ( self ): """simple docstring""" return tuple(self[k] for k in self.keys() ) class __lowerCAmelCase ( UpperCAmelCase_ , UpperCAmelCase_ ): @classmethod def snake_case ( cls , _snake_case ): """simple docstring""" raise ValueError( F'{value} is not a valid {cls.__name__}, please select one of {list(cls._valueamember_map_.keys() )}' ) class __lowerCAmelCase ( UpperCAmelCase_ ): __lowerCamelCase = """longest""" __lowerCamelCase = """max_length""" __lowerCamelCase = """do_not_pad""" class __lowerCAmelCase ( UpperCAmelCase_ ): __lowerCamelCase = """pt""" __lowerCamelCase = """tf""" __lowerCamelCase = """np""" __lowerCamelCase = """jax""" class __lowerCAmelCase : def __init__( self , _snake_case ): """simple docstring""" _lowerCAmelCase = context_managers _lowerCAmelCase = ExitStack() def __enter__( self ): """simple docstring""" for context_manager in self.context_managers: self.stack.enter_context(SCREAMING_SNAKE_CASE_ ) def __exit__( self , *_snake_case , **_snake_case ): """simple docstring""" self.stack.__exit__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = infer_framework(__lowercase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models for p in signature.parameters: if p == "return_loss" and signature.parameters[p].default is True: return True return False def _UpperCAmelCase ( snake_case ): """simple docstring""" _lowerCAmelCase = model_class.__name__ _lowerCAmelCase = infer_framework(__lowercase ) if framework == "tf": _lowerCAmelCase = inspect.signature(model_class.call ) # TensorFlow models elif framework == "pt": _lowerCAmelCase = inspect.signature(model_class.forward ) # PyTorch models else: _lowerCAmelCase = inspect.signature(model_class.__call__ ) # Flax models if "QuestionAnswering" in model_name: return [p for p in signature.parameters if "label" in p or p in ("start_positions", "end_positions")] else: return [p for p in signature.parameters if "label" in p] def _UpperCAmelCase ( snake_case , snake_case = "" , snake_case = "." ): """simple docstring""" def _flatten_dict(snake_case , snake_case="" , snake_case="." ): for k, v in d.items(): _lowerCAmelCase = str(__lowercase ) + delimiter + str(__lowercase ) if parent_key else k if v and isinstance(__lowercase , __lowercase ): yield from flatten_dict(__lowercase , __lowercase , delimiter=__lowercase ).items() else: yield key, v return dict(_flatten_dict(__lowercase , __lowercase , __lowercase ) ) @contextmanager def _UpperCAmelCase ( snake_case , snake_case = False ): """simple docstring""" if use_temp_dir: with tempfile.TemporaryDirectory() as tmp_dir: yield tmp_dir else: yield working_dir def _UpperCAmelCase ( snake_case , snake_case=None ): """simple docstring""" if is_numpy_array(__lowercase ): return np.transpose(__lowercase , axes=__lowercase ) elif is_torch_tensor(__lowercase ): return array.T if axes is None else array.permute(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.transpose(__lowercase , perm=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.transpose(__lowercase , axes=__lowercase ) else: raise ValueError(F'Type not supported for transpose: {type(__lowercase )}.' ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" if is_numpy_array(__lowercase ): return np.reshape(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.reshape(*__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.reshape(__lowercase , __lowercase ) elif is_jax_tensor(__lowercase ): return jnp.reshape(__lowercase , __lowercase ) else: raise ValueError(F'Type not supported for reshape: {type(__lowercase )}.' ) def _UpperCAmelCase ( snake_case , snake_case=None ): """simple docstring""" if is_numpy_array(__lowercase ): return np.squeeze(__lowercase , axis=__lowercase ) elif is_torch_tensor(__lowercase ): return array.squeeze() if axis is None else array.squeeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.squeeze(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.squeeze(__lowercase , axis=__lowercase ) else: raise ValueError(F'Type not supported for squeeze: {type(__lowercase )}.' ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" if is_numpy_array(__lowercase ): return np.expand_dims(__lowercase , __lowercase ) elif is_torch_tensor(__lowercase ): return array.unsqueeze(dim=__lowercase ) elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.expand_dims(__lowercase , axis=__lowercase ) elif is_jax_tensor(__lowercase ): return jnp.expand_dims(__lowercase , axis=__lowercase ) else: raise ValueError(F'Type not supported for expand_dims: {type(__lowercase )}.' ) def _UpperCAmelCase ( snake_case ): """simple docstring""" if is_numpy_array(__lowercase ): return np.size(__lowercase ) elif is_torch_tensor(__lowercase ): return array.numel() elif is_tf_tensor(__lowercase ): import tensorflow as tf return tf.size(__lowercase ) elif is_jax_tensor(__lowercase ): return array.size else: raise ValueError(F'Type not supported for expand_dims: {type(__lowercase )}.' ) def _UpperCAmelCase ( snake_case , snake_case ): """simple docstring""" for key, value in auto_map.items(): if isinstance(__lowercase , (tuple, list) ): _lowerCAmelCase = [F'{repo_id}--{v}' if (v is not None and '''--''' not in v) else v for v in value] elif value is not None and "--" not in value: _lowerCAmelCase = F'{repo_id}--{value}' return auto_map def _UpperCAmelCase ( snake_case ): """simple docstring""" for base_class in inspect.getmro(__lowercase ): _lowerCAmelCase = base_class.__module__ _lowerCAmelCase = base_class.__name__ if module.startswith("""tensorflow""" ) or module.startswith("""keras""" ) or name == "TFPreTrainedModel": return "tf" elif module.startswith("""torch""" ) or name == "PreTrainedModel": return "pt" elif module.startswith("""flax""" ) or module.startswith("""jax""" ) or name == "FlaxPreTrainedModel": return "flax" else: raise TypeError(F'Could not infer framework from class {model_class}.' )
82
'''simple docstring''' import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } UpperCamelCase = { '''b0''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 224, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1280, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 240, '''dropout_rate''': 0.2, '''dw_padding''': [16], }, '''b2''': { '''hidden_dim''': 1408, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 260, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 16], }, '''b3''': { '''hidden_dim''': 1536, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 300, '''dropout_rate''': 0.3, '''dw_padding''': [5, 18], }, '''b4''': { '''hidden_dim''': 1792, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 380, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2048, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 456, '''dropout_rate''': 0.4, '''dw_padding''': [13, 27], }, '''b6''': { '''hidden_dim''': 2304, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 528, '''dropout_rate''': 0.5, '''dw_padding''': [31], }, '''b7''': { '''hidden_dim''': 2560, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 600, '''dropout_rate''': 0.5, '''dw_padding''': [18], }, } def SCREAMING_SNAKE_CASE( __lowercase ) -> Dict: A: Tuple = EfficientNetConfig() A: Optional[int] = CONFIG_MAP[model_name]['''hidden_dim'''] A: Optional[int] = CONFIG_MAP[model_name]['''width_coef'''] A: str = CONFIG_MAP[model_name]['''depth_coef'''] A: Dict = CONFIG_MAP[model_name]['''image_size'''] A: str = CONFIG_MAP[model_name]['''dropout_rate'''] A: Optional[Any] = CONFIG_MAP[model_name]['''dw_padding'''] A: Optional[Any] = '''huggingface/label-files''' A: List[str] = '''imagenet-1k-id2label.json''' A: Dict = 1_0_0_0 A: Any = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Tuple = {int(__lowercase ): v for k, v in idalabel.items()} A: int = idalabel A: Tuple = {v: k for k, v in idalabel.items()} return config def SCREAMING_SNAKE_CASE( ) -> Any: A: Optional[Any] = '''http://images.cocodataset.org/val2017/000000039769.jpg''' A: Union[str, Any] = Image.open(requests.get(__lowercase , stream=__lowercase ).raw ) return im def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: A: List[str] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = EfficientNetImageProcessor( size={'''height''': size, '''width''': size} , image_mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , image_std=[0.4_7_8_5_3_9_4_4, 0.4_7_3_2_8_6_4, 0.4_7_4_3_4_1_6_3] , do_center_crop=__lowercase , ) return preprocessor def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: List[str] = [v.split('''_''' )[0].split('''block''' )[1] for v in original_param_names if v.startswith('''block''' )] A: List[str] = sorted(set(__lowercase ) ) A: Dict = len(__lowercase ) A: List[str] = {b: str(__lowercase ) for b, i in zip(__lowercase , range(__lowercase ) )} A: Optional[int] = [] rename_keys.append(('''stem_conv/kernel:0''', '''embeddings.convolution.weight''') ) rename_keys.append(('''stem_bn/gamma:0''', '''embeddings.batchnorm.weight''') ) rename_keys.append(('''stem_bn/beta:0''', '''embeddings.batchnorm.bias''') ) rename_keys.append(('''stem_bn/moving_mean:0''', '''embeddings.batchnorm.running_mean''') ) rename_keys.append(('''stem_bn/moving_variance:0''', '''embeddings.batchnorm.running_var''') ) for b in block_names: A: int = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(('''top_conv/kernel:0''', '''encoder.top_conv.weight''') ) rename_keys.append(('''top_bn/gamma:0''', '''encoder.top_bn.weight''') ) rename_keys.append(('''top_bn/beta:0''', '''encoder.top_bn.bias''') ) rename_keys.append(('''top_bn/moving_mean:0''', '''encoder.top_bn.running_mean''') ) rename_keys.append(('''top_bn/moving_variance:0''', '''encoder.top_bn.running_var''') ) A: Union[str, Any] = {} for item in rename_keys: if item[0] in original_param_names: A: str = '''efficientnet.''' + item[1] A: int = '''classifier.weight''' A: Tuple = '''classifier.bias''' return key_mapping def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Tuple: for key, value in tf_params.items(): if "normalization" in key: continue A: Union[str, Any] = key_mapping[key] if "_conv" in key and "kernel" in key: A: List[str] = torch.from_numpy(__lowercase ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: A: List[Any] = torch.from_numpy(__lowercase ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: A: Optional[Any] = torch.from_numpy(np.transpose(__lowercase ) ) else: A: Any = torch.from_numpy(__lowercase ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(__lowercase ) @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> Tuple: A: Optional[int] = model_classes[model_name]( include_top=__lowercase , weights='''imagenet''' , input_tensor=__lowercase , input_shape=__lowercase , pooling=__lowercase , classes=1_0_0_0 , classifier_activation='''softmax''' , ) A: List[str] = original_model.trainable_variables A: Optional[Any] = original_model.non_trainable_variables A: Union[str, Any] = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: A: int = param.numpy() A: Tuple = list(tf_params.keys() ) # Load HuggingFace model A: Dict = get_efficientnet_config(__lowercase ) A: Union[str, Any] = EfficientNetForImageClassification(__lowercase ).eval() A: Dict = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print('''Converting parameters...''' ) A: int = rename_keys(__lowercase ) replace_params(__lowercase , __lowercase , __lowercase ) # Initialize preprocessor and preprocess input image A: List[Any] = convert_image_processor(__lowercase ) A: Optional[Any] = preprocessor(images=prepare_img() , return_tensors='''pt''' ) # HF model inference hf_model.eval() with torch.no_grad(): A: str = hf_model(**__lowercase ) A: List[Any] = outputs.logits.detach().numpy() # Original model inference A: Any = False A: List[Any] = CONFIG_MAP[model_name]['''image_size'''] A: List[Any] = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) A: str = image.img_to_array(__lowercase ) A: Dict = np.expand_dims(__lowercase , axis=0 ) A: Any = original_model.predict(__lowercase ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(__lowercase , __lowercase , atol=1E-3 ), "The predicted logits are not the same." print('''Model outputs match!''' ) if save_model: # Create folder to save model if not os.path.isdir(__lowercase ): os.mkdir(__lowercase ) # Save converted model and image processor hf_model.save_pretrained(__lowercase ) preprocessor.save_pretrained(__lowercase ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) A: int = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(__lowercase ) hf_model.push_to_hub(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') UpperCamelCase = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
319
0
'''simple docstring''' import inspect import os import sys import unittest import accelerate from accelerate.test_utils import execute_subprocess_async, require_tpu class lowerCAmelCase_( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ) -> Dict: lowerCAmelCase__ : str = inspect.getfile(accelerate.test_utils ) lowerCAmelCase__ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """test_script.py"""] ) lowerCAmelCase__ : Union[str, Any] = os.path.sep.join(inspect.getfile(self.__class__ ).split(os.path.sep )[:-1] ) @require_tpu def UpperCAmelCase_ ( self ) -> List[str]: lowerCAmelCase__ : List[Any] = F""" {self.test_dir}/xla_spawn.py --num_cores 8 {self.test_file_path} """.split() lowerCAmelCase__ : Union[str, Any] = [sys.executable] + distributed_args execute_subprocess_async(SCREAMING_SNAKE_CASE_ ,env=os.environ.copy() )
37
'''simple docstring''' from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = {'''configuration_focalnet''': ['''FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FocalNetConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ '''FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FocalNetForImageClassification''', '''FocalNetForMaskedImageModeling''', '''FocalNetBackbone''', '''FocalNetModel''', '''FocalNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_focalnet import FOCALNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FocalNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_focalnet import ( FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST, FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, FocalNetPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING SCREAMING_SNAKE_CASE_: Union[str, Any] =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: str =Dict[str, Any] SCREAMING_SNAKE_CASE_: Optional[Any] =List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class __A ( UpperCAmelCase_ ): def __init__(self : Union[str, Any] , *__a : Union[str, Any] , **__a : List[str] ): super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _lowercase (self : int , **__a : Optional[int] ): UpperCAmelCase_ = {} if "threshold" in kwargs: UpperCAmelCase_ = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__(self : str , *__a : str , **__a : Optional[Any] ): return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _lowercase (self : Optional[int] , __a : Optional[int] ): UpperCAmelCase_ = load_image(SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = torch.IntTensor([[image.height, image.width]] ) UpperCAmelCase_ = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: UpperCAmelCase_ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) UpperCAmelCase_ = target_size return inputs def _lowercase (self : int , __a : str ): UpperCAmelCase_ = model_inputs.pop("target_size" ) UpperCAmelCase_ = self.model(**SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: UpperCAmelCase_ = model_inputs['''bbox'''] return model_outputs def _lowercase (self : Any , __a : Union[str, Any] , __a : str=0.9 ): UpperCAmelCase_ = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. UpperCAmelCase_ = target_size[0].tolist() def unnormalize(__a : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) UpperCAmelCase_ = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) UpperCAmelCase_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] UpperCAmelCase_ = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] UpperCAmelCase_ = ['''score''', '''label''', '''box'''] UpperCAmelCase_ = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel UpperCAmelCase_ = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCAmelCase_ = raw_annotations[0] UpperCAmelCase_ = raw_annotation['''scores'''] UpperCAmelCase_ = raw_annotation['''labels'''] UpperCAmelCase_ = raw_annotation['''boxes'''] UpperCAmelCase_ = scores.tolist() UpperCAmelCase_ = [self.model.config.idalabel[label.item()] for label in labels] UpperCAmelCase_ = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] UpperCAmelCase_ = ['''score''', '''label''', '''box'''] UpperCAmelCase_ = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def _lowercase (self : Tuple , __a : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) UpperCAmelCase_ = box.int().tolist() UpperCAmelCase_ = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
1
'''simple docstring''' from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = Dict[str, Any] UpperCamelCase = List[Prediction] @add_end_docstrings(UpperCAmelCase_ ) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[str] ) -> int: '''simple docstring''' super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.framework == "tf": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) requires_backends(self , '''vision''' ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def _snake_case ( self : int , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' A: Any = {} if "threshold" in kwargs: A: List[Any] = kwargs['''threshold'''] return {}, {}, postprocess_kwargs def __call__( self : str , *SCREAMING_SNAKE_CASE_ : str , **SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Union[Predictions, List[Prediction]]: '''simple docstring''' return super().__call__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Union[str, Any]: '''simple docstring''' A: int = load_image(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = torch.IntTensor([[image.height, image.width]] ) A: Union[str, Any] = self.image_processor(images=[image] , return_tensors='''pt''' ) if self.tokenizer is not None: A: int = self.tokenizer(text=inputs['''words'''] , boxes=inputs['''boxes'''] , return_tensors='''pt''' ) A: Any = target_size return inputs def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str ) -> List[Any]: '''simple docstring''' A: Tuple = model_inputs.pop('''target_size''' ) A: Tuple = self.model(**SCREAMING_SNAKE_CASE_ ) A: List[str] = outputs.__class__({'''target_size''': target_size, **outputs} ) if self.tokenizer is not None: A: Dict = model_inputs['''bbox'''] return model_outputs def _snake_case ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str=0.9 ) -> Union[str, Any]: '''simple docstring''' A: List[Any] = model_outputs['''target_size'''] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A , A: Union[str, Any] = target_size[0].tolist() def unnormalize(SCREAMING_SNAKE_CASE_ : str ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 10_00), (height * bbox[1] / 10_00), (width * bbox[2] / 10_00), (height * bbox[3] / 10_00), ] ) ) A , A: Dict = model_outputs['''logits'''].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A: List[str] = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A: List[str] = [unnormalize(SCREAMING_SNAKE_CASE_ ) for bbox in model_outputs['''bbox'''].squeeze(0 )] A: Dict = ['''score''', '''label''', '''box'''] A: Optional[int] = [dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(scores.tolist() , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A: Any = self.image_processor.post_process_object_detection(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: List[str] = raw_annotations[0] A: List[Any] = raw_annotation['''scores'''] A: List[Any] = raw_annotation['''labels'''] A: int = raw_annotation['''boxes'''] A: Any = scores.tolist() A: List[Any] = [self.model.config.idalabel[label.item()] for label in labels] A: List[Any] = [self._get_bounding_box(SCREAMING_SNAKE_CASE_ ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A: Tuple = ['''score''', '''label''', '''box'''] A: str = [ dict(zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) for vals in zip(raw_annotation['''scores'''] , raw_annotation['''labels'''] , raw_annotation['''boxes'''] ) ] return annotation def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : "torch.Tensor" ) -> Dict[str, int]: '''simple docstring''' if self.framework != "pt": raise ValueError('''The ObjectDetectionPipeline is only available in PyTorch.''' ) A , A , A , A: str = box.int().tolist() A: str = { '''xmin''': xmin, '''ymin''': ymin, '''xmax''': xmax, '''ymax''': ymax, } return bbox
319
0
import copy import os import cva import numpy as np from matplotlib import pyplot as plt class SCREAMING_SNAKE_CASE_ : def __init__( self : Tuple ): """simple docstring""" UpperCamelCase = '''''' UpperCamelCase = '''''' UpperCamelCase = [] UpperCamelCase = 0 UpperCamelCase = 256 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 UpperCamelCase = 0 def lowerCamelCase_ ( self : Any , lowerCamelCase_ : Any ): """simple docstring""" UpperCamelCase = cva.imread(SCREAMING_SNAKE_CASE_ , 0 ) UpperCamelCase = copy.deepcopy(self.img ) UpperCamelCase = plt.hist(self.img.ravel() , 256 , [0, 256] , label="""x""" ) UpperCamelCase = np.sum(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): UpperCamelCase = x[i] / self.k self.sk += prk UpperCamelCase = (self.L - 1) * self.sk if self.rem != 0: UpperCamelCase = int(last % last ) UpperCamelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = int(np.ma.count(self.img ) / self.img[1].size ) UpperCamelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): UpperCamelCase = self.img[j][i] if num != self.last_list[num]: UpperCamelCase = self.last_list[num] cva.imwrite("""output_data/output.jpg""" , self.img ) def lowerCamelCase_ ( self : Any ): """simple docstring""" plt.hist(self.img.ravel() , 256 , [0, 256] ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" cva.imshow("""Output-Image""" , self.img ) cva.imshow("""Input-Image""" , self.original_image ) cva.waitKey(5000 ) cva.destroyAllWindows() if __name__ == "__main__": _SCREAMING_SNAKE_CASE = os.path.join(os.path.basename(__file__), """image_data/input.jpg""") _SCREAMING_SNAKE_CASE = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
343
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''YituTech/conv-bert-base''': '''https://huggingface.co/YituTech/conv-bert-base/resolve/main/config.json''', '''YituTech/conv-bert-medium-small''': ( '''https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/config.json''' ), '''YituTech/conv-bert-small''': '''https://huggingface.co/YituTech/conv-bert-small/resolve/main/config.json''', # See all ConvBERT models at https://huggingface.co/models?filter=convbert } class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Optional[Any] = """convbert""" def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : Dict=3_05_22 , SCREAMING_SNAKE_CASE_ : int=7_68 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : List[str]=12 , SCREAMING_SNAKE_CASE_ : Dict=30_72 , SCREAMING_SNAKE_CASE_ : Optional[int]="gelu" , SCREAMING_SNAKE_CASE_ : List[Any]=0.1 , SCREAMING_SNAKE_CASE_ : int=0.1 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=5_12 , SCREAMING_SNAKE_CASE_ : List[Any]=2 , SCREAMING_SNAKE_CASE_ : List[str]=0.02 , SCREAMING_SNAKE_CASE_ : int=1E-12 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=1 , SCREAMING_SNAKE_CASE_ : int=0 , SCREAMING_SNAKE_CASE_ : str=2 , SCREAMING_SNAKE_CASE_ : List[Any]=7_68 , SCREAMING_SNAKE_CASE_ : Optional[Any]=2 , SCREAMING_SNAKE_CASE_ : Any=9 , SCREAMING_SNAKE_CASE_ : Tuple=1 , SCREAMING_SNAKE_CASE_ : List[Any]=None , **SCREAMING_SNAKE_CASE_ : List[str] , ) -> List[Any]: '''simple docstring''' super().__init__( pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) A: Dict = vocab_size A: Tuple = hidden_size A: Optional[int] = num_hidden_layers A: List[str] = num_attention_heads A: int = intermediate_size A: int = hidden_act A: List[str] = hidden_dropout_prob A: int = attention_probs_dropout_prob A: Tuple = max_position_embeddings A: Any = type_vocab_size A: str = initializer_range A: Union[str, Any] = layer_norm_eps A: str = embedding_size A: Optional[int] = head_ratio A: List[Any] = conv_kernel_size A: List[Any] = num_groups A: Optional[int] = classifier_dropout class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' @property def _snake_case ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": A: Tuple = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: A: List[str] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
319
0
import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowerCAmelCase : Union[str, Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A_ ( _UpperCAmelCase ): if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): return max(metric_fn(__lowercase , __lowercase ) for gt in ground_truths ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: List[Any] = [line.strip() for line in open(__lowercase , "r" ).readlines()] SCREAMING_SNAKE_CASE_: Any = [] if args.gold_data_mode == "qa": SCREAMING_SNAKE_CASE_: int = pd.read_csv(__lowercase , sep="\t" , header=__lowercase ) for answer_list in data[1]: SCREAMING_SNAKE_CASE_: Optional[Any] = ast.literal_eval(__lowercase ) answers.append(__lowercase ) else: SCREAMING_SNAKE_CASE_: Tuple = [line.strip() for line in open(__lowercase , "r" ).readlines()] SCREAMING_SNAKE_CASE_: List[str] = [[reference] for reference in references] SCREAMING_SNAKE_CASE_: List[Any] = 0 for prediction, ground_truths in zip(__lowercase , __lowercase ): total += 1 em += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase ) fa += metric_max_over_ground_truths(__lowercase , __lowercase , __lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] = 1_00.0 * em / total SCREAMING_SNAKE_CASE_: List[str] = 1_00.0 * fa / total logger.info(f"F1: {fa:.2f}" ) logger.info(f"EM: {em:.2f}" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Tuple = args.k SCREAMING_SNAKE_CASE_: int = [line.strip() for line in open(__lowercase , "r" ).readlines()] SCREAMING_SNAKE_CASE_: List[Any] = [line.strip() for line in open(__lowercase , "r" ).readlines()] SCREAMING_SNAKE_CASE_: Dict = 0 for hypo, reference in zip(__lowercase , __lowercase ): SCREAMING_SNAKE_CASE_: List[str] = set(hypo.split("\t" )[:k] ) SCREAMING_SNAKE_CASE_: Dict = set(reference.split("\t" ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k SCREAMING_SNAKE_CASE_: Any = 1_00.0 * em / total logger.info(f"Precision@{k}: {em: .2f}" ) def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): def strip_title(_UpperCAmelCase ): if title.startswith("\"" ): SCREAMING_SNAKE_CASE_: Dict = title[1:] if title.endswith("\"" ): SCREAMING_SNAKE_CASE_: str = title[:-1] return title SCREAMING_SNAKE_CASE_: str = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowercase , return_tensors="pt" , padding=__lowercase , truncation=__lowercase , )['''input_ids'''].to(args.device ) SCREAMING_SNAKE_CASE_: List[Any] = rag_model.rag.question_encoder(__lowercase ) SCREAMING_SNAKE_CASE_: List[str] = question_enc_outputs[0] SCREAMING_SNAKE_CASE_: Optional[int] = rag_model.retriever( __lowercase , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_: Any = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) SCREAMING_SNAKE_CASE_: Tuple = [] for docs in all_docs: SCREAMING_SNAKE_CASE_: Tuple = [strip_title(__lowercase ) for title in docs['''title''']] provenance_strings.append("\t".join(__lowercase ) ) return provenance_strings def A_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): with torch.no_grad(): SCREAMING_SNAKE_CASE_: Any = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __lowercase , return_tensors="pt" , padding=__lowercase , truncation=__lowercase ) SCREAMING_SNAKE_CASE_: Optional[int] = inputs_dict.input_ids.to(args.device ) SCREAMING_SNAKE_CASE_: Any = inputs_dict.attention_mask.to(args.device ) SCREAMING_SNAKE_CASE_: int = rag_model.generate( # rag_model overwrites generate __lowercase , attention_mask=__lowercase , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__lowercase , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) SCREAMING_SNAKE_CASE_: List[str] = rag_model.retriever.generator_tokenizer.batch_decode(__lowercase , skip_special_tokens=__lowercase ) if args.print_predictions: for q, a in zip(__lowercase , __lowercase ): logger.info("Q: {} - A: {}".format(__lowercase , __lowercase ) ) return answers def A_ ( ): SCREAMING_SNAKE_CASE_: Union[str, Any] = argparse.ArgumentParser() parser.add_argument( "--model_type" , choices=["rag_sequence", "rag_token", "bart"] , type=__lowercase , help=( "RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the" " model_name_or_path" ) , ) parser.add_argument( "--index_name" , default=__lowercase , choices=["exact", "compressed", "legacy"] , type=__lowercase , help="RAG model retriever type" , ) parser.add_argument( "--index_path" , default=__lowercase , type=__lowercase , help="Path to the retrieval index" , ) parser.add_argument("--n_docs" , default=5 , type=__lowercase , help="Number of retrieved docs" ) parser.add_argument( "--model_name_or_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to pretrained checkpoints or model identifier from huggingface.co/models" , ) parser.add_argument( "--eval_mode" , choices=["e2e", "retrieval"] , default="e2e" , type=__lowercase , help=( "Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates" " precision@k." ) , ) parser.add_argument("--k" , default=1 , type=__lowercase , help="k for the precision@k calculation" ) parser.add_argument( "--evaluation_set" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to a file containing evaluation samples" , ) parser.add_argument( "--gold_data_path" , default=__lowercase , type=__lowercase , required=__lowercase , help="Path to a tab-separated file with gold samples" , ) parser.add_argument( "--gold_data_mode" , default="qa" , type=__lowercase , choices=["qa", "ans"] , help=( "Format of the gold data file" "qa - a single line in the following format: question [tab] answer_list" "ans - a single line of the gold file contains the expected answer string" ) , ) parser.add_argument( "--predictions_path" , type=__lowercase , default="predictions.txt" , help="Name of the predictions file, to be stored in the checkpoints directory" , ) parser.add_argument( "--eval_all_checkpoints" , action="store_true" , help="Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number" , ) parser.add_argument( "--eval_batch_size" , default=8 , type=__lowercase , help="Batch size per GPU/CPU for evaluation." , ) parser.add_argument( "--recalculate" , help="Recalculate predictions even if the prediction file exists" , action="store_true" , ) parser.add_argument( "--num_beams" , default=4 , type=__lowercase , help="Number of beams to be used when generating answers" , ) parser.add_argument("--min_length" , default=1 , type=__lowercase , help="Min length of the generated answers" ) parser.add_argument("--max_length" , default=50 , type=__lowercase , help="Max length of the generated answers" ) parser.add_argument( "--print_predictions" , action="store_true" , help="If True, prints predictions while evaluating." , ) parser.add_argument( "--print_docs" , action="store_true" , help="If True, prints docs retried while generating." , ) SCREAMING_SNAKE_CASE_: Optional[int] = parser.parse_args() SCREAMING_SNAKE_CASE_: Dict = torch.device("cuda" if torch.cuda.is_available() else "cpu" ) return args def A_ ( _UpperCAmelCase ): SCREAMING_SNAKE_CASE_: Union[str, Any] = {} if args.model_type is None: SCREAMING_SNAKE_CASE_: Optional[int] = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith("rag" ): SCREAMING_SNAKE_CASE_: Optional[int] = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration SCREAMING_SNAKE_CASE_: Optional[Any] = args.n_docs if args.index_name is not None: SCREAMING_SNAKE_CASE_: Optional[int] = args.index_name if args.index_path is not None: SCREAMING_SNAKE_CASE_: Tuple = args.index_path else: SCREAMING_SNAKE_CASE_: int = BartForConditionalGeneration SCREAMING_SNAKE_CASE_: List[Any] = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info("Evaluate the following checkpoints: %s" , __lowercase ) SCREAMING_SNAKE_CASE_: Optional[Any] = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k SCREAMING_SNAKE_CASE_: Union[str, Any] = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info("Calculating metrics based on an existing predictions file: {}".format(args.predictions_path ) ) score_fn(__lowercase , args.predictions_path , args.gold_data_path ) continue logger.info("***** Running evaluation for {} *****".format(__lowercase ) ) logger.info(" Batch size = %d" , args.eval_batch_size ) logger.info(" Predictions will be stored under {}".format(args.predictions_path ) ) if args.model_type.startswith("rag" ): SCREAMING_SNAKE_CASE_: Dict = RagRetriever.from_pretrained(__lowercase , **__lowercase ) SCREAMING_SNAKE_CASE_: Any = model_class.from_pretrained(__lowercase , retriever=__lowercase , **__lowercase ) model.retriever.init_retrieval() else: SCREAMING_SNAKE_CASE_: Optional[int] = model_class.from_pretrained(__lowercase , **__lowercase ) model.to(args.device ) with open(args.evaluation_set , "r" ) as eval_file, open(args.predictions_path , "w" ) as preds_file: SCREAMING_SNAKE_CASE_: Dict = [] for line in tqdm(__lowercase ): questions.append(line.strip() ) if len(__lowercase ) == args.eval_batch_size: SCREAMING_SNAKE_CASE_: str = evaluate_batch_fn(__lowercase , __lowercase , __lowercase ) preds_file.write("\n".join(__lowercase ) + "\n" ) preds_file.flush() SCREAMING_SNAKE_CASE_: Any = [] if len(__lowercase ) > 0: SCREAMING_SNAKE_CASE_: Tuple = evaluate_batch_fn(__lowercase , __lowercase , __lowercase ) preds_file.write("\n".join(__lowercase ) ) preds_file.flush() score_fn(__lowercase , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": lowerCAmelCase : int = get_args() main(args)
13
'''simple docstring''' from __future__ import annotations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if len(__lowercase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) A: Any = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
"""simple docstring""" import os try: from .build_directory_md import good_file_paths except ImportError: from build_directory_md import good_file_paths # type: ignore __UpperCamelCase = list(good_file_paths()) assert filepaths, "good_file_paths() failed!" __UpperCamelCase = [file for file in filepaths if file != file.lower()] if upper_files: print(F"""{len(upper_files)} files contain uppercase characters:""") print('''\n'''.join(upper_files) + '''\n''') __UpperCamelCase = [file for file in filepaths if ''' ''' in file] if space_files: print(F"""{len(space_files)} files contain space characters:""") print('''\n'''.join(space_files) + '''\n''') __UpperCamelCase = [file for file in filepaths if '''-''' in file] if hyphen_files: print(F"""{len(hyphen_files)} files contain hyphen characters:""") print('''\n'''.join(hyphen_files) + '''\n''') __UpperCamelCase = [file for file in filepaths if os.sep not in file] if nodir_files: print(F"""{len(nodir_files)} files are not in a directory:""") print('''\n'''.join(nodir_files) + '''\n''') __UpperCamelCase = len(upper_files + space_files + hyphen_files + nodir_files) if bad_files: import sys sys.exit(bad_files)
69
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. UpperCamelCase = abspath(join(dirname(__file__), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: config.addinivalue_line( '''markers''' , '''is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested''' ) config.addinivalue_line( '''markers''' , '''is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested''' ) config.addinivalue_line('''markers''' , '''is_pipeline_test: mark test to run only when pipelines are tested''' ) config.addinivalue_line('''markers''' , '''is_staging_test: mark test to run only in the staging environment''' ) config.addinivalue_line('''markers''' , '''accelerate_tests: mark test that require accelerate''' ) config.addinivalue_line('''markers''' , '''tool_tests: mark the tool tests that are run on their specific schedule''' ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Tuple: from transformers.testing_utils import pytest_terminal_summary_main A: Optional[int] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(__lowercase , id=__lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: A: Tuple = 0 # Doctest custom flag to ignore output. UpperCamelCase = doctest.register_optionflag('''IGNORE_RESULT''') UpperCamelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = CustomOutputChecker UpperCamelCase = HfDoctestModule UpperCamelCase = HfDocTestParser
319
0
'''simple docstring''' import torch from diffusers import KDPMaDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( UpperCAmelCase_ ): """simple docstring""" _SCREAMING_SNAKE_CASE = (KDPMaDiscreteScheduler,) _SCREAMING_SNAKE_CASE = 10 def A ( self : Optional[Any] , **UpperCamelCase__ : Any ): """simple docstring""" UpperCamelCase = { '''num_train_timesteps''': 1_1_0_0, '''beta_start''': 0.0_0_0_1, '''beta_end''': 0.0_2, '''beta_schedule''': '''linear''', } config.update(**SCREAMING_SNAKE_CASE_ ) return config def A ( self : Union[str, Any] ): """simple docstring""" for timesteps in [1_0, 5_0, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE_ ) def A ( self : int ): """simple docstring""" for beta_start, beta_end in zip([0.0_0_0_0_1, 0.0_0_0_1, 0.0_0_1] , [0.0_0_0_2, 0.0_0_2, 0.0_2] ): self.check_over_configs(beta_start=SCREAMING_SNAKE_CASE_ , beta_end=SCREAMING_SNAKE_CASE_ ) def A ( self : str ): """simple docstring""" for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=SCREAMING_SNAKE_CASE_ ) def A ( self : List[Any] ): """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE_ ) def A ( self : int ): """simple docstring""" UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 4.6_9_3_4E-0_7 ) < 1E-2 assert abs(result_mean.item() - 6.1_1_1_2E-1_0 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 4.6_9_3_4_2_8_6_5_0_1_7_0_9_7_2E-0_7 ) < 1E-2 assert abs(result_mean.item() - 0.0_0_0_2 ) < 1E-3 def A ( self : int ): """simple docstring""" if torch_device == "mps": return UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter * scheduler.init_noise_sigma UpperCamelCase = sample.to(SCREAMING_SNAKE_CASE_ ) for i, t in enumerate(scheduler.timesteps ): UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if torch_device in ["cpu", "mps"]: assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 def A ( self : Optional[Any] ): """simple docstring""" if torch_device == "mps": return UpperCamelCase = self.scheduler_classes[0] UpperCamelCase = self.get_scheduler_config() UpperCamelCase = scheduler_class(**SCREAMING_SNAKE_CASE_ ) scheduler.set_timesteps(self.num_inference_steps , device=SCREAMING_SNAKE_CASE_ ) UpperCamelCase = self.dummy_model() UpperCamelCase = self.dummy_sample_deter.to(SCREAMING_SNAKE_CASE_ ) * scheduler.init_noise_sigma for t in scheduler.timesteps: UpperCamelCase = scheduler.scale_model_input(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = model(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = scheduler.step(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = output.prev_sample UpperCamelCase = torch.sum(torch.abs(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase = torch.mean(torch.abs(SCREAMING_SNAKE_CASE_ ) ) if str(SCREAMING_SNAKE_CASE_ ).startswith('cpu' ): # The following sum varies between 148 and 156 on mps. Why? assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3 else: # CUDA assert abs(result_sum.item() - 2_0.4_1_2_5 ) < 1E-2 assert abs(result_mean.item() - 0.0_2_6_6 ) < 1E-3
28
'''simple docstring''' import heapq import sys import numpy as np UpperCamelCase = tuple[int, int] class lowerCAmelCase_ : '''simple docstring''' def __init__( self : List[Any] ) -> str: '''simple docstring''' A: Any = [] A: int = set() def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' if not self.empty(): return self.elements[0][0] else: return float('''inf''' ) def _snake_case ( self : List[str] ) -> List[Any]: '''simple docstring''' return len(self.elements ) == 0 def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any ) -> List[Any]: '''simple docstring''' if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(SCREAMING_SNAKE_CASE_ ) else: # update # print("update", item) A: Optional[int] = [] ((A) , (A)): str = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((A) , (A)): int = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _snake_case ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : str ) -> Any: '''simple docstring''' if item in self.set: self.set.remove(SCREAMING_SNAKE_CASE_ ) A: str = [] ((A) , (A)): List[str] = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((A) , (A)): Any = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' return self.elements[0][1] def _snake_case ( self : int ) -> Union[str, Any]: '''simple docstring''' ((A) , (A)): Dict = heapq.heappop(self.elements ) self.set.remove(SCREAMING_SNAKE_CASE_ ) return (priority, item) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: # euclidean distance A: List[str] = np.array(__lowercase ) A: Optional[int] = np.array(__lowercase ) return np.linalg.norm(a - b ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> int: # integer division by time variable return consistent_heuristic(__lowercase , __lowercase ) // t def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Optional[Any]: # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase ) -> List[Any]: A: int = g_function[start] + Wa * heuristics[i](__lowercase , __lowercase ) return ans def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> Optional[int]: A: Union[str, Any] = np.chararray((n, n) ) for i in range(__lowercase ): for j in range(__lowercase ): A: Union[str, Any] = '''*''' for i in range(__lowercase ): for j in range(__lowercase ): if (j, (n - 1) - i) in blocks: A: Optional[Any] = '''#''' A: Tuple = '''-''' A: List[str] = back_pointer[goal] while x != start: ((A) , (A)): Tuple = x # print(x) A: List[str] = '''-''' A: str = back_pointer[x] A: Dict = '''-''' for i in range(__lowercase ): for j in range(__lowercase ): if (i, j) == (0, n - 1): print(grid[i][j] , end=''' ''' ) print('''<-- End position''' , end=''' ''' ) else: print(grid[i][j] , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) print('''PATH TAKEN BY THE ALGORITHM IS:-''' ) A: List[str] = back_pointer[goal] while x != start: print(__lowercase , end=''' ''' ) A: Optional[int] = back_pointer[x] print(__lowercase ) sys.exit() def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[Any]: if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) -> Union[str, Any]: for itera in range(__lowercase ): open_list[itera].remove_element(__lowercase ) # print("s", s) # print("j", j) ((A) , (A)): Tuple = s A: Optional[Any] = (x - 1, y) A: str = (x + 1, y) A: List[Any] = (x, y + 1) A: int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(__lowercase ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(__lowercase ) A: int = -1 A: int = float('''inf''' ) if valid(__lowercase ) and g_function[neighbours] > g_function[s] + 1: A: List[str] = g_function[s] + 1 A: List[str] = s if neighbours not in close_list_anchor: open_list[0].put(__lowercase , key(__lowercase , 0 , __lowercase , __lowercase ) ) if neighbours not in close_list_inad: for var in range(1 , __lowercase ): if key(__lowercase , __lowercase , __lowercase , __lowercase ) <= Wa * key( __lowercase , 0 , __lowercase , __lowercase ): open_list[j].put( __lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( ) -> Tuple: A: str = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(1_5 , 2_0 ): some_list.append((x, 1_7) ) for x in range(1_0 , 1_9 ): for y in range(1 , 1_5 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(1_2 , 1_9 ): some_list.append((x, y) ) for x in range(3 , 1_3 ): for y in range(1_6 , 1_9 ): some_list.append((x, y) ) return some_list UpperCamelCase = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} UpperCamelCase = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] UpperCamelCase = make_common_ground() UpperCamelCase = blocks_blk # hyper parameters UpperCamelCase = 1 UpperCamelCase = 1 UpperCamelCase = 20 UpperCamelCase = 3 # one consistent and two other inconsistent # start and end destination UpperCamelCase = (0, 0) UpperCamelCase = (n - 1, n - 1) UpperCamelCase = 1 def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: int = {start: 0, goal: float('''inf''' )} A: Union[str, Any] = {start: -1, goal: -1} A: List[Any] = [] A: Union[str, Any] = set() for i in range(__lowercase ): open_list.append(PriorityQueue() ) open_list[i].put(__lowercase , key(__lowercase , __lowercase , __lowercase , __lowercase ) ) A: list[int] = [] A: list[int] = [] while open_list[0].minkey() < float('''inf''' ): for i in range(1 , __lowercase ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A , A: Union[str, Any] = open_list[i].top_show() visited.add(__lowercase ) expand_state( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_inad.append(__lowercase ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float('''inf''' ): do_something(__lowercase , __lowercase , __lowercase ) else: A: Union[str, Any] = open_list[0].top_show() visited.add(__lowercase ) expand_state( __lowercase , 0 , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , ) close_list_anchor.append(__lowercase ) print('''No path found to goal''' ) print() for i in range(n - 1 , -1 , -1 ): for j in range(__lowercase ): if (j, i) in blocks: print('''#''' , end=''' ''' ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print('''*''' , end=''' ''' ) else: print('''-''' , end=''' ''' ) else: print('''*''' , end=''' ''' ) if (j, i) == (n - 1, n - 1): print('''<-- End position''' , end=''' ''' ) print() print('''^''' ) print('''Start position''' ) print() print('''# is an obstacle''' ) print('''- is the path taken by algorithm''' ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
319
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase =logging.get_logger(__name__) def _a ( lowerCamelCase, lowerCamelCase=False ): lowerCamelCase : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''vit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''vit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''vit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''vit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''vit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''vit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''vit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''vit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''vit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''vit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """vit.embeddings.cls_token"""), ("""patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" lowerCamelCase : Union[str, Any] = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase=False ): for i in range(config.num_hidden_layers ): if base_model: lowerCamelCase : Dict = '''''' else: lowerCamelCase : Union[str, Any] = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowerCamelCase : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) lowerCamelCase : Any = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict lowerCamelCase : Dict = in_proj_weight[ : config.hidden_size, : ] lowerCamelCase : Dict = in_proj_bias[: config.hidden_size] lowerCamelCase : Optional[int] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowerCamelCase : List[str] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowerCamelCase : str = in_proj_weight[ -config.hidden_size :, : ] lowerCamelCase : List[Any] = in_proj_bias[-config.hidden_size :] def _a ( lowerCamelCase ): lowerCamelCase : Dict = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase, __lowercase ) def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase ): lowerCamelCase : str = dct.pop(__lowercase ) lowerCamelCase : List[str] = val def _a ( ): lowerCamelCase : Tuple = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCamelCase : str = Image.open(requests.get(__lowercase, stream=__lowercase ).raw ) return im @torch.no_grad() def _a ( lowerCamelCase, lowerCamelCase, lowerCamelCase=True ): lowerCamelCase : Tuple = ViTConfig() # patch_size if model_name[-1] == "8": lowerCamelCase : List[str] = 8 # set labels if required if not base_model: lowerCamelCase : Dict = 1000 lowerCamelCase : Tuple = '''huggingface/label-files''' lowerCamelCase : Optional[int] = '''imagenet-1k-id2label.json''' lowerCamelCase : Any = json.load(open(hf_hub_download(__lowercase, __lowercase, repo_type="""dataset""" ), """r""" ) ) lowerCamelCase : str = {int(__lowercase ): v for k, v in idalabel.items()} lowerCamelCase : int = idalabel lowerCamelCase : Tuple = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: lowerCamelCase : Tuple = 384 lowerCamelCase : Union[str, Any] = 1536 lowerCamelCase : Tuple = 12 lowerCamelCase : List[str] = 6 # load original model from torch hub lowerCamelCase : List[str] = torch.hub.load("""facebookresearch/dino:main""", __lowercase ) original_model.eval() # load state_dict of original model, remove and rename some keys lowerCamelCase : Union[str, Any] = original_model.state_dict() if base_model: remove_classification_head_(__lowercase ) lowerCamelCase : Optional[Any] = create_rename_keys(__lowercase, base_model=__lowercase ) for src, dest in rename_keys: rename_key(__lowercase, __lowercase, __lowercase ) read_in_q_k_v(__lowercase, __lowercase, __lowercase ) # load HuggingFace model if base_model: lowerCamelCase : Dict = ViTModel(__lowercase, add_pooling_layer=__lowercase ).eval() else: lowerCamelCase : Union[str, Any] = ViTForImageClassification(__lowercase ).eval() model.load_state_dict(__lowercase ) # Check outputs on an image, prepared by ViTImageProcessor lowerCamelCase : Tuple = ViTImageProcessor() lowerCamelCase : Any = image_processor(images=prepare_img(), return_tensors="""pt""" ) lowerCamelCase : str = encoding['''pixel_values'''] lowerCamelCase : str = model(__lowercase ) if base_model: lowerCamelCase : Optional[Any] = original_model(__lowercase ) assert torch.allclose(__lowercase, outputs.last_hidden_state[:, 0, :], atol=1e-1 ) else: lowerCamelCase : Tuple = original_model(__lowercase ) assert logits.shape == outputs.logits.shape assert torch.allclose(__lowercase, outputs.logits, atol=1e-3 ) Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__lowercase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__lowercase ) if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""dino_vitb16""", type=str, help="""Name of the model trained with DINO you\'d like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--base_model""", action="""store_true""", help="""Whether to only convert the base model (no projection head weights).""", ) parser.set_defaults(base_model=True) _lowerCamelCase =parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
287
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase = 1 , __lowercase = 1_0_0_0 ) -> int: A: Any = 1 A: Optional[Any] = 0 for divide_by_number in range(__lowercase , digit + 1 ): A: list[int] = [] A: List[Any] = numerator for _ in range(1 , digit + 1 ): if now_divide in has_been_divided: if longest_list_length < len(__lowercase ): A: Any = len(__lowercase ) A: Dict = divide_by_number else: has_been_divided.append(__lowercase ) A: str = now_divide * 1_0 % divide_by_number return the_digit # Tests if __name__ == "__main__": import doctest doctest.testmod()
319
0
from typing import Callable, List, Optional, Union import PIL import torch from transformers import ( CLIPImageProcessor, CLIPSegForImageSegmentation, CLIPSegProcessor, CLIPTextModel, CLIPTokenizer, ) from diffusers import DiffusionPipeline from diffusers.configuration_utils import FrozenDict from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import deprecate, is_accelerate_available, logging _UpperCAmelCase : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class lowerCAmelCase ( UpperCAmelCase_ ): def __init__( self : List[str] , UpperCAmelCase : CLIPSegForImageSegmentation , UpperCAmelCase : CLIPSegProcessor , UpperCAmelCase : AutoencoderKL , UpperCAmelCase : CLIPTextModel , UpperCAmelCase : CLIPTokenizer , UpperCAmelCase : UNetaDConditionModel , UpperCAmelCase : Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] , UpperCAmelCase : StableDiffusionSafetyChecker , UpperCAmelCase : CLIPImageProcessor , ) -> List[str]: super().__init__() if hasattr(scheduler.config , 'steps_offset' ) and scheduler.config.steps_offset != 1: lowerCamelCase__ : Tuple = ( F"""The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`""" F""" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure """ '''to update the config accordingly as leaving `steps_offset` might led to incorrect results''' ''' in future versions. If you have downloaded this checkpoint from the Hugging Face Hub,''' ''' it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`''' ''' file''' ) deprecate('steps_offset!=1' , '1.0.0' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : Any = dict(scheduler.config ) lowerCamelCase__ : int = 1 lowerCamelCase__ : Optional[Any] = FrozenDict(SCREAMING_SNAKE_CASE_ ) if hasattr(scheduler.config , 'skip_prk_steps' ) and scheduler.config.skip_prk_steps is False: lowerCamelCase__ : List[Any] = ( F"""The configuration file of this scheduler: {scheduler} has not set the configuration""" ''' `skip_prk_steps`. `skip_prk_steps` should be set to True in the configuration file. Please make''' ''' sure to update the config accordingly as not setting `skip_prk_steps` in the config might lead to''' ''' incorrect results in future versions. If you have downloaded this checkpoint from the Hugging Face''' ''' Hub, it would be very nice if you could open a Pull request for the''' ''' `scheduler/scheduler_config.json` file''' ) deprecate('skip_prk_steps not set' , '1.0.0' , SCREAMING_SNAKE_CASE_ , standard_warn=SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : str = dict(scheduler.config ) lowerCamelCase__ : List[str] = True lowerCamelCase__ : Any = FrozenDict(SCREAMING_SNAKE_CASE_ ) if safety_checker is None: logger.warning( F"""You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure""" ' that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered' ' results in services or applications open to the public. Both the diffusers team and Hugging Face' ' strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling' ' it only for use-cases that involve analyzing network behavior or auditing its results. For more' ' information, please have a look at https://github.com/huggingface/diffusers/pull/254 .' ) self.register_modules( segmentation_model=SCREAMING_SNAKE_CASE_ , segmentation_processor=SCREAMING_SNAKE_CASE_ , vae=SCREAMING_SNAKE_CASE_ , text_encoder=SCREAMING_SNAKE_CASE_ , tokenizer=SCREAMING_SNAKE_CASE_ , unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , safety_checker=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , ) def A_ ( self : List[str] , UpperCAmelCase : Optional[Union[str, int]] = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCamelCase__ : Dict = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(SCREAMING_SNAKE_CASE_ ) def A_ ( self : List[str] ) -> List[Any]: self.enable_attention_slicing(SCREAMING_SNAKE_CASE_ ) def A_ ( self : Dict ) -> Tuple: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError('Please install accelerate via `pip install accelerate`' ) lowerCamelCase__ : Union[str, Any] = torch.device('cuda' ) for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae, self.safety_checker]: if cpu_offloaded_model is not None: cpu_offload(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def A_ ( self : int ) -> List[str]: if self.device != torch.device('meta' ) or not hasattr(self.unet , '_hf_hook' ): return self.device for module in self.unet.modules(): if ( hasattr(SCREAMING_SNAKE_CASE_ , '_hf_hook' ) and hasattr(module._hf_hook , 'execution_device' ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() def __call__( self : int , UpperCAmelCase : Union[str, List[str]] , UpperCAmelCase : Union[torch.FloatTensor, PIL.Image.Image] , UpperCAmelCase : str , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 512 , UpperCAmelCase : int = 50 , UpperCAmelCase : float = 7.5 , UpperCAmelCase : Optional[Union[str, List[str]]] = None , UpperCAmelCase : Optional[int] = 1 , UpperCAmelCase : float = 0.0 , UpperCAmelCase : Optional[torch.Generator] = None , UpperCAmelCase : Optional[torch.FloatTensor] = None , UpperCAmelCase : Optional[str] = "pil" , UpperCAmelCase : bool = True , UpperCAmelCase : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , UpperCAmelCase : int = 1 , **UpperCAmelCase : Optional[Any] , ) -> Tuple: lowerCamelCase__ : int = self.segmentation_processor( text=[text] , images=[image] , padding='max_length' , return_tensors='pt' ).to(self.device ) lowerCamelCase__ : List[Any] = self.segmentation_model(**SCREAMING_SNAKE_CASE_ ) lowerCamelCase__ : List[Any] = torch.sigmoid(outputs.logits ).cpu().detach().unsqueeze(-1 ).numpy() lowerCamelCase__ : Any = self.numpy_to_pil(SCREAMING_SNAKE_CASE_ )[0].resize(image.size ) # Run inpainting pipeline with the generated mask lowerCamelCase__ : List[Any] = StableDiffusionInpaintPipeline( vae=self.vae , text_encoder=self.text_encoder , tokenizer=self.tokenizer , unet=self.unet , scheduler=self.scheduler , safety_checker=self.safety_checker , feature_extractor=self.feature_extractor , ) return inpainting_pipeline( prompt=SCREAMING_SNAKE_CASE_ , image=SCREAMING_SNAKE_CASE_ , mask_image=SCREAMING_SNAKE_CASE_ , height=SCREAMING_SNAKE_CASE_ , width=SCREAMING_SNAKE_CASE_ , num_inference_steps=SCREAMING_SNAKE_CASE_ , guidance_scale=SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ , num_images_per_prompt=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , latents=SCREAMING_SNAKE_CASE_ , output_type=SCREAMING_SNAKE_CASE_ , return_dict=SCREAMING_SNAKE_CASE_ , callback=SCREAMING_SNAKE_CASE_ , callback_steps=SCREAMING_SNAKE_CASE_ , )
50
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCamelCase = { '''configuration_vision_encoder_decoder''': ['''VisionEncoderDecoderConfig''', '''VisionEncoderDecoderOnnxConfig'''] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''VisionEncoderDecoderModel'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''TFVisionEncoderDecoderModel'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ['''FlaxVisionEncoderDecoderModel'''] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
319
0
from collections import Counter from timeit import timeit def _A ( _lowercase = "" , ) -> bool: """simple docstring""" return sum(c % 2 for c in Counter(input_str.replace(' ' , '' ).lower() ).values() ) < 2 def _A ( _lowercase = "" ) -> bool: """simple docstring""" if len(__lowercase ) == 0: return True __UpperCamelCase = input_str.replace(' ' , '' ).lower() # character_freq_dict: Stores the frequency of every character in the input string __UpperCamelCase = {} for character in lower_case_input_str: __UpperCamelCase = character_freq_dict.get(__lowercase , 0 ) + 1 __UpperCamelCase = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def _A ( _lowercase = "" ) -> None: """simple docstring""" print('\nFor string = ' , __lowercase , ':' ) print( '> can_string_be_rearranged_as_palindrome_counter()' , '\tans =' , can_string_be_rearranged_as_palindrome_counter(__lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome_counter(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) print( '> can_string_be_rearranged_as_palindrome()' , '\tans =' , can_string_be_rearranged_as_palindrome(__lowercase ) , '\ttime =' , timeit( 'z.can_string_be_rearranged_as_palindrome(z.check_str)' , setup='import __main__ as z' , ) , 'seconds' , ) if __name__ == "__main__": __snake_case = input( '''Enter string to determine if it can be rearranged as a palindrome or not: ''' ).strip() benchmark(check_str) __snake_case = can_string_be_rearranged_as_palindrome_counter(check_str) print(f"""{check_str} can {'' if status else 'not '}be rearranged as a palindrome""")
310
'''simple docstring''' import fire from utils import calculate_rouge, save_json def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=None , **__lowercase ) -> Any: A: Any = [x.strip() for x in open(__lowercase ).readlines()] A: Dict = [x.strip() for x in open(__lowercase ).readlines()][: len(__lowercase )] A: Union[str, Any] = calculate_rouge(__lowercase , __lowercase , **__lowercase ) if save_path is not None: save_json(__lowercase , __lowercase , indent=__lowercase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
319
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class A_ ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ (self , lowercase__ ) -> Union[str, Any]: __UpperCAmelCase = 3 __UpperCAmelCase = 250 __UpperCAmelCase = ids_tensor((batch_size, length) , SCREAMING_SNAKE_CASE_ ) __UpperCAmelCase = torch.ones((batch_size, length) , device=SCREAMING_SNAKE_CASE_ , dtype=torch.float ) / length return input_ids, scores def lowerCAmelCase_ (self ) -> Any: __UpperCAmelCase = self._get_tensors(5 ) __UpperCAmelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase_ (self ) -> Union[str, Any]: __UpperCAmelCase = MaxLengthCriteria(max_length=10 ) __UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase_ (self ) -> Optional[Any]: __UpperCAmelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) __UpperCAmelCase = self._get_tensors(5 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(9 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = self._get_tensors(10 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def lowerCAmelCase_ (self ) -> Optional[int]: __UpperCAmelCase = self._get_tensors(5 ) __UpperCAmelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) __UpperCAmelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) def lowerCAmelCase_ (self ) -> Optional[Any]: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(SCREAMING_SNAKE_CASE_ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) __UpperCAmelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 1 )
333
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase , __lowercase = 0 ) -> list: A: Dict = length or len(__lowercase ) A: Dict = False for i in range(length - 1 ): if list_data[i] > list_data[i + 1]: A , A: Tuple = list_data[i + 1], list_data[i] A: Union[str, Any] = True return list_data if not swapped else bubble_sort(__lowercase , length - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
319
0
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( UpperCAmelCase_ ): __lowerCamelCase = ["""image_processor""", """tokenizer"""] __lowerCamelCase = """ViltImageProcessor""" __lowerCamelCase = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self , _snake_case=None , _snake_case=None , **_snake_case ): """simple docstring""" _lowerCAmelCase = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , SCREAMING_SNAKE_CASE_ , ) _lowerCAmelCase = kwargs.pop("""feature_extractor""" ) _lowerCAmelCase = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = self.image_processor def __call__( self , _snake_case , _snake_case = None , _snake_case = True , _snake_case = False , _snake_case = None , _snake_case = None , _snake_case = 0 , _snake_case = None , _snake_case = None , _snake_case = None , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = False , _snake_case = True , _snake_case = None , **_snake_case , ): """simple docstring""" _lowerCAmelCase = self.tokenizer( text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) # add pixel_values + pixel_mask _lowerCAmelCase = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ ) encoding.update(SCREAMING_SNAKE_CASE_ ) return encoding def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def snake_case ( self , *_snake_case , **_snake_case ): """simple docstring""" return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def snake_case ( self ): """simple docstring""" _lowerCAmelCase = self.tokenizer.model_input_names _lowerCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def snake_case ( self ): """simple docstring""" warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
82
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = [ ('''bert.bert''', '''visual_bert'''), ('''bert.cls''', '''cls'''), ('''bert.classifier''', '''cls'''), ('''token_type_embeddings_visual''', '''visual_token_type_embeddings'''), ('''position_embeddings_visual''', '''visual_position_embeddings'''), ('''projection''', '''visual_projection'''), ] UpperCamelCase = [ '''nlvr2_coco_pre_trained.th''', '''nlvr2_fine_tuned.th''', '''nlvr2_pre_trained.th''', '''vcr_coco_pre_train.th''', '''vcr_fine_tune.th''', '''vcr_pre_train.th''', '''vqa_coco_pre_trained.th''', '''vqa_fine_tuned.th''', '''vqa_pre_trained.th''', ] def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: A: List[Any] = torch.load(__lowercase , map_location='''cpu''' ) return sd def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase=rename_keys_prefix ) -> Optional[Any]: A: Tuple = OrderedDict() A: Dict = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue A: int = key for name_pair in rename_keys_prefix: A: Optional[int] = new_key.replace(name_pair[0] , name_pair[1] ) A: Union[str, Any] = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately A: int = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"""The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}.""" # Get Config if "pre" in checkpoint_path: A: Optional[Any] = '''pretraining''' if "vcr" in checkpoint_path: A: Optional[int] = {'''visual_embedding_dim''': 5_1_2} elif "vqa_advanced" in checkpoint_path: A: Optional[Any] = {'''visual_embedding_dim''': 2_0_4_8} elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8} elif "nlvr" in checkpoint_path: A: Tuple = {'''visual_embedding_dim''': 1_0_2_4} else: raise NotImplementedError(F"""No implementation found for `{checkpoint_path}`.""" ) else: if "vcr" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 5_1_2} A: List[str] = '''multichoice''' elif "vqa_advanced" in checkpoint_path: A: List[str] = {'''visual_embedding_dim''': 2_0_4_8} A: Optional[int] = '''vqa_advanced''' elif "vqa" in checkpoint_path: A: Dict = {'''visual_embedding_dim''': 2_0_4_8, '''num_labels''': 3_1_2_9} A: Union[str, Any] = '''vqa''' elif "nlvr" in checkpoint_path: A: Optional[int] = { '''visual_embedding_dim''': 1_0_2_4, '''num_labels''': 2, } A: str = '''nlvr''' A: Union[str, Any] = VisualBertConfig(**__lowercase ) # Load State Dict A: Union[str, Any] = load_state_dict(__lowercase ) A: str = get_new_dict(__lowercase , __lowercase ) if model_type == "pretraining": A: Optional[Any] = VisualBertForPreTraining(__lowercase ) elif model_type == "vqa": A: Optional[Any] = VisualBertForQuestionAnswering(__lowercase ) elif model_type == "nlvr": A: Union[str, Any] = VisualBertForVisualReasoning(__lowercase ) elif model_type == "multichoice": A: Any = VisualBertForMultipleChoice(__lowercase ) model.load_state_dict(__lowercase ) # Save Checkpoints Path(__lowercase ).mkdir(exist_ok=__lowercase ) model.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('''orig_checkpoint_path''', type=str, help='''A path to .th on local filesystem.''') parser.add_argument('''pytorch_dump_folder_path''', type=str, help='''Path to the output PyTorch model.''') UpperCamelCase = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
319
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1000000 ): """simple docstring""" lowerCAmelCase__ : Optional[Any] = limit + 1 lowerCAmelCase__ : List[Any] = [0] * limit for first_term in range(1 , __lowercase ): for n in range(__lowercase , __lowercase , __lowercase ): lowerCAmelCase__ : Optional[Any] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a lowerCAmelCase__ : Union[str, Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F"""{solution() = }""")
37
'''simple docstring''' from itertools import permutations def SCREAMING_SNAKE_CASE( __lowercase ) -> bool: if num[3] % 2 != 0: return False if (num[2] + num[3] + num[4]) % 3 != 0: return False if num[5] % 5 != 0: return False A: int = [7, 1_1, 1_3, 1_7] for i, test in enumerate(__lowercase ): if (num[i + 4] * 1_0_0 + num[i + 5] * 1_0 + num[i + 6]) % test != 0: return False return True def SCREAMING_SNAKE_CASE( __lowercase = 1_0 ) -> int: return sum( int(''''''.join(map(__lowercase , __lowercase ) ) ) for num in permutations(range(__lowercase ) ) if is_substring_divisible(__lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
319
0
'''simple docstring''' import functools def lowerCAmelCase_ ( snake_case_ : List[str] , snake_case_ : Tuple ) -> int: '''simple docstring''' if not isinstance(__lowercase , __lowercase ) or not all(isinstance(__lowercase , __lowercase ) for day in days ): raise ValueError("The parameter days should be a list of integers" ) if len(__lowercase ) != 3 or not all(isinstance(__lowercase , __lowercase ) for cost in costs ): raise ValueError("The parameter costs should be a list of three integers" ) if len(__lowercase ) == 0: return 0 if min(__lowercase ) <= 0: raise ValueError("All days elements should be greater than 0" ) if max(__lowercase ) >= 3_66: raise ValueError("All days elements should be less than 366" ) UpperCAmelCase_ = set(__lowercase ) @functools.cache def dynamic_programming(snake_case_ : int ) -> int: if index > 3_65: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''} UpperCamelCase = { '''vocab_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json''' ), }, '''merges_file''': { '''allenai/longformer-base-4096''': '''https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt''', '''allenai/longformer-large-4096''': ( '''https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-finetuned-triviaqa''': ( '''https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt''' ), '''allenai/longformer-base-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), '''allenai/longformer-large-4096-extra.pos.embd.only''': ( '''https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt''' ), }, } UpperCamelCase = { '''allenai/longformer-base-4096''': 4096, '''allenai/longformer-large-4096''': 4096, '''allenai/longformer-large-4096-finetuned-triviaqa''': 4096, '''allenai/longformer-base-4096-extra.pos.embd.only''': 4096, '''allenai/longformer-large-4096-extra.pos.embd.only''': 4096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def SCREAMING_SNAKE_CASE( ) -> Dict: A: Dict = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) A: Union[str, Any] = bs[:] A: List[str] = 0 for b in range(2**8 ): if b not in bs: bs.append(__lowercase ) cs.append(2**8 + n ) n += 1 A: List[Any] = [chr(__lowercase ) for n in cs] return dict(zip(__lowercase , __lowercase ) ) def SCREAMING_SNAKE_CASE( __lowercase ) -> Optional[int]: A: Optional[Any] = set() A: Tuple = word[0] for char in word[1:]: pairs.add((prev_char, char) ) A: List[Any] = char return pairs class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : int = VOCAB_FILES_NAMES UpperCamelCase_ : int = PRETRAINED_VOCAB_FILES_MAP UpperCamelCase_ : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCamelCase_ : int = ["""input_ids""", """attention_mask"""] def __init__( self : int , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str="replace" , SCREAMING_SNAKE_CASE_ : str="<s>" , SCREAMING_SNAKE_CASE_ : Any="</s>" , SCREAMING_SNAKE_CASE_ : int="</s>" , SCREAMING_SNAKE_CASE_ : List[Any]="<s>" , SCREAMING_SNAKE_CASE_ : str="<unk>" , SCREAMING_SNAKE_CASE_ : Dict="<pad>" , SCREAMING_SNAKE_CASE_ : Dict="<mask>" , SCREAMING_SNAKE_CASE_ : Union[str, Any]=False , **SCREAMING_SNAKE_CASE_ : Tuple , ) -> List[str]: '''simple docstring''' A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else bos_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else eos_token A: int = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else sep_token A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else cls_token A: Any = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else unk_token A: str = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it A: Dict = AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE_ , bos_token=SCREAMING_SNAKE_CASE_ , eos_token=SCREAMING_SNAKE_CASE_ , unk_token=SCREAMING_SNAKE_CASE_ , sep_token=SCREAMING_SNAKE_CASE_ , cls_token=SCREAMING_SNAKE_CASE_ , pad_token=SCREAMING_SNAKE_CASE_ , mask_token=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , ) with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as vocab_handle: A: str = json.load(SCREAMING_SNAKE_CASE_ ) A: str = {v: k for k, v in self.encoder.items()} A: Union[str, Any] = errors # how to handle errors in decoding A: Optional[int] = bytes_to_unicode() A: Union[str, Any] = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as merges_handle: A: int = merges_handle.read().split('''\n''' )[1:-1] A: str = [tuple(merge.split() ) for merge in bpe_merges] A: Any = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Union[str, Any] = {} A: Tuple = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions A: Dict = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' return len(self.encoder ) def _snake_case ( self : Optional[Any] ) -> int: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Optional[Any]: '''simple docstring''' if token in self.cache: return self.cache[token] A: str = tuple(SCREAMING_SNAKE_CASE_ ) A: str = get_pairs(SCREAMING_SNAKE_CASE_ ) if not pairs: return token while True: A: Dict = min(SCREAMING_SNAKE_CASE_ , key=lambda SCREAMING_SNAKE_CASE_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE_ , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break A , A: Optional[Any] = bigram A: Tuple = [] A: List[Any] = 0 while i < len(SCREAMING_SNAKE_CASE_ ): try: A: Union[str, Any] = word.index(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) A: int = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE_ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 A: Optional[Any] = tuple(SCREAMING_SNAKE_CASE_ ) A: Any = new_word if len(SCREAMING_SNAKE_CASE_ ) == 1: break else: A: Union[str, Any] = get_pairs(SCREAMING_SNAKE_CASE_ ) A: str = ''' '''.join(SCREAMING_SNAKE_CASE_ ) A: str = word return word def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[int]: '''simple docstring''' A: Dict = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE_ ): A: Tuple = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE_ ).split(''' ''' ) ) return bpe_tokens def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> Optional[Any]: '''simple docstring''' return self.encoder.get(SCREAMING_SNAKE_CASE_ , self.encoder.get(self.unk_token ) ) def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: '''simple docstring''' return self.decoder.get(SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Optional[int] = ''''''.join(SCREAMING_SNAKE_CASE_ ) A: Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A: Union[str, Any] = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) A: int = os.path.join( SCREAMING_SNAKE_CASE_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_ ) + '''\n''' ) A: Any = 0 with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda SCREAMING_SNAKE_CASE_ : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) A: Union[str, Any] = token_index writer.write(''' '''.join(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) index += 1 return vocab_file, merge_file def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] A: int = [self.cls_token_id] A: str = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None , SCREAMING_SNAKE_CASE_ : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_ , token_ids_a=SCREAMING_SNAKE_CASE_ , already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1] def _snake_case ( self : Tuple , SCREAMING_SNAKE_CASE_ : List[int] , SCREAMING_SNAKE_CASE_ : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' A: Dict = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def _snake_case ( self : int , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict=False , **SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: '''simple docstring''' A: Tuple = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE_ ) > 0 and not text[0].isspace()): A: List[Any] = ''' ''' + text return (text, kwargs)
319
0
def lowercase( UpperCamelCase_ ) -> str: # noqa: E741 '''simple docstring''' UpperCamelCase = len(__lowercase ) UpperCamelCase = 0 UpperCamelCase = [0] * n UpperCamelCase = [False] * n UpperCamelCase = [False] * n def dfs(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ): if parent == root: out_edge_count += 1 UpperCamelCase = True UpperCamelCase = at for to in l[at]: if to == parent: pass elif not visited[to]: UpperCamelCase = dfs(__lowercase , __lowercase , __lowercase , __lowercase ) UpperCamelCase = min(low[at] , low[to] ) # AP found via bridge if at < low[to]: UpperCamelCase = True # AP found via cycle if at == low[to]: UpperCamelCase = True else: UpperCamelCase = min(low[at] , __lowercase ) return out_edge_count for i in range(__lowercase ): if not visited[i]: UpperCamelCase = 0 UpperCamelCase = dfs(__lowercase , __lowercase , -1 , __lowercase ) UpperCamelCase = out_edge_count > 1 for x in range(len(__lowercase ) ): if is_art[x] is True: print(__lowercase ) # Adjacency list of graph _SCREAMING_SNAKE_CASE = { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], } compute_ap(data)
343
'''simple docstring''' def SCREAMING_SNAKE_CASE( __lowercase ) -> int: if not isinstance(__lowercase , __lowercase ): raise TypeError('''only integers accepted as input''' ) else: A: str = str(abs(__lowercase ) ) A: int = [list(__lowercase ) for char in range(len(__lowercase ) )] for index in range(len(__lowercase ) ): num_transpositions[index].pop(__lowercase ) return max( int(''''''.join(list(__lowercase ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__('''doctest''').testmod()
319
0
from numpy import exp, pi, sqrt def A_ ( _UpperCAmelCase , _UpperCAmelCase = 0.0 , _UpperCAmelCase = 1.0 ): return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
13
'''simple docstring''' from __future__ import annotations import math def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) A: str = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Union[str, Any]: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[list, list, list, list]: if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) A: Union[str, Any] = len(__lowercase ) A: str = matrix_length // 2 A: Optional[int] = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] A: Optional[Any] = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] A: Union[str, Any] = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] A: int = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def SCREAMING_SNAKE_CASE( __lowercase ) -> tuple[int, int]: return len(__lowercase ), len(matrix[0] ) def SCREAMING_SNAKE_CASE( __lowercase ) -> None: print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) A , A , A , A: Union[str, Any] = split_matrix(__lowercase ) A , A , A , A: List[Any] = split_matrix(__lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Any = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) A: Optional[int] = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) A: Tuple = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: Union[str, Any] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: List[str] = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) A: int = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) A: Any = matrix_addition(__lowercase , __lowercase ) A: List[Any] = matrix_addition(__lowercase , __lowercase ) A: List[str] = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants A: Union[str, Any] = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> list: if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: A: int = ( '''Unable to multiply these matrices, please check the dimensions.\n''' F"""Matrix A: {matrixa}\n""" F"""Matrix B: {matrixa}""" ) raise Exception(__lowercase ) A: str = matrix_dimensions(__lowercase ) A: str = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] A: Union[str, Any] = max(*__lowercase , *__lowercase ) A: Optional[int] = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) A: List[Any] = matrixa A: Tuple = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) A: Any = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": UpperCamelCase = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] UpperCamelCase = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
319
0
"""simple docstring""" import re def UpperCAmelCase ( UpperCAmelCase ) -> str: if len(re.findall('[ATCG]' , __lowercase ) ) != len(__lowercase ): raise ValueError('Invalid Strand' ) return dna.translate(dna.maketrans('ATCG' , 'TAGC' ) ) if __name__ == "__main__": import doctest doctest.testmod()
69
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : torch.FloatTensor UpperCamelCase_ : Optional[torch.FloatTensor] = None class lowerCAmelCase_ ( UpperCAmelCase_ , UpperCAmelCase_ ): '''simple docstring''' UpperCamelCase_ : Tuple = 2 @register_to_config def __init__( self : List[str] , SCREAMING_SNAKE_CASE_ : float = 0.02 , SCREAMING_SNAKE_CASE_ : float = 1_00 , SCREAMING_SNAKE_CASE_ : float = 1.007 , SCREAMING_SNAKE_CASE_ : float = 80 , SCREAMING_SNAKE_CASE_ : float = 0.05 , SCREAMING_SNAKE_CASE_ : float = 50 , ) -> Optional[int]: '''simple docstring''' A: Union[str, Any] = sigma_max # setable values A: int = None A: np.IntTensor = None A: torch.FloatTensor = None # sigma(t_i) def _snake_case ( self : str , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : Optional[int] = None ) -> torch.FloatTensor: '''simple docstring''' return sample def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Union[str, torch.device] = None ) -> Optional[Any]: '''simple docstring''' A: List[Any] = num_inference_steps A: List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() A: Any = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(SCREAMING_SNAKE_CASE_ ) A: str = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] A: Tuple = torch.tensor(SCREAMING_SNAKE_CASE_ , dtype=torch.floataa , device=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[torch.Generator] = None ) -> Tuple[torch.FloatTensor, float]: '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: A: str = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: A: List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) A: Optional[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=SCREAMING_SNAKE_CASE_ ).to(sample.device ) A: Optional[Any] = sigma + gamma * sigma A: List[Any] = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _snake_case ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: Union[str, Any] = sample_hat + sigma_hat * model_output A: str = (sample_hat - pred_original_sample) / sigma_hat A: Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : torch.FloatTensor , SCREAMING_SNAKE_CASE_ : bool = True , ) -> Union[KarrasVeOutput, Tuple]: '''simple docstring''' A: int = sample_prev + sigma_prev * model_output A: List[Any] = (sample_prev - pred_original_sample) / sigma_prev A: Dict = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=SCREAMING_SNAKE_CASE_ , derivative=SCREAMING_SNAKE_CASE_ , pred_original_sample=SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ) -> Dict: '''simple docstring''' raise NotImplementedError()
319
0
'''simple docstring''' import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _lowerCamelCase : Optional[Any] = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. _lowerCamelCase : Optional[Any] = direct_transformers_import(PATH_TO_TRANSFORMERS) _lowerCamelCase : List[Any] = transformers.models.auto.configuration_auto.CONFIG_MAPPING _lowerCamelCase : Optional[Any] = { # used to compute the property `self.chunk_length` "EncodecConfig": ["overlap"], # used as `self.bert_model = BertModel(config, ...)` "DPRConfig": True, # not used in modeling files, but it's an important information "FSMTConfig": ["langs"], # used internally in the configuration class file "GPTNeoConfig": ["attention_types"], # used internally in the configuration class file "EsmConfig": ["is_folding_model"], # used during training (despite we don't have training script for these models yet) "Mask2FormerConfig": ["ignore_value"], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) "OneFormerConfig": ["ignore_value", "norm"], # used during preprocessing and collation, see `collating_graphormer.py` "GraphormerConfig": ["spatial_pos_max"], # used internally in the configuration class file "T5Config": ["feed_forward_proj"], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally "MT5Config": ["feed_forward_proj", "tokenizer_class"], "UMT5Config": ["feed_forward_proj", "tokenizer_class"], # used internally in the configuration class file "LongT5Config": ["feed_forward_proj"], # used internally in the configuration class file "SwitchTransformersConfig": ["feed_forward_proj"], # having default values other than `1e-5` - we can't fix them without breaking "BioGptConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "GLPNConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "SegformerConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "CvtConfig": ["layer_norm_eps"], # having default values other than `1e-5` - we can't fix them without breaking "PerceiverConfig": ["layer_norm_eps"], # used internally to calculate the feature size "InformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "TimeSeriesTransformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate the feature size "AutoformerConfig": ["num_static_real_features", "num_time_features"], # used internally to calculate `mlp_dim` "SamVisionConfig": ["mlp_ratio"], # For (head) training, but so far not implemented "ClapAudioConfig": ["num_classes"], # Not used, but providing useful information to users "SpeechT5HifiGanConfig": ["sampling_rate"], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { "CLIPSegConfig": True, "DeformableDetrConfig": True, "DetaConfig": True, "DinatConfig": True, "DonutSwinConfig": True, "EfficientFormerConfig": True, "FSMTConfig": True, "JukeboxConfig": True, "LayoutLMv2Config": True, "MaskFormerSwinConfig": True, "MT5Config": True, "NatConfig": True, "OneFormerConfig": True, "PerceiverConfig": True, "RagConfig": True, "SpeechT5Config": True, "SwinConfig": True, "Swin2SRConfig": True, "Swinv2Config": True, "SwitchTransformersConfig": True, "TableTransformerConfig": True, "TapasConfig": True, "TransfoXLConfig": True, "UniSpeechConfig": True, "UniSpeechSatConfig": True, "WavLMConfig": True, "WhisperConfig": True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) "JukeboxPriorConfig": True, # TODO: @Younes (for `is_decoder`) "Pix2StructTextConfig": True, } ) def __lowerCamelCase ( A__ , A__ , A__ , A__ ) -> Any: """simple docstring""" UpperCamelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( F"""config.{attribute}""" in modeling_source or F"""getattr(config, \"{attribute}\"""" in modeling_source or F"""getattr(self.config, \"{attribute}\"""" in modeling_source ): UpperCamelCase = True # Deal with multi-line cases elif ( re.search( RF"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , __lowercase , ) is not None ): UpperCamelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: UpperCamelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files UpperCamelCase = [ '''bos_index''', '''eos_index''', '''pad_index''', '''unk_index''', '''mask_index''', '''image_size''', '''use_cache''', '''out_features''', '''out_indices''', ] UpperCamelCase = ['''encoder_no_repeat_ngram_size'''] # Special cases to be allowed UpperCamelCase = True if not attribute_used: UpperCamelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: UpperCamelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: UpperCamelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: UpperCamelCase = True elif attribute.endswith('_token_id' ): UpperCamelCase = True # configuration class specific cases if not case_allowed: UpperCamelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) UpperCamelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __lowerCamelCase ( A__ ) -> Any: """simple docstring""" UpperCamelCase = dict(inspect.signature(config_class.__init__ ).parameters ) UpperCamelCase = [x for x in list(signature.keys() ) if x not in ['''self''', '''kwargs''']] UpperCamelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass UpperCamelCase = {} if len(config_class.attribute_map ) > 0: UpperCamelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files UpperCamelCase = inspect.getsourcefile(__lowercase ) UpperCamelCase = os.path.dirname(__lowercase ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. UpperCamelCase = [os.path.join(__lowercase , __lowercase ) for fn in os.listdir(__lowercase ) if fn.startswith('modeling_' )] # Get the source code strings UpperCamelCase = [] for path in modeling_paths: if os.path.isfile(__lowercase ): with open(__lowercase ) as fp: modeling_sources.append(fp.read() ) UpperCamelCase = [] for config_param, default_value in zip(__lowercase , __lowercase ): # `attributes` here is all the variant names for `config_param` UpperCamelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(__lowercase , __lowercase , __lowercase , __lowercase ): unused_attributes.append(attributes[0] ) return sorted(__lowercase ) def __lowerCamelCase ( ) -> Optional[Any]: """simple docstring""" UpperCamelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) UpperCamelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda A__ : inspect.isclass(__lowercase ) and issubclass(__lowercase , __lowercase ) and inspect.getmodule(__lowercase ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: UpperCamelCase = check_config_attributes_being_used(__lowercase ) if len(__lowercase ) > 0: UpperCamelCase = unused_attributes if len(__lowercase ) > 0: UpperCamelCase = '''The following configuration classes contain unused attributes in the corresponding modeling files:\n''' for name, attributes in configs_with_unused_attributes.items(): error += F"""{name}: {attributes}\n""" raise ValueError(__lowercase ) if __name__ == "__main__": check_config_attributes()
28
'''simple docstring''' import json import logging import math import os import sys from dataclasses import dataclass, field from typing import Optional from datasets import Dataset, load_dataset import transformers from transformers import ( CONFIG_MAPPING, MODEL_FOR_MASKED_LM_MAPPING, AutoConfig, AutoModelForMaskedLM, AutoTokenizer, DataCollatorForWholeWordMask, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint, is_main_process UpperCamelCase = logging.getLogger(__name__) UpperCamelCase = list(MODEL_FOR_MASKED_LM_MAPPING.keys()) UpperCamelCase = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The model checkpoint for weights initialization.Don't set if you want to train a model from scratch.""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """If training from scratch, pass a model type from the list: """ + """, """.join(UpperCAmelCase_ )} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Override some existing default config settings when a model is trained from scratch. Example: """ """n_embd=10,resid_pdrop=0.2,scale_attn_weights=false,summary_type=cls_index""" ) } , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained config name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Pretrained tokenizer name or path if not the same as model_name"""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """Where do you want to store the pretrained models downloaded from huggingface.co"""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."""} , ) UpperCamelCase_ : str = field( default="""main""" , metadata={"""help""": """The specific model version to use (can be a branch name, tag name or commit id)."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Will use the token generated when running `huggingface-cli login` (necessary to use this script """ """with private models).""" ) } , ) def _snake_case ( self : Tuple ) -> List[Any]: '''simple docstring''' if self.config_overrides is not None and (self.config_name is not None or self.model_name_or_path is not None): raise ValueError( '''--config_overrides can\'t be used in combination with --config_name or --model_name_or_path''' ) @dataclass class lowerCAmelCase_ : '''simple docstring''' UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """The configuration name of the dataset to use (via the datasets library)."""} ) UpperCamelCase_ : Optional[str] = field(default=UpperCAmelCase_ , metadata={"""help""": """The input training data file (a text file)."""} ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input evaluation data file to evaluate the perplexity on (a text file)."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input train ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : Optional[str] = field( default=UpperCAmelCase_ , metadata={"""help""": """An optional input validation ref data file for whole word masking in Chinese."""} , ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={"""help""": """Overwrite the cached training and evaluation sets"""} ) UpperCamelCase_ : Optional[int] = field( default=5 , metadata={ """help""": """The percentage of the train set used as validation set in case there's no validation split""" } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={ """help""": ( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated. Default to the max input length of the model.""" ) } , ) UpperCamelCase_ : Optional[int] = field( default=UpperCAmelCase_ , metadata={"""help""": """The number of processes to use for the preprocessing."""} , ) UpperCamelCase_ : float = field( default=0.15 , metadata={"""help""": """Ratio of tokens to mask for masked language modeling loss"""} ) UpperCamelCase_ : bool = field( default=UpperCAmelCase_ , metadata={ """help""": ( """Whether to pad all samples to `max_seq_length`. """ """If False, will pad the samples dynamically when batching to the maximum length in the batch.""" ) } , ) def _snake_case ( self : List[Any] ) -> Optional[int]: '''simple docstring''' if self.train_file is not None: A: Tuple = self.train_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`train_file` should be a csv, a json or a txt file." if self.validation_file is not None: A: str = self.validation_file.split('''.''' )[-1] assert extension in ["csv", "json", "txt"], "`validation_file` should be a csv, a json or a txt file." def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> List[str]: with open(__lowercase , '''r''' , encoding='''utf-8''' ) as f: A: List[Any] = [json.loads(__lowercase ) for line in f.read().splitlines() if (len(__lowercase ) > 0 and not line.isspace())] assert len(__lowercase ) == len(__lowercase ) A: Optional[int] = {c: dataset[c] for c in dataset.column_names} A: Union[str, Any] = refs return Dataset.from_dict(__lowercase ) def SCREAMING_SNAKE_CASE( ) -> int: # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. A: int = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. A , A , A: Optional[int] = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: A , A , A: List[Any] = parser.parse_args_into_dataclasses() # Detecting last checkpoint. A: Any = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: A: Any = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"""Output directory ({training_args.output_dir}) already exists and is not empty. """ '''Use --overwrite_output_dir to overcome.''' ) elif last_checkpoint is not None: logger.info( F"""Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change """ '''the `--output_dir` or add `--overwrite_output_dir` to train from scratch.''' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , handlers=[logging.StreamHandler(sys.stdout )] , ) logger.setLevel(logging.INFO if is_main_process(training_args.local_rank ) else logging.WARN ) # Log on each process the small summary: logger.warning( F"""Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}""" + F"""distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}""" ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __lowercase ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. A: Dict = load_dataset(data_args.dataset_name , data_args.dataset_config_name ) if "validation" not in datasets.keys(): A: int = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[:{data_args.validation_split_percentage}%]""" , ) A: Dict = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=F"""train[{data_args.validation_split_percentage}%:]""" , ) else: A: Any = {} if data_args.train_file is not None: A: int = data_args.train_file if data_args.validation_file is not None: A: Optional[int] = data_args.validation_file A: List[str] = data_args.train_file.split('''.''' )[-1] if extension == "txt": A: int = '''text''' A: Any = load_dataset(__lowercase , data_files=__lowercase ) # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. A: Dict = { '''cache_dir''': model_args.cache_dir, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.config_name: A: List[Any] = AutoConfig.from_pretrained(model_args.config_name , **__lowercase ) elif model_args.model_name_or_path: A: int = AutoConfig.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: A: str = CONFIG_MAPPING[model_args.model_type]() logger.warning('''You are instantiating a new config instance from scratch.''' ) if model_args.config_overrides is not None: logger.info(F"""Overriding config: {model_args.config_overrides}""" ) config.update_from_string(model_args.config_overrides ) logger.info(F"""New config: {config}""" ) A: Tuple = { '''cache_dir''': model_args.cache_dir, '''use_fast''': model_args.use_fast_tokenizer, '''revision''': model_args.model_revision, '''use_auth_token''': True if model_args.use_auth_token else None, } if model_args.tokenizer_name: A: Optional[int] = AutoTokenizer.from_pretrained(model_args.tokenizer_name , **__lowercase ) elif model_args.model_name_or_path: A: Union[str, Any] = AutoTokenizer.from_pretrained(model_args.model_name_or_path , **__lowercase ) else: raise ValueError( '''You are instantiating a new tokenizer from scratch. This is not supported by this script.''' '''You can do it from another script, save it, and load it from here, using --tokenizer_name.''' ) if model_args.model_name_or_path: A: List[Any] = AutoModelForMaskedLM.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__lowercase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) else: logger.info('''Training new model from scratch''' ) A: List[Any] = AutoModelForMaskedLM.from_config(__lowercase ) model.resize_token_embeddings(len(__lowercase ) ) # Preprocessing the datasets. # First we tokenize all the texts. if training_args.do_train: A: int = datasets['''train'''].column_names else: A: str = datasets['''validation'''].column_names A: Tuple = '''text''' if '''text''' in column_names else column_names[0] A: List[str] = '''max_length''' if data_args.pad_to_max_length else False def tokenize_function(__lowercase ): # Remove empty lines A: int = [line for line in examples['''text'''] if len(__lowercase ) > 0 and not line.isspace()] return tokenizer(examples['''text'''] , padding=__lowercase , truncation=__lowercase , max_length=data_args.max_seq_length ) A: str = datasets.map( __lowercase , batched=__lowercase , num_proc=data_args.preprocessing_num_workers , remove_columns=[text_column_name] , load_from_cache_file=not data_args.overwrite_cache , ) # Add the chinese references if provided if data_args.train_ref_file is not None: A: List[str] = add_chinese_references(tokenized_datasets['''train'''] , data_args.train_ref_file ) if data_args.validation_ref_file is not None: A: Dict = add_chinese_references( tokenized_datasets['''validation'''] , data_args.validation_ref_file ) # If we have ref files, need to avoid it removed by trainer A: Optional[Any] = data_args.train_ref_file or data_args.validation_ref_file if has_ref: A: List[Any] = False # Data collator # This one will take care of randomly masking the tokens. A: Optional[Any] = DataCollatorForWholeWordMask(tokenizer=__lowercase , mlm_probability=data_args.mlm_probability ) # Initialize our Trainer A: Optional[int] = Trainer( model=__lowercase , args=__lowercase , train_dataset=tokenized_datasets['''train'''] if training_args.do_train else None , eval_dataset=tokenized_datasets['''validation'''] if training_args.do_eval else None , tokenizer=__lowercase , data_collator=__lowercase , ) # Training if training_args.do_train: if last_checkpoint is not None: A: Optional[int] = last_checkpoint elif model_args.model_name_or_path is not None and os.path.isdir(model_args.model_name_or_path ): A: str = model_args.model_name_or_path else: A: List[str] = None A: str = trainer.train(resume_from_checkpoint=__lowercase ) trainer.save_model() # Saves the tokenizer too for easy upload A: Union[str, Any] = os.path.join(training_args.output_dir , '''train_results.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Train results *****''' ) for key, value in sorted(train_result.metrics.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir , '''trainer_state.json''' ) ) # Evaluation A: Optional[int] = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) A: Optional[Any] = trainer.evaluate() A: Union[str, Any] = math.exp(eval_output['''eval_loss'''] ) A: Dict = perplexity A: Any = os.path.join(training_args.output_dir , '''eval_results_mlm_wwm.txt''' ) if trainer.is_world_process_zero(): with open(__lowercase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in sorted(results.items() ): logger.info(F""" {key} = {value}""" ) writer.write(F"""{key} = {value}\n""" ) return results def SCREAMING_SNAKE_CASE( __lowercase ) -> List[Any]: # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
319
0
def _a ( ): return [list(range(1000 - i, -1000 - i, -1 ) ) for i in range(1000 )] _lowerCamelCase =generate_large_matrix() _lowerCamelCase =( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def _a ( lowerCamelCase ): assert all(row == sorted(__lowercase, reverse=__lowercase ) for row in grid ) assert all(list(__lowercase ) == sorted(__lowercase, reverse=__lowercase ) for col in zip(*__lowercase ) ) def _a ( lowerCamelCase ): lowerCamelCase : Tuple = 0 lowerCamelCase : Any = len(__lowercase ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: lowerCamelCase : Optional[int] = (left + right) // 2 lowerCamelCase : Tuple = array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: lowerCamelCase : int = mid + 1 else: lowerCamelCase : Union[str, Any] = mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(__lowercase ) def _a ( lowerCamelCase ): lowerCamelCase : Optional[int] = 0 lowerCamelCase : str = len(grid[0] ) for i in range(len(__lowercase ) ): lowerCamelCase : Any = find_negative_index(grid[i][:bound] ) total += bound return (len(__lowercase ) * len(grid[0] )) - total def _a ( lowerCamelCase ): return len([number for row in grid for number in row if number < 0] ) def _a ( lowerCamelCase ): lowerCamelCase : Optional[int] = 0 for row in grid: for i, number in enumerate(__lowercase ): if number < 0: total += len(__lowercase ) - i break return total def _a ( ): from timeit import timeit print("""Running benchmarks""" ) lowerCamelCase : List[Any] = ( '''from __main__ import count_negatives_binary_search, ''' '''count_negatives_brute_force, count_negatives_brute_force_with_break, grid''' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): lowerCamelCase : Optional[int] = timeit(F'''{func}(grid=grid)''', setup=__lowercase, number=500 ) print(F'''{func}() took {time:0.4f} seconds''' ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
287
'''simple docstring''' import json import os import unittest from typing import Tuple from transformers import WavaVecaPhonemeCTCTokenizer from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.models.wavaveca_phoneme.tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizerOutput from transformers.testing_utils import require_phonemizer from ...test_tokenization_common import TokenizerTesterMixin @require_phonemizer class lowerCAmelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : Any = WavaVecaPhonemeCTCTokenizer UpperCamelCase_ : Tuple = False def _snake_case ( self : str ) -> Union[str, Any]: '''simple docstring''' super().setUp() A: Optional[int] = ( '''<s> <pad> </s> <unk> n s t ə l a i k d m ɛ ɾ e ɪ p o ɐ z ð f j v b ɹ ʁ ʊ iː r w ʌ u ɡ æ aɪ ʃ h ɔ ɑː ''' '''ŋ ɚ eɪ β uː y ɑ̃ oʊ ᵻ eː θ aʊ ts oː ɔ̃ ɣ ɜ ɑ dʒ əl x ɜː ç ʒ tʃ ɔː ɑːɹ ɛ̃ ʎ ɔːɹ ʋ aː ɕ œ ø oːɹ ɲ yː ''' '''ʔ iə i5 s. tɕ ?? nʲ ɛː œ̃ ɭ ɔø ʑ tʲ ɨ ɛɹ ts. rʲ ɪɹ ɭʲ i.5 ɔɪ q sʲ u5 ʊɹ iɜ a5 iɛ5 øː ʕ ja əɜ th ɑ5 ''' '''oɪ dʲ ə5 tɕh ts.h mʲ ɯ dʑ vʲ e̞ tʃʲ ei5 o5 onɡ5 ɑu5 iɑ5 ai5 aɪɚ kh ə1 ʐ i2 ʉ ħ t[ aɪə ʲ ju ə2 u2 oɜ ''' '''pː iɛɜ ou5 y5 uɜ tː uo5 d[ uoɜ tsh ɑɜ ɵ i̪5 uei5 ɟ aɜ ɑɨ i.ɜ eʊ o2 ɐ̃ ä pʲ kʲ n̩ ɒ ph ɑu2 uɨ əɪ ɫ ɬ ''' '''yɜ bʲ ɑ2 s̪ aiɜ χ ɐ̃ʊ̃ 1 ə4 yæɜ a2 ɨː t̪ iouɜ ũ onɡɜ aɨ iɛ2 ɔɨ ɑuɜ o̞ ei2 iou2 c kː y2 ɖ oe dˤ yɛɜ ''' '''əʊ S ɡʲ onɡ2 u" eiɜ ʈ ɯᵝ iou5 dZ r̝̊ i.2 tS s^ ʝ yə5 iɑɜ uə5 pf ɨu iɑ2 ou2 ər2 fʲ ai2 r̝ uəɜ ɳ əɨ ''' '''ua5 uɪ ɽ bː yu5 uo2 yɛ5 l̩ ɻ ərɜ ʂ i̪2 ouɜ uaɜ a. a.ː yæ5 dː r̩ ee ɪu ər5 i̪ ɜ æi u: i.ː t^ o1 ɪ^ ''' '''ai ueiɜ æː ɛɪ eə i. ɴ ie ua2 ɑ1 o4 tʃː o: ɑ: u1 N i̪1 au yæ2 u. qː yəɜ y: kʰ tʃʰ iʊ sx õ uo tʰ ''' '''uai5 bʰ u.ː uə2 ʊə d^ s̪ː yiɜ dʰ r. oe: i1 ɟː yu2 nʲʲ i̪4 uei2 tsʲ ɸ ĩ ɑ4 t̪ː eɑ u4 e: tsː ʈʰ ɡʰ ''' '''ɯɯ dʒʲ ʂʲ X ɵː uaiɜ tɕʲ ã t^ː ẽː yɛ2 cː i.1 ɛʊ dˤdˤ dʒː i4 ɡː yi ɕʲ ɟʰ pʰ dʑʲ yuɜ ua1 ua4 æiː ɐɐ ''' '''ui iou1 ʊː a1 iou4 cʰ iɛ1 yə2 ɖʰ ẽ ʒʲ ää ər4 iːː ɪː iɑ1 ər1 œː øi ɪuː cʰcʰ əː1 iː1 ũ kʰː o̞o̞ xʲ ''' '''ou1 iɛ4 e̞e̞ y1 dzː dʲʲ dʰː ɯᵝɯᵝ lː uo1 i.4 i: yɛ5ʲ a4''' ).split(''' ''' ) A: Union[str, Any] = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) A: Dict = {'''pad_token''': '''<pad>''', '''unk_token''': '''<unk>''', '''bos_token''': '''<s>''', '''eos_token''': '''</s>'''} A: Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '''\n''' ) def _snake_case ( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Tuple=False , SCREAMING_SNAKE_CASE_ : Any=20 , SCREAMING_SNAKE_CASE_ : Optional[int]=5 ) -> Tuple[str, list]: '''simple docstring''' A: int = [(i, tokenizer.decode([i] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ )) for i in range(len(SCREAMING_SNAKE_CASE_ ) )] A: Optional[Any] = list(filter(lambda SCREAMING_SNAKE_CASE_ : [t[0]] == tokenizer.encode(t[1] , do_phonemize=SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) ) if max_length is not None and len(SCREAMING_SNAKE_CASE_ ) > max_length: A: int = toks[:max_length] if min_length is not None and len(SCREAMING_SNAKE_CASE_ ) < min_length and len(SCREAMING_SNAKE_CASE_ ) > 0: while len(SCREAMING_SNAKE_CASE_ ) < min_length: A: Dict = toks + toks # toks_str = [t[1] for t in toks] A: Union[str, Any] = [t[0] for t in toks] # Ensure consistency A: List[str] = tokenizer.decode(SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) if " " not in output_txt and len(SCREAMING_SNAKE_CASE_ ) > 1: A: int = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) + ''' ''' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ ) ) if with_prefix_space: A: Tuple = ''' ''' + output_txt A: List[str] = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) return output_txt, output_ids def _snake_case ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : int ) -> Dict: '''simple docstring''' kwargs.update(self.special_tokens_map ) return WavaVecaPhonemeCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> Optional[Any]: '''simple docstring''' A: List[Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) # check adding a single token tokenizer.add_tokens('''xxx''' ) A: Any = tokenizer('''m xxx ɪ''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_92, 17] ) # xxx should be last token tokenizer.add_tokens(['''aaa''', '''bbb''', '''ccc'''] ) A: Optional[int] = tokenizer('''m aaa ɪ ccc''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [13, 3_93, 17, 3_95] ) # aaa and ccc should be after xxx and 2 after aaa A: str = tokenizer('''maɪ c''' , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , [3, 2_00] ) # mai should be <unk> (=3) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Any = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Any = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) def _snake_case ( self : Tuple ) -> Dict: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: List[str] = '''Hello how are you''' A: Union[str, Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Union[str, Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : Dict ) -> Optional[Any]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: Optional[Any] = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98], [24, 22, 5, 24, 22, 5, 77], ] A: List[str] = tokenizer.decode(sample_ids[0] ) A: List[str] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) def _snake_case ( self : Any ) -> Optional[int]: '''simple docstring''' A: int = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: List[Any] = '''Hello how are you''' A: Optional[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ | h aʊ | ɑːɹ | j uː |''' ) def _snake_case ( self : List[str] ) -> int: '''simple docstring''' A: Optional[Any] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Optional[Any] = '''Hello how are you''' A: Any = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) self.assertEqual(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , tokenizer(SCREAMING_SNAKE_CASE_ , do_phonemize=SCREAMING_SNAKE_CASE_ ).input_ids ) def _snake_case ( self : Dict ) -> Any: '''simple docstring''' A: Optional[int] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off A: str = [ [11, 5, 15, tokenizer.pad_token_id, tokenizer.word_delimiter_token_id, 15, 8, tokenizer.word_delimiter_token_id, 98], [tokenizer.word_delimiter_token_id, 24, 22, tokenizer.word_delimiter_token_id, 5, 24, 22, 5, 77], ] # fmt: on # decode with word_del_token filter A: Tuple = tokenizer.decode(sample_ids[0] ) A: Optional[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ''', '''j ð s j ð s oːɹ'''] ) # decode with no word_del_token filter A: str = tokenizer.decode(sample_ids[0] , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , batch_tokens[0] ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ | ɾ l | ɭʲ''', '''| j ð | s j ð s oːɹ'''] ) def _snake_case ( self : int ) -> List[str]: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Union[str, Any] = '''Hello how are you''' A: Tuple = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: Any = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Any: '''simple docstring''' A: Dict = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) A: Any = '''Hello how are you''' A: List[Any] = tokenizer.phonemize(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ) A: List[Any] = tokenizer.decode(tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) self.assertEqual(''' '''.join([p.strip() for p in phonemes.split(''' |''' )] ).strip() , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : List[str] ) -> Optional[Any]: '''simple docstring''' A: List[str] = self.tokenizer_class.from_pretrained( '''facebook/wav2vec2-lv-60-espeak-cv-ft''' , word_delimiter_token=SCREAMING_SNAKE_CASE_ ) A: List[Any] = '''Hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''en-us''' ).input_ids A: Tuple = tokenizer(SCREAMING_SNAKE_CASE_ , phonemizer_lang='''fr-fr''' ).input_ids self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A: Tuple = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) A: Any = tokenizer.decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''h ə l oʊ h aʊ ɑːɹ j uː''' ) self.assertEqual(SCREAMING_SNAKE_CASE_ , '''ɛ l o h aʊ a ʁ j u''' ) def _snake_case ( self : str ) -> str: '''simple docstring''' A: str = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) A: str = '''Hello how Are you''' A: Union[str, Any] = '''hello how are you''' A: List[str] = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids A: str = tokenizer(SCREAMING_SNAKE_CASE_ ).input_ids self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _snake_case ( self : int ) -> List[Any]: '''simple docstring''' A: Union[str, Any] = self.tokenizer_class.from_pretrained('''facebook/wav2vec2-lv-60-espeak-cv-ft''' ) tokenizer.add_tokens(['''!''', '''?'''] ) tokenizer.add_special_tokens({'''cls_token''': '''$$$'''} ) # fmt: off A: Tuple = [ [11, 5, 15, tokenizer.pad_token_id, 15, 8, 98, 3_92, 3_92, 3_93, 3_92, 3_92, 3_93, 3_94, 3_94], [24, 22, 5, 24, 22, 5, 77, tokenizer.pad_token_id, 3_94, 3_94], ] # fmt: on A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , ['''k s ɾ ɾ l ɭʲ!?!? $$$''', '''j ð s j ð s oːɹ $$$'''] ) @staticmethod def _snake_case ( SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> Tuple: '''simple docstring''' A: Any = [d[key] for d in offsets] return retrieved_list def _snake_case ( self : Any ) -> Tuple: '''simple docstring''' A: str = self.get_tokenizer(word_delimiter_token='''|''' ) tokenizer.add_tokens('''|''' ) # fmt: off # ksssɾɾ|ɾɾ<pad>ɾɾ|<pad>ɾlll|ɭʲ -> k s ɾ ɾ | ɾ l | ɭʲ" A: Union[str, Any] = [11, 5, 5, 5, 15, 15, tokenizer.pad_token_id, 15, 15, tokenizer.word_delimiter_token_id, tokenizer.pad_token_id, 15, 8, 8, 8, tokenizer.word_delimiter_token_id, 98] # fmt: on A: int = tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ , filter_word_delimiter_token=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for char self.assertEqual(len(outputs.keys() ) , 2 ) self.assertTrue('''text''' in outputs ) self.assertTrue('''char_offsets''' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # check that order of chars is correct and identical for both outputs self.assertEqual(''' '''.join(self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) ) , outputs.text ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''char''' ) , ['''k''', '''s''', '''ɾ''', '''ɾ''', '''|''', '''ɾ''', '''l''', '''|''', '''ɭʲ'''] ) # check that offsets are actually correct for char # 0-1 is 11, 1-4 is 5, 4-6 is first 15, 6-7 is <pad> (thus not shown), 7-9 is second 15, 9-10 is word_delimiter_token, # 10-11 is <pad> (thus not shown), 11-12 is third 15, 12-15 is 8, 15-16 is word_delimiter_token, 16-17 is 98 self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''start_offset''' ) , [0, 1, 4, 7, 9, 11, 12, 15, 16] ) self.assertListEqual( self.get_from_offsets(outputs['''char_offsets'''] , '''end_offset''' ) , [1, 4, 6, 9, 10, 12, 15, 16, 17] ) def _snake_case ( self : Any ) -> List[Any]: '''simple docstring''' A: Optional[int] = self.get_tokenizer(word_delimiter_token='''|''' ) def check_list_tuples_equal(SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertTrue(isinstance(outputs_list[0] , SCREAMING_SNAKE_CASE_ ) ) # transform list to ModelOutput A: Dict = WavaVecaPhonemeCTCTokenizerOutput( {k: [d[k] for d in outputs_list] for k in outputs_list[0]} ) self.assertListEqual(outputs_batch['''text'''] , outputs_batch_a['''text'''] ) def recursive_check(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ): if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): [recursive_check(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for la, la in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if "char_offsets" in outputs_batch: recursive_check(outputs_batch['''char_offsets'''] , outputs_batch_a['''char_offsets'''] ) # fmt: off A: int = [ [11, 5, 15, tokenizer.pad_token_id, 15, 4, 8, 98, 32, 32, 32, 32, 4, 33, tokenizer.word_delimiter_token_id, 32, 32, 33, 34, 34], [24, 22, 5, tokenizer.word_delimiter_token_id, tokenizer.word_delimiter_token_id, 24, 22, 22, 22, 4, 5, 77, tokenizer.pad_token_id, 22, 22, 4, 34, 34, 34, 34], ] # fmt: on # We assume that `decode` works as expected. All we will check now is # the output type is correct and the output is identical to `decode` # char A: List[Any] = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) A: List[Any] = [tokenizer.decode(SCREAMING_SNAKE_CASE_ , output_char_offsets=SCREAMING_SNAKE_CASE_ ) for ids in sample_ids] check_list_tuples_equal(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @unittest.skip('''Wav2Vec2PhonemeTokenizer always lower cases letters to correctly map to phonemes''' ) def _snake_case ( self : int ) -> int: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeTokenizer always puts spaces between phonemes''' ) def _snake_case ( self : str ) -> Any: '''simple docstring''' pass @unittest.skip('''encodes to text to ids, but decodes ids to phonemes -> not possible to have internal consistency''' ) def _snake_case ( self : List[str] ) -> List[str]: '''simple docstring''' pass @unittest.skip('''Wav2Vec2PhonemeModel has no max model length => no testing''' ) def _snake_case ( self : Dict ) -> List[Any]: '''simple docstring''' pass def _snake_case ( self : Tuple ) -> Any: '''simple docstring''' A: Any = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: str = tokenizer.vocab_size A: str = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) A: List[Any] = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] A: List[Any] = tokenizer.add_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Union[str, Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size + len(SCREAMING_SNAKE_CASE_ ) ) A: Any = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) A: str = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} A: int = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE_ ) A: Optional[Any] = tokenizer.vocab_size A: Optional[Any] = len(SCREAMING_SNAKE_CASE_ ) self.assertNotEqual(SCREAMING_SNAKE_CASE_ , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , len(SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(SCREAMING_SNAKE_CASE_ , all_size_a + len(SCREAMING_SNAKE_CASE_ ) ) A: int = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('''The tokenizer shouldn\'t be used to encode input IDs (except for labels), only to decode.''' ) def _snake_case ( self : Tuple ) -> Optional[Any]: '''simple docstring''' pass def _snake_case ( self : str ) -> Tuple: '''simple docstring''' A: List[Any] = self.get_tokenizers(fast=SCREAMING_SNAKE_CASE_ , do_lower_case=SCREAMING_SNAKE_CASE_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): A: Union[str, Any] = ['''ð''', '''ɪ''', '''s''', '''ɪ''', '''z''', '''ɐ''', '''t''', '''ɛ''', '''k''', '''s''', '''t'''] A: Union[str, Any] = tokenizer.convert_tokens_to_string(SCREAMING_SNAKE_CASE_ ) self.assertIsInstance(output['''text'''] , SCREAMING_SNAKE_CASE_ )
319
0
def SCREAMING_SNAKE_CASE ( _UpperCAmelCase = 400_0000 ) -> int: lowerCamelCase__ : Union[str, Any] = [] lowerCamelCase__ : Union[str, Any] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__lowercase ) lowerCamelCase__ : Dict = b, a + b return sum(__lowercase ) if __name__ == "__main__": print(F"""{solution() = }""")
50
'''simple docstring''' import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor UpperCamelCase = logging.get_logger(__name__) class lowerCAmelCase_ ( UpperCAmelCase_ ): '''simple docstring''' def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ) -> None: '''simple docstring''' warnings.warn( '''The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use BeitImageProcessor instead.''' , SCREAMING_SNAKE_CASE_ , ) super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
319
0
from typing import List, Optional, Union import numpy as np import tensorflow as tf from .utils import logging __snake_case = logging.get_logger(__name__) def _A ( _lowercase ) -> List[int]: """simple docstring""" if isinstance(__lowercase , np.ndarray ): return list(tensor.shape ) __UpperCamelCase = tf.shape(__lowercase ) if tensor.shape == tf.TensorShape(__lowercase ): return dynamic __UpperCamelCase = tensor.shape.as_list() return [dynamic[i] if s is None else s for i, s in enumerate(__lowercase )] def _A ( _lowercase , _lowercase = None , _lowercase = None ) -> tf.Tensor: """simple docstring""" return tf.nn.softmax(logits=logits + 1e-9 , axis=__lowercase , name=__lowercase ) def _A ( _lowercase , _lowercase , _lowercase , _lowercase=1e-5 , _lowercase=-1 ) -> List[Any]: """simple docstring""" if weight.shape.rank != 1 or bias.shape.rank != 1 or not isinstance(__lowercase , __lowercase ): raise NotImplementedError('Only 1D weight and bias tensors are supported for now, with only a single axis.' ) # Get mean and variance on the axis to be normalized __UpperCamelCase = tf.nn.moments(__lowercase , axes=[axis] , keepdims=__lowercase ) if axis != -1: # Reshape scale and weight to have the same rank as inputs, but with 1 dimensions # on every dimension except axis __UpperCamelCase = [1] * inputs.shape.rank __UpperCamelCase = shape_list(__lowercase )[axis] __UpperCamelCase = tf.reshape(__lowercase , __lowercase ) __UpperCamelCase = tf.reshape(__lowercase , __lowercase ) # Compute layer normalization using the batch_normalization # function. __UpperCamelCase = tf.nn.batch_normalization( __lowercase , __lowercase , __lowercase , offset=__lowercase , scale=__lowercase , variance_epsilon=__lowercase , ) return outputs def _A ( _lowercase , _lowercase=0 , _lowercase=-1 ) -> Any: """simple docstring""" if end_dim < 0: end_dim += input.shape.rank if start_dim < 0: start_dim += input.shape.rank if start_dim == end_dim: return input __UpperCamelCase = tf.shape(__lowercase ) __UpperCamelCase = tf.math.reduce_prod(in_shape[start_dim : end_dim + 1] ) __UpperCamelCase = tf.concat([in_shape[:start_dim], [flattened_dim], in_shape[end_dim + 1 :]] , axis=0 ) return tf.reshape(__lowercase , __lowercase ) def _A ( _lowercase ) -> tf.Tensor: """simple docstring""" if not isinstance(__lowercase , tf.Tensor ): __UpperCamelCase = tf.convert_to_tensor(__lowercase ) # Catches stray NumPy inputs if encoder_attention_mask.shape.rank == 3: __UpperCamelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.shape.rank == 2: __UpperCamelCase = encoder_attention_mask[:, None, None, :] # T5 has a mask that can compare sequence ids, we can simulate this here with this transposition # Cf. https://github.com/tensorflow/mesh/blob/8d2465e9bc93129b913b5ccc6a59aa97abd96ec6/mesh_tensorflow # /transformer/transformer_layers.py#L270 # encoder_extended_attention_mask = (encoder_extended_attention_mask == # encoder_extended_attention_mask.transpose(-1, -2)) __UpperCamelCase = ( tf.cast(1 , encoder_attention_mask.dtype ) - encoder_extended_attention_mask ) * encoder_extended_attention_mask.dtype.min return encoder_extended_attention_mask def _A ( _lowercase , _lowercase , _lowercase = "input_ids" ) -> None: """simple docstring""" tf.debugging.assert_less( __lowercase , tf.cast(__lowercase , dtype=tensor.dtype ) , message=( f'''The maximum value of {tensor_name} ({tf.math.reduce_max(__lowercase )}) must be smaller than the embedding ''' f'''layer\'s input dimension ({embed_dim}). The likely cause is some problem at tokenization time.''' ) , ) def _A ( _lowercase , _lowercase , _lowercase ) -> List[Any]: """simple docstring""" __UpperCamelCase = 6_45_12 # Check that no item in `data` is larger than `HDF5_OBJECT_HEADER_LIMIT` # because in that case even chunking the array would not make the saving # possible. __UpperCamelCase = [x for x in data if len(__lowercase ) > HDF5_OBJECT_HEADER_LIMIT] # Expecting this to never be true. if bad_attributes: raise RuntimeError( 'The following attributes cannot be saved to HDF5 file because ' f'''they are larger than {HDF5_OBJECT_HEADER_LIMIT} ''' f'''bytes: {bad_attributes}''' ) __UpperCamelCase = np.asarray(__lowercase ) __UpperCamelCase = 1 __UpperCamelCase = np.array_split(__lowercase , __lowercase ) # This will never loop forever thanks to the test above. while any(x.nbytes > HDF5_OBJECT_HEADER_LIMIT for x in chunked_data ): num_chunks += 1 __UpperCamelCase = np.array_split(__lowercase , __lowercase ) if num_chunks > 1: for chunk_id, chunk_data in enumerate(__lowercase ): __UpperCamelCase = chunk_data else: __UpperCamelCase = data def _A ( _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" if name in group.attrs: __UpperCamelCase = [n.decode('utf8' ) if hasattr(__lowercase , 'decode' ) else n for n in group.attrs[name]] else: __UpperCamelCase = [] __UpperCamelCase = 0 while "%s%d" % (name, chunk_id) in group.attrs: data.extend( [n.decode('utf8' ) if hasattr(__lowercase , 'decode' ) else n for n in group.attrs['%s%d' % (name, chunk_id)]] ) chunk_id += 1 return data def _A ( _lowercase ) -> Optional[Any]: """simple docstring""" def _expand_single_ad_tensor(_lowercase ): if isinstance(__lowercase , tf.Tensor ) and t.shape.rank == 1: return tf.expand_dims(__lowercase , axis=-1 ) return t return tf.nest.map_structure(_expand_single_ad_tensor , __lowercase )
310
'''simple docstring''' import os import pytest from transformers.dynamic_module_utils import get_imports UpperCamelCase = ''' import os ''' UpperCamelCase = ''' def foo(): import os return False ''' UpperCamelCase = ''' def foo(): def bar(): if True: import os return False return bar() ''' UpperCamelCase = ''' import os try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os def foo(): try: import bar except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except (ImportError, AttributeError): raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except ImportError as e: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar except: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: raise ValueError() ''' UpperCamelCase = ''' import os try: import bar import baz except ImportError: x = 1 raise ValueError() ''' UpperCamelCase = [ TOP_LEVEL_IMPORT, IMPORT_IN_FUNCTION, DEEPLY_NESTED_IMPORT, TOP_LEVEL_TRY_IMPORT, GENERIC_EXCEPT_IMPORT, MULTILINE_TRY_IMPORT, MULTILINE_BOTH_IMPORT, MULTIPLE_EXCEPTS_IMPORT, EXCEPT_AS_IMPORT, TRY_IMPORT_IN_FUNCTION, ] @pytest.mark.parametrize('''case''' , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Dict: A: Tuple = os.path.join(__lowercase , '''test_file.py''' ) with open(__lowercase , '''w''' ) as _tmp_file: _tmp_file.write(__lowercase ) A: List[Any] = get_imports(__lowercase ) assert parsed_imports == ["os"]
319
0
from __future__ import annotations import math def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' if len(__lowercase ) != 2 or len(a[0] ) != 2 or len(__lowercase ) != 2 or len(b[0] ) != 2: raise Exception('''Matrices are not 2x2''' ) __UpperCAmelCase = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowercase ) ) ] def __a ( SCREAMING_SNAKE_CASE ) -> tuple[list, list, list, list]: '''simple docstring''' if len(__lowercase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception('''Odd matrices are not supported!''' ) __UpperCAmelCase = len(__lowercase ) __UpperCAmelCase = matrix_length // 2 __UpperCAmelCase = [[a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase )] __UpperCAmelCase = [ [a[i][j] for j in range(__lowercase , __lowercase )] for i in range(__lowercase , __lowercase ) ] __UpperCAmelCase = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase )] __UpperCAmelCase = [[a[i][j] for j in range(__lowercase )] for i in range(__lowercase , __lowercase )] return top_left, top_right, bot_left, bot_right def __a ( SCREAMING_SNAKE_CASE ) -> tuple[int, int]: '''simple docstring''' return len(__lowercase ), len(matrix[0] ) def __a ( SCREAMING_SNAKE_CASE ) -> None: '''simple docstring''' print('''\n'''.join(str(__lowercase ) for line in matrix ) ) def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' if matrix_dimensions(__lowercase ) == (2, 2): return default_matrix_multiplication(__lowercase , __lowercase ) __UpperCAmelCase = split_matrix(__lowercase ) __UpperCAmelCase = split_matrix(__lowercase ) __UpperCAmelCase = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) __UpperCAmelCase = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) __UpperCAmelCase = actual_strassen(matrix_addition(__lowercase , __lowercase ) , __lowercase ) __UpperCAmelCase = actual_strassen(__lowercase , matrix_subtraction(__lowercase , __lowercase ) ) __UpperCAmelCase = actual_strassen(matrix_addition(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) __UpperCAmelCase = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) __UpperCAmelCase = actual_strassen(matrix_subtraction(__lowercase , __lowercase ) , matrix_addition(__lowercase , __lowercase ) ) __UpperCAmelCase = matrix_addition(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) __UpperCAmelCase = matrix_addition(__lowercase , __lowercase ) __UpperCAmelCase = matrix_addition(__lowercase , __lowercase ) __UpperCAmelCase = matrix_subtraction(matrix_subtraction(matrix_addition(__lowercase , __lowercase ) , __lowercase ) , __lowercase ) # construct the new matrix from our 4 quadrants __UpperCAmelCase = [] for i in range(len(__lowercase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowercase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' if matrix_dimensions(__lowercase )[1] != matrix_dimensions(__lowercase )[0]: __UpperCAmelCase = ( '''Unable to multiply these matrices, please check the dimensions.\n''' f'''Matrix A: {matrixa}\n''' f'''Matrix B: {matrixa}''' ) raise Exception(__lowercase ) __UpperCAmelCase = matrix_dimensions(__lowercase ) __UpperCAmelCase = matrix_dimensions(__lowercase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] __UpperCAmelCase = max(*__lowercase , *__lowercase ) __UpperCAmelCase = int(math.pow(2 , math.ceil(math.loga(__lowercase ) ) ) ) __UpperCAmelCase = matrixa __UpperCAmelCase = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) __UpperCAmelCase = actual_strassen(__lowercase , __lowercase ) # Removing the additional zeros for i in range(0 , __lowercase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowercase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": A_ : List[Any] = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] A_ : Optional[int] = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
333
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase=False , __lowercase=False , __lowercase=False ) -> Optional[Any]: A: str = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ('''text_embeddings.word_embeddings.weight''', '''vilt.embeddings.text_embeddings.word_embeddings.weight'''), ( '''text_embeddings.position_embeddings.weight''', '''vilt.embeddings.text_embeddings.position_embeddings.weight''', ), ('''text_embeddings.position_ids''', '''vilt.embeddings.text_embeddings.position_ids'''), ( '''text_embeddings.token_type_embeddings.weight''', '''vilt.embeddings.text_embeddings.token_type_embeddings.weight''', ), ('''text_embeddings.LayerNorm.weight''', '''vilt.embeddings.text_embeddings.LayerNorm.weight'''), ('''text_embeddings.LayerNorm.bias''', '''vilt.embeddings.text_embeddings.LayerNorm.bias'''), # patch embeddings ('''transformer.cls_token''', '''vilt.embeddings.cls_token'''), ('''transformer.patch_embed.proj.weight''', '''vilt.embeddings.patch_embeddings.projection.weight'''), ('''transformer.patch_embed.proj.bias''', '''vilt.embeddings.patch_embeddings.projection.bias'''), ('''transformer.pos_embed''', '''vilt.embeddings.position_embeddings'''), # token type embeddings ('''token_type_embeddings.weight''', '''vilt.embeddings.token_type_embeddings.weight'''), ] ) # final layernorm + pooler rename_keys.extend( [ ('''transformer.norm.weight''', '''vilt.layernorm.weight'''), ('''transformer.norm.bias''', '''vilt.layernorm.bias'''), ('''pooler.dense.weight''', '''vilt.pooler.dense.weight'''), ('''pooler.dense.bias''', '''vilt.pooler.dense.bias'''), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ('''vqa_classifier.0.weight''', '''classifier.0.weight'''), ('''vqa_classifier.0.bias''', '''classifier.0.bias'''), ('''vqa_classifier.1.weight''', '''classifier.1.weight'''), ('''vqa_classifier.1.bias''', '''classifier.1.bias'''), ('''vqa_classifier.3.weight''', '''classifier.3.weight'''), ('''vqa_classifier.3.bias''', '''classifier.3.bias'''), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ('''nlvr2_classifier.0.weight''', '''classifier.0.weight'''), ('''nlvr2_classifier.0.bias''', '''classifier.0.bias'''), ('''nlvr2_classifier.1.weight''', '''classifier.1.weight'''), ('''nlvr2_classifier.1.bias''', '''classifier.1.bias'''), ('''nlvr2_classifier.3.weight''', '''classifier.3.weight'''), ('''nlvr2_classifier.3.bias''', '''classifier.3.bias'''), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> Any: for i in range(config.num_hidden_layers ): A: Tuple = '''vilt.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A: List[str] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) A: Optional[Any] = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A: Dict = in_proj_weight[ : config.hidden_size, : ] A: int = in_proj_bias[: config.hidden_size] A: Any = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A: int = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A: Optional[int] = in_proj_weight[ -config.hidden_size :, : ] A: Optional[Any] = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE( __lowercase ) -> int: A: Optional[int] = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE( __lowercase , __lowercase , __lowercase ) -> int: A: List[Any] = dct.pop(__lowercase ) A: int = val @torch.no_grad() def SCREAMING_SNAKE_CASE( __lowercase , __lowercase ) -> str: A: Optional[Any] = ViltConfig(image_size=3_8_4 , patch_size=3_2 , tie_word_embeddings=__lowercase ) A: Tuple = False A: str = False A: List[Any] = False A: Optional[int] = False if "vqa" in checkpoint_url: A: Union[str, Any] = True A: Union[str, Any] = 3_1_2_9 A: List[Any] = '''huggingface/label-files''' A: Any = '''vqa2-id2label.json''' A: Optional[Any] = json.load(open(hf_hub_download(__lowercase , __lowercase , repo_type='''dataset''' ) , '''r''' ) ) A: Union[str, Any] = {int(__lowercase ): v for k, v in idalabel.items()} A: Any = idalabel A: Optional[Any] = {v: k for k, v in idalabel.items()} A: List[str] = ViltForQuestionAnswering(__lowercase ) elif "nlvr" in checkpoint_url: A: Dict = True A: str = 2 A: Union[str, Any] = {0: '''False''', 1: '''True'''} A: Any = {v: k for k, v in config.idalabel.items()} A: Optional[Any] = 3 A: Any = ViltForImagesAndTextClassification(__lowercase ) elif "irtr" in checkpoint_url: A: Tuple = True A: Optional[Any] = ViltForImageAndTextRetrieval(__lowercase ) elif "mlm_itm" in checkpoint_url: A: Tuple = True A: Optional[int] = ViltForMaskedLM(__lowercase ) else: raise ValueError('''Unknown model type''' ) # load state_dict of original model, remove and rename some keys A: int = torch.hub.load_state_dict_from_url(__lowercase , map_location='''cpu''' )['''state_dict'''] A: List[str] = create_rename_keys(__lowercase , __lowercase , __lowercase , __lowercase ) for src, dest in rename_keys: rename_key(__lowercase , __lowercase , __lowercase ) read_in_q_k_v(__lowercase , __lowercase ) if mlm_model or irtr_model: A: str = ['''itm_score.fc.weight''', '''itm_score.fc.bias'''] for k in ignore_keys: state_dict.pop(__lowercase , __lowercase ) # load state dict into HuggingFace model model.eval() if mlm_model: A , A: Union[str, Any] = model.load_state_dict(__lowercase , strict=__lowercase ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(__lowercase ) # Define processor A: Optional[Any] = ViltImageProcessor(size=3_8_4 ) A: Dict = BertTokenizer.from_pretrained('''bert-base-uncased''' ) A: Optional[int] = ViltProcessor(__lowercase , __lowercase ) # Forward pass on example inputs (image + text) if nlvr_model: A: str = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: List[str] = Image.open(requests.get('''https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg''' , stream=__lowercase ).raw ) A: Any = ( '''The left image contains twice the number of dogs as the right image, and at least two dogs in total are''' ''' standing.''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: List[str] = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: A: Any = Image.open(requests.get('''http://images.cocodataset.org/val2017/000000039769.jpg''' , stream=__lowercase ).raw ) if mlm_model: A: Optional[int] = '''a bunch of [MASK] laying on a [MASK].''' else: A: Optional[int] = '''How many cats are there?''' A: Union[str, Any] = processor(__lowercase , __lowercase , return_tensors='''pt''' ) A: Any = model(**__lowercase ) # Verify outputs if mlm_model: A: Any = torch.Size([1, 1_1, 3_0_5_2_2] ) A: Tuple = torch.tensor([-1_2.5_0_6_1, -1_2.5_1_2_3, -1_2.5_1_7_4] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify masked token prediction equals "cats" A: List[str] = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: A: Any = torch.Size([1, 3_1_2_9] ) A: Optional[int] = torch.tensor([-1_5.9_4_9_5, -1_8.1_4_7_2, -1_0.3_0_4_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , __lowercase , atol=1E-4 ) # verify vqa prediction equals "2" A: Dict = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: A: Union[str, Any] = torch.Size([1, 2] ) A: Optional[Any] = torch.tensor([-2.8_7_2_1, 2.1_2_9_1] ) assert torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(__lowercase ).mkdir(exist_ok=__lowercase ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) UpperCamelCase = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
319
0
"""simple docstring""" __snake_case = range(2, 20 + 1) __snake_case = [10**k for k in range(ks[-1] + 1)] __snake_case = {} def A_ ( _lowerCAmelCase : List[str], _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[int], _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _a = sum(a_i[j] for j in range(_lowerCAmelCase, len(_lowerCAmelCase ) ) ) _a = sum(a_i[j] * base[j] for j in range(min(len(_lowerCAmelCase ), _lowerCAmelCase ) ) ) _a , _a = 0, 0 _a = n - i _a = memo.get(_lowerCAmelCase ) if sub_memo is not None: _a = sub_memo.get(_lowerCAmelCase ) if jumps is not None and len(_lowerCAmelCase ) > 0: # find and make the largest jump without going over _a = -1 for _k in range(len(_lowerCAmelCase ) - 1, -1, -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: _a = _k break if max_jump >= 0: _a , _a , _a = jumps[max_jump] # since the difference between jumps is cached, add c _a = diff + c for j in range(min(_lowerCAmelCase, len(_lowerCAmelCase ) ) ): _a , _a = divmod(_lowerCAmelCase, 10 ) if new_c > 0: add(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) else: _a = [] else: _a = {c: []} _a = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps _a , _a = next_term(_lowerCAmelCase, k - 1, i + dn, _lowerCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead _a , _a = compute(_lowerCAmelCase, _lowerCAmelCase, i + dn, _lowerCAmelCase ) diff += _diff dn += terms_jumped _a = sub_memo[c] # keep jumps sorted by # of terms skipped _a = 0 while j < len(_lowerCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_lowerCAmelCase, (diff, dn, k) ) return (diff, dn) def A_ ( _lowerCAmelCase : Dict, _lowerCAmelCase : Any, _lowerCAmelCase : int, _lowerCAmelCase : List[str] ): """simple docstring""" if i >= n: return 0, i if k > len(_lowerCAmelCase ): a_i.extend([0 for _ in range(k - len(_lowerCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) _a = i _a , _a , _a = 0, 0, 0 for j in range(len(_lowerCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 _a = ds_c + ds_b diff += addend _a = 0 for j in range(_lowerCAmelCase ): _a = a_i[j] + addend _a , _a = divmod(_lowerCAmelCase, 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_lowerCAmelCase, _lowerCAmelCase, _lowerCAmelCase ) return diff, i - start_i def A_ ( _lowerCAmelCase : Any, _lowerCAmelCase : Optional[Any], _lowerCAmelCase : Optional[Any] ): """simple docstring""" for j in range(_lowerCAmelCase, len(_lowerCAmelCase ) ): _a = digits[j] + addend if s >= 10: _a , _a = divmod(_lowerCAmelCase, 10 ) _a = addend // 10 + quotient else: _a = s _a = addend // 10 if addend == 0: break while addend > 0: _a , _a = divmod(_lowerCAmelCase, 10 ) digits.append(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : int = 10**15 ): """simple docstring""" _a = [1] _a = 1 _a = 0 while True: _a , _a = next_term(_lowerCAmelCase, 20, i + dn, _lowerCAmelCase ) dn += terms_jumped if dn == n - i: break _a = 0 for j in range(len(_lowerCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'{solution() = }')
320
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case = logging.get_logger(__name__) __snake_case = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class __lowerCamelCase ( a__ ): '''simple docstring''' A_ : Dict = 'unispeech' def __init__( self , __UpperCAmelCase=32 , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , __UpperCAmelCase="group" , __UpperCAmelCase="gelu" , __UpperCAmelCase=(512, 512, 512, 512, 512, 512, 512) , __UpperCAmelCase=(5, 2, 2, 2, 2, 2, 2) , __UpperCAmelCase=(10, 3, 3, 3, 3, 2, 2) , __UpperCAmelCase=False , __UpperCAmelCase=128 , __UpperCAmelCase=16 , __UpperCAmelCase=False , __UpperCAmelCase=True , __UpperCAmelCase=0.05 , __UpperCAmelCase=10 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0 , __UpperCAmelCase=10 , __UpperCAmelCase=0 , __UpperCAmelCase=320 , __UpperCAmelCase=2 , __UpperCAmelCase=0.1 , __UpperCAmelCase=100 , __UpperCAmelCase=256 , __UpperCAmelCase=256 , __UpperCAmelCase=0.1 , __UpperCAmelCase="mean" , __UpperCAmelCase=False , __UpperCAmelCase=False , __UpperCAmelCase=256 , __UpperCAmelCase=80 , __UpperCAmelCase=0 , __UpperCAmelCase=1 , __UpperCAmelCase=2 , __UpperCAmelCase=0.5 , **__UpperCAmelCase , ) -> Union[str, Any]: super().__init__(**__UpperCAmelCase , pad_token_id=__UpperCAmelCase , bos_token_id=__UpperCAmelCase , eos_token_id=__UpperCAmelCase ) _a = hidden_size _a = feat_extract_norm _a = feat_extract_activation _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = list(__UpperCAmelCase ) _a = conv_bias _a = num_conv_pos_embeddings _a = num_conv_pos_embedding_groups _a = len(self.conv_dim ) _a = num_hidden_layers _a = intermediate_size _a = hidden_act _a = num_attention_heads _a = hidden_dropout _a = attention_dropout _a = activation_dropout _a = feat_proj_dropout _a = final_dropout _a = layerdrop _a = layer_norm_eps _a = initializer_range _a = num_ctc_classes _a = vocab_size _a = do_stable_layer_norm _a = use_weighted_layer_sum _a = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' F' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,' F' `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 _a = apply_spec_augment _a = mask_time_prob _a = mask_time_length _a = mask_time_min_masks _a = mask_feature_prob _a = mask_feature_length _a = mask_feature_min_masks # parameters for pretraining with codevector quantized representations _a = num_codevectors_per_group _a = num_codevector_groups _a = contrastive_logits_temperature _a = feat_quantizer_dropout _a = num_negatives _a = codevector_dim _a = proj_codevector_dim _a = diversity_loss_weight # ctc loss _a = ctc_loss_reduction _a = ctc_zero_infinity # pretraining loss _a = replace_prob @property def _UpperCAmelCase ( self ) -> Optional[int]: return functools.reduce(operator.mul , self.conv_stride , 1 )
320
1